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Abstract In this paper, we construct toy models of the black
hole and the white hole by setting proper boundaries in the
Minkowski spacetime, according to the modern definition.
We calculate the thermal effect of the black hole with the
tunneling mechanism. We consider the role of boundary con-
ditions at the singularity and on the horizon. In addition, we
show that the white hole possesses a thermal absorption.
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1 Introduction

Since Hawking reveals the thermal radiation of a scalar field
on a collapsing black hole [1], the Hawking radiation is con-
sidered in different black hole systems, such as, the Hawking
radiation of a spherical collapsing shell and of the Kerr–
Newmann black hole [2–4], the Hawking radiation in the
Hořava–Lifshitz gravity [5], and the Hawking radiation in the

a e-mail: chenyuzhu@nankai.edu.cn (corresponding author)
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Einstein-dilaton-Gauss–Bonnet black hole [6]. The Hawking
radiation is also considered for various kinds of fields, such
as, the Hawking radiation of the Dirac particle in the Kerr
black hole via tunneling [7], the Hawking radiation of spin-1
particles in a rotating hairy black hole and spin-2 particles in
a static spherical black hole [8,9], and the Hawking radiation
of type-II Weyl fermions [10]. The Hawking radiation is also
verified by different methods. The density matrix method
is used in Refs. [11–13]. A path-integral calculation of the
Hawking radiation is developed by Hawking and Hartle [14].
Based on the discontinuous jump of the field on the horizon,
Ruffini and Damour provide a method to calculate the Hawk-
ing radiation in the Schwarzschild black hole [15], which
is also called the tunneling mechanism [16]. The Hawking
radiation may cause the information loss problem which is
widely discussed in the black hole physics [17–24] .

The spacetime background of a real black hole is compli-
cated, so we usually consider the asymptotic behavior of a
quantum field on the horizon and at the null infinity in stead
of the exact solution. Besides, there are few works which
consider boundary conditions at the singularity and on the
horizon. In our previous work [25,26], we provide an exact
solution of both scattering states and bound states of the scalar
field on the Schwarzschild spacetime and the R-N space-
time. We also provide a new method for the scalar scattering
problem in the Schwarzschild spacetime [27]. However, we
have to deal with complicated special functions caused by
the Schwarzschild spacetime background.

The universal property of a quantum field on a black hole
spacetime deserves more discussions. There are some toy
models about the Hawking radiation and the Unruh effect.
The advantage of the toy model is that the spacetime is simple
enough so that we can calculate the quantum field exactly
on the entire spacetime with proper boundary conditions.
Though the geometry is simple, the universal property of
the spacetime is nontrivial. The best known model is the
moving mirror model which is first considered by Davies and
Fulling [28,29]. The moving mirror model attracts renewed
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interests because of experimental developments [30–32] and
the information loss problem of black holes [30,33–35].

A black hole or a white hole is a universal geometry struc-
ture of the spacetime, which is irrelevant to local details of the
metric. In this paper, we construct a toy black hole and a toy
white hole by setting proper boundaries in the Minkowski
spacetime. In the model, the local metric is trivial, but the
universal structure is nontrivial.

We calculate the thermal effect in the black hole space-
time with the tunneling mechanism. The tunneling mecha-
nism indicates the thermal effect should be regarded as the
Hawking radiation.

The simplicity of the toy black hole allows us to con-
centrate on universal properties rather than local behaviors.
Universal properties are closely related to boundary condi-
tions. In this paper, the influence of the boundary condition
at the singularity and the influence of the periodic boundary
conditions in the Euclidean time method are discussed. We
also suggest a classification scheme of states of the field by
the behavior of the field on the horizon.

In addition, we show that the white hole has a thermal
absorption.

In Sect. 2, we review the modern definitions of a black
hole and a white hole and introduce the toy black hole model
and the toy white hole model in the Minkowski spacetime.
In Sect. 3, we calculate the thermal effect on the black hole
spacetime and discuss the relation between the Hawking radi-
ation and the Unruh effect. In Sect. 4, we discuss the role of
boundary conditions. The results in this section are used to
discuss the information loss problem in conclusions. In Sect.
5, we show that a white hole has a thermal absorption. Con-
clusions are presented in Sect. 6.

2 Black hole and white hole in Minkowski spacetime

2.1 Modern definition of black hole and white hole: brief
review

In this section, we introduce the modern definitions of a black
hole and a white hole.

The black hole is first recognized as a region of a spacetime
where the gravity is so strong so that nothing can escape. The
boundary of a black hole is called the event horizon. Later
on, physicists realize that a black hole is a global structure of
a spacetime which is irrelevant to the local metric structure.
The notion of a black hole is not properly captured by the
strength of the gravity. According to the equivalence princi-
ple, the gravity disappears in a comoving frame and there is
no observable effect for a freely falling observer passing the
horizon. The curvature on the horizon of a supermass black
hole can be very small. The notion that nothing can escape
should also be carefully treated since any point cannot escape

from its causal future. The above viewpoint provides a global
definition (or a geometrical definition) of a black hole. The
black hole is defined as a region that nothing in it can escape
to the future null infinity [36]

B = M − J− (J +)
, (2.1)

where M is the entire spacetime,J + is the future null infinity,
and J− (J +)

is the causal past of J +. One can find more
details of the definition in Ref. [36].

Similarly, we can construct a white hole in the Minkowski
spacetime. A white hole is defined as a region [36]

W = M − J+ (J −)
, (2.2)

where M is the entire spacetime, J − is the past null infinity,
and J+ (J −)

is the causal future of J −.

2.2 Model of black hole and white hole

According to the definition (2.1), we construct a black hole
by setting a boundary in the Minkowski spacetime.

For simplicity, we consider the 1+1-dimensional case. The
metric of the Minkowski spacetime reads

ds2 = −dt2 + dx2. (2.3)

We set a boundary at

t =
√
x2 + η2, t > 0, (2.4)

as shown in Fig. 1. By the definition (2.1), the region II in
Fig. 1 is a black hole. The boundary t = √

x2 + η2 is the
spacetime singularity and t = x between the region I and the
region II is the event horizon.

Similarly, the white hole can be constructed by setting a
boundary at

t = −
√
x2 + η2, t < 0 (2.5)

as shown in Fig. 2. The boundary t = −√
x2 + η2 is the

spacetime singularity and t = −x between the region I and
the region IV is the horizon.

The black hole and the white hole constructed in the
Minkowski spacetime are toy models, they are used to clarify
theoretical properties of the black hole. Since the singularity
in the spacetime is spacelike, we cannot simulate them with
moving mirrors in reality.
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Fig. 1 Toy black hole

Fig. 2 Toy white hole

3 Thermal effect in black hole spacetime

In this section, we discuss the thermal effect in the toy
black hole spacetime. We show that the thermal effect can
be regarded as both the black hole radiation and the Unruh
effect. For simplicity, we consider a massless scalar field φ

(
− ∂2

∂t2 + ∂2

∂x2

)
φ = 0. (3.1)

In Refs. [15,16,37–39] , the authors show that the field has
a discontinuous jump on the horizon of a black hole which
should be regarded as a scattering. The scattering implies the
creation of particles on the horizon which is the black hole
radiation.

We calculate the thermal effect with the tunneling mecha-
nism so that the thermal effect of the black hole in this paper
should be regarded as the black hole radiation.

We introduce new coordinates (τ, ξ). In the region I,

t = 1

a
eaξ sinh (aτ) ,

x = 1

a
eaξ cosh (aτ) , (3.2)

with τ ∈ (−∞,∞) and ξ ∈ (−∞,∞). In the region II,

t = 1

a
eaξ cosh (aτ) ,

x = 1

a
eaξ sinh (aτ) , (3.3)

with τ ∈ (−∞,∞) and ξ ∈ (−∞, 1
a ln (aη)

)
. The coordi-

nates (τ, ξ) in the region I is the comoving coordinates of an
uniformly accelerated observer with a proper acceleration a.
Without loss of generality, we require a > 0. The equation
of a massless field in coordinates (τ, ξ) is

(
− ∂2

∂τ 2 + ∂2

∂ξ2

)
φ = 0. (3.4)

Defining

φ = T (τ ) X (ξ) , (3.5)

with the separation of variables, we have

− ∂2

∂τ 2 T (τ ) = − ∂2

∂ξ2 X (ξ) = k2, (3.6)

where k is the eigenvalue.
For each k > 0, we denote the out-going wave by

φout
k = eik(τ−ξ) (3.7)

and the in-going wave by

φin
k = eik(τ+ξ). (3.8)

With Eqs. (3.2) and (3.3), we have

φ I out
k = eik(τ−ξ) = e−i ka ln(ax−at),

φ I I out
k = eik(τ−ξ) = e−i ka ln(at−ax). (3.9)

There exists a scattering on the horizon and the amplitude is

lim
t→x

φ I out
k

φ I I out
k

= lim
t→x

e−i ka ln(ax−at)

e−i ka ln(at−ax)

= lim
t→x

e−i ka [ln(at−ax)+ln(−1)]

e−i ka ln(at−ax)
= e− πk

a . (3.10)
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The superscripts “I” and “II” denote the field in correspond-
ing regions. In the above calculation, ln (−1) = −iπ is used.
By the standard procedure in Refs. [15,39], the scattering
probability is

Pk =
(

lim
t→x

φ I
k

φ I I
k

)2

= e− 2πk
a . (3.11)

The probability of creating n particles is

pn = CPn
k , (3.12)

where C is the normalization constant. With the normaliza-
tion of the probability

∞∑

n=0

pn = 1, (3.13)

we obtain

C = 1 − e− 2πk
a . (3.14)

The average particle number

〈N 〉 =
∞∑

n=0

npn = 1

e
2πk
a −1

(3.15)

satisfies a bose distribution. That is, the horizon have a tem-
perature

T = a

2π
. (3.16)

The scattering does not happen for in-going waves. With
Eqs. (3.2) and (3.3), we have

lim
t→x

φ I in
k

φ I I in
k

= lim
t→x

ei
k
a ln(at+ax)

ei
k
a ln(at+ax)

= 1. (3.17)

With the tunneling mechanism, we see that the black hole
radiates thermally while absorbs all in-going waves. In a
word, the thermal effect is a black hole radiation.

On the other hand, the region I is the Rindler spacetime
and one can calculate the thermal effect with the Bogolyubov
transformation method [40] or the Euclidean time method
[41] as the Unruh effect. In addition, we find that the tem-
perature T = a

2π
is irrelevant to the sole parameter η of the

black hole.
The thermal effect can be regraded as both the black hole

radiation and the Unruh effect in the model. This fact indi-
cates that the black hole radiation has the same physical
mechanism with the Unruh effect in the model.

Actually, the Bogolyubov transformation method and the
Euclidean time method are also used to calculate the Hawk-
ing radiation of a black hole in a curved spacetime. The
Bogolyubov transformation in a black hole spacetime only
involves a inertial frame at infinity and a uniform accelera-
tion frame (a freely falling frame) on the horizon, which is
the same with the Unruh effect.

4 Role of boundary condition

In this section, we discuss the role of boundary conditions.
The boundary conditions will influence universal properties
of the field on a black hole spacetime.

For simplicity, we use following boundary conditions in
the black hole spacetime.

First, the field φ vanishes at the singularity

φ|
t=

√
x2+η2 = 0. (4.1)

Second, the field φ is continuous on the horizon

lim
t−x→0+ φ = lim

t−x→0− φ. (4.2)

Third, the field φ is finite everywhere.
In addition, we point that a periodic boundary condition

is applied in the Euclidean time method.

4.1 Boundary condition at singularity

In this section, we show the role of the boundary condition
at the singularity.

The general solution of Eq. (3.1) is

φ = f (t − x) + h (t + x) , (4.3)

where f and h are arbitrary functions representing out-going
modes and in-going modes, respectively. Substituting the
boundary condition (2.4) into Eq. (4.3), we get

f

(√
x2 + η2 − x

)
+ h

(√
x2 + η2 + x

)
= 0. (4.4)

Equation (4.4) can also be expressed as

h (z) = − f

(
η2

z

)
, z > 0 (4.5)

with z ≡ √
x2 + η2 − x . That is, the boundary condition at

the singularity is a constraint for the field.
We emphasize that in Eq. (4.4), variables of f and h are

positive. That is, as a restriction, Eq. (4.4) is not effective on
all in-going modes and out-going modes.
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Inside the horizon (region II) t − x > 0 and t + x > 0, so
f (t − x) and h (t + x) must satisfy the relation (4.4). This
means that each out-going mode f (t − x) equals to an in-

going mode h (t + x) = − f
(

η2

t+x

)
. When f (t − x) = 0,

we have h (t + x) = − f
(

η2

t+x

)
= 0.

Conversely, outside the horizon (region I) t + x > 0 and
t − x < 0, so the in-going mode h (t + x) is restrained by
the relation (4.4) while the out-going mode f (t − x) is no
longer restrained by the relation (4.4). That is, outside the
horizon, even though h (t + x) = 0, f (t − x) may still be
nonvanishing. So there may exist more out-going modes than
in-going modes. The extra out-going modes can only exist
outside the horizon (region I). Since the horizon is thermal,
extra out-going modes in the region I satisfy the thermal
distribution. Extra out-going modes come from the horizon
and go to the future null infinite, which is the physical picture
of the Hawking radiation.

4.2 Boundary condition in Euclidean time method

The thermal effect can also be obtained by the Euclidean
time method. A periodic boundary condition is imposed on
the field in the Euclidean time method. That is, the imagi-
nary time have a period of 2π . In this section, we show that
the periodic boundary condition leads to the divergence of
the field, which means we should be more careful with the
Euclidean time method.

We introduce new coordinates (r, θ) in the region I

t = r sinh θ,

x = r cosh θ (4.6)

with r ∈ (0,∞) and θ ∈ (−∞,∞). With coordinates (r, θ),
the metric in the region I reads

ds2 = −r2dθ2 + dr2. (4.7)

The coordinate θ should be regarded as the time coordinate.
We introduce the imaginary time

τ = iθ (4.8)

and the metric becomes

ds2 = dr2 + r2dτ 2. (4.9)

There is no singularity in the region I, so τ should have a
period 2π .

The field equation of the massless scalar field in coordi-
nates (r, θ) (4.6) is

(
− ∂2

∂θ2 + r2 ∂2

∂r2 + r
∂

∂r

)
φ = 0. (4.10)

Defining

φ = R (r)	 (θ) , (4.11)

with the separation of variables, we have

−
(
r2 ∂2

∂r2 + r
∂

∂r

)
R (r) = − ∂2

∂θ2 	(θ) = k2, (4.12)

where k is the eigenvalue.
For a single k, the solution is

φk (r, θ) =
(
Ake

ik ln r + Bke
−ik ln r

)
eikθ . (4.13)

When we apply the periodic boundary condition on φk , we
have

φk (r, θ) = φk (r, θ + 2π i) ,

eikθ = eik(θ+2π i),

k = im, m ∈ Z (4.14)

However, when k = im, eik ln r diverges at r = 0 while
e−ik ln r diverges at r → ∞.

That is, the Euclidean time method will lead to the diver-
gence of the field. Actually, we can define the complex time

T ≡ t + iτ.

If we require that the field is finite everywhere, the field
must be periodic along the t direction. On the other hand,
we require the field is periodic along the τ direction so that
the field of ψ (T ) is double periodic. That is impossible for
a function ψ on the complex plane.

4.3 Classification of state by boundary condition on the
horizon

With the asymptotic behavior at spacelike infinity, the field
can be classified as bound states and scattering states. In our
previous work, we develop the gravitational wave scattering
theory without large-distance asymptotics [42]. When we
concern bound states and scattering states, only the field out-
side the horizon (region I) is considered. The classification
of bound states and scattering states is irrelevant to the black
hole.

In this section, we classify states of the field by the behav-
ior of field on both sides of the horizon. Generally, a particle
can stay inside the black hole, stay outside the black hole or
stay both outside and inside the black hole. If a continuous
field does not vanish inside the black hole while vanishes
outside the black hole, we call it a confined state. If a con-
tinuous field does not vanish both inside the black hole and
outside the black hole, we call it an entanglement state.

123



 1107 Page 6 of 10 Eur. Phys. J. C          (2021) 81:1107 

We first provide bound states and scattering states of the
massless field and the massive field on the black hole.

It is convenient to use coordinates (τ, ξ) defined in Eq.
(3.2) (τ ∈ (−∞,∞), ξ ∈ (−∞,∞), a > 0) outside the
horizon. Field equations of the massless field and the massive
field are

(
− ∂2

∂τ 2 + ∂2

∂ξ2

)
φ I

nm = 0, (4.15)

(
− ∂2

∂τ 2 + ∂2

∂ξ2 − m2e2aξ

)
φ I

m = 0, (4.16)

where φ I
nm represents the massless field outside the horizon

and φ I
m represents the massive field outside the horizon.

Defining

φ I
nm = T I

nm (τ ) X I
nm (ξ) , (4.17)

φ I
m = T I

m (τ ) X I
m (ξ) , (4.18)

and with the separation of variables, we have

− ∂2

∂τ 2 T
I

nm (τ ) = − ∂2

∂ξ2 X
I
nm (ξ) = k2, (4.19)

− ∂2

∂τ 2 T
I

m (τ ) =
(

− ∂2

∂ξ2 + m2e2aξ

)
X I

m (ξ) = k2, (4.20)

where k is the eigenvalue. Solutions for single k are

φ I
nm k =

(
AI

nm ke
ikτ + BI

nm ke
−ikτ

) (
C I

nm ke
ikξ + DI

nm ke
−ikξ

)
, (4.21)

φ I
m k =

(
AI

m ke
ikτ + BI

m ke
−ikτ

) (
C I

m k Ĩk
(m
a
eaξ

)
+ DI

m k K̃k

(m
a
eaξ

))
,

(4.22)

where AI
nm k (AI

m k), BI
nm k (BI

m k), C I
nm k (C I

m k) and DI
nm k

(DI
m k) are expansion coefficients, Ĩk , and K̃k are defined as

[43]

Ĩk (x) ≡ Re (Iik (x)) ,

K̃k (x) ≡ Kik (x)

with Iik and Kik modified Bessel functions of the first kind
and the second kind.

Now, we show that φ I
nm k is a scattering state and φ I

m k is
a bound state.

When k is pure imaginary, such as k = iν and ν > 0, the
field diverges either at τ → ∞ or at τ → −∞. That is, k
must be a real number.

The massless field φ I
nm k is nonvanishing at ξ → +∞,

that is, φ I
nm k is a scattering state. With [43]

lim
x→+∞ Ĩk (x) = 1√

2πx
ex

(
1 + O

(
1

x

))
,

lim
x→+∞ K̃k (x) =

√
π

2x
e−x

(
1 + O

(
1

x

))
, (4.23)

Ĩk
(m
a e

aξ
)

diverges at ξ → +∞. So we must choose

C I
m k = 0.

When ξ → +∞,

φ I
m k ∼ K̃k

(m
a
eaξ

)
→ 0. (4.24)

That is, φ I
m k is a bound state.

Now, we talk about the confined state and the entangle-
ment state.

To obtain a confined state, we need

φ I = 0,

φ I I
∣∣∣
horizon

= 0. (4.25)

When we choose

C I
nm k = DI

nm k = C I
m k = DI

m k = 0,

we have φ I = 0 for both the massless field and the massive
field.

Now we consider the field inside the horizon. It is con-
venient to use coordinates (τ, ξ) (τ ∈ (−∞,∞), ξ ∈(−∞, 1

a ln (aη)
)
, a > 0) defined in Eq. (3.3). The horizon

locates at ξ → −∞. Inside the horizon (region II), field
equations of the massless field and the massive field are

(
− ∂2

∂τ 2 + ∂2

∂ξ2

)
φ I I

nm = 0, (4.26)

(
− ∂2

∂τ 2 + ∂2

∂ξ2 + m2e2aξ

)
φ I I

m = 0, (4.27)

where φ I I
nm represents the massless field and φ I I

m represents
the massive field.

Defining

φ I I
nm = T I I

nm (τ ) X I I
nm (ξ) , (4.28)

φ I I
m = T I I

m (τ ) X I I
m (ξ) , (4.29)

and with the separation of variables, we have

− ∂2

∂τ 2 T
I

nm (τ ) = − ∂2

∂ξ2 X
I
nm (ξ) = k2, (4.30)

− ∂2

∂τ 2 T
I

m (τ ) = −
(

∂2

∂ξ2 + m2e2aξ

)
X I

m (ξ) = k2, (4.31)
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where k is the eigenvalue. Solutions for single k are

φ I I
nm k =

(
AI I

nm ke
ikτ + BI I

nm ke
−ikτ

) (
C I I

nm ke
ikξ + DI I

nm ke
−ikξ

)
,

(4.32)

φ I I
m k =

(
AI I

m ke
ikτ + BI I

m ke
−ikτ

) (
C I I

m k J̃k
(m
a
eaξ

)
+ DI I

m k Ỹk
(m
a
eaξ

))
.

(4.33)

where AI I
nm k (AI I

m k), BI I
nm k (BI I

m k), C I I
nm k (C I I

m k) and DI I
nm k

(DI I
m k) are expansion coefficients, J̃k and Ỹk are defined as

[43]

J̃k (x) ≡ sech

(
1

2
kπ

)
Re (Jik (x)) ,

Ỹk (x) ≡ sech

(
1

2
kπ

)
Re (Yik (x)) (4.34)

with Jik and Yik Bessel functions of the first kind and the
second kind.

When k is pure imaginary, such as k = iν and ν > 0, the
field diverges either at τ → ∞ or at τ → −∞. That is, k
must be a real number.

The massless field φ I I
nm k is oscillating on the horizon so

that there is no confined states for the massless field. With
[43]

lim
x→0+ J̃k (x) =

√
2 tanh

( 1
2 πk

)

πk
cos

(
k ln

(
1

2
x

)
− γk

)
+ O

(
x2) ,

lim
x→0+ Ỹk (x) =

√
2 coth

( 1
2 πk

)

πk
sin

(
k ln

(
1

2
x

)
− γk

)
+ O

(
x2) ,

where γk is the Euler’s constant, the massive field φ I I
m k is also

oscillating on the horizon. That is, there is no confined states
for the massive field neither.

We provide another simpler method to show that there is
no confined states for the massless field. The general solution
of the massless field inside the black hole is present in Eq.
(4.3)

φ = f (t − x) + h (t + x) .

Substituting the boundary condition of the confined state
(2.4) and (4.25) into Eq. (4.3), we have

φ = 0.

That is, there is no confined states for the massless field.
In a word, there is no confined state on the black hole. This

result means that a particle coming into the horizon either
collapses into the singularity or stays in an entanglement
state.

5 White hole thermal absorption

In this section, we show that a white hole possesses a thermal
absorption. First, we show that the white hole should possess
an absorption rather than a radiation qualitatively. Second, we
calculate the white hole thermal absorption quantitatively.

In order to show the white hole absorption, we consider a
massless scalar field φ in Eq. (3.1) on the white hole space-
time.

For simplicity, we use the following boundary condition
in the white hole spacetime

φ|
t=−

√
x2+η2 = 0. (5.1)

The general solution of Eq. (3.1) is Eq. (4.3)

φ = f (t − x) + h (t + x) ,

where f and h are arbitrary functions representing out-going
modes and in-going modes, respectively. Substituting the
boundary condition (5.1) into the general solution, we obtain

φ = f

(
−

√
x2 + η2 − x

)
+ h

(
−

√
x2 + η2 + x

)
= 0.

(5.2)

Equation (5.2) can also be expressed as

h (z) = − f

(
η2

z

)
, z < 0 (5.3)

with z ≡ −√
x2 + η2 − x .

In Eq. (5.2), variables of f and h are negative. That is, as
a restriction, Eq. (5.2) is not effective on all in-going modes
and out-going modes.

Inside the white hole (region IV), t−x < 0 and t+x < 0,
so f (t − x) and h (t + x) must satisfy the relation (5.2). This
means that each out-going mode f (t − x) equals to an in-

going mode h (t + x) = − f
(

η2

t+x

)
. When f (t − x) = 0,

we have h (t + x) = − f
(

η2

t+x

)
= 0.

Conversely, outside the white hole (region I) t + x > 0
and t − x < 0, so the out-going mode f (t − x) is restrained
by the relation (5.2) while the in-going mode h (t + x) is no
longer restrained by the relation (5.2). That is, outside the
white hole, even though f (t − x) = 0, h (t + x) may still
be nonvanishing. So there may exist more in-going modes
than out-going modes. Extra in-going modes come from the
null infinity and go into the white hole, which indicates that
the white hole has a absorption.

The fact that the white hole absorption is thermal can be
deduced by the tunneling mechanism.
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We introduce new coordinates (τ, ξ) in region IV,

t = −1

a
eaξ cosh (aτ) ,

x = −1

a
eaξ sinh (aτ) , (5.4)

witha > 0, τ ∈ (−∞,∞) and ξ ∈ (−∞, 1
a ln (aη)

)
. Coor-

dinates (τ, ξ) in region I are defined in Eq. (3.2)

t = 1

a
eaξ sinh (aτ) ,

x = 1

a
eaξ cosh (aτ) ,

with τ ∈ (−∞,∞) and ξ ∈ (−∞,∞).
For each k > 0, we denote the out-going wave by

φout
k = eik(τ−ξ) (5.5)

and the in-going wave by

φin
k = eik(τ+ξ). (5.6)

With Eqs. (3.2) and (5.4), we have

φ I in
k = eik(τ+ξ) = ei

k
a ln(at+ax),

φ I V in
k = eik(τ+ξ) = ei

k
a ln(−at−ax). (5.7)

There exists a scattering for the out-going wave on the hori-
zon and the amplitude is

lim
t→x

φ I in
k

φ I V in
k

= lim
t→x

ei
k
a ln(at+ax)

ei
k
a ln(−at−ax)

= lim
t→x

ei
k
a ln(at+ax)

ei
k
a [ln(at+ax)++ ln(−1)]

= e− πk
a .

(5.8)

The superscript “I” and “IV” denote the field in correspond-
ing regions. In the above calculation, ln (−1) = −iπ is used.
By the standard procedure [15,39], we find the in-going
modes on the horizon satisfies the bose distribution with a
temperature

T = a

2π

which means that the white hole absorbs thermally.
The scattering does not happen for out-going waves. With

Eqs. (3.2) and (5.4), we have

lim
t→x

φ I out
k

φ I V out
k

= lim
t→x

e−i ka ln(ax−at)

e−i ka ln(ax−at)
= 1. (5.9)

Actually, a white hole spacetime can be regarded as the
time reversal of the corresponding black hole spacetime. If

the black hole radiates thermally, the white hole will absorb
thermally.

6 Conclusion and outlook

The black hole is a universal structure of a spacetime. It
is irrelevant to details of the local metric structure of the
spacetime. When considering a quantum field on a black hole
spacetime, we should concern the universal property rather
than the local property of the field. However, the spacetime
background of a real black hole is complicated so that we
have to investigate local asymptotic behaviors of a quantum
field on the horizon or at the null infinity.

In this paper, we build toy models of a black hole and a
white hole by setting proper boundaries in the Minkowski
spacetime. The advantage of the toy model is that the local
spacetime background is simple enough. The simplicity of
the spacetime structure allows us to get rid of complicated
details of the spacetime and concentrate on the physical pic-
ture of the quantum field.

We calculate the thermal effect with the tunneling mech-
anism. The tunneling mechanism indicates that the thermal
effect should be regarded as the black hole radiation. On the
other hand, the spacetime outside the black hole (the region
I) is the Rindler spacetime. We can also calculate the ther-
mal effect with the Bogolyubov transformation method or the
Euclidean time method as the Unruh effect. This fact indi-
cates that the black hole radiation and the Unruh effect have
the same mechanism in the model.

We consider several boundary effects on the black hole
spacetime. (1) With the boundary condition at the singular-
ity, we show qualitatively that outside the black hole there
exist more out-going modes than in-going modes. Extra out-
going modes outside the black hole serve as the black hole
radiation. (2) A periodic boundary condition is imposed in
the Euclidean time method. We point out that the periodic
boundary condition leads to the divergence of the field, which
means we should be more careful with the Euclidean time
method. (3) We suggest a classification scheme of states of
the field: the confined state and the entanglement state. The
confined state and the entanglement state are more closely
related to the property of a black hole, comparing with the
bound state and the scattering state. We show that there is
no confined state on the black hole in the model. If we sup-
pose that the field of any particle will never collapse into a
Dirac-delta function, a particle will be in an entanglement
state. That is, the field of a particle can be divided into two
entangled parts: the field inside the black hole and the field
outside the black hole. The event horizon of the black hole
plays a role similar to the boundary of a potential well of
finite depth. One can always test the field outside the black
hole to get the information of the field inside the black hole.
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In a word, the information of the black hole in the model
is never lost. We suppose that this result holds true for real
black hole systems. In addition, we show that a white hole
has a thermal absorption. Since the spacetime background is
fixed, the backreaction of the radiation particle to the black
hole is not considered in this paper. The readers can refer to
Refs. [44–47].

Once we get rid of the complicated local spacetime struc-
ture, there are a lot of interesting problems in a black hole
system beyond the thermal effect.
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