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Abstract

The aim of this thesis is to develop an approach to the computation of the correlation functions
of quantum integrable lattice models within the quantum version of the Separation of Variables
(SoV) method. SoV is a powerful method which applies to a wide range of quantum integrable
models with various boundary conditions. Yet, the problem of computing correlation functions
within this framework is still widely open. Here, we more precisely consider two simple models
solvable by SoV: the XXX and XXZ Heisenberg chains of spins 1/2, with anti-periodic boundary
conditions, or more generally quasi-periodic boundary conditions with a non-diagonal twist. We
first review their solution by SoV, which presents some similarities but also crucial differences.
Then we study the scalar products of separate states, a class of states that notably contains all
the eigenstates of the model. We explain how to obtain convenient determinant representations
for these scalar products. We also explain how to generalise these determinant representations
in the case of form factors, i.e. of matrix elements of the local operators in the basis of
eigenstates. These form factors are of particular interest for the computation of correlation
since all correlation functions can be obtained as a sum over form factors. Finally, we consider
more general elementary building blocks for the correlation functions, and explain how to
recover, in the thermodynamic limit of the model, the multiple integral representations that
were previously obtained from the consideration of the periodic models by algebraic Bethe
Ansatz.
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Introduction Générale

Le but de cette thése est de développer une méthode permettant de calculer les fonctions de
corrélation de modeles intégrables quantiques sur réseau solubles par la méthode de séparation
des variables quantique (SoV), dans le cadre de la méthode dite de diffusion inverse quantique
(QISM). Nous présentons ici briévement cette méthode dans son contexte historique.

La méthode de diffusion inverse quantique (QISM) a été développée en méme temps que
la quantification de modéles intégrables classiques solubles par la méthode de diffusion inverse
classique (CISM). 1l s’agit d’un outil puissant pour résoudre des modéles quantiques intégrables,
avec une structure mathématique assez riche.

L’histoire commence en 1967 lorsque Gardner, Greene, Kruskal, et Miura (GGKM) [1] met-
tent en ccuvre la méthode de diffusion inverse (CISM) dans le cadre de I’équation de Korteweg-de
Vries (KdV), puis se poursuit avec I'introduction du formalisme de Lax (paire de Lax) 2] en
1969. Cette méthode, considérée initialement comme une simple méthode ingénieuse perme-
ttant de résoudre un probléme particulier, fut alors généralisée par Zakharov et Shabat [3]
a I'étude d’un autre modele, I’équation de Schrodinger non linéaire (NSE). Un an plus tard,
Zakharov et Faddeev montrérent que 1’équation de KdV pouvait étre interprétée comme un
systéme hamiltonien complétement intégrable avec une infinité de degrés de liberté, et con-
struisirent les variables d’action-angle correspondantes [4]. De 1972 & 1973, cette méthode fut
également appliquée a I’équation de Sine-Gordon, qui est un modéle relativiste. Les variables
d’action-angle furent construites pour ce modéle par Takhtajan et Faddeev [5].

Par ailleurs, le formalisme de la paire de Lax avait été remplacé par la condition de courbure
nulle, plus puissante [6], le probléme spectral de 'opérateur Lax étant remplacé par une équation
linéaire auxiliaire, et les données de diffusion pouvant étre définies comme le comportement
asymptotique du groupe d’holonomie pour un intervalle fini. Dans ce contexte, le probléme
de l'introduction des variables d’action-angle revient donc au calcul explicite des crochets de
Poisson des éléments matriciels de I’holonomie . Ce calcul a été fait pour le modeéle Sine-Gordon
dans [5], et pour le modéle de Heisenberg ferromagnétique dans [7].

Ainsi, le schéma de la CISM pour une équation non linéaire donnée peut étre énoncé en
bref comme suit: il faut d’abord spécifier 'opérateur de Lax L correspondant et déterminer
I’holonomie pour l'intervalle fini; la deuxiéme tache est d’obtenir les données asymptotiques a
grande distance (de I’holonomie); la derniére étape consiste a construire les variables d’action-
angle.

La machinerie mathématique des systémes intégrables classiques étant construite, une ques-
tion naturelle est de savoir comment quantifier ces systémes intégrables classiques. A cette
époque, la quantification exacte du modele NSE était connue. Par ailleurs, on savait que les
modeéles intégrables permettent une interprétation en termes des orbites co-adjointe des algébres
de Lie [8, 9], en particulier dans [10] ou la quantification signifie la représentation des éléments
correspondants Algébre de Lie. Fortement motivé par ces faits, le groupe de Leningrad (Fad-
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deev et al.) s’est engagé dans un quantification de la CISM associée a une quantification du
systéme intégrable correspondant.

Dans un premier travail, Faddeev et Sklyanin [11| conjecturérent les relations de commu-
tation pour les analogues quantiques des éléments de la matrice d’holonomie asymptotique
(monodromie). Ils remarquérent ensuite que la technique de la matrice de transfert appliquée
par Baxter [12] pour les modéles de réseau bidimensionnels en mécanique statistique (qui re-
monte a l'article d’Onsager sur le modeéle d’Ising [13]|) présente des similitudes significatives
avec les caractéristiques de la monodromie de 'opérateur L. Sklyanin adapta alors cette idée
dans I’étude de NSE quantique [14] en écrivant les relations de commutation pour les éléments
de matrice d'un opérateur L (local) de telle sorte que 'on puisse les utiliser pour obtenir les
relations de commutation pour les éléments matriciels de la monodromie (globale).

Une fois la coordonnée spatiale correctement discrétisée et la théorie quantique des champs
placée sur réseau, l'opérateur L local (qui est noté L, ,()\), prenant la forme d’une matrice
dans un vecteur auxiliaire space V, avec des entités agissant sur I’espace quantique local H,,)
peut étre interprété comme une holonomie ’infinitésimale’ le long du réseau. Pour le modéle de
Sine-Gordon (SG), les relations de commutation locales ont été trouvées [15] sous la forme:

Rap(A— 1) Lia(N) Lip(p) = Lip(p1) Lisa(N) Rap (A — 1) (1)
Li,a()‘)Lj,bOL) = Lj,b(:u)Li,a(A)a [ 7&] (2)

ot R(\) est une matrice scalaire de taille 4 par 4 ne contenant pas d’observables dynamiques et
agissant de maniére non triviale sur V, ® Vj,.! L’opérateur local L peut étre utilisé pour définir
la monodromie quantique :

TO) = Ly s (-1 = () D)) ®)

ou les éléments de la matrice {A, B, C, D} sont des opérateurs quantiques globaux. La matrice
de monodromie quantique satisfait aux mémes FCR (1). Ainsi, la tache de dériver des relations
de commutation pour les éléments de matrice de la monodromie (globale) a partir de celles
d’un opérateur L (local) a été accomplie.

On peut voir d’aprés la monodromie quantique (3) et les FCR (1) que les traces de la
monodromie quantique :

T = te(T(\) = A\) + D(A) (4)

commutent entre elles pour différentes valeurs du parameétre spectral \. Ainsi, cette trace peut
étre considérée comme une fonction génératrice d’une famille & un paramétre d’opérateurs qui
commutent et a laquelle appartient le Hamiltonien (a prouver). Elle fournit donc les intégrales
du mouvement, c’est-a-dire la version quantique des variables d’action. Les éléments non di-
agonaux de la monodromie (9) correspondent quant a eux a la version quantique des variables
d’angle. Dans les travaux de Baxter, ces opérateurs hors diagonaux ne sont pas treés importants,
mais ici ils sont cruciaux. En effet, pour un état propre particulier |2) (état de référence) de
7 () annihilé par C(\), I'état de la forme

B(M)B(A2)....B(Am) [) (5)

1Les relations (1) ont été appelées relations de commutation fondamentales (FCR) par les auteurs.
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est aussi un état propre si les parameétres {1, ..., Ay} satisfont certains systémes d’équations
algébriques. En d’autres termes, les éléments hors diagonaux jouent le role d’opérateurs de
création et d’annihilation d’un état de pseudo-particules. La correspondance entre le schéma
du groupe de Leningrad et les travaux de Baxter peut étre décrite comme suit: 'opérateur L
local est un analogue du poids de Boltzmann local; les FCR (1) sont un analogue de la relation
triangle-étoile [12, 16]; la trace de la matrice de monodromie quantique est un analogue de la
matrice de transfert dans [12]. La QISM a donc une architecture claire et s’avére une méthode
efficace, un large éventail de modéles intégrables classiques tels que les équations KdV, NLS, le
réseau Toda et la chaine de Heisenberg pouvant étre quantifié dans ce cadre.

En particulier, concernant la quantification de la chaine de Heisenberg, le groupe de Leningrad
a constaté que pour la représentation de spin 1/2, leur travail se connecte remarquablement
a la diagonalisation du Hamiltonien effectuée par H.Bethe en 1931 [17|. L’état de référence
|2) coincide avec la représentation de poids la plus élevée (pseudo vide), et I'état propre (5)
coincide avec I'état & M magnons avec {Aq,..., \ys} satisfaisant les équations de Bethe. La
méthode inventée par H. Bethe étant appelée Ansatz de Bethe coordonné, la QISM est ainssi
souvent également appelée Ansatz de Bethe algébrique.

On s’est alors rendu compte, en étudiant un systéme de spin supérieur [18, 19, 20|, que la
relation fondamentale de commutation (1) et le choix concret de 'opérateur L correspondent a
la représentation d’une algébre universelle A déterminée par un objet R(\). Par exemple dans
le cas ou l'espace auxiliaire coincide avec l'espace quantique local, cet objet R(\) obéit a la
méme relation obtenue par C.N. Yang [21] et Baxter [12, 16] qui est maintenant connue sous
le nom d’équation de Yang-Baxter.

Au fur et & mesure que la QISM se développait, Kulish et Reshetikhin ont trouvé la forme
correcte de 'opérateur L local pour la chaine de spin X X Z de Heisenberg ainsi que les relations
de commutation entre ses éléments de matrice [22]. Il était clair que ces éléments de matrice
forment une algebre s[(2) déformée dépendant d’un parameétre d’anisotropie. Sklyanin a étudié
le modele XY Z et a proposé une déformation supplémentaire de cette algébre dans le cas a
deux parameétres [23]. Pendant ce temps, Izergin et Korepin a montré que les modeéles discrétisés

NLS et SG pouvaient étre considérés comme les représentations correspondantes des modéles
XXX et XXZ respectivement |24, 20].

Plus tard, Drinfeld [25, 26] et Jimbo [27] ont généralisé indépendamment le cas s[(2) a toute
algébre de Lie semi-simple et 1'ont interprété comme une classe spéciale d’Algebres de Hopf.
C’est & ce moment-la que I’étude du «groupe quantique» a commencé.

Il convient également de mentionner que 1’Ansatz de Bethe coordonné avait déja, dans les
années suivant I'article fondateur de Bethe en 1931, fourni une nouvelle perspective permettant
I’étude d’'une large classe de systémes quantiques. Bien que limité a la dimension 1 + 1, il
avait conduit & de nouveaux développements (tels que les méthodes de I’Ansatz de Bethe
thermodynamique (TBA), de ’Ansatz de Bethe asymptotique, etc. [28, 29, 30]) qui jouent
un role important dans la physique de la matiére condensée [31] ainsi que dans les théories
des champs conformes [32]. Au début du 21éme siécle, il a été étonnamment découvert que la
chaine de spin unidimensionnelle Heisenberg X X X apparait dans une limite spéciale du systéeme
intégrable AdS/CFT [33, 34, 35]. Depuis lors, l'intégrabilité a été intensivement étudiée dans
le cadre des théories des champs de jauge supersymétriques et la théorie des cordes.

Le schéma général pour construire les variables d’action-angle pour les systémes compléte-
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ment intégrables est de trouver la transformation canonique & travers une généralisation de
la méthode de Hamilton-Jacobi d’intégration des équations canoniques. Et dans ce schéma,
pendant longtemps, la seule méthode fructueuse pour intégrer I’équation de Hamilton-Jacobi
en mécanique analytique classique était celle de la séparation des variables (SoV) [36].

Cependant, avec 'apparition de la CISM, le role indispensable joué par la SoV dans la
résolution des systémes intégrables classiques a semblé étre dépassé. En effet, la CISM semblait
permettre a priori de s’attaquer & une gamme beaucoup plus large de systémes intégrables
classiques. Néanmoins, aprés une nouvelle étude dans le cadre de la CISM, il s’avére que la
SoV est loin d’étre dépassé. De plus, cela peut rester la méthode la plus universelle pour
résoudre des modéles intégrables [37].

Un objet central dans le traitement moderne de la CISM est la dite courbe spectrale [38].
Celle-ci correspond au domaine des zéros du polyndéme caractéristique d’une matrice N x N
de Lax L(A). Si nous considérons la valeur propre z(A) et I'opérateur Lax L(\) comme des
fonctions d’un paramétre complexe A, alors I’équation caractéristique les définit comme des
fonctions sur la surface de Riemann a N feuillets paramétrée localement par A. La maniére
standard de construire les variables d’action-angle est d’utiliser les poles de la fonction de
Baker-Akhiezer . Et cela s’avére étre équivalent a une séparation de variables [37]. La fonction
de Baker-Akhiezer Q()) est définie comme le vecteur propre de L(\):

LOVQ) = 2(A)Q(N). (6)

Pour une grande classe de modeéles intégrables , la recette magique de Sklyanin "Prenez les poles
de la fonction de Baker-Akhiezer correctement normalisée et les valeurs propres correspondantes
de l'opérateur Lax et alors vous obtenez SoV " [37] fonctionne.

Une autre raison pour laquelle SoV doit étre étudiée plus en profondeur est que dans de nom-
breux cas, il est possible de construire une séparation de variables dans des systémes quantiques
intégrables de maniere analogue.

Peu de temps apreés ’établissement de la QISM, inspiré par H. Flashka , D.W. Maclaughlin
[39] (1976) M. Gutzwiller |40, 41] (1981-1982) et 1.V. Komarov [42] (1982), Sklyanin a proposé
une version quantique de la séparation des variables dans une série d’articles de 1985 [43, 44, 45].
Cette approche fonctionne également dans le cadre de la QISM. Elle vise a trouver une base dans
I’espace de Hilbert sous-jacent dans lequel le probléme spectral de la matrice de transfert peut
étre séparé. Elle réduit ainsi le probléme en dimension N & la résolution de N problémes
a une dimension. Depuis lors, de nombreux modeéles ont été étudiés dans cette approche
[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57|. Une telle base est souvent appelée « base SoV ».
Dans 'approche de Sklyanin , la base SoV a été identifiée comme la base propre de 1’élément
hors diagonale B(A) de la matrice de monodromie quantique [47, 37]. Et les éléments diagonaux
A()N) et D(X) agissent comme des opérateurs de shift sur la base qui conduit a la factorisation
souhaitée du probléme spectral. Il est important de souligner que pour s’assurer que B(\) a un
spectre simple, le modéle doit étre déformé en introduisant des paramétres d’inhomogénéité en
chaque site du réseau. Retrouver le modeéle physique revient alors a prendre la limite homogéne,
c’est-a-dire que tous les parameétres d’inhomogénéité doivent tendre vers la méme valeur.

Une caractéristique intéressante de cette approche est qu’'un "état de référence" n’est pas
nécessaire, contrairement & 'ABA. Ainsi, elle peut étre appliqué & de nombreux modéles avec
diverses conditions aux limites (y compris la condition aux limites anti-périodique) qui ne
possédent pas un tel état de référence simple et ne peuvent pas étre résolus directement par
I’ABA. Pour de tels modéles, la SoV fournit non seulement une caractérisation compléte des
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valeurs propres et des états propres de la matrice de transfert correspondante, mais aussi
la complétude des états propres en conséquence directe. C’est un avantage considérable par
rapport & I’ABA pour lequel la complétude est en général un probléme compliqué (voir par
exemple [58, 59]).

Mentionnons pour terminer cette bréve présentation de la SoV qu’une nouvelle version a été
proposée récemment dans une série d’articles [60, 61, 62, 63, 64, 65, 66]. Dans cette nouvelle
version, la base SoV peut étre construite en n’utilisant que la matrice de transfert elle-méme.
Cela ouvre de nouvelles perspectives pour 1’étude d’une classe de modéles beaucoup plus large.
Plus important encore, du point de vue théorique, cela apporte un peu de lumiére sur la
définition de l'intégrabilité quantique. Dernier point mais non le moindre, SoV peut conduire
a des constructions de modeéles quantiques intégrables qui n’ont pas besoin de ’équation de
Yang-Baxter pour définir la structure algébrique [67].

Meéme si la naissance de I’Ansatz de Bethe remonte & des décennies, le calcul des fonctions
de corrélations pour les modéles sur réseau quantiques reste en général un probléme difficile.
Pendant longtemps, les calculs ont été effectués uniquement pour les fermions libres [13, 68,
69, 70, 71, 72, 73, 74| et les théories des champs conformes [75]. Les premiéres tentatives
d’utilisation de I’Ansatz de Bethe pour le calcul des fonctions de corrélation de la chaine de
spin XX X de Heisenberg (qui correspond au paramétre d’anisotropie A = 1) ne remontent
qu’a 1984 |24, 76]. Plus tard, dans les années 1992, une représentation sous forme d’intégrale
multiple pour les fonctions de corrélation du modéle X XZ dans le régime massif (A > 1),
dans la limite thermodynamique, & température nulle et champ magnétique nul, a été obtenue
pour la premiére fois par 'approche des opérateurs de vertex g-déformés (utilisant également
la technique de la matrice de transfert de coin) [77]. Une telle représentation a également été
conjecturée en 1996 [78] pour le régime de masse nulle —1 < A < 1 (voir aussi [79]). Une
preuve de ces résultats, avec leur extension au champ magnétique non nul, a été obtenue en
1999 [80] en utilisant I’Ansatz de Bethe algébrique et la solution au probléme dit de diffusion
inverse quantique [81, 82, 83]. Dans cette approche, les fonctions de corrélation en taille finie
ont été obtenues en calculant 'action des produits d’opérateurs locaux sur un état propre du
Hamiltonien (par exemple I’état fondamental), puis en calculant le produit scalaire résultant.
Grace a une représentation pratique — sous forme d’un déterminant — pour les produits
scalaires [84], la limite thermodynamique peut alors étre facilement prise.

Ce type de représentation sous forme d’une intégrale multiple explicite a été obtenu en
fait, non pour les fonctions de corrélation elles-mémes, mais pour leurs blocs élémentaires
constitutifs. Ces derniers sont définis comme la valeur moyenne dans 1’état fondamental de
produits de matrices élémentaires E<<, €,¢ € {1,2}, d’éléments E;,;E = 01,0k, SUr M sites
consécutifs de la chaine [80]. Toute fonction de corrélation arbitraire peut en effet étre écrite
comme une combinaison linéaire de ces quantités. Une telle représentation intégrale multiple
pour les fonctions de corrélation dynamique de la chaine X X Z spin-1/2 a été obtenue plus tard
dans [85], ainsi que pour la température finie [86, 87, 88|.

Une autre approche du calcul des fonctions de corrélation pour les modéles sur réseau
quantiques intégrables est ’approche par sommation sur les facteurs de forme. Dans cette
approche, un ensemble complet d’états (par exemple les états propres du Hamiltonien) est inséré
entre les observables. Et les fonctions de corrélation sont la somme de ces éléments matriciels
d’observables. La représentation sous forme de déterminant des facteurs de forme de la chaine de
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taille finie a été obtenue dans [81], ce qui avait permis le calcul de I'aimantation spontanée dans
[89], puis conduit & de nombreuses applications dans le calcul des fonctions de corrélation et des
facteurs de structure selon la méthode mentionnée ci-dessus, soit numériquement [90, 91, 92, 93|,
soit analytiquement [94, 85, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104].

Mentionnons qu’il existe aussi une approche alternative a ce probléme du calcul des fonctions
de corrélation, développée notamment dans [105, 106, 107, 108, 109, 110, 111, 112, 113|.

Alinsi, nous avons vu que 'approche SoV est une approche fructueuse permettant de résoudre
les problémes spectraux des matrices de transfert et des Hamiltoniens des modéles quantiques
sur réseau avec diverses conditions aux limites. Cependant, le probléme du calcul des fonctions
de corrélation dans cette approche reste encore largement ouvert. C’est dans ce but que nous
avons rédigé cette thése, dans laquelle nous considérons ce probléme dans le cadre de deux
modeles simples: les chaines de spins 1/2 de Heisenberg XXX (isotrope) et XXZ (partiellement
anisotrope) avec conditions aux limites anti-périodiques. L’intérét de I’étude de ces modéles,
outre le fait qu’ils sont parmi les plus simples (et les plus étudiés) solubles par QISM, est qu'il
est possible de comparer directement nos résultats avec le cas périodique soluble par Ansatz de
Bethe: notamment, a la limite thermodynamique, nous nous attendons a retrouver les mémes
expressions pour les fonctions de corrélation.

L’approche SoV fournit naturellement une représentation sous forme de déterminant pour les
produits scalaires entre les états séparés (I’ensemble des états propres de la matrice de transfert
est inclus dans 1’ensemble des états séparés): le déterminant qui apparait est celui de la somme
de deux matrices de Vandermonde généralisées "habillées". Cependant, cette représentation
n’est pas pratique pour prendre la limite homogéne. Rappelons que pour garantir a I'opérateur
B(X) d’avoir un spectre simple, le modeéle physique doit étre déformé par l'introduction d’un
ensemble de paramétres d’inhomogénéité. Lors du calcul des fonctions de corrélation, il faut
bien siir pouvoir prendre la limite homogéne pour récupérer le modele physique. Ceci suppose
tout d’abord de pouvoir reformuler la caractérisation du spectre de la matrice de transfert qui,
dans le cadre de SoV, s’exprime en termes d’un systéme d’équations discrétes faisant intervenir
les paramétres d'inhomogénéité, de facon plus commode, typiquement en termes d une équation
fonctionnelle "a la Baxter" (ou équation 7-Q)) de laquelle peuvent étre déduites les équations
de Bethe: ceci est aisé dans le cas XXX anti-périodique [114], mais un peu moins direct dans le
cas XXZ [115]. Ceci suppose ensuite de pouvoir reformuler les représentations pour les produits
scalaires, idéalement en termes des racines de Bethe (ou autrement dit, des racines de la fonction
() solution de I’équation T-Q)) comme dans le cas périodique [84]. Une premiére étape dans ce
sens a été résolue dans [114] dans le cas d’un modéle particuliérement simple, la chaine de spins
XXX avec conditions aux limites anti-périodiques, pour laquelle une représentation sous forme
de déterminant plus pratique, similaire a celle de [84], a été obtenue pour les produits scalaires
et les facteurs de forme a partir de la représentation SoV par une suite de transformations
algébriques. Cette nouvelle représentation permet de prendre facilement la limite homogeéne,
et ouvre la porte au calcul des fonctions de corrélation au sein du SoV pour ce modéle simple.

Dans cette thése, nous poursuivons le calcul des fonctions de corrélation de la chaine XXX
anti-périodique, et montrons explicitement que, au moins pour ce modéle simple, il est possible
d’effectuer le calcul jusqu’au bout, c¢’est-a-dire jusqu’a la limite thermodynamique, exclusive-
ment dans le cadre de la SoV. Plus précisément, nous calculons ’action successive des opéra-
teurs locaux sur les états séparés. Cette action peut s’écrire comme une somme multiple sur les
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parameétres d’inhomogénéité. Nous montrons, a 'aide d’intégrales de contour, que ces sommes
peuvent étre réécrite comme des sommes sur les racines du polynéme ) (ou racines de Bethe),
comme dans le cas périodique soluble par Ansatz de Bethe, avec toutefois des contributions
supplémentaires par rapport au cas périodique. Nous montrons explicitement comment il est
possible de prendre la limite thermodynamique dans chaque terme de la somme. Nous mon-
trons plus précisément que les termes supplémentaires s’annulent & la limite thermodynamique,
et que nous retrouvons, dans cette limite, le résultat obtenu dans [80] pour les fonctions de
corrélation de la chaine périodique. Ceci est également vrai pour une chaine quasi-périodique
avec un twist non-diagonal quelconque: nous montrons ainsi explicitement que, comme on peut
s’y attendre, la limite thermodynamique des fonctions de corrélation de la chaine de spins XXX
ne dépend pas du twist. Ce résultat est publié¢ dans [116].

Nous abordons également 1’étude du calcul des fonctions de corrélation dans le cas de la
chaine de spins XXZ7 anti-périodique. Contrairement & ce qui se passe dans le cas périodique,
I’étude du cas XXZ présente des différences importantes avec le cas XXX. En effet, la fonction
@, solution de I’équation T-() avec la valeur propre de la matrice de transfert, n’est pas un sim-
ple polynoéme trigonométrique de méme forme que pour la chaine périodique, mais a en fait une
période double [117, 115]. Ce doublement de la période fait que les transformations algébriques
utilisées dans [114] pour calculer les produits scalaires et facteurs de forme de la chaine XXX ne
s’appliquent pas directement au cas XXZ. Dans cette thése, nous proposons donc une méthode
alternative pour calculer les produits scalaires et facteurs de forme dans le cas XXZ & partir
des formules naturellement issues de I’étude du modeéle par SoV. Nous obtenons de nouvelles
représentations, sous forme de déterminant dont les lignes et colonnes sont labellées par les
racines de @, avec néanmoins une forme différente de celle de [84]. Ces résultats sont publiés
dans [118]. Le calcul des fonctions de corrélation elles-mémes est aussi plus compliqué que dans
le cas XXX du fait de ce doublement de la période dans (): 1’action successive des opérateurs
locaux comporte des termes supplémentaires par rapport au cas périodique qui sont de nature
différente par rapport au cas XXX, et plus compliqués a traiter. De fait, nous n’avons encore
pas totalement résolu ce probléme. Mais si nous supposons que ces termes supplémentaires
s’annulent a la limite thermodynamique, nous retrouvons également, en prenant la limite ther-
modynamique des autres termes, la représentation sous forme d’intégrales multiples obtenue
dans le cas périodique [80].






Introduction

This thesis aims to use the quantum version of the Separation of Variables (SoV) method to
develop an approach to the computation of the correlation functions of quantum lattice models
which are solvable in the Quantum Inverse Scattering Method (QISM) framework.

The Quantum Inverse Scattering Method (QISM) was developed along with the quanti-
sation of classical integrable models in the inverse scattering method framework. It is not
only a powerful tool in solving quantum integrable models, but also manifests a rather rich
mathematical structure.

The story begins in 1967 when Gardner, Greene, Kruskal, and Miura (GGKM) [1] first
implemented the Inverse Scattering Method (ISM) using the KdV equation to solve the one-
dimensional Schrodinger equation. Later in 1969, Lax [2| reformulated this method by intro-
ducing the so-called L-operator (Schrodinger operator) and wrote the KdV equation in the
fashion of the Lax equation. The Lax equation shows that the KdV evolution is given by a
similar transformation of L, thus the spectral of L is isotropic, i.e. independent of time. This
method had been considered as merely an ingenious method to solve a particular problem until
Zakharov and Shabat [3] applied this Inverse Scattering Method to the non-linear Schrodinger
equation (NSE). One year later, Zakharov and Faddeev treated the KdV equation as a com-
pletely integrable Hamiltonian system with infinitely many degrees of freedom and constructed
the action-angle variables [4]. During 1972-1973, this method was applied to the Sine-Gordon
equation, which is a relativistic model. The action-angle variables were constructed for this
model by Takhtajan and Faddeev [5].

In the meanwhile, Novikov, Zakharov, and Shabat in [6] replaced the Lax scheme with
the more powerful zero-curvature condition. Then the spectral problem of the Lax operator
is substituted by an auxiliary linear equation, and the scattering data can be defined as the
asymptotic behaviour of the holonomy group for a finite interval. The problem of introducing
the action-angle variables thus amounts to the explicit calculation of the Poisson brackets of
the matrix elements of the holonomy. This calculation was done in the Sine-Gordon model [5]
and in the Heisenberg ferromagnetic equation in |7].

Thus the scheme of the CISM for a given non-linear equation can be stated in short as
follows: one needs to first specify the corresponding L-operator and determine the holonomy
for the finite interval; the second task is to obtain the large distance asymptotic data (of the
holonomy); the last step is to construct the action-angle variables.

Since the mathematical machinery for the classical integrable systems has been built, a
natural question would be how to quantise those classical integrable systems. At that time,
the exact quantisation of the NSE model was known. And meanwhile, it was known that
integrable models allow an interpretation in terms of the co-adjoint orbits of the Lie algebras|8,
9], especially in [10] where the quantisation means the representation of the corresponding Lie
algebra. Highly motivated by these facts, the Leningrad group (Faddeev et al.) believed that
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a quantum version of the ISM to quantise the corresponding integrable system was feasible.

The first work was done by Faddeev and Sklyanin in [11] by conjecturing the commutation
relations for the quantum analogues of the matrix elements of the asymptotic holonomy (mon-
odromy). Soon enough they noticed that the transfer matrix technique applied by Baxter [12]
for the two-dimensional lattice models in classical statistical mechanics (which dates back to
Onsager’s paper on the Ising model [13]) has significant similarities to those characteristics of
the monodromy of the L-operator. Sklyanin adapted this idea in the study of the quantum
NSE in [14] by writing down the commutation relations for the matrix elements of a (local)
L-operator such that one can use them to obtain the commutation relations for the matrix
elements of the (global) monodromy.

After the space coordinate is properly discretised and the quantum field theory is put in
a lattice, the local L-operator (which is denoted as L, ,()), taking matrix form in an auxil-
iary vector space V, with entities act on local quantum space H,, ) can be interpreted as an
infinitesimal’ holonomy along the lattice. For the Sine-Gordon (SG) model, the local commu-
tation relations were found [15] in the form:

Rap(A — 1) Lia(N) Lip(pt) = Lip(p1) Lia(N) Rap (A — 1) (7)
Li,a<)‘)Li,b<M> = Li,b(/L)Li,a(A)’ i %J (8>

where R(\) is a 4 by 4 scalar matrix containing no dynamical observables acting non-trivially
on V, ® V, .2 The local L-operator can be used to define the quantum monodromy:

T(A) = Ly(A)Ly_1(A)..L1(\) = (égzg ggz;) , 9)

where the matrix elements {A, B,C, D} are some global quantum operators. The quantum
monodromy matrix satisfies the same FCR, (7). Thus the task of deriving commutation relations
for the matrix elements of the (global) monodromy from those of a (local) L-operator has been
accomplished.

It can be seen from the quantum monodromy (9) and the FCR (7) that the trace of the
quantum monodromy:

T\ =tr(T(N) = AN + D(N) (10)

commutes with each other for arbitrary different spectral parameters. Thus it can be con-
sidered as a generating function for a one-parameter family of mutually commuting operators
to which the Hamiltonian belongs (to be proved). Thus this trace provides the commuting
integral of motions, i.e. the quantum version of action variables. The off-diagonal elements
in the monodromy (9) are the quantum version of angle variables. In Baxter’s work, these
off-diagonal operators are not very important however here they are crucial. Indeed, for a
particular eigenstate |€2) (reference state) of 7 (\) annihilated by C()\), the state of the form

B(W)B(w)....BOr) [2) (11)

is also an eigenstate if the parameters {Aq, ..., Ay} satisfy some systems of algebraic equations.
In other words, the off-diagonal elements play a role as creation and annihilation operators of
some particle state. The correspondence between the Leningrad group’s scheme and Baxter’s

2The relation (7) was called the Fundamental Commutation Relations (FCR) by the authors.
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work can be described as follows: the local L-operator is an analogue to the local Boltzmann
weight; the FCR (7) is an analogue to the star-triangular relation [12, 16]; the trace of the
quantum monodromy matrix is an analogue to the transfer matrix in [12]. Thus the architecture
of the QISM is already quite clear. And quite effectively, a wide range of classical integrable
models such as the KdV, the NLS, the Toda lattice, and the Heisenberg magnet can be quantised
within this framework.

Particularly, in the quantisation of the Heisenberg magnet, the Leningrad group found that
for the spin 1/2 representation, their work remarkably connects to the work done by H. Bethe
in 1931 [17] while diagonalising the Hamiltonian of the Heisenberg spin chain. The reference
state |Q2) coincides with the highest weight representation (pseudo vacuum), and the eigenstate
(11) coincides with the M-magnon state with {A1, ..., A\y/} satisfying the Bethe equations. The
method invented by H. Bethe is called the Coordinate Bethe Ansatz. As a consequence, the
QISM is also often referred to as the Algebraic Bethe Ansatz.

It was then realised through studying a higher spin system [18, 19, 20] that the Fundamental
Commutation Relation (7) and the concrete choice of L-operator correspond to the representa-
tion of a universal algebra A determined by some object R(\). For example in the case where
the auxiliary space coincides with the local quantum space, this object R(\) obeys the same
relation obtained by C.N.Yang [21] and Baxter [12, 16] which is now known as the Yang-Baxter
equation.

As the QISM developed further, Kulish and Reshetikhin found the correct form of the
local L-operator for the X XZ Heisenberg spin chain as well as the commutation relations
between its matrix elements [22]. It was clear that those matrix elements form a deformed
s[(2) algebra depending on one anisotropy parameter. Sklyanin studied the XY Z model and
proposed a further deformation of this algebra to the two-parameter case [23]. Meanwhile,
Izergin and Korepin showed that the discretised NLS and SG models could be considered as
the corresponding representations of the X XX and the X XZ models respectively [24, 20].
Later on, Drinfeld [25, 26] and Jimbo [27] independently generalised the sl(2) case to any semi-
simple Lie algebra and interpreted it as a special class of Hopf algebras. It was at that time,
the study of the "quantum group " got started.

It is also worth mentioning that once the Coordinate Bethe Ansatz was proposed in 1931,
it immediately provided a new perspective to study a large class of quantum systems. Though
restricted to 1 4+ 1 dimension, it led to many useful tools (such as the Thermodynamic Bethe
Ansatz method (TBA), Asymptotic Bethe Ansatz, etc. [28, 29, 30]) that play an important
role in the condensed matter physics [31] as well as the conformal field theories [32]. At the
beginning of the 21st century, it was surprisingly found that the one-dimensional Heisenberg
XXX spin chain appears in a special limit of the AdS/CFT integrable system [33, 34, 35|,
since then integrability was intensively studied in the supersymmetric gauge field theories and
string theory.

The general scheme to construct the action-angle variables for the completely integrable
systems is to find the canonical transformation through a generalisation of the Hamilton-Jacobi
method of integrating the canonical equations. And in this scheme the only successful method of
integrating the Hamilton-Jacobi equation in classical analytical mechanics is that of separation
of variables (SoV) [36]. However, after the establishment of the CISM, the indispensable role
that the SoV plays in solving classical integrable system seemed to be taken over by it. The
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CISM empowers us to tackle a much larger range of classical integrable systems. Nonetheless,
after a further study in the CISM framework, it is pointed out that SoV is far from out of date.
Moreover, it may remain the most universal method of solving integrable models [37].

A central object in the modern treatment of the CISM is the so-called spectral curve [38].
Roughly speaking, a spectral curve is a locus of zeros of the characteristic polynomial of a
N x N Lax matrix L(A). If we regard the eigenvalue z(A) and the Lax operator L(\) as
functions of a complex parameter A\, then the characteristic equation defines them as functions
on the N-sheeted Riemann surface locally parametrised by A. The standard way to construct
the action-angle variables is to use the poles of the Baker-Akhiezer function. And it turns out

to be equivalent to a separation of variables [37].
The Baker-Akhiezer function 2()) is defined as the eigenvector of L(\):

LOVQ) = 2(A)Q(N). (12)

Then for a large class of integrable models, Sklyanin’s magical recipe "Take the poles of the
properly normalised Baker-Akhiezer function and the corresponding eigenvalues of the Lax
operator and then you obtain SoV" [37] works. Another reason why SoV needs to be studied
more thoroughly is that in many cases, it is possible to construct a separation of variables in
quantum integrable systems analogously.

Not long after the QISM was established, inspired by H.Flashka, D.W.Maclaughlin [39]
(1976) M.Gutzwiller [40, 41|(1981-1982) and I[.V.Komarov [42] (1982), Sklyanin proposed a
quantum version of the separation of variables in a series of papers from 1985 [43, 44, 45].

This approach works also within the QISM framework. It aims to find a basis in the
underlying Hilbert space in which the spectrum problem of the transfer matrix can be separated.
It thus reduces the N-dimensional problem to N one-dimensional problem. Since then many
models were studied in this approach [46, 47, 48, 49, 50, 51, 52, 53, 54, 119, 120, 121, 122, 123,
124, 55, 56, 57]. Such a basis is often referred to as the "SoV basis". In Sklyanin’s approach, the
SoV basis was identified with the eigenbasis of the off-diagonal element B()) in the quantum
monodromy matrix [47, 37|. And the diagonal elements A(\) and D(\) act as shift operators on
the basis which leads to the wanted factorisation of spectrum problem. It is important to point
out that to ensure B(\) has a simple spectrum, the model needs to be deformed by introducing
one inhomogeneous parameter to each site of the lattice. And to recover the physical model
amounts to taking the homogeneous limit, i.e. all the inhomogeneous parameters are taken to
be the same value.

An interesting feature of this approach is that a "reference state" is not needed, unlike in
the ABA. Thus it can be applied to many models with various boundary conditions (including
the anti-periodic boundary condition) which do not possess such simple reference state and
cannot be solved by the ABA directly. For such models, the SoV provides not only a full
characterisation of the corresponding transfer matrix eigenvalues and eigenstates, but also the
completeness of the eigenstates as a direct consequence. This is a considerable advantage with
respect to the ABA for which completeness is in general a complicated issue (see for instance
[58, 59]).

And another motivation to study the quantum SoV is the possibility that the SoV basis can
be constructed by using only the transfer matrix itself in a new version of the SoV proposed
in a series of papers [60, 61, 62, 63, 64, 65, 66]. This opens a new door to the investigation of
a much larger class of models. More importantly, in the theoretical point of view, it throws
some light upon the definition of quantum integrability. Last but not the least, SoV can lead
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to constructions of quantum integrable models that do not need the Yang-Baxter equation as
defining algebraic structure [67].

Even though decades have passed since the birth of the Bethe Ansatz, the computation of
the correlations functions for quantum lattice models is in general still a difficult problem. For a
long time, the computations were done only for free fermions [13, 68, 69, 70, 71, 72, 73, 74] and
conformal field theories [75]. Not until 1984 had the first attempts to use the Bethe Ansatz for
the X X X Heisenberg spin chain (which corresponds to the anisotropy parameter A = 1) [24, 76]
been made. Later in 1994, the multiple integral representation of the correlation functions for
the X X7 model in the thermodynamic limit at zero temperature and zero magnetic field was
obtained for the first time from the q-vertex operator approach (also using corner transfer
matrix technique) in the massive regime: A > 1 in 1992 [77] and conjectured in 1996 [78] for
the massless regime: —1 < A < 1 (see also [79]). Proof of these results together with their
extension to the non-zero magnetic field was obtained in 1999 [80] using the Algebraic Bethe
Ansatz and the solution to the so-called quantum inverse scattering problem [82, 83]. In this
approach, the finite correlation functions were computed by first acting operator products on an
eigenstate of the Hamiltonian (for example the ground state) and then computing the resulting
scalar product. With the help of a convenient determinant representation for scalar products
[84], the thermodynamic limit can be easily taken.

The explicit multiple integral representation was obtained for the so-called elementary build-
ing blocks which are defined as the ground state mean value of any product of the local elemen-
tary 2 x 2 matrices E;,;E = 01,00k, [80]. Any arbitrary correlation function can be written as a
linear combination of these quantities. With these results, the spontaneous magnetisation was
obtained in [89]. Such multiple integral representation for dynamical correlation functions of
the X X Z spin-1/2 chain was obtained later in 85|, as well as for finite temperature [86, 87, 88|.

Another approach to computing the correlation functions for quantum integrable lattice
models is the form factor approach. In this approach, a complete set of states (for example the
eigenstates of the Hamiltonian) are inserted between observables. And the correlation functions
are the sum of these matrix elements of observables. The determinant representation for the
form factors of finite size chain for the X X 7 /, model was obtained in [81], which leads to many
applications in computing the correlation functions and structure factors, either numerically
[90, 91, 92, 93| or analytically [94, 85, 95, 96, 97, 98, 99, 100, 101, 102, 103, 125, 126, 104]. See
also [105, 106, 107, 108, 109, 110, 111, 112, 113] for an alternative approach to this problem.

The SoV approach is successful in solving the spectrum problems of the transfer matrices
and the Hamiltonians of the quantum lattice models with various boundary conditions. How-
ever, the problem of computing the correlation functions within the quantum SoV approach
is still widely open. It is for this purpose that we wrote this thesis. The SoV approach natu-
rally provides a determinate representation for the scalar products between the separate states
(the set of eigenstates of the transfer matrix are included in the set of separate states) — a
determinate of the sum of two "dressed" generalised Vandermonde matrices. However, this
representation is not convenient for taking the homogeneous limit. Recall that to ensure the
operator B(A) to have a simple spectrum in the underlying lattice model, the physical model
has to be deformed by introducing a set of inhomogeneous parameters. In the computation of
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correlation functions, one needs to take the homogeneous limit to recover the physical model.
In [114] a more convenient determinant representation was first obtained for the scalar prod-
ucts and the form factors in the anti-periodic X X X model through a sequence of algebraic
transformations. This new representation allows us easily to take the homogeneous limit. This
gives the hope to develop an approach to the computation of the correlation functions within

the SoV .

The thesis is organised as follows:

In Chapter 1 we use the X XZ spin chain to present very roughly the QISM framework,
recall how the scalar product and the correlation functions were computed in the Algebraic
Bethe Ansatz (ABA) method. In the last section, we briefly recall how the SoV basis was
explicitly constructed and how the eigenstate of the (twisted) transfer matrix was obtained.

In Chapter 2 we present our results of the analysis of the configuration of Bethe roots for
the ground state in the thermodynamic limit for both X X X and X X7 anti-periodic chains.

In Chapter 3 we recall the core of the method to obtain the determinant representation for
the scalar product and the form factors for the anti-periodic X X X chain in the framework of
the SoV. And we present our results for the anti-periodic X X Z chain.

In Chapter 4 we present our results of the computation of the correlation functions for both
XXX and X X Z anti-periodic spin chains of finite size and give an explicit multiple summation
representation for the finite-size elementary building blocks.

In Chapter 5 we analyse the vanishing and non-vanishing terms in the multiple summation
representation in the thermodynamic limit and explain how to recover the multiple integral
representation for the elementary building blocks.



Chapter 1

The X XZ spin chain in the QISM
framework

1.1 The general algebraic framework

The classical integrability is well defined in the Liouville’s sense. The system needs the phase
space to be a 2N-dimensional Poisson manifold with N integral of motions in involution:

(I, I,} = 0. (1.1)

And together with this definition, it provides a systematic way to find the set of integral of
motions {1, }._, through a canonical transformation:

(z5,05) = (L, ¢5), (1.2)

where (I;,¢;),7 = 1,..., N are the well known action-angle variables. Unfortunately, although
the definition is precise and even prescribes a systematic way to solve the underlying classical
integrable system, in practice only within few systems we can perform such operation. Among
all other efforts, the classical inverse scattering method (CISM) is an effective way to solve the
problem.

However, in the quantum case, the definition is controversial [127, 128, 129]. A common fea-
ture of those systems is that they possess a "enough" number of mutually commuting conserved
quantities:

I, In] = 0. (1.3)

But once a physical model is given, to find such a set of operators seems difficult at first sight.
Luckily, the quantum inverse scattering method (QISM) offers a pure algebraic framework to
construct a one-parameter set of integral of motions. The idea is to embed the set of integral
of motions {/,,} into a larger algebra A. After having figured out the structure of A, i.e. the
commutation relations between generators of A, we can solve the system algebraically like in
quantum mechanics. However, unlike the Lie algebra in quantum mechanics, the longed algebra
A turns out to be a "quantum group". In fact, the study of the quantum groups was inspired
by the QISM.

The algebraic structure of A is determined by the so-called R matrix. In the language of
Hopf algebra, this matrix is an invertible element that satisfies a set of conditions. One of

1
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these conditions happens to be, at the representation level, a relation that was independently
highlighted by Yang [21] and Baxter [16] which is now called Yang-Baxter equation :

Ria(A1 — A2) Ri3(A1 — A3)Rag(A2 — A3) = Rag(Aa — A3) Riz(A1 — A3) Ria( A1 — A2), (1.4)

where A1, A2, A3 € C, and the notation R, ; means that it acts non-trivially on the ¢th and jth
space of a tensor product of vector spaces ®§’:1 V.

Among the family of quantum integrable lattice models that can be considered in the QISM
framework, the spin chains are of particular interest for several reasons. Firstly, for simplicity
they are often used to illustrate the framework of the QISM. In fact, one can think of the spin
chains as the "harmonic oscillator" in the study of quantum field theory. Although the spin
chains are the simplest non-trivial example, there are many subtleties in the computation of
correlation functions. It took many years to study the seemingly simple case (the X X 7/, chain
with periodic boundary condition) [130]. Secondly, many theoretical results can be seen in the
experiments [131]. Thirdly, due to the rise of interest in studying the quantum interaction
quench, spin chains are often used to understand the dynamics in interacting integrable models
(see for example in [132, 133, 134, 135] ). Since this thesis aims to develop an approach to
computing correlation functions for the anti-periodic X XX and XX Z spin-1/2 chains, from
now on we will use spin chains to briefly recall the QISM.

The Hamiltonian of the quantum Heisenberg spin chain is defined as follows|29]:

N
H= Z oror  + ol +A(oior, — 1) (1.5)
n=1

where A = coshn is the anisotropy parameter and in the case A = 1 the model becomes
the XX X/, spin chain. The positive integer N denotes the length of the chain. The total
quantum space of states will be denoted as H, and to each site n, the local quantum space of

states is labelled by H,,. In the spin-1/2 case we obviously have H; = C?, so the total quantum
N

space is apparently H = & H,, = C*¥. The local spin operators o> acts non-trivially as the
n=1
corresponding Pauli matrices on the corresponding local quantum space. And here we impose

the quasi-periodic boundary condition:

oy = KoK, Vo = x,y, 2, (1.6)

K= (‘z g) (1.7)

which is a 2 x 2 invertible numeric matrix satisfying [K ® K, R] = 0'. Each site i of the chain is
associated with an operator L; ,(\), which is a matrix of local operators at site i. The operator
L;, € End(V, ® H;) acts on the representation of the local quantum space and the matrix
form lives in the representation of an auxiliary space V,. Moreover, this operator satisfies

Rap(A— 1) Lia(N) Lip(1t) = Lip(p1) Lia(N) Rap (A — 1) (1.8)

In the X X X case (A = 1), any invertible matrix K satisfies this condition, whereas in the X X Z case, only
a diagonal matrix K , or the product of ¢* by a diagonal matrix satisfies this condition.

with
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The operator L(A) has the so-called "co-multiplication" property, i.e. the operator
Liiv1),0(A) €End(V, ® H; ® Hiqq1) is simply the product of two local L-operators

Li+1),0(A) = Lia(A) Liy1,0(N), (1.9)

and it also satisfies the relation (1.8). From now on without causing any confusion, the auxiliary
space subscript a for the L-operator will be omitted.

Since we only study the so-called fundamental model in this thesis, we can restrict ourselves
to V, = C% Then R matrix which lives in End(V, ® V}) is a 4 x 4 matrix:

e(A+n) 0 0 0

0 @A) ¢l 0
R(\) = 1.10
?) 0 wm) ») 0 (1.10)

0 0 0 e\A+mn)
where the function form ¢ is different for two models concerned:

©(A) = A for the X X' X case, (1.11)
©(A\) = sinh A for the XX Z case. (1.12)

And L;(\) can be written as a 2 X 2 matrix:
p(A+nof) e oy )
Li(\) = ’ ‘o) 1.13
W) ( pmo  p(A=noj) (1-13)

After the local L-operators are defined, the next step is to build up the so-called quantum
monodromy matrix which acts "globally" on the chain:

1) = Ly O w1 1a) = () i) (1.14)

where {A, B,C, D} are global operators acting on the total quantum space H. Notice that as
mentioned at the beginning of this chapter, they are the generators of the embedded algebra
A—Yang-Baxter algebra. Their commutation relations between each other are governed by:

Rap(A = ) To(N) T () = T () To(N) Rap (A — ) (1.15)
where
) =T @I Ty(\) = 1o T(). (1.16)

The R-matrix is the solution to the Yang-Baxter equation (1.4) and thus plays a role as structure
constant as in Lie algebra.

The complete set of commutation relations between the generators of the algebra can be
found in many literatures (for example in [136]) while here we only list some of them:

BV, B2 = AN, A(2)] = [C), Cw)] = (D), D] =0
). B = =2 (a()D() — AN D)

(A —p)
ANB() = LD B A + S B AG)
DB = “ I B0 D) - — 2 B (1.17)
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Remark 1.1. In the quadratic relation (1.4), obviously the Yang-Bazter algebra only depends
on the spectral parameters A, by their difference A — p. Together with the co-multiplication
property of L-operators the model can be deformed by introducing a set of parameters called
inhomogeneities &;, associated with each site 1.

The monodromy matrix of the inhomogeneous chain is defined as

TN {&1, s E8D) = Lv(A — Ex)Lyv—1 (A — Ex_1)e Li(A — &) = (ég; g%) . (L18)

Among the set of generators, the twisted transfer matrix is defined as the partial trace of
the twisted monodromy matrix over the auxiliary space:

Te(N) = trg [KT,(N)]. (1.19)
It is easy to see from the set of commutation rules (1.17) that
[Tic(A\), Tk(w)] =0 VA, peC. (1.20)

Thus the twisted transfer matrix generates N independent mutually commuting operators.
It is important to point out that the transfer matrix commutes with the Hamiltonian (1.5):

[H, Tx(\)] =0, YAeC. (1.21)

Namely the mutually commuting one-parameter family of operators all commute with the
Hamiltonian. Therefore, they are the conserved quantities. Moreover, the Hamiltonian (1.5)
can be expressed in terms of the transfer matrix after taking the homogeneous limit:

1y €N — /2 (1.22)

as the log derivative evaluating at a special point

H = 2sinh (n) 6% log Tk (N) — 2N coshn. (1.23)
A=

(SIS

Thus the spectrum problem of the Hamiltonian can be solved by solving the spectrum problem
of the associated transfer matrix.
Another important object in the Yang-Baxter algebra is the so-called quantum determinant:

det T(A) = a(A)d(A =) = AN DA =) = BAO)C(A =)

= D(NAMA —1n) — C(N)B(A—n) (1.24)
where
aN) =[JeN+n-54),  dX)=]]e0 - &) (1.25)

which is a central element in the Yang-Baxter algebra and commutes with the transfer matrix
particularly. So far, given a solution to the Yang-Baxter equation (1.4), one can determine the
corresponding Yang-Baxter algebra. And the family of mutually commuting operators (transfer
matrix) can be constructed on it.
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1.2 A brief review of the periodic case

When K is the identity matrix (which corresponds to the periodic boundary condition), or more
generally a diagonal numeric matrix, the eigenstates of the transfer matrix of the underlying
model can be constructed by the Algebraic Bethe Ansatz (ABA). Here we denote the periodic
transfer matrix by 7 (\).

1.2.1 A solution of the model by the ABA

For example, for the X X7/, spin chain with periodic boundary condition 0%, = of , the
highest weight vector thus can be chosen as a convenient reference state?:

0)=1T®1T®1T®.0 T>}- (1.26)

TV
N times

From the form of the L-operator (1.13) and the definition of the monodromy matrix, it is easy
to see that |0) is annihilated by C'()), and it’s an eigenstate of both A(\) and D(\) with some
functions a(\) and d(\) as the eigenvalues, namely:

CA0) =0 AX)]0) =a(A)[0)
BA[0)#0  D(A)[0) = d(A)[0). (1.27)

Another good quantum number is the total spin:
L N
- 5205 (5%, T(\)]=0. (1.28)
n=1
B(\) and C'(\) act as the ladder operators in quantum mechanics moving the states from one
sector labelled by its total spin ¢ to another, decreasing or increasing by one, where N/2 < ¢ <
—N/2, where Ty is the set of states in H with total spin ¢.

Often in literature, the reference state is also called the pseudo vacuum. And the following
state labelled by M spectral parameters

o({A}) HB (1.29)

is called the Bethe state or the Bethe vector. The condition on the set of spectral parameters
{A\}2L, for a Bethe state (1.29) to be an eigenstate, i.e.

TN [2({A}) = (A( HB )0y =7(A | A,y Aur) [R({A})) (1.30)

is

d(\;) o sinh (A — A, — 7)
= =1,.., M. 1.31
a(A;) ,Hlsinh(hj—kwn)’ T (13D
n#j

2For models with general boundaries such a reference state is hard to be identified in general.



6 CHAPTER 1. THE XXZ SPIN CHAIN IN THE QISM FRAMEWORK

which is obtained by using the commutation relations (1.17) successively when the operator
A(M) and D(A) are moved to the right and finally hit the reference state |0). Thus |[®({\})) is
an eigenstate of the transfer matrix 7()) if the set of parameters {\,},., satisfy (1.31).

This set of equations are called the Bethe equations. We call those Bethe state with spectral
parameters {)\g}é\il fulfilling the Bethe equations "on-shell" Bethe states. The corresponding
eigenvalue of the transfer matrix 7 (\) is

B sinh (A — A\ — U sinh (A=Xe+1n)
TAT{AD) = a(d) g sinh (A — )\g g sinh (A — ),) (132)

Writing down the Bethe equations (1.31) is not the end of the story. To study the ther-
modynamic properties of the model, one needs to understand the type of solutions that these
equations can have, specifically as we take the system size N to infinity. For example, the
Lieb-Liniger model was solved by the Bethe Ansatz [28]. Based on that the thermodynamics
of the model were described by Yang and Yang [30], which leads to what is now known as the
thermodynamic Bethe Ansatz. In the Lieb-Liniger model the solution to the Bethe equations
is real. The Bethe state and a set of quantum numbers {I} are in one-one correspondence.
Thus any allowed quantum number that does not belong to the set represents a "hole" on the
real line and carries positive energy. The ground state in the thermodynamic limit (N — +00)

corresponds to all solutions forming a density p(«) defined as the limit lim N(— [137]
N—+oo M ¥j+17

in the rapidity representation in the real axis obeying the Lieb equation:

+A

Prot(Cr) + K(a = B)pior(B)dB =

p6t0t (a)
27

(1.33)

with some kernel K (\). After solving this integral equation one can obtain the density functions
29, 138]:

1
pla) = ———— for —1 <A <1, (1.34)

2( cosh (%)

1 <X gina 1 9 93(cx, q) ¢
pla) = %nz_oo cosh(n¢) ~ 21 U5 94(c, q)’ 1=

(1.35)

for A > 1, where ¥;(u, q), ¢ € {1,2, 3,4} are the Theta functions of nome ¢ defined as in [139]. In
his original paper [17| Bethe noticed the existence of complex solutions to the Bethe equations.
These complex solutions form strings and can be interpreted as bound states, having less energy
than the sets of individual real magnons. There are examples of solutions that do not approach
string complexes in the thermodynamic limit [138]. Nonetheless, the free energy is captured
correctly only if the string configurations are taken into account [140]. The assumption that
all the thermodynamically relevant solutions to the Bethe equations are built up out of such
string configurations is called the string hypothesis.

Remark 1.2. To prove that the Bethe vectors form a complete basis of the representation space
is in general a difficult problem. In the case of the XX X and X X7 models, see [58, 59]. There
are also works done by using computational algebraic geometry to tackle the problem in the finite

case [141].
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1.2.2 Computation of correlation functions

After the spectrum problem for the transfer matrix 7 () is solved, the next physical quanti-
ties to compute are for example the correlation functions in the thermodynamic limit at zero
temperature:

(gl TT5%1 057 [¥y)
(g | g)

which can be written as a linear combination of the so-called elementary building blocks:

Fm aj € {+,—,Z}, (136)

, (g | TT2 B |,
Fm({ﬁj’ ej}): |l—<11/}g’wg> | >’

(1.37)

where the local elementary 2 x 2 matrices are defined as El,i 9= 616 Ok, With 1, k, €;, 6 €
{1, 2}. In general, there are two strategies to compute (1.36). The first is to act an observable (@)
on an eigenstate of the Hamiltonian, for example, the ground state |1,) , then get [)) = O |4b,)
, and last compute the resulting scalar product:

g1z = (U} . (1.38)

In this approach, to compute the elementary building blocks (1.37) in the thermodynamic
limit (N — +4o00) , firstly, one needs to characterise the ground state of the Hamiltonian by
finding the configuration of Bethe roots corresponding to the lowest energy.

Secondly, note that in (1.37) the elementary 2 x2 matrices are local operators while the Bethe
states are constructed with the "global" operators B(u). By solving the so-called quantum
inverse problem, the local operators can be reconstructed by the generators of the Yang-Baxter
algebra, for example [82]:

By = 1:[ (A+ D) (&) - Teyer (&) - H (A+ D) (&), (1.39)

where Tej,e; denotes the elements of the monodromy matrix (1.14). Thirdly, one also needs
to have a manageable expression for the scalar products of the Bethe states to compute the
ratio (1.37) in the thermodynamic limit. This determinant representation was first obtained by
Slavnov in [84], and also in [81, 80| where the scalar product between one on-shell Bethe state
and an off-shell Bethe vector is denoted as:

v ({rt {Aed) = (0] HC w) [T BOW) 10), (1.40)

where { )\, }2_, satisfy the Bethe equations (1.31) and {p }&_, are N arbitrary complex numbers.
Then:

det T ({p; }, {Ar})

S sk wh) = Sv Wk Amh) = o7 3 O

(1.41)



8 CHAPTER 1. THE XXZ SPIN CHAIN IN THE QISM FRAMEWORK

where the N x N matrices T and V are

1
ai T (p, { e }) Vip = ——————— 1<a,b<N, (1.42)

Ta - . 9
’ sinh (pp — Ag)

and 7(up, {\x}) is the eigenvalue of the transfer matrix 7 (u,) corresponding to the eigenstate
N

given by [ [B(Ax) |0).

k=1
In the limit p; — A; for j = 1,..., N, the Gaudin formula is recovered as:

B N sinh (A, — A + 1) ,
Sy ({\}) = sinh "H Smh(A =5 det ® ({\o}), (1.43)
where
, 0 a(Ma) 71 b(as M)
= 5y In d(Aa)kl:[lb(Ak,Aa) . (1.44)
k#a

With the elements recalled above, the multiple sum representation for the elementary blocks
(1.37) was obtained [80]:

Fr ({€. €;}) = Hmsmﬁ(&c 3 ZHJ ALy ooy ANt - (1.45)

In the thermodynamic limit, it tends to the multiple integral representation for both massless
—1 < A <1 and massive regimes A > 1 which coincide with the results obtained in 78] and
in [79, 78] respectively.

The second strategy to compute (1.36) is to insert a complete set of eigenstates of the
Hamiltonian and sum over the resulting form factors:

gz =) (U Orli) - (i Oz [t)y) (1.46)

7

The determinant representations for the form factors of the finite chain were computed in
[81, 89]. And remarkably within this approach for the dynamical spin-spin correlation functions
[92, 93, 142], the numerical results have a successful comparison to the neutron scattering
experiments [131].

1.3 The non-diagonal twisted case: a solution by the SoV

In this thesis, we are interested in developing an approach to computing the correlation functions
within the SoV. A good test model to develop this approach is the X X7 with a non-diagonal
twist, which is no longer solvable by the usual Bethe Ansatz but solvable by the SoV. Here
we briefly recall the SoV approach. It was first proposed by Sklyanin in a series of papers
[37, 46]. The explicit separate basis was constructed for the first time by G.Niccoli in 2012
[143] for the anti-periodic X X 7/, chain and later generalised to arbitrary spin in [115] and to
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the open X X X chain [144]. The SoV basis is constructed in Sklyanin’s approach by using the
operator roots of one of the off-diagonal elements of the transfer matrix, e.g. B(\) labelled by
{Z1,...,2x}. In this basis the operator roots are diagonal and as a result, so is B(\). The other
two diagonal elements of the transfer matrix, e.g. A(Z,) and D(&,) act as a shift operator of
the corresponding coordinate x,. To make the method work, it needs a sequence of conditions
[46, 47]. Without diving into the details, one can see these conditions as a guarantee to ensure
that the original physical space is isomorphic to the space that contains the SoV basis, or at
least after some symmetrising procedure. The conditions imply that we require B(\) to have
a simple spectrum. To suffice this condition we need to introduce an N-tuple of parameters
(&1,...,&n) € CV and deform the original physical model, i.e. the homogeneous chain into the
inhomogeneous chain. Thus throughout the whole chapter, we will work on the inhomogeneous
chain. It is important to point out that to compute any physical quantities, we need to come
back to the physical model, i.e. when the homogenous limit is taken: &, — /2, Vn =1,..., N.
In general, in the computation of the correlation functions, taking this limit was considered to
be difficult. Not until now have we gained more knowledge on how to take the homogeneous
limit and further on how to take the thermodynamic limit. More recently a new approach to
constructing the SoV basis was proposed in [60]. This new approach overcomes the disadvantage
of the usual SoV that needs to identify the operator B(\) to construct the basis which is highly
involved in higher rank models [57|. Instead, the new SoV basis is constructed by the repeated
action of the transfer matrix on a generically chosen state of the Hilbert space. Afterwards,
the action of the transfer matrix on this basis is given again as local shifts, and thus results
in the separation of variables for the spectral problem. Last but not the least, within this
new approach, the SoV basis depends only on the transfer matrix. Thus it resembles the fact
that in classical integrable systems the complete set of conserved charges defines both the level
manifold and the flows on it leading to the construction of the action-angle variables. This
approach seems promising to define the quantum integrability.

In this thesis we will use the anti-periodic chains to present our results, i.e. we restrict the
twist K = %, to keep notations simple for the future demonstration. Here we also recall the
diagonalisation of the anti-periodic transfer matrix:

Ti(N) = trg [og To(N)] = B(A) + C(N). (1.47)

As for the X X X chain we generalise it to the general K twisted case in [116]. Note that since
[K ® K, R] =0, the transfer matrix (1.47) satisfies the symmetry:

N
Tk, Txk] =0, wherel'y = ®Kn. (1.48)

n=1

The diagonalisation of the anti-periodic transfer matrix (1.47) was performed in [46, 47| by
the separation of variables. Here we briefly recall the main results of this construction (see also
[114]). Let us suppose that the inhomogeneity parameters &;,...,&y are generic, or at least
that they satisfy the following condition:

Condition 1.1. For the XXX anti-periodic chain, in order to let B(\) have simple spec-
trum,the set of inhomogeneities needs to satisfy:

&AE+m for he{-1,01}, Vi#je{l,. N} (1.49)
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Condition 1.2. For the X X Z anti-periodic chain, suppose that n is a generic parameter, i.e.
non commensurate with im, in order to let B(\) have simple spectrum, the set of inhomogeneities
must satisfy:

where Z; = {& + kn +ik'n|k € {0, -1}, k' € Z}.

Then, there exist a basis {|h) , h = (hy,...,hy) € {0,1}V} of H and a basis {(h|,h =
(hi,...,hx) € {0,1}} of H*:

N

1 B(&)\" B
'h>‘v<{5}>}1<a@n>) 0, =

where

Sl 06)
)<O|,I[1(d(§n—77))7 (L51)

0) = () (é)n =1 0), (1.52)

such that D()) is diagonalised and B()\), C'(A) act as shift operators:

N
D(\) h) = dyn(M) |h) = [Te(A = &™) |h), (1.53)
n=1
N A\ — é‘(hb))
=N 60 d(ED P& T-h), 1.54
; ha,1 ( )bia 90( (gha)_géhb)) | > ( )
N A\ — (ho)
—;&La,o a(¢l”) L S;(O;g ) _gb&th)) T2 h), (1.55)
and
N
(h| D(\) = dn()) (h| = H p(A—&)) (h, (1.56)
(hy)
(b C(x Zéha e TT 20 (), (157)

ha h
b#a @(fn(z )~ 5( b))

(ho)
(h| B(\ Zéhula S(OS(A“ i(hf) (T hl. (1.58)
b;éa a b

Here the following notation will be set as the same in [115, 114]

¢l —¢, —hyy  for h, €{0,1}, (1.59)
N

_ H o\ — &Shn)% (1.60)
n=1

and
TE(hy, ..., hy) = (hy, ... ha £ 1,..., hy). (1.61)

a
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To determine the action of A(A) on |h) and (h|, one can use the quantum determinant relation
(1.24). By using the first line of (1.24) and (1.53)-(1.55) we obtain:

dety T'(A) + B(A) C(A —n)
A\ |h) = —2 h
() ) e b)
~det, T'(N) h) — iv: d(eM) HSO (A= 77 fehé))
dn(A —1n) - K#a fgh’“’))
X Z (Tz h)p, 0 H ((Tzh)e) ’T;T;h> . (162)
b—1 b - & )
By using the second line of (1.24) and (1.56)-(1.58):
dety T(A+1) + C(A+n) B(A)
h| A\ =(h 1
(b] A = (b e
| det, TA+1) 1 ZN: H90A+n )
dn(A+m)  dn(A+n) & e )
N (T h),
p(A — gy
X Z 6(Ta+h)b 1 H : (T+h)[) <Tb T(_;h‘ . (163)
= b P gb )

We have 5

(h|k)= e , (1.64)
Vet el
where, for any n-tuple (z1,...,z,), V(z1,...,z,) denotes the Vandermonde determinant

V(.. II¢ (1.65)

i,7=1

1<j

The so-called separate states can be defined from the SoV basis for arbitrary functions o and
S as follows: 3

N

o T e hvie™, ... &8™) (nl, (1.66)

he{0,1}N n=1
hn

= > H{( n)> 5<a£h">>} Ve, ey |n)
he{o, 1}Nn

= D IIﬁéM) @™ ™) . (1.67)
he{0,1}N n=1

3where the second line of (1.67) comes from the fact:

N B
H (dé(ﬁi)n)) V( §h1)7 . 755\};”)) - V(gﬁl_hl), o ,Sg—hm> V(€ t han, . Ex 4 ham)
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The separate states (1.66) or (1.67) are defined up to some global normalisation only by the
N ratios a(&; — n)/a(;) or (& —n)/B(;), 1 < j < N, respectively. Thus many different
functions a or § can lead to the same separate states. The eigenstates of the anti-periodic
transfer matrix (1.47) happen to be a particular class of separate states defined by the ratios
Q& —n)/Q(&;), 1 < j < N, with some function (). The function () turns out to be fixed
by the eigenvalue of the transfer matrix (1.47). Up until now, the SoV basis and the separate
states are defined generally for both X XX and X X7 models. On the contrary, the function
forms of Q(\) turn out to be quite different.

Due to the function form of ¢(\) (which is simple polynomial), for the anti-periodic X X X
inhomogeneous chain, the transfer matrix (1.47) is a polynomial of A of degree N — 1. So is
the eigenvalue!. As for the X X7 case, the determination of function form is more involved
and will be discussed later. Denote (Q;| as a left eigenstate of the anti-periodic transfer matrix
(1.47) of the form (1.66) corresponding to eigenvalue 7(A). Then the eigenvalue 7()\) satisfies
the following set of quadratic discrete equations®:

T(&)T(&n —m) + a(§p)d (&, — ) =0, Yn=1,.., N. (1.68)
The function ), satisfies the following set of conditions :

Similarly for the right eigenstate |Q,) with eigenvalue 7(\):

T(gn - 77)@7-(571 - 77) - d(fn - n)@(€n> =0, (1'71)

The conditions (1.68)-(1.69) and (1.71) for the eigenvalue 7(\) and the function Q,(\) are
equivalent to the set of 2N discrete version of Baxter’s TQ-equations “:

(€N Q- (V) = —a(¢{"™) Q- (£ — n) + a(€!) Q- (€ + ), (1.73)

which characterise the spectrum of the anti-periodic transfer matrix (1.47) and its eigenstates
completely.

Remark 1.3. In the paper [46, 47] Sklyanin stopped at the discrete Bazter’s TQ-equations.
Though serving a role of characterising the spectrum problem of the transfer matriz, these
equations are explicitly encoded by the inhomogeneous parameters which make it difficult to
recover the physical model. Thus it is necessary to reformulate these equations to a form such
that the homogeneous limit can be easily taken.

It is easy to see that for a given function 7()\), any solution Q(\) to the inhomogeneous
functional Baxter’s TQ-equation:

AR = —a(N)QA = n) + dN)Q(A + 1) + Fo(X) (1.74)

4From the fact that the monodromy matrix is a polynomial of degree N — 1 [47].

Sproof see [143].

®From (1.69) one can see that for a given eigenvalue 7(\), indeed only the ratio Q(¢; —n)/Q(&;) determines
the eigenstate.

"This can be seen from the fact that a(¢, —n) =d(&,) =0,Vn=1,,,.,N.
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with additional term Fy(A) vanishing at all points fflh”), n = 1,..., N, obviously satisfies the
discrete version (1.73) and consequently gives us the eigenstate. However, it is more convenient
to use the homogeneous functional Baxter’s TQ-equation ®:

TR = —a(N)QA —n) + d(N)Q(X + 1) (1.75)

to characterise the transfer matrix spectrum and eigenstates. But depending on the models
that one considers, to pass from (1.73) directly to (1.75) for characterising the transfer matrix
spectrum problem can be difficult. On one hand, the existence of such a solution Q(\) to (1.75)
is not ensured. On the other hand, it also requires to characterise the function form of Q(\) °
[115, 146].

1.3.1 Complete characterisation of the spectrum and eigenstates in
terms of the functional TQ-equation: the X X X case

For the XXX model the problem of finding the solution @,(\) is easy. All the functions
appearing are simply polynomials. Thus by interpolation one can find that the form of Q. (\)
is: .
=[[x-2).,  R<N, (1.76)
j=1
for some set of roots Ay, ..., Ag such that A\, # &, Va € {1,..., R}, Vb€ {1,..., N}. Moreover,
for a given eigenvalue 7(\) of the transfer matrix (1.47), the polynomial @, () satisfying these

conditions is unique. The corresponding left and right eigenstates of (1.47) with eigenvalue
7(A) are obtained in terms of ), as the states of the form

@l= > HQT gy (et ey | (1.77)

he{0,1}V n=1
hn
Q)= > H{< (¢ E )) QT@,SW)} Vg, &) )
he{o, 1}Nn 1 1

= 2. H@T (€8 VE™"™, el ) (1.78)

he{0,1}N n=1

Hence, from the entireness of 7(A) and (1.75), the eigenvalues and eigenstates of the anti-
periodic transfer matrix can be characterised in terms of the (admissible) solutions of the
Bethe equations:

ag(N;) =1, j=1,...,R, (1.79)

for the roots Ay, ..., Ag of Q(\) where

i) — 40 Q0+ )
a(A) Q(A —n)

8There is also an approach developed keeping the inhomogeneous term Fg(\) [145].

9The equation (1.75) is more convenient as the entireness condition for 7()) will lead to Bethe-type equations,

thus the homogeneous limit and thermodynamic limit can be taken in a standard way. Also, the function form
of Q()\) does not necessarily coincide with the form of 7(\).

(1.80)
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Remark 1.4. Let 7(\) be an eigenvalue of the transfer matriz (1.47). Then the condition
(1.68) implies that —7(X) is also an eigenvalue. With the same argument it will lead to the
functional equation:

TNRM) = a(NQM = 1) = dNQA +n). (1.81)
Since the transfer matriz (1.47) has a simple spectrum and T(X) = 0 cannot be an eigenvalue
(can be seen from condition (1.68)), the equation (1.81) should be thought of as an independent
TQ-equation from (1.75). The two polynomials Q,(\) and Q,(\) = Q_(\) subjected to the
two eigenvalues T(N) and —7(X) satisfy the quantum Wronskian relation:

A

Waoo(A) =d(N), (1.82)
where .
WaoM) =35 [Q(A) QA —n)+ QN QA - 77)] : (1.83)
This implies that if Q(N) is of the form (1.76), Q()\) should be a polynomial of degree N — R:
N-R
QN =TT —x). (1.84)
j=1

Thus the spectrum problem of the anti-periodic transfer matriz (1.47) can alternatively be char-
acterised by N — R roots {\1, ..., An_r} of (1.84) if the Bethe equations hold:

ap(\)=1 j=1,..N-R (1.85)
Remark 1.5. Moreover, the eigenstates (1.77)-(1.78) can be written in the form of generalised
Bethe states as

R
Q- = (=)™ (1| T] D), (1.86)
R
where )
= 3 v, el (1.88)
he{0,1}V
= > v, ™) |n) (1.89)
he{0,1}V

are eigenvectors of the transfer matriz (1.47) with eigenvalue —a(X) + d(\). Note that the
eigenstates (1.86)-(1.87) can alternatively be written in the form:

[T d(A) N R
Q) = (~D)Y 22— STTT [~ QEl )| vie!, ... e8™) (] (1.90)
d()\k) h n=1
k=1
[T d(A) N-R
= ()™= (1] [T DOW). (1.91)
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Mdw)
Q) = ()Y 3T ZH[ ] V™, ) my (1)
H ( h n=1
k=1
R
[[dX) n-r
= ()" D(A) [Lan) (1.93)
d()\k) k=1
k=1
where
N
(Lael = > JJD™viE™,....e8™) (nl, (1.94)
he{Ol}anl
L) = Y. H (@™, LT ), (1.95)
he{0,1}N n=1

are eigenvectors of the anti-periodic transfer matriz (1.47) with eigenvalue a(\) — d(X).

Note that the expressions (1.75), (1.76), (1.79), (1.86)-(1.87) and (1.84), (1.81), (1.85)
(1.91)-(1.93) are now suitable for the consideration of the homogeneous limit &;,...,{y — n/2
(provided that the homogeneous limit of the states (1|, |1) and (1., |1ays) is well defined). In
this limit, one recovers the physical model (1.5). The states (V.| (1.86), (1.91) and |¥,) (1.87),
(1.93) are eigenstates of the Hamiltonian with the eigenvalue E, which can be expressed in
terms of the roots of cither Q. () or Q,()):

2 - 2

21
; SO Z Be— /200 +1/2) o0

Remark 1.6. The spectrum of the Hamiltonian (1.5) obtained from (1.23) is doubly degenerated
with energy given in terms of the roots of Q+(\) or of Q- (A) = Q_-(\) as in (1.96).

Remark 1.7. From the quantum Wronskian relation (1.82)-(1.83), one can obtain several
relations between the roots \;, j = 1,..., R of Q,(\) and the roots \;, j = 1,...,N — R of
Q-(A) = Q_-(N\). In particular, we have the sum rule:

N R N—R
> (& —n/2) = ZAJ- + Z A (1.97)

Remark 1.8. The eigenstates |Q,) of the anti-periodic transfer matriz are also eigenstates of
the symmetry operators S* (1.99) and I'* (1.100):

[S*, TN =0, S => op, (1.99)

[, T(\)] =0 = of = (—i)N exp F—W Sﬂ : (1.100)

n=1
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1.3.2 Complete characterisation of the spectrum and eigenstates in
terms of the functional TQ-equation: the X X7 case

Similarly, as in the X X X case, the transfer matrix spectrum and eigenstates can be completely

characterised in terms of a system of discrete equations (1.73) in the inhomogeneity parameters

of the model [47, 143]. One of the differences from the X X X case is that the eigenvalue function
of the anti-periodic transfer matrix now needs to satisfy the quasi-periodic property:

T\ +in) = (=DN 1 r(N). (1.101)

Such a characterisation has been more conveniently reformulated in [115] in terms of the so-
lutions of a functional T'Q-equation of Baxter’s type (in relation with the eigenvalues of the
Q-operator previously constructed by Baxter et al. in [117]):

T(A) QM) = —a(M) QA —n) +d(A) QA +n). (1.102)

As a consequence of (1.101), for a given eigenvalue 7(A), the unique Q(\) function in the X X 7
anti-periodic model is no longer a usual trigonometric polynomial'?. Instead, it has the form:

N N
(A
A) = | | sinh 2, ,...qv€C =, 1.103
Q()]Hll(z) v\ (1.103)

Then the eigenvalues and eigenstates of the anti-periodic transfer matrix can be fully charac-
terised in terms of the admissible solutions of the Bethe equations for the roots ¢, ...,qn of
Q(A) in the condition that the eigenvalue function 7(\) is an entire function:

ag(g) =1,  j=1...,N, (1.104)

Alternatively, the transfer matrix spectrum and eigenstates can be equally characterised by
another functional T'Q-relation since —7(\) is also an eigenvalue:

T(A) Q) = a(\) QA — 1) — d(\) QA + 1), (1.105)

with a unique solution:

~ ' \— G R ) N
Q(/\):Hsmh( 2%) 7 ql,..-QNGC\U:i~ (1.106)
i=1

J=1

Note that, for a given eigenvalue 7(\) of (1.47), the trigonometric polynomials ) satisfying
(1.102) and @ satisfying (1.105) are simply related by

Q\) = Q(\ +im). (1.107)
We also recall that these two solutions satisfy the quantum Wronskian relation [115]:

1 ~ {

5[ @0—m) + A e —n)] = £(2) ), (1.108)

0Here we adopted the terminology usual trigonometric polynomial for the functions of the form:
T2, sinh(A — \,).
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which implies notably the following sum rule for the roots q1, ..., qy:

N N
> g =Z<£n—g> +ikr, kez. (1.109)
j=1 n=1

And this alternative characterisation of eigenvalues and eigenvectors can be reformulated
as the Bethe equations:
a@(éj) =1, j=1,...,N. (1.110)

with admissible solutions qi, ..., 4y of @()\) satisfying (1.105) when 7(A) is an entire function.
Due to this reason (1.107), for a given function P, € € {+, —}, the separate states in the
X X7 case are denoted slightly different with a label ¢ indicating the two solutions:

N
(Pel= > J[{e" P} vig,. ... &™) (hl, (1.111)

he{0,1}N n=1
. a&) \"
Pep= > H{(—e)‘h" (m) P(gﬁf‘“)} V(E™, .0 )
he{01}Nn:1 n
= D, H{E i PN} VT eT™) (). (1.112)
he{0,1}V n=1

Thus the one-dimensional left and right eigenspaces of Tx(A) (1.47) associated with the
eigenvalue 7(\) are respectively spanned by the separate states (@, +| and |Q, +) where @ of
the form (1.103) satisfies (1.102), or by the separate states (Q, —| and |Q, —) where Q of the
form (1.106) satisfies (1.105).

The proportionality between the coefficient of (@, +| and < —|, and of |@Q, +) and |Q —)
can be computed through the relations:

Qé—n  Q-n (&)

&) 0E)  a) T

., N, (1.113)

so that

N
0, —| = H Q 0, — H |Q, : (1.114)
Remark 1.9. If 7()\) is an eigenvalue of the anti-periodic transfer matriz Tr(\) (1.47) with
left and right eigenvectors (Q, +| and |Q, +), —7(\) is an eigenvalue of T (X) (1.47) with left
and right eigenvectors (Q, —| and |Q, —) and vice versa.

Remark 1.10. Since the transfer matriz (1.47) satisfies the symmetry (1.48) and has a simple
spectrum, together with the fact that T2 = 1, the eigenstates of the transfer matriz are also the
eigenstates of ' with eigenvalue £1.

Remark 1.11. We can consider a slightly more general twist K = diag(k, ™) - 0 for k €
C\{0}. As a result, the separate states (1.111)-(1.112) will be defined with a different normal-
1sation.






Chapter 2

Description of the ground state

To study the correlation functions at zero temperature in the thermodynamic limit, as in the
ABA approach, we need to describe the ground state in terms of the solution to the Bethe
equations.

Under the natural assumption which has been proved for periodic boundary condition [137]
that the Bethe roots will form a distribution in the thermodynamic limit for the ground state,
we used a similar method as in [138] and obtained the same integral equation as in the periodic
case and thus obtained same roots density for the ground state in the XXX case. For the
X XZ chain, we obtained a similar result. It is slightly more complicated to summarise here,
so we will explain it in the main context.

2.1 The XXX case

We now consider the homogeneous limit &,...,&v — 1/2, and we set for convenience n = —i.
The Bethe equations (1.79) then take the form:
1/2—Aj>N BN — A Nk ,
— —— = (-1) , j=1,...,R, (2.1)
(z/2+/\j S AT M

and the energy (1.96) associated with a configuration of the Bethe roots {\;}i1<j<g is
& 2
E({Ah<i<r) = ;6(%), with €(A) = TNT A (2.2)
We can show similarly as in [138] that the complex roots appear by pairs z, z for a solution
with much more real roots than complex roots!.
For the real roots A;, it is convenient, as in the periodic case, to rewrite the Bethe equations
(2.1) in logarithmic form:

~ 2n; — N+ R
So(Ny) = %m n; € Z, (2.3)
where §Q(,\) is the counting function associated with a configuration of the Bethe roots @,
. R
~ 1 _ 1
Eoh) = 7 08 (=) " ag(N) =p(A) + 5 D200 = 0 (2.4)

i.e. where the number of real roots is more than twice the number of complex roots.

19
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with

s =itoe (22 0= (2.5)

0(\) = ilog (1 - A) 76— (2.6)

i+ A

Note that these Bethe equations are completely similar in their form to the ones that we have
in the periodic case, the only difference being in the sign on the right-hand side of (2.1). Hence
the analysis of the solution is similar, except that this difference of sign will result in a difference
in the allowed set of quantum numbers on the right-hand side of (2.3).

Remark 2.1. We have however a crucial difference here with the periodic case: the SoV ap-
proach gives us the completeness of the corresponding Bethe states (at least if we slightly deform
the model by inhomogeneity parameters), contrary to the periodic case for which the Bethe states
give only su(2) the highest weight vectors. Moreover, we need here a priori to consider all de-
grees R < N of Q, in addition to R < % as in the periodic case. Let us nevertheless remark
that we can avoid considering solutions of the Bethe equations "beyond the equator” (i.e. with
R > %) by constructing the eigenstates associated with polynomials Q) with degree R > % by

(1.91)-(1.93), i.e. by using the polynomial Q which in that case has the degree N — R < £

As in the periodic case, we expect that, in the large NV limit, the low-energy states will be
given by solutions {A} = {\1,...,Ar} of the Bethe equations with an infinite number of real
roots (of order N/2) and a finite number of complex roots. Let us also suppose that, for such
states, the real Bethe roots have a continuous distribution in the thermodynamic limit:

1

N =) v Pl PN A E R, (27)
J J

so that we suppose we can, in the leading order in the thermodynamic limit, replace the sums
by integrals (see [137| for a proof in the periodic case):

R
D DEICO I NIV 2:8)

for any sufficiently regular function f. The function p(\) is, therefore, the solution to the
integral equation

2mp(\) / T WO ) pl)dp = PN (2.9)

o

which is the same integral equation as in the periodic case and therefore admits the same
solution:

1
= 2.1
() 2 cosh(m\) (2.10)
Note that we have
5 i (N
A = — — 2mp(A). 2.11
&) = 7 ol w2 (2.11)
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The function p (resp. @) is holomorphic in a band of width ¢ (resp. 2i) around the real axis.
p and 0 (and hence &, as it is the sum of the two) are odd functions of A\. Moreover,

1

A + if  [S(A = 2.12
PO Em SO < g, (2.12)
00\ — Fa,  if SO <1, (2.13)

R(A)—+oo

so that, under the assumption that all roots are close roots (i.e. such that |S(\g)| < 1, k =
1,...,R),

- N R

§N) —p &

A—£00 N

T, for A eR. (2.14)

Note that the limit is taken concerning A\, not N. Hence, if we suppose that the counting
function is an increasing function and if all roots are close roots, the allowed set of quantum
numbers n; in (2.3) would be

nje{l,...,N —R—1}, (2.15)

which means in particular that we could have at most N — R — 1 real Bethe roots in a sector
with R Bethe roots.

The question is whether the counting function is indeed an increasing function. This should
be true on any compact interval of the real axis and for N large enough due to (2.11). However,
it cannot be assured that it is true on the whole real axis, which is non-compact. To clarify
this point, let us evaluate the derivative of the counting function at large values of +A:

R
~ 1
/A _
§O) = 1—|—1/4+N2)\ )\K
N —2R 4

= e —N)\3Z/\k+0(1/>\4). (2.16)
k=1

Hence, if N — 2R > 0, the counting function is indeed strictly increasing at large A. This
does not prove that it is increasing on the whole real axis but at least it does not contradict
this hypothesis.

On the contrary, if N —2R < 0, the counting function is strictly decreasing at large A. This
means that the restriction (2.15) is certainly not valid in that case, since both limiting values
n (2.14) can be reached for finite values of A and therefore should be included in the set of
allowed integers. Hence, we have (at least) N — R + 1 possible vacancies on the real axis in
that case. R

In the particular case N = 2R for N even, the sign of '(\) is given by the sign of the sum
of the Bethe roots:

~ if > A

&) <0 1 2 M >0 when A\ — +00, (2.17)
>0if YA\ <0

. if 57 A

&N =0 1 2N >0 when A — —o0. (2.18)
<0if Y\ <0

Hence, in that case (provided that >  Ar # 0), one of the limiting values in (2.14) can be
reached for finite \. It means that we have (at least) N/2 possible vacancies on the real axis.
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It is therefore natural to expect that, for N even, the ground state of the model is given by a
state with exactly R = N/2 real roots, as in the periodic and the diagonal twist cases?. Note
that, from Remark 1.6, the ground state is doubly degenerated. We have indeed two such states
related to () and ) with the same numbers of roots Ai,..., An/2 and Ay, ..., Ay/2, and the sum
rule (1.97) imposes moreover that

N/2 N/2

Shn=-Y"N (2.19)
k=1 k=1

in the homogeneous limit. Hence we expect these two states to have adjacent sets of quantum
numbers shifted by one to each other.

For N odd, instead, we expect that the two degenerate ground states are in the two different
sectors R = % and R = % In the sector R = %, there are indeed from our previous study
(at least) % possible vacancies on the real axis. Hence, there exists a solution in that sector

with only real roots Ay, ..., Ax—1 which should be the ground state. In the sector R = %, we
2
have a statAe with Athe same energy, which corresponds to a polynomial ) with N — R = %
real roots A1, ..., A~x—1 which solve exactly the same set of equations as Ay,..., An_1.
2 2
N-1

Remark 2.2. [t is natural to expect that the ground states in the sector % (for N even) or =
(for N odd) have no holes in their distribution of the Bethe roots. However, this hypothesis is
not essential for our purpose (computation of the correlation functions in the thermodynamic
limit): we essentially build our study on the replacement of sums by integrals as in (2.8), and
the holes contribute only to sub-leading orders to (2.8). It is neither essential for our purpose
to know the precise sector R of the ground state since the replacement (2.8) remains valid for
all states given by R real roots with R of order N/2 in the thermodynamic limit. Hence we do

not have to distinguish further between even and odd N.

As in the periodic case [80], it is also convenient to consider the inhomogeneous deformation
of the ground state when we introduce inhomogeneity parameters &, ..., &y in the model. For
the previous analysis to remain valid, we may for instance restrict ourselves to the consideration
of inhomogeneity parameters &1, ..., &y such that I(§,) = n/2 = —i/2, 1 < n < N. In that

case, we can define
N

Pad) = 1 PO = & +1/2), (220

n=1

and it leads to the inhomogeneous density

1
Prot(A) = N ZPO\ — & +1/2), (2.21)
and the solution to the integral equation

27 pN) = [ 00 ) i) doe = Hie V) (2.22)

—00

2This hypothesis is supported by the fact that the Bethe equations (2.1) coincide with the Bethe equations
of the o*-twisted case [114], a case that can be obtained by a continuous variation of the twist from the periodic
case.
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2.2 The XXZ case

Let us now discuss the description of the ground state of the anti-periodic X X Z chain in terms
of the solution of the Bethe equations:

ap(A;) = 1. (2.23)

We recall the sum rule satisfied by the Bethe roots [115]:

Y=Y (& - g) vikr, kel (2.24)

In the homogeneous limit &, = 1/2, 1 <n < N, the energy of the Hamiltonian associated with
an eigenstate of parameters {\} is

sinh 7 sinh
({A}) =—2 2 tant. 2.25
BEAY = Z < cosh § — cosh Ay - constan (225)

2.2.1 In the antiferromagnetic regime

To study the low-energy states in the antiferromagnetic regime A > 1, it is more convenient to
make the following change of variables:

'LLJ' = ’i)\j, <j = ifj, C = -0 > O, (226)

and the homogeneous limit corresponds to the limit ¢, = —i(/2, 1 <n < N. With this change
of variables, the Bethe equations can be rewritten as

uj uk +i¢ )

N N
sm(u] Cn — sin( ,

=1 =1,...,N 2.27

H sin U] gn H uJ uk i¢ ’ J ) PR ( )

n=1 i1 sin( )

1.e.
N . N . i Ui —U
44 sin(—¢, + u;) <= sin( Ec "J;"’“) 7 Y

These Bethe equations are invariant under a shift of 27 of any of the Bethe roots, so we can
restrict ourselves to the consideration of the Bethe roots uy, such that —7m < R(uy) < 7.

We consider only solutions with a finite number of complex roots in the homogeneous limit
(o= —i(/2,1 <n < N, and in the N — oo limit. Using the same argument as in [138], we
can show that, if a set of such solutions {u} = {uy,...,un} of (2.27) contains a complex root
uy, it also contains the conjugate root @,. Hence complex roots appear by pairs uy, ty.
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Bethe equations for real roots and counting function

Let us define, for u,x,y € R,

. N . e
i sin(—¢, + ) . sin(i5 +u)
u) = —lo — — tlog——=——= = v(u, (/2),
pu) =+ ggs1n(zg+§n—u) s 8 (i gy = P/
. w
. sin(iz — %)
6(”) - Zlog.g—i = —gp(u/Q,C/Q),
sin(ig + 3)
. . u—x—iy . e u—x+1y
sin(is — sin(is —
O,z +iy) = & log U~ 5 ) oinlly = 75 )
2 Usin(iz + ) sin(ig + —5Y)
iy sin(z’ﬁTy — 457) sin(z’C_Ty — 457)
=5 08—+ o
2 (S ) sl )
1 <u—x +y)+ (u—x —y)
TPV ) TP U

in which we have set, for u,vy € R,

“ sinh(27) “ 2 sinh(27)
QO(U7 7) = . - . . da = do.
o sin(a + i) sin(a — i) o cosh(2v) — cos(2a)

Note that ¢ satisfies the properties,

o' (u,y) >0 if v >0,

o(—u,v) = —p(u,7)

o(u+m,7) = p(u,v) +o(m,v) = (u,v) + 27 sgn(y),
o(u,y) ~ F2u,

y—£oo

(2.29)

(2.30)

(2.31)

(2.32)

and that, for v > 0 and x,y € R, ¢/(«, ) can be represented as the following Fourier series:

+00 oo
Pletiyy) = D @y e?™ =" Gy, y) ),
k=—o00 k=—00
with
1 (2 sinh(27) ,
! ’ — : : : e—Qka dr
ey = / Sz 1 (7 + ) sz — (7 — 1))
2 e~k e~ 2kly it |yl <~

= —4H(k)e® sinh(2ky) if y>~>0
4H(—k)e M sinh(2ky) if y<—y<0

— 3" 2sgu(y + oy) Hik(y + 07)) e 20,
o=+

(2.37)

(2.38)
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Le.
2e7 2k it Jyl <7,
Gy, 7) = § —4 H(k) sinh(2ky) if y >~y >0,
4 H(—k) sinh(2ky) if y<—y<0,
2 e~ 2kl if <
—4 H(ky) sinh(2[k]y) if [y[ >,
where H denotes the Heaviside function and sgn the sign function.
Note also that,
O(u,z) = 0(u — x), reR (2.40)
1
O (u,z+1y) = 3 0'(u—2)+0'(u—2Z)], z =+ 1y, (2.41)
where
inh
§(u) = ——She (2.42)

cosh ( — cosu

The Bethe equation (2.27) for a real root u; can be conveniently rewritten in logarithmic

form as
271’71]

Eujl{u}) = (2.43)

where n; is an integer and £ (ar|{u}) is the counting function. The latter is defined, for the given
set of Bethe roots {u}, as

Mz

O(a, ug), (2.44)

Elal{u}) =

k:

where we have used the fact that the complex roots u; always appear in pairs uy, .
From (2.35), we have

p(u+ 2m) = p(u) + 4, (2.45)
) O(uu) —2m if [S(u)| <,
O(u + 2m, ug) = {@(% ) ¢ < D) (2.46)
so that
(o + 2r|{u}) = E(al{u}) + 27 (1 + Z‘V—“’) . (2.47)
Here and in the following, we define
Zw = {uk € {u}’ |%(uk)| > C}7 Ny = #Zwa (248)

i.e Z, is the set of indices corresponding to the wide roots (in the terminology of [138]), and
N, is the number of wide roots (which should be even since the latter appear in pairs).
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The Ising limit

Let us consider the Ising limit ( — +o00. For large but finite (, we obtain for « € R at the
leading order in (,

ple) o 20 (2.49)
bfa) — —a, (2.50)
e S
so that, in the homogeneous limit (¢, = —i¢/2),
Elal{u}) = 20~ % ;(a ~R(w)) = S % SR (252
5

Hence the logarithmic Bethe equations (2.43) for the real roots linearise in this limit:

N —|— nw 27rn
+ 5 Zaﬁe ) 9 (2.53)

i.e.

1
N (27mj — Z%(u@) : (2.54)

Hence, for the Bethe roots to be contained in an interval of length 2, the integers n; should
be contained in an interval of length N + n,,, i.e. there exists ng € Z such that

njE{n0+1,n0+2,...,n0+N—|—nw}. (255)

This gives us the allowed set of integers for the real roots of a given Bethe state. By continuity
in ¢ of the functions of the model (and notably of the counting function), we expect this to be
valid also at finite (.

In particular, if we suppose that the set {u} is only composed of distinct real roots, we
would have

1 .

which implies that the n; should be adjacent numbers: n; = ng +j, 1 < 7 < N. This implies
notably the following sum rule:

éw = an = mno + %i:: ( %) . (2.57)

This is consistent with the sum rule (2.24) only if no + 2t is an integer, i.e. only if N is odd.
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The large N limit

Let {u} = {uy,...,un} be a solution to the Bethe equations given by an infinite number of
real roots (i.e. of order N), with a finite number of complex roots and a finite number of holes
in the thermodynamic limit. Let us now suppose that, in the large /N limit, the real roots u;
of the Bethe equations tend to have a continuous distribution given by some density function
p in the interval (—m, 7]
1

— ~ p(uy). 2.58

N(Uj+1 — Uj) N—o00 p( j> ( )
In other words, we make the usual assumption that, for any 27-periodic and sufficiently regular
function f, the sum over real Bethe roots tends to integrals with some measure given by the
density function p, i.e. that

N2 sw) = [ @) pla)da. (2.59)

Then, by the usual argument which consists of taking the difference between (2.43) for ;4
and u;, we obtain that p is the solution to the following integral equation:

p(u) + /7r 0 (u—v) p(v) dv =27 p(u), (2.60)

—Tr

or, in terms of the function ¢:

¢ (u, g) — %/—Z gp’(u ; Y g) p(v) dv = 2w p(u). (2.61)

This equation can easily be solved by Fourier series by using (2.37) and (2.38), and we obtain
that

1 &R einu 1 9 93(u, q) ¢
1 _ 1% e 2.62
plu) 27 n_z_:oo cosh(nC) 2wy 94(u,q)’ 1= (262)

where ¥;(u,q), i € {1,2,3,4} are the Theta functions of nome ¢ defined as in [139], with
1 = 01(0,q), Y2 = 95(0,q). Note that the function (2.62) coincides (as expected) with the
density of the periodic case.
The leading finite-size corrections will of course be different. It is possible to control them
precisely by computing the corrections to the sum-integral transformation.

Corrections to the leading order

~ ~

Let {u} = {uy,...,un} be a solution to the Bethe equations, and let £(a) = &(al{u}) be
the corresponding counting function. We suppose that this solution corresponds to an infinite
number of real roots (i.e. of order N), with a finite number of complex roots and a finite
number of holes in the thermodynamic limit. The logarithmic equation for the real roots can
be written as in (2.43), in terms of the positions hy, ..., h, of the holes in the adjacent set of
quantum numbers for the real roots. Moreover,

£(0) = p/(0) + 5 S0 — ) — 2mpla) >0 (2.63)
k=1
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so that fA is an increasing, and hence invertible function for N large enough (see the argument
in the footnote of [147]). We can therefore introduce the inverse images ; of W for
je{l,...,M} with M = N + n,:

~ . 2m(ng +J ,
Eyluy) = 1D e qu Ly, (2.64)
which defines in particular the hole rapidities @, for k € {1,...,n} (recall that u; coincides

with the real root u; if j # hq,..., hy).
Let f be a C*™ 27w-periodic function. Then, for any ng and in the large M limit,

—Z (2””0”“ 27T/ F(z) dz + O(M~). (2.65)

We make a change of variables in (2.65) using the function E defined from the counting function
¢ as

~ o~

(o) = 17 Ela), (2.66)
which is still invertible and satisfies the properties:
~ ~ ~ 2 ;
fa+2m) =E(a)+ 27, and E(i;) = W je{l,..., M}, (2.67)

Hence, the function f o E—l is also 2m-periodic, so that we have

%;f(ﬂ sz f (27T no—i-/{:))
/f ©) dz +O(M~)
/f 1) dpt + O(M~). (2.68)

Multiplying by M /N and setting apart the contributions of the holes from the ones of the real
roots we obtain that

s 2 ) = 5= [ J@E@ e = 3 i) + ON). (2.69)

We can notably apply this relation to the sum over real roots in (2.63), which gives

~ /\

(o) = 9' (o —z)¢(v)de
—%Z@'( Ze (a —up) + O(N~>)
= 2mp(a) — - D &, (a) + %Z&k(a) +O(N—), (2.70)
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in which the function E; is defined to be the solution of the integral equation
~ 1 [ ~
=5 0 (a—x)& (x)dx + 0 (a —v), (2.71)

m)_

or, in terms of the function ¢’

~ 1 (™ ,ra—x C\ 5 1 a—v (
7 - / S 7 = S
&ola) + 1~ ﬂs@( 5 ,2> o(7) dz 290( 5 ,2>, (2.72)
which can also be rewritten as
1 v ¢
/ - _ _ v 5
& (2u) / u y, E (2y)dy = -5 <2u 5 2)- (2.73)

The solution to this equation can easily be computed in Fourier modes by means of (2.37)-
(2.38). We obtain that

( 1 +o00 e |k |£ ” :
- k(a—v f (Y
A 2 2 —Cosh(kg)e if [S(v)] < ¢,
&o(a) = i (2.74)
2 3 elE sinh(|k|¢/2) et i |S(0)] > C.
\ %(:)_<0

Remark 2.3. We can generalise formula (2.69) to functions which are not 2w-periodic but
whose derivative is 2m-periodic. Indeed, let g be a C®-function such that ¢'(x) is 2m-periodic.
Then g(z) — cqx is also 2m-periodic, where

L7 ) d = 9T =9 9y +2m) = 9(y)

T or 9.
“ 2m 2 o Yy, (2.75)
so that
1 M 1 ™ N 1 n
N [g(u]) - Cguj] - %/ [g(l') - ng] ’(1‘) dr — N Z[g({%) _ cgﬁh]-] + O(]\]—OO)7 (276)
37&/1]1:7--1-,% Jj=1
1.€.
M . o
1 1 R 1 ) c )
N 2 9) =5 | 9@ E@dr = glm)+ 5>
=1 " j=1 j=1
]#hl ..... hn
cg iy 1 n N
) @ [27rp(x) N ;ﬁuhk kezzguk dz + O(N~)
L[ @)@ LS~ C({u}) .
=5 _ﬂg(x) (z) dx — i jzlg(uh].) + ¢ N + O(N™), (2.77)
where

C({u}) = aj+l ﬂx[ E (@-Z@k(;ﬁ)] da. (2.78)
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Bethe equations for complex roots

We now investigate the large N behaviour of the complex solutions of the Bethe equations.
Hence, let us now suppose that u; € {u} is a complex root. One can use (2.77) to rewrite the
sum over real Bethe roots as integrals in the corresponding Bethe equation for large N, which
gives

i [T ~ LN _
exp {N Plu)+ 5 [ 0w - 2) [Z €,(0) ~ 38, ()| d +ics C({u})
- ez =1
n . -C Uj—Uf
. . oo sm(ez + ——5—
— iy 0(u; — i) + O(L )} 1= (,g ujzuj =1. (2.79)
=1 pez Sin(is — =57)
k#j
In (2.79) we have set
Fu) = ip(u) + i / O(u — ) p() de, (2.80)
and the functions p and 6 are defined such that
6ip(a) — SIH(ZC/Q B Oé) 6i0(a) _ SIH(Z% + %) (281)
sin(i¢/2 + @)’ sin(i§ — )’

and such that they coincide with the definitions (2.29) and (2.30) for « real.
It is interesting to investigate the behaviour of (2.80) so as to see how the first line of (2.79)
behaves with L. Using the terminology of [138], we find that

F(uj) = 2mi /Ouj p(x)dx (2.82)

if u; is a close root, i.e. if |¥(u;)| < ¢. The real part of (2.82) is moreover positive if —( <
J(A;) < 0, which means that, in that case, the first factor in (2.79) is exponentially diverging
in N. Hence, for (2.79) to be satisfied, u; has to approach a zero of the expression with
exponentially small corrections in N, so that there exists u; € {u} such that u; — u, =
—i¢ + O(N~>°). If we suppose moreover there exists only two complex roots u; and @; in the
set {u} (so as to minimise the number of holes with positive energy, cf. below), i.e. that all
other roots are real, this means that {u;, u;} approaches, with exponentially small corrections
in N, a two-string of the form {us —i(/2, us + i(/2} with centre u; € R.
If instead u; is a wide root, i.e. if |(u;)| > ¢, then, using similar arguments as in [138], we
find that
R(F(uj)) =0, (2.83)

so that the first factor in (2.79) remains finite.

Energy of a configuration of the Bethe roots

We now apply this result so as to compute the sub-leading contributions to the energy of the
corresponding Bethe state:

N : : ¢
h he

E({u}) =Y eo(uy) + constant,  with e(u) = —2%. (2.84)
Pt cosh 3 —Ccosu
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Note that
_ sinh /@ £)
cofu) = —sinn ¢ ¢/ (%,
4 400 ¢ ‘
2 Z e IkIS giku it |S(u)| < §,
k=—00

= —sinh ¢ % ' (2.85)
—4 Z sinh(|k|¢/2) e if |%(u)|>%
L o

For large N, it is given as

n

E({u}) = Eo+ Y _e(w) — Y (i) + O(N~>), (2.86)

kez j=1
where

Ey = constant + N/ go(u) p(u) du (2.87)

is the contribution of the real roots which is common to all low-energy states, whereas (v) is
the dressed energy of an excitation with rapidity v, defined as

1 [7 -~
e(v) = eo(v) + %/ eo(x) & (x) dz. (2.88)
Using the series representation of (2.85) and (2.74), we find that
( eikv
Z _ it |S(v)] < $
¢ 27
' Cosi((ki) (@0)0)
- ik(v—isgn(Sv
T T S i § <30 <,
= cosh(k3)
0 i (S()] > ¢
. 19/ (0 q1/2> 193(2 q1/2)
—sinh ¢ -1 2’ f S| <
IR G0 dage RN (2.80)
0 if ()] > ¢,
in which we have used the quasi-periodicity property
48 gl/2 1/2
193<u szq ) 193(’&,(] ) 1/2 — 6_%, (290)

194(u:|:2'%’q1/2) o _194(u7q1/2)> q
so that, in the strip delimited by the lines R 4 ¢(, the function e satisfies the properties:

e(—v) = e(v), e(v+2m) = e(v), e(vti¢) = —e(v), (2.91)
and
e(u) <0 if weR, (2.92)
— ¢(u) is a decreasing function on (0, 7), (2.93)
so that the energy of a hole ¢,(a,) = —e(uy) is always positive and reaches its minimum at

+7. From (2.91), the energy of a two-string or a quartet vanishes (up to exponentially small
corrections in V). Moreover, from (2.89), the energy of wide roots also vanishes. Hence, the
only contribution to the energy comes from the holes which have positive energy.
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Configuration of the Bethe roots describing the ground state

The ground state corresponds to the state of minimal energy. From the previous study, it is
given by the state with a minimal number of holes, and therefore with a maximal number of
real Bethe roots.

The case N odd If N is odd, it should correspond to the state with N real roots and N
adjacent quantum numbers (given by the choice ng = & “).
N-1 N-=-3 N—-3 N-1

- _ 2.94
" 2 g 2 T g (2:94)

and the Bethe roots u;, 7 =1,..., N, should satisfy the equation

- 2 N+1 . )
Eodd(uj) = ~ (_T +j) , j=1,...,N. (2.95)

where Eodd is the corresponding counting function. The latter should be such that

-~

§oaal(a) = 2mp(ar) + O(N™), (2.96)

so that Egdd is a m-periodic function up to exponentially small corrections in N. Integrating
this relation and using (2.47), we therefore obtain that

Eoaalo+ ) = Eoqa(@) + 7 + O(N™™). (2.97)

Hence

N

w1) + % +O(N—), (2.98)

N+1 N\ 2
Eoaalu; + ) = (——++ +2>—7T+O( )

m>

so that

~ -~ 7T
uj = ggdld <€Odd(uj+¥) + N + O(N*OO>>

Ujpn- + % <55d1d>/ (fodd( )) +O(N7?)
_ w1 o 1 -2
=y o Ng oeL (g()dd(uﬂ%)) +O(N)

+O(N7?). (2.99)

The case N even Instead, if N is even, it follows from the study of the Ising limit that a
state with N real Bethe roots is incompatible with the sum rule. Hence our candidate (which
also corresponds to the state found in [117]) is a state with two holes and a two-string (which
corresponds to a state with the minimal number of holes). Moreover, the holes should be at a
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position which minimises their energy, i.e. with rapidity close to 7. The N — 2 real Bethe
roots should therefore correspond to N — 2 of the N following quantum numbers:

N N N _ N
nj=——+4+1,-=+2..= -1,

— 2.1
2 2 2 2’ (2.100)

and the rapidities of the real Bethe roots and the holes u;, j = 1,..., N, should satisfy the
equation

- o [ N omj
Eoven(i1) = WW (—— +j) =+l =1, N (2.101)

where aven is the corresponding counting function. From (2.70), the latter should be of the
form

Elren(@) = 2mp(0) + 11 (@) + O(N ), (2:102)

where a(oz) is the correction due to the presence of the two holes and the two-string:

2
() == & (@) + & ricsa(@) + & o). (2.103)
k=1
Hence 1
Euven(+T) = Eun(0) + 1 [l +m) = & ()] + OV), (2.104)

so that, by integrating this relation and using (2.47), we obtain that

—~ ~ 1 1~ ~

feven(a + 7T) = éeven(a) + 7+ N |:£1 (Oé + 7T) - 61(05):| + O(Nioo), (2105)
where & () is the 2m-periodic primitive of & (ct). Hence

Gonliy + ) = (=5 +5+ 5 ) 5+ 1 [+ m) - E(@)] + 08 )

| SS—

= Buenlityy ) + ¢ [l + ) — ()] + O ) (2.106)

so that

-~

7= &k (Bl ) + o [B00 )~ Gl)] + 0V )
v G+ m) - &) (G (Genliyn) +ON?)

[é\l(ﬂ] +7) — gl(ﬁ])} = — (12 ; )) +O(N?)
even © Seven | Seven\Uj N

J 4+ O(N?). (2.107)
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2.2.2 In the disordered regime

In the disordered regime —1 < A < 1, we set
n = —i(, 0<(<m, (2.108)

and the homogeneous limit corresponds to the limit &, = —i(/2, 1 < n < N. then, the Bethe
equations can be rewritten as

N N . i( ;
sinh(i¢ + &, — h(5 + .
=1 =1,...,N. 2.109
H Slnh €n+)\ g é k) ) .] ) ) ( )

These Bethe equations are invariant under a shift of 2im of any of the Bethe roots, so we can
restrict ourselves to the consideration of Bethe roots Ay such that —% < S()\,) < 2.

We consider only solutions with a finite number of roots g such that (\z) ¢ {0, 7} in the
homogeneous limit &, = —i(/2, 1 < n < N, and in the N — oo limit. Using again the same
argument as in [138|, we can show that, for generic ¢ (i.e. not in the root of unity case for
which we can also have exact strings), if a set of such solutions {A\} = {A,..., An} of (2.27)
contains a complex root )y, then it also contains the conjugate root A\,( mod 2i7). Hence, for
generic , complex roots appear by pairs g, A¢( mod 2i7).

Bethe equations for real roots and counting function

Similarly in the homogeneous limit &, — —i(/2 we define, for u,z,y € R,

) sinh(i$ + u
() = ilog E T _ o) (2.110)

sinh(i5 — u)

sinh(i$ — %)
A(u) =1lo 220 — _p(u/2), 2.111
() = itog St 25 = 0w (211)

in which we have set ;

inh(is + A

H(\) = i log b(i; + ) (2.112)

& sinh(i§ — \)
The function (2.112) is odd, and holomorphic in a band of width i¢ around the real axis, i.e. for
|(A\)| < ¢/2. In this band, one uses the principal determination of the logarithm (arg €]—m, 7[).

Outside of this band, i.e. for |¥(N\)| > (/2, one should use another determination of the
logarithmic (arg €]0, 2n[). Hence

oe(—ei€y = 476 if (S <¢/2,
d(N) m,:oo log( )= {_W ¢ £SO > /2. (2.113)
dp(N) — dlog(—e ) =( —m. (2.114)

RA——o00

The Bethe equation (2.109) for a root u; € R or u; € R+ im can be conveniently rewritten in

logarithmic form as

271'71,]

Elujl{u}) = (2.115)
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where n; is an integer and £ (a|{u}) is the counting function. The latter is defined, for the given
set of Bethe roots {u} = {us,...,un}, as

£(al{u}) = pla) + — Zea—uk — ¢ —%Z}b(o‘_uk) (2.116)

k=1

Let us define
Zp = {up € {u},|S(up)| > ¢}, Ny = # 20, (2.117)
Zy = {u € {u}, |S(uy —im)| > ¢}y R = # 20, (2.118)

i.e Z, is the set of indices corresponding to the wide roots with respect to the real axis, whereas
Z,, is the set of indices corresponding to the wide roots with respect to the axis R + 7. From
(2.113)-(2.114), we have

27N

Jim_ &ol{u)) — lim Eal{u) = 2 i aeR (2.119)
lim Eal{u}) —_ lim_Eal{u}) = 27”7"”, it aeR4+im, (2.120)

which gives us the allowed range of mtegers in (2.115). Namely, the number of allowed roots in
real line R (resp. R + im) equals the number of wide roots respectively. And it is compatible
with our setting (2.117)-(2.118) , note that u; € R 4 7 is a wide root with respect to the real
axis, whereas uy € R is a wide root with respect to the axis R + i7.

More precisely, let M be the number of real Bethe roots, let M be the number of roots on
the axis R + i7, let n. and n. be the number of close Bethe roots with respect to the real axis
and the axis R + ¢7 respectively, and let n,, be the number of complex roots which are wide
roots with respect to both the real axis and to the axis R + ¢wr. Then

N =M+ M+ n. + g + 7y, (2.121)

and .
= M + Tie + T, N = M + ng + Ny. (2.122)
We expect that, in the large N limit, the low-energy states will be given by solutions
{u} = {w,...,un} of the Bethe equations with M ~ % real Bethe roots, M ~ £ Bethe roots

on the axis R+ im, and a finite number N — M — M of other complex Bethe roots. we suppose
that (as proved in periodic case [137]), for such states, the real Bethe roots and the Bethe roots
on the axis R + ¢ have some continuous distribution in the thermodynamic limit:
1
—_ ~ u;), ifuj,ujp; €R 2.123
N(Uj+1 . U]) Nooo p( ]) J j+1 ( )
1
— ~ p(uy), if uj,uj 1 € R+im 2.124
N('U/j+1 — u]) Nosoo p( J) 7y Wi+1 ( )
so that we suppose we can, in the leading order in the thermodynamic limit, replace the sums
by integrals:

%ifuk /f

k=1

% Z flup) = fla)p(a)da. (2.125)

k=1 R+im
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Then the difference of the Bethe equations gives us two copies of the integral equations:

o) =g [0 (55 o5 [ o (5 ) A = pte)

00~ [ (52 o3 [ o (55 ddn = 06) (2.126)

with € R and 8 € R 4 imr. We used the Fourier modes to solve the integral equation and
obtained the densities:

1

= S coh () (2.127)

pla) = p(B)

Note this result coincides with that in the periodic case [138], the only difference is that we
obtained two copies of the roots shifted by .



Chapter 3

Scalar products of separate states and
form factors

Recall that the quantum SoV approach imposes to introduce a set of inhomogeneous param-
eters {1, ..., En} subject to the conditions 1.1 or 1.2, which modifies the physical model with
Hamiltonian (1.5) to the inhomogeneous chain defined by the monodromy matrix (1.18). Thus
one must be able to take the homogeneous limit to recover the physical model in the computa-
tion of the scalar product and the form factors [94] if one wants to develop an approach towards
the computation correlation function as in the periodic case solvable by ABA.

The explicit construction of the SoV basis leads to a natural determinant representation for
the scalar product between two general separate states of the form (1.66) and (1.67). It is in
the form of a sum of two dressed generalised Vandermonde matrix [114]:

_ 1 ot la v _ a(€a)a(€a —n)B(Ea — 1)
VP = ey [ (£a)B(E) ( &) = e ale) B

where V({¢}) is defined same as in (1.65) and v, () denotes the Vandermonde matrix element.
For the X X X case, v,,(A\) = A2 and for the X X7 case v,(\) = 6(”;?—,‘1”“

It is worth mentioning that such a determinant representation is quite common for a class
of models in the SoV framework. In principle, this is a good sign for the computation of
correlation functions since the determinant representations appearing for the scalar products
of Bethe states in the ABA framework [84] led to convenient representations for the correlation
functions and the form factors [81]. However, the representation (3.1) is not a convenient one.
The problem is that its rows are labelled by the set of inhomogeneous parameters {&, ...,En},
and this will lead to an indefinite (or at least complicated) result when we take the homogeneous
limit &, ..., &y — n/2.

The idea is therefore to transform the representation (3.1) to get a more convenient one
for the consideration of the homogeneous limit and thermodynamic limit. It has been done
for the XX X/, anti-periodic spin chain in [114]. Roughly speaking, the idea is to transform
the determinant in equation (3.1) by noticing the possibility to find some other matrix whose
elements are labelled by the set of spectral parameters {a}, {5} and the set of inhomogeneous
parameters {{} on an equal footing. The resulting determinant is the so-called generalised
Izergin determinant', which is symmetric between the set of spectral parameters and inhomo-

wie=n)|. G

IFirst introduced as a representation for the partition function of the six-vertex model with domain-wall
boundary conditions [148].

37
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geneous parameters. Such a determinant can be further transformed into a determinant in
which rows and columns are respectively labelled by the two sets of Bethe roots {a} and {5}.
In the antiperiodic XXX case [114], the resulting determinant is very similar, in its form, to
the determinant obtained by N. Slavnov in the periodic case for the scalar products of Bethe
states [84] (in the following, determinants of such type will be called Slavnov determinants).
The same strategy can be directly applied to the computation of the scalar product for the
X X Xy open spin chain with boundary fields [144]. The reason why the same procedure can
be applied is that the functional form of the ) functions appearing in the determinant is usual
polynomials.

But unfortunately, this procedure cannot be repeated for the anti-periodic X X7,/ model.
The scalar product between two arbitrary separate states (1.111)-(1.112) can still be initially
written as the determinant of the sum of two dressed generalised Vandermonde matrices. How-
ever, the functions involved there are not usual trigonometric polynomials, thus the solution to
this problem is different.

It is still possible to transform such a determinant into some generalized version of the
Izergin determinant but, unlike in the paper [114], the generalised Izergin determinant that we
obtained in the X XZ case is not symmetric into the two sets of parameters. The function
involved in it has different periodicity from the initial functions of the polynomial, i.e. is not
a polynomial in the Vandermonde variables. Therefore, we proposed an alternative way of
transforming the determinant [118].

3.1 A short review on the anti-periodic X XX chain

This section aims at giving a short review and at showing explicitly some important intermediate
steps on how the convenient determinant representation, namely, the Slavnov determinant was
obtained from the expression (3.1) in the paper [114] for the anti-periodic X XX chain .

3.1.1 Scalar products and form factors for the anti-periodic XXX
chain

It is convenient to introduce a set of notions and definitions to show how the transformation
of the determinant in (3.1) was done. For any set of complex parameters {zi,...,x} and an
arbitrary function f, define:

v Yy—TpEn
+ _ - 4n
gy )—H_—xn (3.2)

detL[ bt — flwa)(wa £ )Y

AT 3.3
Then the scalar product (3.1) can be written as:
N
(alg) = ] (af Al |FE o amd oo} (3-4)

n=1
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For € C and two sets of parameters {zy,...,xx} and {yi,...,yn} with t,(z) = £ — - the
generalised Izergin determinant was defined as follows:

H(%—yb—i-ﬁ)

a,b=1
: det [t,(x, — ) 3.5
V(lCl,...,.Z'N)V(yN,...,y1> N [,u( yb)] ( )

One can see a crucial feature of the generalised Izergin determinant (3.5) that it depends on the
two sets of parameters {x} and {y} symmetrically. It was shown in [114] as a generalisation of
the result of Kostov [149, 150, 151, 152] that:

Te(eh fuh) = ()Y Ag, [0E])] = (COVAG, [0 (3.6)

which allows writing the scalar product (3.4) in terms of the Izergin determinant. What’s more,
it serves as a bridge allowing us to exchange the two set of parameters®:

In(et ) =

{ag, ..,ag} U{pB1, ..., Bs} < {&, ... &N} (3.8)
Thus the scalar product (3.4) can be written in terms of:
Alarar}Ulfn,bs) [”E{g}] (3.9)
Then the last step is to transform it into the so-called Slavnov determinant:
M
H (z; — vk +1)
k=1

SE (L=}, {lyle)) =

with the matrix elements of H* ({x}, {y}|{¢}) defined as:

ot HW ({1 .
o ey G Y (e e (30)

E+
#ﬁyitl(yk — ). (3.11)

With the set of parameters {x1, ..., zp; } as the solution to the Bethe equations, {y1, ..., yar+s}
as a set of arbitrary parameters and {&1, ..., £y} as the inhomogeneous parameters, the following
relation holds:

[ Hw ({z}, {y}‘{f})] {5}(yk)tl<xj — Yi) —

St sl WHHED) = Apyug (1B ] (3.12)

Remark 3.1. In the paper [114], in the last transformation to the Slavnov determinant, it was
supposed that one of the separate states was an eigenstate of the twisted transfer matriz (by
requiring {1, ...,xp} to be a solution to the Bethe equations). But it also works for two general
separate states.

2The identity (3.6) can only be applied when the two sets of parameters share the same cardinality. It can be
generalised to the case when the cardinalities of the two sets {2} and {y} are not equal. In fact, the exchange
of the two sets relies on the generalised version of (3.6):

AT N—(R+58) g~

— +
{&} {ala--AvaR}U{ﬁl ~~~~~ BS}:| - (1 - M) {a1,..., artU{B1,..., Bs} |:/"LE{§}:| (37)
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Finally, the scalar product can be indeed written in the form of a Slavnov determinant as
in Theorem 3.3 of [114]| which remains finite and manageable in the homogeneous limit.

After the convenient determinant representation of the scalar product was obtained, together
with the solution to the quantum inverse scattering method, the matrix elements of o, between
two eigenstate (Q, |0, |Q,) were computed in section 4 of [114]. And the matrix elements of o;"
and oZ between two eigenstates can be obtained from (Q.|o, |Q./) by using the symmetries:

[S*, Tk(N] =0, %, Tx(N)] = 0. (3.13)

Remark 3.2. The case of the anti-periodic X X X chain treated in [114] and that we have just
summarized here or for more general twists in [153, 154, 155] is quite particular. Indeed, the
SU(2) symmetry of the monodromy matriz provides a correspondence between the chain with
the anti-periodic boundary condition (a twist by o® ) and the chain with a diagonal twist (a twist
of the form o* or for the most general case any two by two diagonal matrixz) which can be solved
within the ABA framework. It is therefore not surprising that the form factors have the same
form in the anti-periodic case as in the diagonal case, since these two cases can be explicitly
related by the above transformation.

3.2 Scalar products and form factors for the anti-periodic
X XZ chain

In this section, we would like to present the results from our paper [118] concerning scalar
products of separate states and form factors of local operators in the anti-periodic XXZ case by
SoV. We obtained some determinant representations in which, as in the Slavnov determinant
[84] for the scalar products of Bethe states, or as in the determinant representations for the
ABA forms factors [80], the rows and columns are labelled by the roots of the @-function (or in
other words the Bethe roots). I would like to point out that these computations in the XXZ case
are not simply a replica of the work reviewed in the last section [114]. In short, the difficulties
come from the fact that the solution to the functional Baxter equation (1.102) is not a usual
trigonometric polynomial. Instead, it has a double period with respect to the @)-function form
in the periodic case:

Q) = f[lsmh <A > q”) . (3.14)

Due to this discrepancy of periods, the transformations involved, as well as the final formulas,
are quite different from what we had in the X X X case.

3.2.1 The scalar product of two separate states

So as to simplify the global normalization factor in the final formulas for the scalar products and
form factors, let us introduce the following normalisation of the separate states (1.111)-(1.112):

(Pel= > J[{e P} vig",....efY) (], (3.15)
he{0,1}N n=1
= H [Ep(fn - 77)] D<P7 E’ 9 (316)

n=1
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Po= Y H%%wﬂjg%ﬂ"mﬁm%mwww$%w

he{0,1}N n=1

= ) H{e h PPV V(e G ) (3.17)

he{0,1}N n=1

’,:]z

= V(& &n) )P €)y s (3.18)

n:l

where

WPd= 3 H( ) (e ety (3.19)

he{0,1}N n=1
1—hn (1—h1) (1-hn)
V 2
Pe)y= > H( ) (@ " ™) h) . (3.20)
he{0,1}N n=1 (51""’&\’)

Then the scalar product of the states (3.19) and (3.20) built from P and @ can be written as:

S(PQ,e€') = (P, €| Q, € )n

s (POE) T vl ™ el
_ZHFWW&)} V(€ - Ex)

oty <o e [oG5ND8 4 ce POUE (@M=

= (PQ)(&i—n)
- dety<; j<n [eZIN-1&] (3.21)

Note that it depends only on the product function (PQ) and the global sign e€¢’. As usual for
the separate states constructed within the SoV approach, this scalar product can be written
as a single determinant of the sum of two dressed generalised Vandermonde matrices. This de-
terminant representation depends intricately on the inhomogeneity parameters and is therefore
not convenient for the consideration of the physical model.

From now on, we will also suppose that the functions P and () are trigonometric polynomials
of the form

N A—ps N \—q;
_ . j _ : j
= Hsmh (T) , Q) = Hsmh<7> , (3.22)
Jj=1 j=1
with plyapNaQIaQNEC\UEz (323)

Let us introduce some similar notations as in the XXX case. For any set of complex
numbers {z} = {z1,...,z)}, and a function f, we define

(2j—M—1)z; (2j—M—1)(z;—n)
deti<ijen | = — f(@i) %=

V(l‘l...,xM)
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Then the scalar product (3.21) can be rewritten as:

S(PQ,a) = Aggy,..eny [—afpPq)] (3.25)
with
(PQ)(N) o
fro(A) = PO)r—n) = e (3.26)

In the same spirit as in the XXX case [114], expressions of the form (3.24) can be transformed
into some generalised Izergin determinant by means of the following identity:

Identity 1. (Transformation into a generalised Izergin determinant)
For any two sets of arbitrary complex numbers {x} = {xy1,..., 2.} and {y} = {y1,...,ys}
and any function f, we have

Ay 1= Ty [f - By (3.27)
where
By (u) = ﬁ sinh(u — yy — ) (3.28)
o} ooy sinh(u—y;) ’ '
and
L .
i o= sinh(z; — 1 ;
I{x},{y}[f] _ [1 L=1 ( . Ye) det [ . _ f(x)
HK] sinh(xz; — z;) sinh(y; —y;) L |sinh(x; —yx) sinh(z; —yp — 1)
1 _ f(i)
_ det,, [Sinh(xryk) Sinh(zi*yk*n)} (3.29)
1
detL [sinh(xi—yk):|

Proof. We mutiply and divide A, [f] with the determinant of the L x L matrix C.y with
elements (C{Z})jk> 1 <4,k < L, defined as

” L o2\ Jj— L (23 L-1)
Hsmh — 2y) Z C{Z} <7) = Z C{Z} (3.30)
Jj=1 j=1
Zh
and with determinant: detr C;y = V(zz, ..., 21) = [ [, sinh(z; — 2x). O

Remark 3.3. Unlike in the X X X case (3.5), the generalized Izergin determinant (3.29) that
we obtain from this tranformation is a priori not symmetric between the two sets of parameters
{z}, {y}. It depends on the function f appearing inside the determinant. And from equation
(3.25)-(3.26) it is obvious that the function f has different periodicities from the functions
appearing in the denominators in (3.29).

Therefore, from now on, we can no longer apply the same strategy as in [114]. It is necessary
to propose some other type of transformation. Roughly speaking, our idea is that since the
expression (3.29) is a ratio of two determinants, it will remain unchanged if we multiply both
the numerator and denominator in (3.29) by the determinant of a properly chosen (invertible)
matrix X :

det[M]  det[X]det[M]  det[X - M]
det[NV]  det[X]det|]N] — det[X - N]°

(3.31)
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The last equality holds because the determinant operation is a homomorphism. Note that the
rows of M and N are labelled by {z} (which when considering the scalar products will become
the inhomogeneity parameters {£}):

Mj,k = ./\/lk(x]) (332)
Thus our idea is to find such X whose columns are labelled by the same set {x}:

Such a matrix has to be well chosen such that the matrix multiplication can be written as a
sum of residues of a certain function J(¢) at {z} inside some well-chosen contour I". This
contour must include the other set of parameters {y} as the rest of the residues. And we must
be able to compute the integral along this contour, namely, we want the following:

> XyMis = YR (T(O] = § T~ 3 Res (7). (3:31)

{=} {y}

The last equality is a consequence of the Cauchy theorem. Applying this to the scalar product,
the set {z} corresponds to the inhomogeneous parameters {&,...,&n} and {y} corresponds to
the set of spectral parameters {pi,...,py} and {qi,...,qn}. All of these depend on the matrix
X, and it is not a trivial task to find one. For the scalar product we proposed the following;:

Xi,j = X(Qz‘afj)

1 [ : §—a—n
- —— Q& — ) P(& + i) ot =4
[Tiisinh(g &) L7 ’ 2
(#j
. =@ —mn -+
Qg -+ imP(g) o SZEZIET | (3.35)
for 1 <i,5 <N.
Use Identity 1 and the formula (3.25) becomes:
~ detN M(a)
S(PQ, @) = Lig,....en} pron) [—OéfP,Q} = Joty MO (3.36)
in terms of the function P ) Q)
~ u—mn-+m U
= , 3.37
Il = T im) Qlu—n) (330
where we have set
1 fro(&
M = MO (&, pr) = + ——Piral&) (3.38)

sinh(§ —pr)  sinh(§ —pp — 1)’

for 8 = a or § = 0. And with the matrix X and the method above, it leads to the following
identity.



44 CHAPTER 3. SCALAR PRODUCTS OF SEPARATE STATES AND FORM FACTORS

Identity 2. Let {&1,...,En} be a set of arbitrary parameters and let P and Q) be trigonometric
polynomials of the form (3.22)-(3.23), satisfying moreover the condition

(PQ)(gn_n) o (PQ)(gn _77+i7T)

POE) PG +im el Ny (3.39)

Let {p1,...,pn} and {q,...,qn} denote their respective sets of roots, and let fpr be the func-
tion defined in terms of P and Q as in (3.37). Then, for any arbitrary parameter c,

det1§i7}g§N [Sg}g?(qy pk‘)]

z -« = , 3.40
{1, bnbiprses PN}[ fPQ] dety<jpen [Coth(pk_gj_n)} ( )
where Sg)i)P(qj,pk) is defined as:
S p (a7, pr) = coth (#) + aag(px) coth < 5 qj)
oo Upk) Qlg; +n) Plg; + i) 1 7 (3.41)
a(q;) Q(pr — n) P(px + im) sinh(pr — ;)
i terms of the function:
A smh (u—&) Q(u+n>
— &
aolu) = ag(u ey . 3.42
Remark 3.4. The condition (3.39) is obviously satisfied if, for alln € {1,...,N},

P(&n) - P(&, +im) ’ Q(&n) B Q(&, + im)

Therefore, it is obviously satisfied in the case of transfer matriz eigenstates due to (1.113).
Hence, the class of states built from trigonometric polynomials of the form (3.22)-(3.23) sat-
isfying (3.43) contains in particular the class of all transfer matriz eigenstates. It is however
much wider.

Remark 3.5. The quantity (3.42) turns out to coincide with the function appearing in the left
hand side of the Bethe equations (1.104) if Q is the solution to the functional Baxter equation
(1.102) with the roots {qu, ..., qn }-

Apply Identity 1 and Identity 2 to the scalar product formula (3.25), we straightforwardly
obtain the following Proposition:

Proposition 3.2.1. The scalar product (3.21) of two separate states (3.19) and (3.20) built
from P and Q of the form (3.22)-(3.23) can be expressed as

1 afpo(&)
detN |:sinh(§ifpk) + Sinh(fi*pk*n)}

S(PQa Oé) =

(3.44)

1
dety [Sinh(& —Pk) }
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in which we have set o = e€’ and

Plu—n+ir) Q(u)

f = : 3.45
o) = =P i) Q) 249
If moreover P and () are such that the following condition s satisfied:
(PQ)En—n)  (PQ)(E —n +im)
= : ) vn € {1,..., N}, 3.46
POE] P+ ) (e ) 340
then (3.44) can be rewritten as
dety [S(q|p)
S(PQ,a) = v pkljn (3.47)
det1<] k<N [COth (T)}
B Hf\; ,sinh (2=2=1) dety [S (a)(oﬂp)} (3.48)
cosh (220 Y [T [sink (2522 sin (252)]
i which we have defined, for any parameter o,
(@) o =g@ (.
[S*(alp)ljx = Sq p(as, r)
= coth (#) + aag(pg) coth ( 5 qj)
d(pr) Q(g; +n) Plg; + im) 1
— 2« — , 3.49
alay) Qo — ) Plpe + i) sinb(pr — ) (349

with ag defined as in (3.42).

The representation (3.44) is a generalization of the formula obtained in [148] for the partition
function of the six-vertex model with domain-wall boundary conditions, but with in addition
the presence of a non-trivial function fpo (3.45) . In its turn, the determinant in (3.47) ,
with rows and columns labelled by the roots of () and P, is reminiscent in its form from its
analog in the periodic case obtained by Bethe Ansatz [84], but its matrix elements (3.49) are
less symmetric as those of [84]: they seem to contain only parts of the terms that one could
expect from a direct generalization of the determinant of [84]. In fact, (3.47) appears closer to
the "square root" of some analog of the determinant of [84]. More precisely, one can show the
following property:

Proposition 3.2.2. The scalar products (3.21) of two separate states (3.19) and (3.20) built
from P and Q of the form (3.22) - (3.23) satisfying (3.43) verify the following property for any
parameters o and (:

i—Di) G(a,3)
S(PQ, ) S(PQ,B) = (-1 Nez . H Q&) dety [S*P(alp) (3.50)
Q& - )detlgi,ng [+]

smh(W)
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with
(S alp)],, = Sk (a7, x) (3.51)
e 1 n e 2 1
— . — - + 2q — — - 3.52
Sinh(pk—;}g—n) Sinh(pk;q]) 66 Q(pk) [Sinh(pkgqj) Sinh(pk_gj—m) ( )
p L NP(a 4 By
49 (px) Qg; —n)P(g; + im) (1 - afBe"ag(g;)) € (3.53)

d(q;) Q(px — 1) P(px. + im) sinh(pr — ¢;)

In particular, when afSe™ = 1 and when the roots of () satisfy in addition the system of
Bethe equation (3.42), the last line of cancels, and appears as quite similar, in its form, of the
determinant of [84].

The proof of this result rely on the following Identity:

Identity 3. Under the hypothesis of Identity 2 and supposing in addition that P and Q) satisfy
(3.43), the expression (3.36) can be rewritten as:

&Py (@)
eL~i 2 _'7 < (€l7pk?)
S(PQ. a) = - P,Q1 (3.54)
det1<ivk§N [Sinh(fi_pk)]
L sinh (q] qz) deti<; k<n [é] | |
i<j i, sinh(&;—p)
with
M) (6 ) — _ L 3.56
P,Q(g pk) sinh (&i;Pk) sinh (W) ( )
et [ fral&)  ifrol&+im) (3.57)
sinh (—51'_’;’“ _77) sinh <—§i_pk2_ 77:7,7r) 7
and
() _ Oze_g
MPQ(élaq]C) - Slnh( i qk) Slnh( %kfn)
PG + im) L acd
P( i ) ( z) sinh (Erq;—&-iw) sinh (&—%2—77-*‘”)
_ 1 Oze’g
= z

sinh( ‘;qk) a sinh (&sz—ﬂ)

P(&)Q(& +im — ) 1 B ae
P(& +im)Q(& —n) \ sinh (—gi_qé“““) sinh (—Ei_q’“;"””)

Proof. The idea is to make explicit the fact that the expression is in fact imr-quasi-periodic in
&;. Using for instance the identity

1 ez (1 i
= 3.59
sinhu 2 <Sinh % sinh ““’T) ’ (3:59)

NS

+1

(3.58)
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we obtain (3.54). Then multiplying each row by P(&;), we obtain

X5 det N M@

S ST, Pl et MO 5.0
with
VL — p® ey — et Q&) pwye _
Mj,k (§Z> ae Q(& . 77) (& 77)
Q&) (pwrg 4 im) — et QG ey
ZP(£i+z'7r) (P (& +im) — ae Q(&—l—iW—T})P (& +ir—n) ), (3.61)
CY P A O
P (u) = b (=) (3.62)
Factorizing out the matrix C’N{p}7{q} with elements defined as
®© ) = S (E, ) th O () — QW)
P®) (u) ; (c{p},{q}%ﬂ @, withQV) = e (3.63)

. Pj—Pq
sinh(=15—)
1<j sinh(quqi) )
2

the second identity (3.55). O

of determinant dety CN{pL{q} =11 and factorizing Q(&;) out of each row, we obtain

Proposition 3.2.2 then follows by using both representations (3.54) and (3.55) to compute
the product.

Finally, let us make some brief comments about the case P = Q. The quantity S(Q?, )
can of course be obtained from taking the appropriate limit in the above results. It can also
be noticed that, in this case, the function fQQ (3.45) is the constant function equal to —1 if @
satisfies (3.43). Hence (3.44) reduces to a usual (a-twisted) Izergin determinant:

1 o
S(Q?,a) = dety [Sinh(fi—Qk) B Sinh(&—qzc—n)}
detN [

; (3.64)
sinh(&;—qx) }

For this particular case, the same type of transformations as in [114, 144, 156| can be
applied, leading to some kind "Slavnov type" determinant. However, the rows of this resulting
determinant are labelled by only half (or a subset) of the roots of @), whereas the columns are
labelled by the other half (or the complementary subset). Moreover, such a determinant is in
that case not expressed in terms of the quantity ag involved in the Bethe equations, contrary
to (3.49). Nevertheless, it should be noticed that (3.64) also allows for alternative types of
compact determinant representations. For instance, on can easily transform (3.64) as

N .
h _
S(QQ, Oé) —  det 5]']6 . d(Qk) Hé:l S (Qk qe + 77) Q

= : : . 3.65
1<ik<N |70 alqr) [l sinh(gs —qe)  sinh(gr —gq; + 1) (3:65)
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Proof. The representation (3.65) can be obtained from (3.64) along the same lines as above, by
multiplying both determinant in (3.64) by the determinant of the same matrix X of elements

5 _ I sinh(6 —a) 1
"0 Tl sinh(§ — &) sinh(§, — ga)’

1<ab<N. (3.66)
]

3.2.2 The form factors of local spin operators

In this section, we formulate the results that we obtained in [118] for the form factors of local
spin operators, i.e. the matrix elements of the spin operators acting on a given site n of the
chain between two eigenstates of the transfer matrix. We do not present the proofs here, they
can be found in [118].

Therefore, we consider the matrix elements of the form

(P, €| o2 |Q, €, ae{+,— 2z}, e€e{+ -} (3.67)

where (P, €| and |Q, €) are the eigenstates of the anti-periodic transfer matrix (1.47) with
respective eigenvalues e7p and €'7g. Due to the proportionality relation (1.114), we can without
loss of generality restrict our study to the case € =e.

Proposition 3.2.3. The form factor of the local operator oZ in two eigenstates (P, €| and |Q, €)
of the anti-periodic transfer matriz (1.47) with respective eigenvalues eTp and €7q is given by
the following ratio of determinants:

k) detw [S(a|p) — PP (a]p,&)]
k) detlgj’kSN [COth(W)}

A I » 3.68
7 10,9 = - TT 24¢ S

in which S(q|p) = SW(q|p) is the matriz of the scalar product with elements SS?P(qj,pk) (3.49)
with o = 1, and PP (q|p, &) is a matriz of rank one with elements

[,P(f)(q | p,gn)}j7k _ P(pk - 77) |:Q(§n — 77) coth (fn — 4 — 7]>

Qpr—n) [ P& —n) 2
Q& —n +im) En + 0T — G5 — 1)
+P(§n p—— coth ( 5 )} : (3.69)

for1 <j,k<N.

Proposition 3.2.4. The form factors of the local operators o and o, in two eigenstates
(P, €| and |Q, €) of the K-twisted transfer matriz (1.47) with respective eigenvalues eTp and
€T coincide and are given by :

(P, el 0, |Q, €) = (P, el o |Q, €)
> (pi=¢&) Z;% 7P (&)

[T 7a(&)
ety [S©(alp) = P(alp, &) — dety [ S (alp)]
detlgi,kSN [COth (W”

=e€e

X

, (3.70)
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in which S ") (q|p) is the matriz of the product (3.49), and P (q|p,&,) is a matriz of rank
one with elements

— €_€n+pka(€n>d(pk) Q(fn - 77) gn —q; ="
(=) — co AN V.
Pal Sl = %G — n) Pl + i) [ Py < 2 )
Q& —n +im) §n—q; —ntim
— P, + in) coth ( 5 )] , (3.71)

for1 <4,k <N.






Chapter 4

Finite-size correlation functions

In this chapter we first present our results on the computation of correlation functions of the
anti-periodic X X X and X X Z chains at zero temperature:

(1] H;n:1 U]% )
(g [ Ug)

And the generalisation to the non-diagonal twist K for the X X X case can be found in our
paper [116].

After the separate state and the determinant representations for the scalar product have
been obtained, the next step is to determine the multiple actions of local spin operators on
a separate state, which is equivalent to determine the multiple actions of generators of the
Yang-Baxter algebra on a separate state with the solution to the quantum inverse scattering
problem. The multiple actions on a separate state are naturally expressed in terms of multiple
sums over the inhomogeneous parameters in both cases. Here we transform it into multiple
contour integrals and re-evaluate it by summing the set of residues outside the contours. In
the X X X model, the set of "other" residues consists of the roots of Baxter polynomial and
infinities. While in the X X Z model, it consists of the roots of Baxter polynomial plus some
extra residues forming a "string" depending on the order of the evaluation of the function.
Roughly speaking, every residue of this type p; in the ith integral is a function of the integrand
variable z;_; in the previous i.e. (i — 1)th integral.

F, = (4.1)

4.1 The finite-size correlation functions

In this section, we explain how to compute the elementary building blocks of these correlation
functions® in the model in the finite volume starting from the SoV solution presented in chapter
2. In particular, given |@Q,) an eigenstate of the anti-periodic transfer matrix, we consider matrix

elements of the form a1
Q- T2 B0 1Q-)
(Q-]Qr) ’

for any € = (€1, €2, ..., €2n) € {1,2}*™. Here BV €, €5 € {1,2}, stands for the 2x 2 elementary
matrix with the matrix elements (E); ; = §;, 0;,. At this stage we use the notation Q)
for both the XX X and XX Z chains (we fix |Q,) = |Q,, +)) as the discussion is general for

Fontm-1(7,€) = (4.2)

!These are also called the matrix elements of the density matrix of a chain segment of length m.

51
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both cases. We explain how to compute the matrix elements (4.2) in a convenient form for the
consideration of the homogeneous limit and the thermodynamic limit which will be taken in
the next section.

As in the periodic case [80], we use the solution of the quantum inverse problem [81, 82, 83]
to reconstruct the elementary matrices acting on the n-th site of the chain to some elements of
the monodromy matrix dressed by a product of the anti-periodic transfer matrices evaluated
at the inhomogeneity parameters. It is indeed easy to show that [143, 146]:

Proposition 4.1.1. Let £ € End V,,, (€1,€2) € {1,2}?, be an elementary matriz acting on
the n-th site of the chain. Then

n—1
B = HT(&) 0" T(&,)]

€2,€1

- HT fk gn 3—e€2,€1 7 (43)

1j

where T (\) and T'(\) denote the twisted transfer matrix and the monodromy matrix re-
spectively for both X X X and X X Z chain.

Hence, the mean value on an eigenstate |@.) of a product of such elementary operators at
the adjacent sites is given by

T 7(&)
()

X <QT| Ty-canezn1(&n) - Tacoppmry eaguim—nr (Sntm) [@r) - (4.4)

Therefore, to have access to the correlation functions, it is sufficient to compute the generic
action of a product of elements of the monodromy matrix on an eigenstate and take the conse-
quent scalar product.

Note that, as in the periodic case [80], the only effect of a translation on the chain is a
numerical factor given by a product of the corresponding transfer matrix eigenvalues. For
simplicity, we shall from now on restrict our study to the matrix elements of the form:

Q- TT%, B~ |Qx)

(Q- Q)
_ (Qr] Ty, (1) - T3eopeomr (Em) |@r)
[Timy 7(&) ( Q- 1 Q) '

Let us also remark that since each eigenstate |Q),) of the anti-periodic transfer matrix is also
an eigenstate of the operator I'* = ®@_,02 (see (1.98)), one has the following relation among
the elementary building blocks:

<Qr| re HT:I E;2j71,52j e |QT> B <QT‘ H;n:1 E?—€2j71,3—€2j |QT>

(Q] HE:fijllez] 1Q,) =

Fou(1,€) = Fi(1,€) = (4.5)

(4.6)

Fo.(r,€) = =
(Q-1Qr) (Q- Q)
= F, (1,3 —¢€), (4.7)
in which the 2m-tuple 3 — € is defined in terms of the 2m-tuple € = (€1,...,€9,) as 3 — € =

(3—61,...73—62m).
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4.1.1 The left action on separate states

In this section, we compute the generic action of a product of matrix elements of the monodromy
matrix on a left separate state (Q| of the form

= Y H@ )y V(g™ el (n, (4.8)

he{0,1}V n=1

where in the XXX case Q(\) = HkR:1<)‘ — qx) is a polynomial of degree R < N, and while
in the XX Z case Q(\) = Hfle sinh(A_zq’c ) is a trigonometric polynomial of double periodicity
satisfying Q(&, —n)/Q (&) = Q& —n+im)/Q(&, +im) for Vn € {1,..., N} (in both cases we do
not require Q(A) to be a solution to the TQ-equation (1.75)). Our starting point is the action
of the monodromy matrix elements D(\), C'(X), B(A) (1.56)-(1.58) and A(X) (1.63) on the left
SoV basis.

Remark 4.1. In the XXX chain, instead of computing the action on a state of the form
(4.8) using (1.56)-(1.58) and (1.63), we could alternatively compute the multiple actions of a
product of transfer matriz elements directly on a Bethe-type state of the form (1.86) using the
Yang-Baxter commutation relations, in the spirit of what is done for the model solved by the
Bethe Ansatz [80]. However, the fact that the transfer matriz eigenstates can be re-expressed as
Bethe-type states involving the multiple actions of an element of the monodromy matrix as in
(1.86)-(1.87) is not completely general in the SoV approach, but rather a specificity of models
for which the Q-functions have the same functional form as the transfer matriz eigenfunctions
of the model. For instance, it is not true in the anti-periodic XXZ model, for which the Q-
functions have a double periodicity with respect to the transfer matrixz eigenfunctions of the
model [115]. Therefore, to remain as general as possible, it is better to start directly from (4.8)

and (1.56)-(1.58), (1.63).

Since we need ultimately to evaluate this action only at the inhomogeneity parameters (see
(4.3)), it is more convenient to consider the operators T, »(\) defined as

_ D7\ C(A B(\) if (e,€) = (1,1
7oy = [P OO Bt (e) = (1) o
Tee(N) otherwise.
instead of T, (\). Indeed, since det, T'(&; +n) = 0, it follows from (1.24) that
T.o(&) =T.0(&) Vie{l,...,N}, Vec¢€ €{l,2}. (4.10)

Thus the formula (4.3) can be written in terms of the matrix elements T, . instead of T, .. Note
that (4.9) is well defined as soon as A ¢ {§; —n,& —2n|i=1,..., N} since D()) is invertible
for any A\ # &,& —n, i = 1,... N. The action of A(\) = T} 1()\) on a SoV state (h| is then
slightly simpler than the action of A(X) (1.63).

It is easy to compute the action of the operators T, .()\) on the separate state (4.8). We
obtain

(Q| D Zdh H QE) Ve, ... e™) (nl, (4.11)

n=1
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N N

QI B = - a(&) Zahb HQ () H A gg ))w L) (T
b=1 :1 n

n#b

~ a&) Q& —n) dh<>Hn1Q< ’“L)
bzl A—&) Q&) ?W [T, 08 — &)

x V(M ey (p| (4.12)
Y £ Mo — 5n") (h1) (hx)
QI c) =Y dg” Zah,,oHQ ") H i) V™, ey™) (Tih)
b=1 n=1 n: n

n

- dE")) Q6 -y WL E™)
ZlSOA fb Q<€b_ )Z " Hn;zébSO(gb_gr(zn))

x V(M ey (h (4.13)

And a similar (though more involved) expression can be obtained for the action of A(\) on (Q|.

It is obviously possible, from these formulas, to compute the multiple actions of any string
of the operators T., (A1) To, s (N2) - - TeZm,Em_l()\m) on the state (@] as a multiple sum over
choices of the inhomogeneity parameters along the chain, but such an expression would not
be convenient for the consideration of the homogeneous limit. Therefore, we now explain how
to write this action in terms of a multiple contour integral that we can transform into a more
convenient form for the consideration of the homogeneous limit. The process and result are
explained as follows:

Proposition 4.1.1. Let \ be a generic parameter. The left action of the operator T€2 a(A),
1,6 € {1,2}, on a generic separate state (Q| of the form (4.8) can be written as the following
sum of contour integrals:

(Q| TEZ,EI(A) = Zdh(A) HQ(gf(lhn)) (‘]{ 211 cp?jf— 29) ;h((ZZ) Qgizz)n)) h

n=1

(f mrma e (7 )

x V(e ey (n) ) (4.14)

i which the contour 'y surrounds counter-clockwise the points &,, 1 < n < N, and with no
other poles in the integrand, whereas the contour I'y surrounds counter-clockwise the points
& —n, 1 <n <N, the point zo — n if e = 1, and with no other poles in the integrand.

Stmilarly, for generic parameters Ay, ..., Ay, the multiple actions of a product of operators
Ty ) Teyes(N2) o Ty o (M), €6 € {1,2}, 1 < i < 2m, on a generic separate state (Q|
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of the form (4.8) can be written as the following sum of contour integrals:

m N
<Q| T52v€1 (Al) TE4763(>‘2) s T€2m7€2m71()\m) = Z H dh()‘j) H Q(Sv(zhn))
h j=1 n=1
1 j—1 2—e;
_ dzy; a(z25) Q225 — 1) ©(205 — A — 1)
’ jll ( yij 2mi (A — 225) dn(z25)  Q(225) ,E (225 = M) )
X 7{ G d(z2;-1) Q2951+ 1) o ¢(z25-1 — M + 1) T
roy_y 2T p(Aj — 22j-1) dn(z25-1)  Qaz-1) = wl(22j-1 — k)

< 1 < e )(2_€j)(2_6k) VE", &0 (b, (4.15)
o 1) n) Loy 2

2 — 2 —
1<j<k<2m =2t (

in which the contours I'y; surround counter-clockwise the points &,, 1 < n < N, the points
Zok—1+1, k> j, and with no other poles in the integrand, whereas the contours I'y;_y surround
counter-clockwise the points &, —n, 1 < n < N, the points zop —n, k > 7, and with no other
poles in the integrand.

Proof. The expression (4.14) clearly coincides with (4.11) in the case (€2, €1) = (2,2).

Let us now consider the action (4.12) of T 2(\) = B()) on (Q|. The idea is to see the sum
as the development of an integral around a contour by the residue theorem, which leads to the
identity:

- dz alz) Qz—n)
QEn=-4 S

<D 16 [TQEr) viEe™, ... &™) (h|, (4.16)

where the contour I'({&, },=1n) surrounds counter-clockwise the points &,, 1 < n < N, with
no other pole of the integrand. This result coincides with (4.14) for (e2, €1) = (1,2).

We can proceed similarly for the action of Tp1(A\) = C(\), rewriting (4.13) as an integral
around a contour by the residue theorem, which leads to the identity:

B dz d(z) Q(z+n)
QI C) = ]{({énﬁ}n_lw) 2mi p(A—z)  Q(z)

<32 BT o) vie) ) i, (@)
h

with T'({&, — n}n=1-n) surrounding counter-clockwise the points , —n, 1 < n < N, with no
other pole of the integrand. This result coincides with (4.14) for (e3,€1) = (2, 1).

Finally, let us consider the action of T} 1(\) = A()) on (Q|, which is the most involved one,
as it requires to compute the successive action of D™'(A+n), C(A+n), and B()\) on the state
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(Q|. Using (1.56) and (1.57), one can write:

QAN =3 GO o S HQ ()

b=1
Ve, ... i)

1 h
H#b (& — ")

which corresponds to the evaluation by the sum over the residues of the following contour
integral:

(h| B(\), (4.18)

SN dz d(z) Qz+n)
@an=¢ T @<z>

) o (hN)) N
« Z TTQ@E™) (nl BO) (419
n=1
Using (1.58), now we obtain:
; - dz _d(z) QL+n) ez-&) Q&—n)
A = — az
QAR ;a(&)) f({gn—n}n_HN) 2mi p(A—2) Q) @(z—&+n) Q&%)
A=) v, é™) 1
5 p(A =& (b)) (R
X Z hy,0 g é_Zhg)) dh(Z) 711:‘[162(671 ) < |
_ 7{ d a(?) Q' —n) ?{ dz  d(z)
P({&ntn=1-n) 2 (‘0()\ - /) Q<Z,) F({&n—n}tn=1-nU{z'—7}) 27” 90()‘ )
Qlz+n) ¢z—7) dn (A 3 (¢l (h)
0 W_ZHI Zdh dh L[l s €8 (h], (4.20)

in which we have again used the residue theorem to recast the sum as a contour integral over
Z'. Note that by doing this the pole at & —n becomes a pole at z/ —7. Hence we have to deform
the contour of the integral over z to take into account the residue at this pole. The expression
(4.20) coincides with (4.14) in the case (eq,€1) = (1, 1).

The general result is then obtained by induction along the same lines. O

The multiple integral representation (4.15) of Proposition 4.1.1 can easily be recast into a
more convenient form for the further consideration of the homogeneous limit.

Note that we can successively move the integration contours to encircle the poles at g;,
1 <75 < N,and )\, 1 <k < m instead of the poles at &,,&, —n, 1 < n < N. Due to the
different quasi-periodicities of the functions involved, in particular of the @) function (1.103) for
the X X Z chain, the result of this procedure slightly differs from those for the X X X chain. In
the XXX case, there will be extra poles at infinities while in the X X Z case the extra poles
come from the previously evaluated residues at the spectral parameters.

4.2 Multiple sum representation in the X X X case

For the anti-periodic X X X chain, we have the following proposition:
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Proposition 4.2.1. For the generic parameters Ai, ..., Ay, the multiple actions of a product
of the operators T., (M) Teycs(N2) - Toy crr v (Am), € € {1,2}, 1 < i < 2m, on a generic
separate state (Q| of the form (4.8) can be written as the following sum of contour integrals:

=

<Q| Tﬁz €1 <>‘1) TE4 63(>‘2) T T€2m,52m71 ()‘m) = Z H dh(/\J) H Q(gr(zhn))

h j=1

1 j—l 2—62]'
_ dzy; a(zg;) Q225 — 1) Zoj — A — 1)
X H ( fé]oo 27TZ (Zgj — )‘J) dh(z2j) Q(22j> H Z2j _ )\k )

j=m k=1

. 2—€251
% j{ dz3j—1 d(z0;-1) Q2051+ 1) T 221 — Ak +7
27 (

) 22j—-1 — )\j) dh(z2j71> Q(22j71) P} 29j-1 — Ak

24— (2—¢j)(2—ex) ) (b}
< 1] Ve Vg™, ... &yY) (n], (4.21)

1<j<k<2m NI <k +(

where the contours ngo 1 <5 <2m, surround counter-clockwise the points q,, 1 <n < R, Ay,
1 < ¢ < g, the pole at infinity, with no other pole of the integrand.

Proof. Let us prove the formula by recursion on ¢:

m N
<Q| Tez,q (Al) 764,63<)‘2) - 'T€2m,62m4 (Am) = Z H dh(/\J) H Q(g(h )
n=1

h j=1

14 j—1 2—ea;
_ d2; a(zg;) Q225 — 1) 295 — A — 1)
<1l ( 742]- 2mi (Aj — 225) dn(22;)  Q(295) H —\ )

2 EQJ

x j{ dzyj1 d(z0;-1) Q2251+ 1) §7 721 — M + 1
royy 270 (A — 225-1) du(225-1)  Q(z2j-1) = 2251 — Mk

>26
a

1 -1
dza; a(z2;) Q225 — 1) Zoj — Ak — 1]
X H (i;o 271 ()\J — sz) dh<22j) Q(Zgj) H )\k

j=f—1 k=1 -

- 2—€251
X _7{ dzaj—1 d(z5j1) Q(zajm +1) 7 22021 — M+ 10
271 (

' >\j - 223'71) dh(Zijl) Q(Zijl) el 22j-1 — Ak

2 — 2 (2—¢;)(2—ex) (h) (h)
X H 1)kn V(gl y SN ) <h| ) (422)

1<j<k<om NI = %k +(

which coincides with (4.15) for ¢ = 1 and with (4.21) for ¢ = m with taking into account that
for the X X X case p(\) = A

Let us suppose that (4.22) holds for a given ¢, 1 < ¢ < m, and let us rewrite the integral
over zyy_1 using the poles outside of the integration contour I'y,_;. These poles are at the zeroes
qi,---,qr of @, at \; for j < £ and at infinity. Note that the apparent poles at §;, 1 < j < N,
are regular points due to the factor d(z9_1) in the numerator. Similarly, the poles at z9,_1 + 7
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for k > ¢ are also regular points since the integral over zo;,_; has to be finally evaluated by its
residue at zop_1 = &, — 1 for some o € {1,..., N}. Finally, the apparent poles at z; — 7 for
J < 2¢ —1 are also regular points since the integral over z; is first evaluated by its residues at
oo (and the corresponding factor disappears), at a roots g of @ (and the factor Q(z90—1 + 1)
in the numerator vanishes) or at A; for j < ¢ (and the factor z2;_1 — A; + 1 in the numerator
vanishes). Hence the integral over z5,_; can be rewritten as a contour integral surrounding the
points qi,...,qgr, Aj for j < ¢, and oo with index —1. One then considers the integral over 2y,
and shows similarly that the points § —n, 1 < 7 < N, z9p — 0, k > £, and 2z, + 17, o < 2,
are regular points so that the integral can be written as a contour integral around the poles at
¢i,---,qr, Aj for j < ¢, and oo with index —1. Hence the representation (4.22) holds also for
¢+ 1. [

The integral representation (4.21) can be evaluated as a sum over its residues, which leads
to:

Corollary 4.2.1. The multiple actions of a product of the operators Try.c; (M) Teyes(N2) - Ty, comys (Am),
e; € {1,2}, 1 <i < 2m, on a generic separate state (Q| of the form (4.8) can be written as a
sum over separate states of the form (4.8) as

me

(O Topir M) Teyes(N2) - Ty (M) = D (= 1) (et

Noo=0

X [<Q‘ T€2761 ()‘1) 764,63()\2) . 'T52m7€2mfl()\m):|n ) (423)

oo

where
[<Q’ T62,61 (>‘1> 64,630‘2) 62'm752m 1 ]
R+1 61 R+1 €2 (R+m)€2m_1 (R-‘rm)EQm
€1,...,62m ) EEe nee A1=1 az=1 agm—1=1 aom=
( ! : )E - (7«225’5@1 a2m71¢2{a1,1...,a2m,2} a2m${a21,--~70«2m—1}
€251 €25
m Rtj—1 Rtj—1
% H d(qa2j71) k:lj (qazjﬂ —qk + 77) _a(qagj) k+1j (qazj — gk — 77)
j=1 Z}jzl (Qazjfl _Qk) kR-H (qa2] Qk)
a2;—1 azj
QQ' - Qak Ejgk A\
< 1 ( . k) Q.| (4.24)
1<jcizom \a ~ G+ (=1
Here we have defined, for a given 2m-tuple € = (€1, ..., €an),

2m

Me = 2(2 — €j), (4.25)
j=1

2m
Eenn, = {(El, o) €{0, 13N | & <2 —¢; and Ze] =me — noo} (4.26)
7=1

Moreover, we have used the shortcut notation:

qryj = Aj, 1<j<m, (4.27)
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and Qéé s a polynomial of degree R+m—me+ns defined in terms of Q, of the \g, 1 < k < m,
and of the a; and the € (1 < j <2m) as

[ =%)  TLE"(A—g)
ng ()‘ - qﬂj)gj H?ZLI<)\ - qﬂj)gj
Proof. We just write the development of the multiple contour integrals (4.21) in terms of the

sum on the residues. Here 0 < n., < me corresponds to the number of residues at infinity that
we take so that we organise these sums w.r.t. n... O

Jae(N) =Q(0) (4.28)

Note that, in the expression (4.23)-(4.24), we can now particularise the parameters \;,
1 < i < m, to be equal to some inhomogeneity parameters. We can therefore directly use
(4.23)-(4.24) to express the matrix elements of the form (4.5).

Based on the results of the previous subsection, we can now write any matrix elements of
the form (4.5) as a sum over the scalar products of separate states:

m 1 me
Fo(r€) = (—1)(’”’7”6’*”00)]\7
g 7(&k) n;O
(R+1)€1 (R+1)€2 (R+m)€2m71 (R-‘rm)ggm
x SR S S
(€1, €2m)€EEL ,, a1=1 az=1 azm-1=1 azm=1
e az#a1 a2m,1¢{a1 ,,,,, a2m72} a2m¢{al ----- a2m—1}
€251 €25
m R+j5—1 R+j—1
« H d(Qa2j71) k;:ij (Qszfl — gk + 77) _a(qazj) k;:i] (qazj — 4k — T’)
R+j R+j
i1 J/C;j:1 (Gasj—1 — Qi) kJ;Jl (Ganj — qx)
k#az; 1 k#az;
_ €€k ol
% H ( qaj day, - ) <Qa,e | Q’T > : (429)
1<j<k<2m 4a,; _qak+(_1) n <QT|QT>
in which we have defined the 2m-tuple € = (€},...,¢€,,) in terms of the 2m-tuple € =
(€1,...,€m) by
€35 1 = €2j-1, €y; = 3 — €5, 1<j<m, (4.30)

and defined mer, E ., as in (4.25)-(4.26) but in terms of € rather than e. Similarly as in
(4.31)-(4.32), we have used the shortcut notations:

qry; =&, 1<j<m, (4.31)

and Qﬁé is a polynomial of degree R + m — me + ny defined in terms of Q) = @Q,, of the &,
1 <k <m, and of the a; and the ¢; (1 < j < 2m) as

H;n:1()‘ = &) _ HfjlmO‘ - qj)
H?Z()‘ B qaj)gj Hfiﬁ(k - q@j)gj
We also recall that R is the degree of the polynomial @Q,.

This expression (4.29) can be rewritten with similar notations to those used in the periodic
case [80].

QaecN) = QM) (4.32)
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Proposition 4.2.1. For a given 2m-tuple € = (€1, ..., €a,) € {1,2}*™, let us define the sets
a; and of as

a, ={j:1<j<m,e,1 =1}, #a_ =s. (4.33)
of ={j:1<j<m,e; =2}, #af =5, (4.34)
Then,
o 1 m—#a~+#at
Fu(re) =[] Y (FpmodaTanN
L T(&) — —
k=1 ae Cae {a]7aj}
afcaf
- Rtj—1
d(qaj) }21]1 I(Qaj —qr + 77) a(qa;) k+:]1, (Qk - Qag. + 77)
% kEA . keAi
R+j R+j
. -1 \Ga; — 4 . = dr — qu’,
JEe kkeAlg.( )~ ) = kekAJ-1+1( ’ J)
% M' (4.35)
(Q-1Q-)

In (4.35), the first summation is taken over all subsets a_ of a. and al of o}, whereas the

second summation is taken over the indices a; for j € ag and aj for j € at such that

1<a;<R+j, a€A; 1<d <R+j, d cA (4.36)
where

A;j={b:1<b<R+m,b#aya),k<j}, (4.37)

Al ={b:1<b<R4+m,b#ap,k<jandb#ap,k < j}}. (4.38)

Moreover, QAm+1 1s the polynomial of degree #A .1 = R+ m — #a_ — #a defined in terms
of the roots qi,...,qr of Q- and of qry; =&, 1 < j < m, as

QAm+1 <>‘) = H ()‘ - qj)' (439)

JEAmMm11

Remark 4.2. The set (4.34) and (4.33) are complementary to the set ot and o~ defined in
[80] in the periodic case. One recovers the same sets by considering the sets for F,,(1,3 — €)
using the fact that Fy,(7,€) = F,, (1,3 — €) (4.7) due to the I'* symmetry.

Remark 4.3. The sum over the subsets a_ and af of a_ and af can be organised as in (4.29)
i terms of the number ny, of residues taken at infinity by writing

Set+s
DY S . (4.40)
Gg Coae  Moo=0 & Cae
&jCaj &iCaj

#Ha+H#HaT=sc+5.—noo
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Each scalar product of separate states appearing in (4.29) or (4.35) can now be expressed in
terms of the generalised Slavnov’s determinants using the results of [114]|. Using Theorem 3.3
of [114], we can write

(Qan 1Qr)

(0. 10.) =0 if m<#a, +#al, (4.41)

Hle [_a(%’) [T (g — g5 + 77)} V(gr,---,q1)

Hle [_G(Qj) HkR:1(Qk —q; + 77)} V(g .- @)
detzg M (q|q)

(_1)N(R—R) 2R—R

if > Ha At 4.42

Here we have set
R=#A,.1=R+m—#a_—#a,, (4.43)
{Qj}jeAm+l = {Q17 cee 7(7]?}' (444)

Moreover, for R > R, the matrix M) (q|q) is defined in terms of the R-tuple q = (q1, ..., qr)
and of the R-tuple q = (q1,...,qz) as

R taj — i) + ag(qk) t(qk — 45) if j <R,
(Ml a)];, = { Ry (0 (o4 Rl it (4.45)
T U@+ aglar) (@ + ) if j > R,
whereas the matrix N'(7)(q) is given by
) _ %) o e 4.46

with ag given in terms of the roots {qi,...,qr} of @ = Q. as in (1.80) and

K= 10) +1-) = 57 77% — (4.47)

Note that, for {¢i,...,qr} solution of the anti-periodic Bethe equations ag(g;) = 1, j =
1,..., R, one has

n
t(A) = N+ )

M (qlq) =N (q). (4.48)
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4.3 Multiple sum representation in the X X7 case

For the anti-periodic X X Z chain we have the following proposition:

Proposition 4.3.1. For the generic parameters Ay, ..., Ay, the multiple actions of a product
of the operators Ty o, (M) Teycs(X2) o Ty o v (Am), € € {1,2}, 1 < i < 2m, on a generic
separate state (Q| of the form (4.8) can be written as the following contour integral:

m N
<Q| T62761 (/\1) T€4 63(/\2) T€2m €2m—1 (Am) = Z H dh(/\J) H Q(fr(zhn))
h j=1 n=1
m j—1 2—62]‘,1
<11 f dzgj—1 d(225-1) Q(225-1 +1n) Jy sinh(z9;-1 — A\ +1)
i Coj1 41 Sinh(ZQj_l — /\]) dh(ZQj_l) Q(Zgj_l) Pl Slnh(ZQJ_l — )\k)

_ 2—eg;
" _7{ dzy; a(za;) 22] —n) ﬁ sinh(zg; — A, — 1) :
cyy Ami sinh(zg; — Aj) dn(z2;) Q(225) sinh(z9; — Ag)

< 11 sinb(z; —2) NI ) ), (aa0)
sinh(z; — 2, + (—1)kn) Lo |

1<j<k<2m

which can be rewritten as

(Ql Topr (M) TeyaMa) - Ty () = (~1) ¥ 3557800
% ﬁ % dZijl ‘ d(Zgjfl) ZQJ 1+ 77 ﬁ Slnh 22] 1— )\k + 77)
Cayy Ami sinh(zgj_1 — Aj) sinh(zgj_1 — Ag)

sinh(z k) 2e ]
2j—1 = <k
< 11 < >> ]

sinh(z -z
el (291 kTN

-1
" _}{ dzy; a(z25) Zgj jl_[ sinh(z9; — A, — 1)
Cyy i sinh(zg; — Aj)  Q(22)) Pl sinh(zo; — Ag)

2—€j

sinh(zg; — 2)  \° \
4.50
X H (Slnh 22] e — 77)) <Qz,e ) ( )

in which (Q2 | is the separate state of the form

M= > HQ gry (el )y ) (4.51)

he{0,1}V n=1
defined in terms of the function

[7Z, sinh(A — ;)
A —
=M =Q Hjml sinh(\ — ;)27

(4.52)
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Here the contours Coj, 1 < j < m, surround counter-clockwise the points q, for 1 <n < N, \;
and g +im for 1 <k <7j, zo+n and zp+n-+im for { < 27, with no other pole of the integrand.
The contours Coj_1, 1 < j < m, surround counter-clockwise the points q, for 1 <n < N, A
and A\ +im for 1 < k < j, zg—n and zp — n+im for £ < 25 — 1, with no other pole of the
integrand.

Remark 4.4. Note that Qi‘e (4.52) is not a trigonometric polynomial but a ratio of trigono-
metric polynomials.

Proof. Let us first remark that, due to the property (1.101), the integral representation (4.49)
can be rewritten as

<Q| Tﬁz,él ()‘1) TE4 53(>\2) T€2m €2m—1 m) - Z H dh(/\J) H Q(g’r(l,hn))

h j=1 n=1
1 j-1 . 2—€2;
<11 _7{ dzy; a(z;) Q(z25 — 1) 11 sinh(zg; — Ak — 1)
i—m 1:23' 411 Sil’lh()\j — Zgj) dh(ZQj) Q(Zgj) Pl Sinh(ZQj — )\k)
. 2—e€25-1
% 7{ dzyj d(z0 1) Q2251+ 1) Ty sinh(zs;1 — Ay + 1)
f2j—1 47 sinh(>\j — Zgj_l) dh(Zgj_l) Q(Zgj_l) iy Sil’lh(ZQj_l — >\k>

sinh(z; — z) (2—¢j)(2—ex) ) o)
. H (sinh( 1)k77)) VG, &™) (bl (4.53)

1<j<k<2m =+ (

in which the contours fgj surround counter-clockwise the points &, and &, +im, 1 <n < N,
the points zo;_1 + 1 and 29,1 +n + 47, k > j, with no other poles in the integrand, whereas
the contours I'y;_; surround counter-clockwise the points §, —n and §, —n+im, 1 <n < N,
the points 2o, — 1 and 29, — 1+ im, kK > 7, with no other poles in the integrand.

Let us now prove the formula by recursion on ¢:

m N
<Q| TEQ,GI( )TE4 63(>‘2) Tezm €2m—1 M) = ZHdh )“ H éhn))

h j=1 n=1

_ 2—e€2;
" ﬁ % dza; a(za;) zQ] H smh (295 — A\ — 1)
A Ty, 4mi sinh(A\; — 295) dn(22;) Q(225) sinh(zg; — k)

j=m

- 2—€2j1
% dzgj— d(225-1) Qz25-1+1) ﬁ sinh(zgj-1 — A + 1)
Toj 1 47y Sil’lh(/\j — Zgj_l) dh(ZQj_l) Q(Zgj_l) Sinh(ZQj_l — Ak)

_ 2—e251
« - 7{ dZQ] 1 d(z9j-1) Q ZQJ 1+ 77 H sinh(z2j_1 — A\ + 1)
A sinh(A\; — z9j-1) dn(29j-1) Q(22j-1) sinh(zgj_1 — Ag)

j=1 k=1
=1 . 2—eg;
j{ dzy; a(z25) Q225 — 1) H sinh(zo; — A\ — 1)
ey, Ami sinh(A; — z95) dn(22;)  Q(22)) % sinh(z; — k)
sinh(z; — z) (2—¢;)(2—er) ) )
Vv Yoo Ny (h 4.54
X H (Siﬂh(Zj — 2+ (_1)k77)) (51 ) ySN ) < ‘7 ( )

1<j<k<2m
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which coincides with (4.53) for ¢ = 1 and with (4.49) for ¢ = m noticing that p(\) = sinh(\)
for the X X Z case.

Let us suppose that (4.54) holds for a given n, 1 < ¢ < m, and let us first consider the
integral over the contour fgg_l. Note that the integrand over zy_; is a 2mi-periodic function
of 2y 1, which vanishes when R(zy_1) — +00 as O(e %=1} Hence, its integral around a
strip of width 27 vanishes. We can therefore rewrite the integral over fgg_l using the poles
outside of this integration contour within this strip of width 277. These poles are at the zeroes
Gi,---,qn of Q, at \j and \; +im for j < ¢, and at z; — n and z; —n +iw for j < 20 — 1
( mod 27i). Note that the apparent poles at {;(+im), 1 < j < N, are in fact regular points
due to the factor d(z—1) in the numerator. Similarly, the poles at zor_1 + n(+im) for k > ¢
are also regular points since the integral over zo,_; has to be finally evaluated by its residue at
Zop—1 = &o — n(+im) for some a € {1,..., N}. Hence the integral over z,,_1 can be rewritten as
a contour integral surrounding, with index —1, the points q1,...,qn, A; and A; + i for j < n,
and z, —n and z, —n +iw for a < 20 — 1.

One then considers the integral over zy, and shows similarly that the points &; — n(4im),
1 <j <N, zo —n(+im), k > ¢, are regular points, so that the integral can be written as a

contour integral with index —1 around the poles at ¢i,...,qn, Aj and \; 4 i7w for j < ¢, and
Za + M, 2o + 1+ 1w, for a < 20.
Hence the representation (4.54) holds also for ¢ + 1. O

The integral representation (4.50) can now be evaluated as a sum over its residues.

Corollary 4.3.1. The multiple actions of a product of the operators T, o, (M) Teyes(Na) - - Toy, conr s

e € {1,2}, 1 <i < 2m, on a generic separate state (Q| of the form (4.8) can be written as a
sum over separate states as

2m
T T T m—m, 1
(Q] Toai0) Tt s M2) - T a1 ) = ()N T D 45 D0
7=1

= G €Q; GE€Qe,j
2—e€251
j—1
m d(G2j-1) Q(G2j—1 +n) I sinh(gj—1 — A +n) [I sinh(g@;-1 — G)
k=1 k<2j—1
A .
=t [T sinh(2=5=2) ] sinh(Gy—1 — M) IT sinh(Gy-1 — gx + 1)
n=1 E=1 k<2j—1
n#G2j—1 Ap#q25—1 mod im dx—N#q2j—1 mod im
2—ea;
j—1
—a(Gz;) Q(q2; —n) 1] sinh(q2; — A —n) [T sinh(q; — qx)
k=1 k<2j
x| — - ; (QFcl. (4.55)
H smh(@) H sinh(cjgj — /\k) H sinh(@j — (jk — T])
n=1 k=1 k<2j
n7#q2; AL #q2; mod im dk+n#g2; mod im
Here we have defined, for a given 2m-tuple € = (ey,. .., €am),

me=» (2—¢). (4.56)

j=1
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Moreover, the sets Q; and Q. ; are empty if €; = 2, and are defined otherwise as

Qi ={ar,-- - av} \ {@ mod im}ee;, (4.57)
Qeoj—1 = { A, A +imhi<n<; U@ — 1, @ — 1 + i bpcojmr \ {@e mod im}ocoj1, (4.58)
Qe2j = { ks Ak + 1 h1<he; UL + 1, G + 1+ im}oco; \ {Ge mod im}pcs; . (4.59)

Finally, Qq’}’e 1s a function which is defined in terms of Q) as

[TZ, sinh(A — Ay)
H2m1 sinh(\ — ;)%

Jj=

2.0 = Q) (4.60)

Remark 4.5. The number of non-empty sums in (4.23) is me.

Remark 4.6. The state <Qq>-‘e| is a separate state in the sense that it can still be written in the
form (4.8). But Qg’e s a priori no longer a trigonometric polynomial. In general, it is only
a ratio of such trigonometric polynomial due to the possible contribution of the extra poles at
GeEn, qEn+in (see (4.58)-(4.59)). Note however that, (Q3 | being built from Q as in (4.60),
it still satisfies the property (3.39).

It follows from the previous action that the matrix elements (4.5) can be evaluated as the
following multiple sums over ratios of the scalar products:

F.(1,€) = H T(;) (—1)(m_m€)N1—Il Z —% Z

k=1 =1 \g;eQ; 7;€Qe,;
2—€251
j—1
m | A1) Q(Gj—1 +n) [ sinh(gaj—1 — A +n) [[ sinh(g—1 — q)
k=1 k<2j—1
A .
Jj=1 IT smh(w) I sinh(gzj—1 — k) [T sinh(g2j—1 — qx + 1)
n=1 = k<2j—1
InFq2j-1 Ak#Q2j—1 mod 4w qx—N#q2;—1 mod im
€2;—1
j—1
—a(Gz;) Q(q2; —n) II sinh(qz; — A —n) [ sinh(qz; — k) ¢
k=1 k<2; (Qzc]1Qr)
| ; Qe Y
Sinh(@) [ sinh(g2; — Ax) 1 sinh(g2; — qx — 1) T
n=1 = 1
InFq2; Ap#q2j mod im §k+777ékzj§j2jmod i
Here we have defined, for a given 2m-tuple € = (€1, ..., €2,
Me = Z(Q - Egj_l) + Z(GQj — 1) = Z(l + €25 — €2j—1>‘ (462)
=1 =1 =1

Moreover, the sets ng_l and Qe’gj_l are empty if €3,_1 = 2, and are defined otherwise as

Q2j—1 ={q1,---,qn} \ {@ mod im}coj 1, (4.63)
Qeoj1 = { M, Mo +imhi<i<; U{@ — 1, @ — 1+ i bpcojo1 \ {Ge mod im}ocoj1, (4.64)
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whereas the sets QQJ- and Qe,zj are empty if €9; = 1, and are defined otherwise as

QZJ' = {QD s ,CIN} \ {ij mod Z-7T}E<2j ) (4.65)
Qe = { ey Mo T i i<y UL + 1, G + 1+ i }oco; \ {Ge mod i} ey (4.66)

Finally, Qge is a function which is defined in terms of () as

¢ B - sinh(\ — &;)
Qq,e()‘) - Q<)‘) H SiIlh()\ . q—2j71>2—52j—1 SjIjlh()\ _ q2j)62j_1.

J=1

(4.67)

Remark 4.7. Here again, as in Corollary 4.3.1, the notation means that there are only me
non-empty sums. Moreover, the function Q%e 15 1n general not a trigonometric polynomial, but
a ratio of trigonometric polynomials.



Chapter 5

The correlation functions in the
thermodynamic limit

In this chapter we will show explicitly that for the X X X case the contribution of the poles at
infinity vanishes in the thermodynamic limit. In this limit for the zero-temperature correlation
functions, we recover the multiple integral representation that were previously obtained through
the study of the periodic case by the Bethe Ansatz [80] and the study of the infinite volume
model by the g-vertex operator approach [79]. We will explain our method using the anti-
periodic boundary condition. Moreover, in our paper [116], we show that this method can
easily be generalised to the case of a more general non-diagonal twist. There we recover in
the thermodynamic limit the same multiple integral representation as in the periodic or the
anti-periodic case. Hence we have proved the independence of the thermodynamic limit of the
correlation functions with respect to the particular form of the boundary twist.

As for the X X Z case, the task to show the vanishing and non-vanishing contributions in
the thermodynamic limit from the summand in (4.61) is more complicated and it is still in
progress. We will show some important intermediate results concerning terms that give back
the multiple integral representation of [80].

5.1 The XXX case

We now explain how to take the thermodynamic limit of the result obtained in the previous
section for |@Q),) being one of the ground state of (1.5) in the homogeneous limit. This will
lead to the multiple integral representations for the zero-temperature correlation functions of
the anti-periodic X X X chain in the thermodynamic limit which coincide in this limit with the
results obtained in the periodic case in [80] and directly with the infinite size model in [79].

5.1.1 The vanishing and non-vanishing terms in the thermodynamic
limit

In this subsection, we find the conditions under which the terms of the expansion (4.35) are

non-zero in the thermodynamic limit for |Q,) being the ground state of the X X Xchain (1.5).

We first compute the ratio of the scalar products appearing in the last line of (4.35) in the
thermodynamic limit.

67
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Proposition 5.1.1. Let Q) be a polynomial of the form

R

QN =J[x-a) (5.1)

J=1

with the roots qu,...,qr solving the system of the anti-periodic Bethe equations ag(q;) = 1,
j=1,..., R, where ag is defined as in (1.80). We further suppose that R should scale as N in
the thermodynamic limit and that the roots qq, ..., qr become in these limits distributed on the
real axis according to the density pior (2.21), (2.10).

Let Q be a polynomial built from Q in the form:

R/ 4

QN =[N =a) [N - &) (5.2)

1

3

b
Il

=1

where o and 7 are permutations of {1,..., R} and of {1,..., N} respectively, and where R— R’
and m' remain finite in the thermodynamic limit.
Then,

(RIQ) (Q|Q)
whereas, if R +m' = R,

(QIQ) _(QlQ) _JV if R +m' <R,
{0<NR;R) if R +m >R, (5:3)

(Q1Q) _(Q1Q) 17 &) (@ =& +m) 1y o~ ow,,
QIQ) <Q|Q>N%OH{ 11 }

o R
a(qURl+j) Hk::]_(qk' - qO’R/+j + 77) =1 qo”' - gﬂ-j

j=1
H qUR’+i B qaR’+j det p(QaR/ﬂ. - fwk + 77/2>‘
&y = &xy 1<ik<m’ N pioi(Qoy, )

X (5.4)

1<i<j<m/’

Proof. In the case R'+m’ < R, it was shown in [114] that the ratio of scalar products vanishes
(see (4.41)).

In the case R’ +m’ > R, the ratio of scalar products can be expressed from [114] as a ratio
of determinants as in (4.42):

(QlQ) _(Ql@)

QIQ) (@@
[T [—o6e) T 0k — &, + 1)
[T s |00, T (1 = o, + )]
y ﬁ Hf:R,/H(qa,- —4o;) [ pcicjcr(lo; — Go;) detpr iy M(_‘)(qa |Q)
1 (e — &) Thacjem (& —&)  detr N (q,)

j=1

_ (_ 1)N(R/+m’—R) 2R—R’—m’

: (5.5)

in which we have used the notations of (4.45)-(4.46) and the shortcut notations q, = (¢oy, - - - , Gop)
and q = (Goy»-- -+ G0+ &mis-- -5 &, ). More explicitly, M) (q, | §) can be written as the fol-

lowing block matrix:
ML M(M))

M(_)(qa | (_:I) = (M(Z,l) M(Z,Q) (56)
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where MY ML) - AR and M2 are respectively of size R x R, R x m’, i x R and
nxm', with n = R'+m' — R, and with elements

MG = N, j<R k<R, (5.7)
Mﬁlzf = 1(¢o, — &mp), J<R, k<m, (5.8)
MZD) = (g0, + (@o +0Y ", j<n k<R, (5.9)

(22 =gt j<n, k<, (5.10)

in which we have used the shortcut notation N'= N ()(q,). Hence, the ratio of determinants
n (5.5) can be written as
detR’er/ M(_)(qo ’ 61)
= det S 5.11
detr N (q,) er, O (5.11)

where

M@ M(22) (5.12)
with in particular [N ITM®V], =, for j < R,k < R'. The thermodynamic limit N — oo
of the matrix elements of N~'M@12) can be computed similarly as in the periodic case [80]
using the integral equation (2.9):

_ (o, = &m +1/2) 1
1A 4(1,2) j k L
NTMED] = N e (@) + o(N) : (5.13)

s_ <N1M(1,1) N1M(1,2))

in which p is given by (2.10) and pior by (2.21). In particular, when n = R'+m' — R = 0, we
recover the result (5.4).
In the case R +m’ > R, it is convenient to rewrite S (5.12) in terms of blocks of slightly

different sizes: (1,2)
I S&

where I is the identity square matrix of size R’, and where S?, SV and S*?) are respec-
tively of size R’ x m/, m’ x R' and m' x m/, with elements

S = WM (5.15)

0 if j<R—R

(21) _ = ;
Sjk = {M(zg) f R R <<y (5.16)

j—(R—R)k 1 <Js=m,
oo [WOMON L wsrem i,
ko M(2 2) é-] 1-R+R' if R—R <i<m ( ’ )
(R—R')k — j<m.
Hence,
Rdet S =detS (5.18)
/+m/ m/

with &' = §*2) — SGHS12) o

p(qa. , £7rk. + 77/2) 1
Ve VL) I AN tol ) Hi<R-R, o9
7,k [ :|J+R ok N pt0t<QJj+R/) N ’ ( )




7T0CHAPTER 5. THE CORRELATION FUNCTIONS IN THE THERMODYNAMIC LIMIT

whereas, for 1 < j <m'+ R — R,

R/
ReR4jk = M;’,Qlf) - Z Mfél) [NflM(l’Q)}e,k- (5.20)
=1
In particular, the (R — R’ + 1)-th line of &' is
R/
S;%—R’—H,k =1-2 Z [N_IM(LZ)]Z k
=1
1 2/ PN — Eny +1/2)dA =0, (5.21)
—00 o
which proves (5.3). O

Remark 5.1. If we suppose further that the sums in (5.20) can be transformed into integrals
Vj, we obtain that all the lines of (5.20) vanish in the thermodynamic limit:

o0

Rk 0 / N A+ 0) 7 p(A = &y +1/2) dX = 0. (5.22)

—00

Indeed, setting n = —i and supposing |3 (&, +1/2)| < 1/2, we have:

/Oo N o\ =& —i/2)dN\ — /oo A=) p(N =&, — /2 — 1) d)

o0 oo

= —2miResy—¢, [N p(A\ =& —i/2)] = €LY, (5.23)

T )
and we can conclude by using the quasi-periodicity property p(A — i) = —p(A). Note however

that we do not need (5.22) for j > 1 for the proof of Proposition 5.1.1. It is enough that these
lines remain finite in the thermodynamic limit.

As a consequence of this proposition, we can formulate the following corollary:

Corollary 5.1.1. For a given 2m-tuple € = (e1,...,€,) € {1,2}*™, let us define the sets
ag and of of respective cardinality s. and s. as in (4.34)- (4.33), and let us consider the
matriz element F,,(7,€) in a state |Q,) with Q. = Q satisfying the same hypothesis as in
Proposition 5.1.1. Then

lim F,(1,e) =0 if  Se+s.#m. (5.24)

N—oo

Moreover, if se + s. = m, the non-vanishing contribution of F,,(1,€) in the thermodynamic
limat 1s given by

mo d(qa,) :}Zé_l(qaj —qr +n)
lim F,,(7,€) = lim — 5 H Re. Z
N—o0 ’ N—o0 +J —
— —oo (&) {a;2} jear k;kei&ll'(qaj qr)
J
R+j—
a(qa;,) o ak — ) AN
" H _ kEAg <QAm+l |QT> (5 25)
11 T e | (@10)
Jeae kEAj+1

in which the summation is taken over the indices a; for j € ag and aj for j € o satisfying
(4.36)-(4.38), and we have used the notation (4.39).
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In other words, it means that in the thermodynamic limit we recover the same selection
rules (5.24) for the elementary blocks as in the periodic case. Moreover, the only non-vanishing
terms in the series (4.35) corresponds to af = of and a_ = a_, i.e. to n, = 0. This means
that the residues of the poles at infinity that appeared when moving the integration contours
in the computation of the action of Section 4.1.1 (see Proposition 4.2.1 and Corollary 4.2.1) do
not contribute to the thermodynamic limit of the correlation functions.

Proof. Let us consider the expansion (4.35) for F,,(7, €), which involves multiple sums over the
indices {a;, a’;}.

For a given term of the sum, the polynomial Qa,, ., is of the form (5.2) with R — R’ equal
to the number of indices a; or @’ in the multiple sums which are taken between 1 and R. On
the other hand, each of the sums over an index a; or a} from 1 to R leads to an integral in the
thermodynamic limit provided that it is balanced by a factor 1/N, the other terms of the sums
(for a; or a} from R+ 1 to R+m) contributing to order 1 to the thermodynamic limit. Hence,
the non-vanishing contributions in the thermodynamic limits correspond to the configurations
in the expansion (4.35) for which the ratio of determinants is exactly of order O(1/NF-F),
This, from Proposition 5.1.1, happens only when the two polynomials Q4 ., and Q, are of the
same degree R, i.e. when #a_ + #al = m.

Since #a_ + #af < #a_ + #aF = sc + 5., the whole sum (4.35) is vanishing in the
thermodynamic limit if s + s, < m, so that

m-+1

lim F,(r,e) =0 if sc+s.<m. (5.26)

N—oo

If sc + s. > m we use the symmetry (4.7) and the fact that s3_ + s§_. < m to conclude that

lim F,(r,€) = lim F,(r,3—€)=0 if sc.+s.>m. (5.27)

N—oo N—oo

This proves (5.24).

If now s¢ + s. = m, the only terms contributing to the thermodynamic limit of F,,,(7, €) in
the sum (4.35) are those for which #a_ + #a} = #a_ + #al, i.e. af = af. This also proves

(5.25). O

Note that by using the explicit expression for the transfer matrix eigenvalue evaluated at
€k7 kzl,...,m,

rlg) = —a(g) L=, (5.28)
together with the Bethe equations
dlgo)) = alge) 2= o, <R, (529)

Qr(qa; +1)’
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and the observation that d(q,,) = 0 for any a; > R, one can rewrite (5.25) in the following way:

. T e Qr(fk)
i Fnme = ey 0.6 —n)

iijl_%q% —qr + 77)

QT(Qaj _77) EA;
X Z H —@(qaj) Qr(%-"‘ﬂ) - ﬁ%ﬂ

{aj.a%} jea k=1 (CZaJ - Qk)

kEA
;%_I(Qk ~ qu + 1) (G 100)
€A’ A T
X a(qq) L s ., (5.30)
.H+ TN (@) | (Q1Qr)
Jeae kEA ;11 J

where the summation is taken here over the indices a; for j € aZ and a} for j € o such that

1<a; <R, a;€A 1<d;<R+j, dajcAl (5.31)

5.1.2 Multiple integral representation for the correlation functions in
the thermodynamic limit

Let us now consider, for any 2m-tuple € = (e, .. ., €2,,), the matrix elements

QAT B 1)
Pl = 0ay

for |@,) as an eigenstate of the transfer matrix (1.47) described in the thermodynamic limit
by the density of roots piot, and which tends to one of the ground states of the anti-periodic
XXX chain (1.5) in the homogeneous limit. It follows from Corollary 5.1.1, (5.4) and (5.30)
that the terms contributing to the thermodynamic limit in the anti-periodic model are exactly
of the same form as the terms contributing to the thermodynamic limit in the periodic case,
see formulas (4.6)-(4.7) and (5.3)-(5.4) (in which we use the periodic analogue of (5.28) and
(5.29)) of [80]. Hence their thermodynamic limits coincide.

Therefore we obtain the following multiple integral representation for the correlation func-
tions (5.32) in the thermodynamic limit, which coincides with the results of [80, 79]:

(5.32)

Se m

B sinh (& — ] dA; sinh (A, — Ap)
Fm —se-i-sm:kl:[l fk_gl jl:[looZ 3181_14 g Ao — A\p— 1@
Jj—1 m
M g 1T [H< ~& ] - £k>]
JEae J
7—1 m
I [m; cern T - m] 539
jeat Lk=1 k=j+1

in which the sets a_ and o are defined as in (4.33)-(4.34), and the integration parameters are
ordered as

()‘17 R Am) = (:u;‘{naX7 T 7“;'1’11.n7 Hjmins - - - Jru’jmax)v (534)

1
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with
Juin =min{j|j € al}, = max{j|j € al}, (5.35)
Jwin =min{j[j € ac},  Jmax = max{j|j € ag}. (5.36)
In the homogeneous limit (§; = —i/2, Vj) the correlation function F,,(€) has the following
form:
e 25 [ Z LI Slnhﬂ'(/\ — )
Fm :(53 s’m_lse_ j i’} a
R S I VA< | IS | e e
J=1_5_; J=set+1 " a>b
.__Jl iym—j 4 30yj=1 (4 Bym=j
y H (15 +3) (15 +5) m(uj )" (5.37)
cosh () cosh™ (mp;)
JEae ]eaj J

So far, we have shown how to compute the (elementary building blocks of the) correlation
functions in the XXX chain with anti-periodic boundary conditions. We have obtained similar
results for the general non-diagonal twist case in [116]. We have there explicitly shown that,
as expected from physical arguments, the ground state correlation functions of the X X X spin
1/2 chain with quasi-periodic boundary conditions do not depend, in the thermodynamic limit,
on the particular boundary condition that we consider, i.e. on the particular form of the
twist matrix K. And they coincide with the correlation functions of the periodic chain in the
thermodynamic limit, at least for non-diagonal twists. Of course, the same statement can be
proven for a diagonal twist by developing the same computations in the Algebraic Bethe Ansatz
framework as done in the periodic case in [80].

5.2 The XX/ case

Since the representation (4.61) is given as multiple sums over ratios of scalar products, the
question is now to compute and evaluate the corresponding scalar products. Due to the different
analyticity properties of the involved @Q-functions (which is in general no longer an entire
function) and the new form of the scalar products formulas that were obtained in Chapter
3 and in our paper [118], this question is more complicated than in the XXX case and requires
a priori the development of new techniques. For the moment, we have not been able to solve
entirely this problem. However, for a whole class of terms in the sum (4.61) — the terms that we
expect to be the non-vanishing terms in the thermodynamic limit — we can explicitly compute
the scalar products and perform the limit N — oo, hence recovering the multiple integral
representation of [80].

To evaluate the sum (4.61), we therefore need to compute the following ratios of scalar
products:

(QGelQ) _ . (F5elQ)

QIQ) A% (PQ) (5:58)
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where |@)) is an eigenstate (the ground state), with Q(\) = vazl sinh (A;‘”> having roots

= {q1,...,qn}, and where (P, (P§| are separate states built respectively from P(\) =
Hj.V:l sinh (’\_pj) and from ]5576()\) defined from P as in (4.67). Here the limit has to be

2
understood as p; = ¢q;, 7 =1...N.
Hence we have, with the notations of Chapter 3,

(P5c1Q) II% - Am ,,,,, @}P&gJ
P|Q i1 Q z A{E1 ----- En} [_fPQ]

(5.39)

with fpg given by (3.26) and
2 sinh(A — 0 — z)
sinh(A — zy)

(5.40)

” inh(\ — &, N sinh(A — 1) — po,
fpé,eQ()‘) = fro(N) | H ‘sm (A =&) H sm. (A =1—ps,)

j=m/+1 sinh(A =7 = &) j=R+1 Sinh(A =po;) ¢

where o is a permutation of {1, ..., N}, 7 is a permutation of {1,...,m}, the set of s parameters

{z1, ..., 25} are made of "strings " of the form

pr +n+im, pr + 2n (modim), ..., pr + ngn (mod i), (5.41)
or

pr — 1+ im, pr — 21 (mod in), ..., pr — gy (mod im), (5.42)

for some py, € {Popy1s s Poy ), With ng, g, € N\ {0}. And with this notation we have m, =
N—-R+m—m'+s.

The problem of analyzing the representation (5.38) in the thermodynamic limit is still not
completely solved. However, in the particular case s = 0 and m, = m, i.e when N = R+m/, the
situation becomes much simpler. We can in that case adapt the results of Chapter 3 to study
the corresponding deterninants. We can for instance, to micmic the XXX solution, use the con-
nexion with a generalized Slavnov determinant that we have brought out in Proposition 3.2.2,
or some slight modification of it.

In that case, we can first transform the ratio (5.39) using Identity 1, which gives

.A{& """ v} [_fpé,eQ} _I{& ----- EN AL pN}[ fPQ]

Aty eny [ IPQ)] I{gl ..... gN}{p1 ..... o= frol

B smh gz )\Tr]) f Sll’lh pa j poi)
H H sinh(§; — H ]1_[1 sinh(A - — Doy)

p0R+J 1=

1
H Slnh(PaRJrj - pami) det1gi,k§N M(fi,ﬁk)

: 5.43
sinh(Ar, — Ar,)  deticipan M(&, pr) (5:43)

where

1 n fro(é)

sinh(§ —p)  sinh(§ —p+1n)’ (5.44)

M(,p) =
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Here {p1,....0n} = {Dors- - s Do U{ Amys -y Anp b N
Multiplying both determinants in (5.43) with the determinant of the same matrix X of
elements

o =1 ETD) { [C‘“h (WT_”) —coth (&%ﬂ Qs = m) Plts +4m)
. [coth <fb =L, ”) ot (M)} Q& — 1+ i) P(§b)} (5.45)

2
we obtain
deti<ipzn M(&, Pr) ﬂ d(pr) Q(Pr — ) P(pi +im) detcijen Sq.r (45, Pr) (5.46)
deticipen M(&ipe) 7 d(P) Qo — ) P(pr + im) deti<; j<v Sq,p (45, Pr)
where
So.r(a,p) = Sq(a:p) — Up =1 + i) Plp) So(q,p + i), (5.47)

Q(p—mn) P(p +im)

Sola.p) = [Coth (1#) coth (p . q)}

+ag(p) [coth <]%) — coth (Z%M)} : (5.48)

Here we have used that the roots of () satisfy the Bethe equations. We have also supposed that
P satisfy the quasi-periodicity properties (3.43).

We can now take the limit P — @ and \;, — &;,, 1 <@ < m/, in these formulas. We obtain,
still in the case s =0 and R+ m’ = N,

(Q51Q) ﬁ a(6r)  QUen, +imMQE, — 1) 1T 50 (o, = Gon,)
Q@) Q W(Gopie) Qopye + 1) Q(opy, — 1) iy Sinh(¢o, — &xy)

/=1 7
ﬁ Sinh(QUR_H - QJFH.J-) detN SQ,Q(q ‘ qgw) (5 49)
sinh(fm - gﬂj) detN SQ(Qj, Qk) ’ '
with
[8’ ( | — )} _ SQ(QOj?QOg); fOI' 1 S g S R7
QQ\ Al om0 = 2 [coth(fm — qo; — 1) — coth(&r, — qgj)] for R+1</(<R+m,
(5.50)
ag(g;) QG —q =1 QG —q; +1
So(qj, qx) = 26; @7 4 coth <—J —coth [ ——2—|. 5.51
(g, ar) " 20(0) 5 5 (5.51)

Similarly as in the XXX case, we can therefore extract the leading contributions of this ratio
in the thermodynamic limit:

(Q5el Q) ﬁ 0(er)  Qér +1m)QEr, — 1) ﬁ Sinh(go, — dos,)
<Q | Q> N—oo a(q0R+e) Q<qUR+é + 7:77-)@<QUR+£ - 7]) 1 Sinh(qm‘ - gﬂz)

ﬁ Sinh(qUR+i - C]gR+j) d ﬁ(qO'R+j - gﬂ'k + 77/2)
; et — .
sinh(&r, — &) 1<9k<m’ Nt (Qopy,)

1=

(5.52)

1<j
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If we adapt the same notations as in Proposition (4.2.1), the part F,, (7, €)yestr Of the multiple
sum representation (4.61) which corresponds to these terms can be rewritten in a similar form
as in (5.30). Indeed if we define:

a, ={j:1<j<m,e_1 =1}, #a_ =se (5.53)
af ={j:1<j<m,e;=2} #aol = s, (5.54)
then
lim F,, (7, €)restr = s 157.m lim ﬁ ! (5.55)
Jm (7 st = s Jim | 2y

A(qa;)Q(qa; + i) [T7.55 " sinh(qa, — g +n)

k?EAj
% E I I . — (5.56)
e\ Qe+ +im [T sinh(ga, — i)
{ 7 J}]eae kJEA,
J

—a(qa;)Q(Qa} + 7/77-) H]\,iijl_l Slnh(qk — qa; —|— 7’])

X H kGA;A <QAm+1’Q>
P Qg =+ im) T2 sinh(ge — q) QQ)
(5.57)

where we have set gn;; = §5,1 < 7 < m, and there the summation is taken over the indices a;
for j € ae- and @} for j € i} such that:

1§CLjSN+j, ajEAj, 1§a;§N+], a;EA;-, (558)
with

Ay ={0:1<b< N +mb#apdyk <}, (5.59)

Al ={b:1<b<N+m,b#a,k<jand b#ap,k < j}}. (5.60)

The function Qa,,,, is defined as:

H;-nzl sinh(A — &)
j€ag Slnh()\ - Qaj) Hanj Slnh(A — qag) )

QA = Q(A)H (5.61)

Note that, by using the explicit expression for the transfer matrix eigenvalue evaluated at
fk, kzl,...,m,

(&) = —a(&) %, (5.62)
together with the Bethe equations
o) = ala) G vy, (563

and the observation that d(q,;) = 0 for any a; > N, one can rewrite (5.25) in the following
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way:

]\}gréo Fm<7', G)restr - ]\11~r>noog a(&)Qr(gk — 77)

Rtj-1
. QT(Qaj - 77) QT(qaj + ZW) kkE:AlJ
<> 1l W) 5 gu T 1) Or (g, + 71+ ) [T sinh(qa, — gi)

{aj.0}} jeas

Sinh(qaj — 4k + 77)

keA’
Rtj—1
. P sinh(qr — qo + 1) -
T ot Q- (qu, +im) 4R, g (Oans | Q) 56
Pt aj; QT(QG;- -1 + Zﬂ') R—L_le Sinh(qk _ qa9> <QT ’ QT) )

kGA]‘+1
where the summation is taken here over the indices a; for j € aZ and a} for j € o such that
1<a; <N, a;€A, 1<a;<N+j, a;cAl (5.65)

Further based on the fact that

N

[[sinh(X = ¢,) = (=20)Y QN Q(A + im) (5.66)

n=1

the expression (5.64) coincides with (4.6),(5.2)-(5.4) of [80]. Thus it will give the same expression
for F,,(T, €)restr as in (5.5)-(5.6) of [80].

One may expect that the remaining terms vanish in the thermodynamic limit, similarly as
what happens in the XXX case. A proper analysis of these remaining terms is however still to
be done to confirm such a conjecture.






Conclusion

There are in general two methods to compute the correlation functions for quantum integrable
lattice models. One is to compute the form factors and sum them over to get the correlation
functions. The other is to compute the elementary building blocks and take linear combinations
of them to obtain the correlation functions. In the Algebraic Bethe Ansatz approach, as for the
simple model of the X X Z periodic chain, both methods have been used to obtain analytical
results [81, 80| and are analytically linked by a single integral representation called the master
equation |94].

In this thesis, our goal is to develop an approach towards the computation of the form factors
and the correlation functions within the quantum separation of variables (SoV) method. To
achieve this goal and be able to compare the results with the ones obtained by Algebraic Bethe
Ansatz, we consider two simple models: the anti-periodic X X X and X X7 Heisenberg spin
chains.

One of the difficulties of the SoV approach in terms of its applications to physical systems is
that all results are a priori obtained in terms of the non-physical inhomogeneity parameters that
have to be introduced for the method to work. Getting rid of these inhomogeneity parameters,
i.e. taking the homogeneous limit, might be a very non-trivial task.

At the level of the spectrum, one naturally obtains a description in terms of a set of discrete
Baxter TQ-equations that need to be reformulated into a more conventional form [157]. As for
the X X X case, one can find the Baxter’s Q-function that takes the form of a polynomial [114].
As for the X X Z case, the Baxter’s @-function can no longer take the same function form as
the eigenvalue function. In fact, in the X X Z case, the Baxter’s Q)-function is a trigonometric
polynomial with a double period [117, 115].

The SoV method naturally provides a determinant representation for the scalar products for
a large class of models. This is a priori an advantage of the method. However, this determinant
representation for the scalar products that one naturally obtains is highly dependent on the
inhomogeneous parameters in an explicit way. Thus one also needs to transform it into a more
tractable form to take the homogeneous limit. In the X X X case, this problem was solved by
noticing the existence of a set of algebraic identities which lead to the wanted transformation
[114]. With this transformation and the solution to the so-called quantum inverse problem
[82, 83, 143], the form factors for the anti-periodic X X X chain was obtained in [114].

Due to the inconsistency of periods, these identities cannot be applied directly to the X X Z
case. In this thesis, we have solved the problem by providing an alternative transformation.
This transformation leads to a suitable determinant representation that enables us to take the
homogeneous limit. By employing this determinant representation we have obtained in this
thesis (result in [118|) a determinant representation for the form factors in the anti-periodic
XXZ chain.

As for the correlation functions, we have shown that in the SoV framework it is possible to

79
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obtain the same kind of results for the X X X case as in the algebraic Bethe Ansatz framework
[80] or in the g-vertex operator approach [79]. And we have given some hint for the X X 7 case.
After a suitable determinant representation for separate states has been obtained, the difficulty
for computing the elementary building blocks is that the action of local operators on separate
states involves the inhomogeneity parameters in a very intricate way and needs reformulation.
This point is crucial if we want to use this approach to directly compute the correlation functions
and bring the SoV approach to the same level of achievement as the algebraic Bethe Ansatz
[80] or the g-vertex operator approach [79]. In this thesis, we have therefore explained how
to transform the SoV action into a more conventional one, involving the roots of the Baxter
Q)-function (the "Bethe roots") rather than the inhomogeneity parameters. More precisely, we
have expressed these actions using multiple contour integrals. By taking the residues inside
the contours, we have recovered the SoV action in terms of the inhomogeneity parameters; and
by taking the residues outside the contours, we obtain an ABA-type action in terms of "Bethe
roots".

As a result, in the XXX case, we have also obtained some extra contributions from the
poles at infinity. Since the spin S, is no longer conserved, the correlation functions of the
(non-diagonally) twisted X XX chain in finite volume involve many additional contributions
with respect to the periodic or diagonally-twisted chain. We have explicitly shown here that
all these extra contributions vanish in the thermodynamic limit, and thus have the same result
as in the periodic case. In the X X7 case, the extra contributions from "strings" of poles lead
to more complicated scalar products, which makes the identification of their contributions in
the thermodynamic limit more difficult than in the X X X case. The detailed analysis is still
under investigation. However under the assumption that the extra terms do not contribute
in the thermodynamic limit as in the X X X case, we are able to recover the multiple integral
representation for the elementary building blocks.

We expect our approach to correlation functions in SoV to be applicable to more compli-
cated models. The following research work may start from the correlation functions of open
chains (X X X or X X Z7) with non-diagonal boundaries, for which preliminary results have been
obtained concerning the scalar products of separate states [144, 156].
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Résumé: Le but de cette thése est de
développer une approche au calcul des fonctions
de corrélation des modéles intégrables quan-
tiques sur réseau dans le cadre de la version
quantique de la méthode de séparation des vari-
ables (SoV). SoV est une méthode puissante ap-
plicable & une large classe de modéles quantiques
intégrables avec des conditions aux limites var-
iées. Cependant, le calcul des fonctions de cor-
rélation reste dans ce cadre un probléme en-
core largement ouvert. Nous considérons ici plus
précisément deux modéles simples solubles par
SoV: les chaines de Heisenberg XXX et XXZ de
spins 1/2, avec des conditions aux limites anti-
périodiques, ou plus généralement des condi-
tions aux limites quasi-périodiques avec un twist
non diagonal. Nous rappelons leurs solutions
par SoV, qui présentent des similitudes mais
aussi des différences cruciales. Puis nous étu-
dions les produits scalaires d’états séparés, une
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classe d’états qui contient notamment tous les
états propres du modeéle. Nous expliquons com-
ment obtenir, pour ces produits scalaires, des
représentations sous forme de déterminant util-
isables pour I’étude du modéle. Nous expliquons
également comment généraliser ces représenta-
tions dans le cas des facteurs de forme, c’est-a-
dire des éléments matriciels des opérateurs lo-
caux dans la base des états propres. Ces fac-
teurs de forme sont d’un intérét particulier pour
le calcul des corrélations puisque toutes les fonc-
tions de corrélation peuvent étre obtenues sous
forme de somme sur des facteurs de forme. En-
fin, nous considérons des blocs élémentaires plus
généraux pour les fonctions de corrélation, et ex-
pliquons comment retrouver, dans la limite ther-
modynamique du modéle, les représentations
sous forme d’intégrales multiples précédemment
obtenues a partir de I’étude des modéles péri-
odiques par Ansatz de Bethe algébrique.
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Abstract: The aim of this thesis is to develop
an approach to the computation of the corre-
lation functions of quantum integrable lattice
models within the quantum version of the Sepa-
ration of Variables (SoV) method. SoV is a pow-
erful method which applies to a wide range of
quantum integrable models with various bound-
ary conditions. Yet, the problem of comput-
ing correlation functions within this framework
is still widely open. Here, we more precisely
consider two simple models solvable by SoV:
the XXX and XXZ Heisenberg chains of spins
1/2, with anti-periodic boundary conditions, or
more generally quasi-periodic boundary condi-
tions with a non-diagonal twist. We first re-
view their solution by SoV, which presents some
similarities but also crucial differences. Then
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we study the scalar products of separate states,
a class of states that notably contains all the
eigenstates of the model. We explain how to ob-
tain convenient determinant representations for
these scalar products. We also explain how to
generalise these determinant representations in
the case of form factors, i.e. of matrix elements
of the local operators in the basis of eigenstates.
These form factors are of particular interest for
the computation of correlation since all corre-
lation functions can be obtained as a sum over
form factors. Finally, we consider more general
elementary building blocks for the correlation
functions, and explain how to recover, in the
thermodynamic limit of the model, the multi-
ple integral representations that were previously
obtained from the consideration of the periodic
models by algebraic Bethe Ansatz.
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