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Abstract
Exploring the fundamental properties of materials such

as niobium, NbTiN, multilayers, or Nb3Sn in high-precision
surface resistance measurements is highly relevant to super-
conducting radio-frequency (RF) technology. Typically, the
calorimetric measurement is carried out with a quadrupole
resonator (QPR) to precisely determine the RF properties of
superconducting samples. Still, one of the main challenges
in the QPR design and operation is to mitigate the impact
of microphonics and Lorentz force (LF) detuning, on the
one hand, and the RF losses at the adapter flange due the
manufacturing tolerances, on the other hand. For this reason,
we address the coupled electro-stress-heat problem under
geometric uncertainties to study the significant measure-
ment bias of the surface resistance, observed mainly for the
third operating mode of the given QPR. We then use a multi-
objective and multi-physics shape optimization method to
compensate for its influence and find the optimal QPR de-
sign in the Pareto sense. Finally, the optimization results
and their implications for the QPR operating conditions are
discussed to demonstrate the proposed approach.

INTRODUCTION
Superconducting radio frequency (SRF) cavities are

widely used in particle accelerators to achieve high accelera-
tion gradients and low losses. Since the power consumption
is proportional to the surface resistance 𝑅𝑆 , which depends
on external parameters such as frequency, temperature, mag-
netic, and electric fields, precise high-resolution measure-
ments of superconducting material properties are highly
demanded. Quadrupole resonators (QPRs) are special ded-
icated devices used to measure the surface resistance of
superconducting samples in a wide parameter space of tem-
perature and RF field strength at three frequencies [1–3,5–9].
These instruments, which cover typical realistic accelerator
conditions, consist of a pillbox-like cavity with four verti-
cally arranged hollow rods that bend in the pole shoes at
the ends, as shown in Figure 1. This design permits excit-
ing a quadrupole-like magnetic field on the superconducting
sample, which yields a measurement of 𝑅𝑆 [1] using a calori-
metric method. Specifically, the resulting estimated loss on
the sample provided by RF simulations of the QPR is mea-
sured to evaluate the surface resistance of the sample. The
∗ piotr.putek@uni-rostock.de

measurement procedure is subject to several uncertainties.
In particular, they include the resolution and accuracy of the
electronic equipment, which is prone to measurement noise,
shape deviations from the cavity design due to the Lorentz
force (LF) radiation and atmospheric pressure, flange heating
or microphonics, and the Computer-Aided Design (CAD)
representation of a physical model reflected by the accuracy
of the numerical simulations to name a few of the essen-
tial uncertainties. In addition, surface treatment methods
such as ultrasonic baths, buffered chemical polishing, and
high-pressure rinsing affect the surface roughness [10]. As
a result, the accuracy of the surface-resistance measurement
performed by a QPR is susceptible to these uncertainties.
For these reasons, they must be considered in the modeling
phase of the QPR to provide reliable and predictable sim-
ulation results. In practice, due to industrial imperfections
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Figure 1: Layout of the QPR (left) with its parameterized
model (right) [11].

related to the manufacturing chain in the production process
and the harsh operating environment, the operation of the
QPR may be affected by a relatively large amount of uncer-
tainty [7]. They may affect the input parameters of physical
models, i.e., the material or geometrical parameters at dif-
ferent levels, i.e., model coefficients, force terms, boundary
conditions, or physical geometry [12].

The shape of the QPR may deviate from its nominal de-
sign not only due to manufacturing imperfections, which
may be static but also due to dynamic physical phenomena
associated with electromagnetic radiation pressure or micro-
phonics. In fact, besides microphonics and LF detuning [10,
13, 14], the RF losses on the adapter flange [11, 15, 16], may
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result in measurement bias, mainly observed for the third
operating mode. Unfortunately, the measurement bias of
𝑅𝑆 is also detectable for all the frequency modes of the sec-
ond edition of CERN-QPR [5]. Regardless of whether the
deformation is due to static or dynamic phenomena, accord-
ing to Slater’s theorem [17], any deformation of the cavity
shape leads to a detuning of the resonance frequency [3],
and consequently, of other merit functions. Consequently,
the closest neighboring dipole mode can be excited instead
of the proper third quadrupole mode [11].

Our studies deal with the multi-objective (MO) shape
optimization constrained by the coupled electromagnetic-
stress-heat (E-S-H) problem exclusively with a probabilistic
description of uncertain geometric parameters. In particular,
the influence of the shape deformation on suitably chosen
merit functions is considered using the worst-case expecta-
tion method [18].

WORST-CASE EXPECTATION APPROACH
We focus on uncertainties associated with geometric pa-

rameters p ∈ Π ⊂ R𝑄, e.g., those depicted in Figure 1 and
use a probabilistic framework to describe input variations
as in [19]. Next, we replace p(𝝃) by random variables de-
fined on a probability space (A, F , P). Since the random
variables are assumed to be independent with a probability
density function (PDF) 𝜌𝑖 : Γ𝑖 → [0, 1], the joint PDF is
defined by Γ :=

∏𝑄

𝑖=1 Γ𝑖 ⊂ R
𝑃 assuming it exists.

Next, given a square-integrable function 𝑔(p) ∈ 𝐿2 (Γ),
the expected value reads as

E[ 𝑔(p) ] :=
∫
Γ

𝑔(p) 𝜌(p) dp, (1)

which induces the inner product of 𝑔(p), 𝜐(p) ∈ 𝐿2 (Γ)

(
𝑔(p), 𝜐(p)

)
𝐿2
𝜌 (Γ) :=

∫
Γ

𝑔(p) · 𝜐(p) 𝜌(p) dp, (2)

with the complex conjugate denoted by 𝜐(p). The associated
norm is ∥ 𝑔(p) ∥𝐿2

𝜌 (Γ) :=
√︃(

𝑔(p), 𝑔(p)
)
𝐿2
𝜌 (Γ) .

Now, we want to solve eq. (3) in terms of the eigenpair
(𝜆, h) comprised of the eigenvalue 𝜆 ∈ R+ and the magnetic
field phasor h ∈ C𝑑 , the vector-valued mechanical displace-
ment u ∈ R𝑑 , and the temperature 𝑇 ∈ R under geometrical
uncertainties. The weak form, including expectations of the
variational form defined in the physical space, is given as:
Find (𝜆, h) ∈ R+ ×𝑉𝜌 and h . 0, u, 𝑇 ∈ 𝑉𝜌 such that

E

[〈
𝜇−1
𝑟 ∇ × h,∇ × 𝝋

〉
𝐷c

− 𝜆
〈
𝜖𝑟h, 𝝋

〉
𝐷c

]
= 0, (3a)

E
[〈
𝜈
(
∇u + ∇u⊤) + 𝜂 (∇ · u) 𝑰,∇𝝊

〉
𝐷w

]
= 0, (3b)

E

[〈
𝜅∇𝑇,∇𝜗

〉
𝐷w

−
〈 𝛾
𝜖𝜔

|∇ × h|2, 𝜗
〉
𝐷w

]
= 0, (3c)

imposed with the LF pressure on the boundary of the rods

E

[〈
𝝈, nw

〉
𝜕𝐷cw

]
= E

[
1
4

〈
1
𝜔
|∇ × h|2 + 𝜇 |h|2, nw

〉
𝜕𝐷cw

]
(3d)

for all test functions 𝝋, 𝝊, 𝜗 ∈ 𝑉𝜌 with the Sobolev space of
functions with square-integrable weak gradients and vanish-
ing tangential component of u on the homogeneous Dirichlet
boundary denoted by𝑉 = 𝐻1

0 (𝐷). In eq. (3),𝜔 = 2𝜋 𝑓 ∈ R+,
𝜇 ∈ 𝐿∞ (𝐷), and 𝜖 ∈ 𝐿∞ (𝐷) denote the angular frequency,
where 𝑓 is the frequency, the magnetic permeability, and
the complex electric permittivity, respectively. The ther-
mal conductivity and the electric conductivity are given by
𝜅 ∈ 𝐿∞ (𝐷) and 𝛾 ∈ 𝐿∞ (𝐷). Moreover, the stress tensor
𝝈 = 𝑪 · 𝜀(u) is composed of 12 non-vanishing functions of
the Lamé coefficients 𝜂 ∈ 𝐿∞ (𝐷) and 𝜈 ∈ 𝐿∞ (𝐷), where
𝜀(u) = 1

2 (∇u + ∇u⊤) is the linearized Cauchy-Green strain
tensor and𝑪 denotes the Cauchy stress tensor that is assumed
to be independent of the displacement u.

Furthermore, to find the uncertainty propagation through
the stochastic coupled E-T-H problem defined in eq. (3),
given a function 𝑓 (𝒙, ·) ∈ 𝐿2 (Γ) for 𝒙 ∈ 𝐷, the truncated
polynomial chaos (PC) expansion is introduced [11, 19, 20]

𝑓 (𝒙, p) �
𝑁∑︁
𝑖=0

𝑓̃𝒊 Φ𝑖 (p), 𝑓̃𝒊 ∈ C, (4)

with a priori unknown coefficient functions to be determined
using multidimensional quadrature [21]

𝑓̃𝑖 �
𝐾∑︁
𝑘=1

𝑤𝑘 𝑓

(
p(𝑘 )

)
Φ𝒊

(
p(𝑘 )

)
, 𝑖 ∈ N0, (5)

where Φ𝑖 (p) denotes the multivariate PC basis correspond-
ing to the PDF used to model the input variations. Once the
polynomial coefficients are found by eq. (5), the expectation
value and variance can be estimated using

E [ 𝑓 (p)] = 𝑓0, Var [ 𝑓 (p)] =

𝑁∑︁
𝑖=1

�� 𝑓𝑖 ��2. (6)

Next, to find the influence of the deformation due to the
LF radiation pressure on the merit functions in the mean-
worst-scenario sense [18,22], we use the first-order Taylor
expansion around the nominal parametric shape Ω (p0)

Δ𝐹𝑗 [Ω(p)] = sup
Ω(p) ∈ Π

E
[
𝑓 𝑗 (Ω (p)) − 𝑓 𝑗 (Ω (p0))

]
, (7)

and estimate the change of the functions 𝑓 𝑗 , 𝑗 = 1, . . . , 𝐽.
Here, the shape derivative d 𝑓 𝑗 of the functional 𝑓 𝑗 (Ω) eval-
uated at Ω(𝑘 ) := Ω

(
p(𝑘 ) ) is introduced in a weak sense [23]〈

d𝜓
(
Ω(𝑘 )

)
, v · 𝒏

〉
= lim
𝜏→0+

𝜓
[
𝑇v
𝜏

(
Ω(𝑘 ) ) ] − 𝜓 (

Ω(𝑘 ) )
𝜏

,

(8)
for all v ∈ 𝑊 , where 𝑇v

𝜏 (Ω) represents the transformed
domain that is obtained by perturbing the original domain
Ω by a certain distance 𝜏 in the direction of the vector field
v and 𝒏 is the unit outward normal to Ω.
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Table 1: Results for the MO Optimization – Parameter Domain
Name Ω∗

HZB (p) [3] Ω∗
Sol.A (p) [11] Ω∗

Sol.C (p)
𝑝1 (gap) [mm] 0.50 0.58 0.51
𝑝2 (rrods) [mm] 13.00 9.76 9.98
𝑝3 (hloop) [mm] 10.00 9.72 9.96
𝑝4 (rloop) [mm] 5.00 5.92 5.01
𝑝5 (wloop) [mm] 44.00 43.79 43.64
𝑝6 (dloop) [mm] 6.00 4.00 4.11
𝑝7 (rcoil) [mm] 22.408 25.00 23.57
𝑝8 (rsample) [mm] 37.50 35.00 35.01
𝑝9 (ltrans1) [mm] 7.50 7.50 7.26
𝑝10 (drrods) [mm] 2.00 2.00 2.25
𝑝11 (ltrans2) [mm] 15.00 15.00 15.00

Table 2: Results of the MO Optimization for the Third Mode – Objective Space
Means/Configurations Ω∗

HZB (p) Ω∗
Sol.A (p) [%] Ω∗

Sol.C (p) [%]

𝐹1 (Ω∗ (p), h, u) [M A2/J] 70.62 88.84 25.80 87.50 23.90
𝐹2 (Ω∗ (p), h, u) [1/1] 0.11 0.179 62.73 0.152 38.18
𝐹3 (Ω∗ (p), h, u) [M 1/1] 0.898 2.471 175.17 2.54 182.85
𝐹4Ω

∗ (p), h, u) [M N/m2] 0.122 0.111 -9.02 0.113 -7.38

MO MULTI-PHYSICS OPTIMIZATION
Now, in the robust formulation, we use eq. (6) and trans-

form the stochastic merit functions 𝐹𝑗 (Ω(p), ·) as follows

𝐹𝑗

(
Ω(p); h

)
:= 𝛼E[ 𝑓 𝑗 ( · ) ] + (1 − 𝛼)

√︃
Var

[
𝑓 𝑗 ( · )

]
, (9)

where the prescribed parameter takes the values 0 ≤ 𝛼 ≤
1. Then, we formulate the robust parametric QPR shape
optimization constrained by the E-S-T problem to find the
optimal domain Ω∗ (p)

inf
Ω(p) ∈ Ξ

J
(
Ω(p); h

)
=

[
𝐹1 ( · ), 𝐹2 ( · ), 𝐹3 ( · )

]⊤
, (10a)

s.t.


𝑒1 (Ω(p), [𝜆, h]) , (3a)
𝑒2 (Ω(p), [u, h]) , (3b)
𝑒3 (Ω(p), [𝑇, h]) . (3c)

Finally, to solve eq. (10), we employed the modified steepest
descent algorithm with the Lagrange multiplier method and
variance-based coefficients as robust gradient [11, 24, 25].

CONCLUSION & DISCUSSION

a) b) c)

Figure 2: Comparison between the shapes of a) the HZB
design [3], b) the design of Sol. A-HZB [11], and c) the
obtained solutions Sol. C configuration.

In the proof of concept example, we assumed that the first
ten parameters listed in Tab. 1 correspond to the parame-
terized QPR model, shown in Fig. 1. Thus, we considered
𝑄 = 10 random design parameters, modeled by a Gaussian
distribution such that 𝜎(𝑝𝑖) = 0.05 mm. Hermite polynomi-
als of order 𝑑 = 2 were used in the truncated PCE model (4).
As objective functionals, we chose the focusing factor 𝐹1 (·)
to maximize the magnetic field in the area of the sample, the
homogeneity factor 𝐹2 (·) to improve the resolution of the
surface resistance measurements, and finally, the dimension-
less factor 𝐹3 (·) to mitigate the power loss of conductive
materials in the calorimetric chamber caused by the pene-
trating electromagnetic field as in [11]. We also took into
account 𝐹4 (·), the maximum LF radiation pressure (the max-
imum of the displacement magnitude) in the area of the pole
shoes, using the Lagrange multipliers method [11]. Next,
the Stroud-3 cubature was used [19,20], which resulted in
𝐾 = 20 deterministic simulations of the QPR model in CST
STUDIO SUITE®, as required to estimate the statistical mo-
ments given by (6) and (7) applying eq. (8). The resulting
design of Sol. C-QPR with a particular focus on the pole
shoe domain compared to other QPR configurations is shown
in Fig. 2, while the geometric parameters are summarized in
Tab. 1. In addition, the values of certain objective functions
allow the evaluation of the Sol. C design, are listed in Tab. 2.

We can conclude that the developed UQ-based worst-case
expectation analysis of the coupled E-S-T problem permits
quantifying the influence of deformations on the QPR’s per-
formance. Moreover, using the modified MO steepest de-
scent method to include the peak value of the LF pressure
in the pole shoes as a constraint allows for finding the Sol.
C-HZB design.
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