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Abstract: We construct a holographic p-wave superconductor with excited states in the 4D Einstein–

Gauss–Bonnet gravity using the Maxwell complex vector field model. In the probe limit, we observe

that, the higher curvature correction or the higher excited state can hinder the vector condensate to be

formed in the full parameter space, which is different from the holographic s-wave superconductor.

Regardless of the choice of the vector mass by selecting the value of m2L2 or m2L2
eff, we note that the

critical chemical potential becomes evenly spaced for the number of nodes and that the difference of

the critical chemical potential between the consecutive states depends on the curvature correction.

Moreover, we find that the higher curvature correction or the higher excited state will alter the

universal relation of the gap frequency, and the pole and delta function of the conductivity for the

excited states can be broadened into the peaks with the finite width as the curvature correction

increases.

Keywords: AdS/CFT correspondence; holographic p-wave superconductor; 4D Einstein–Gauss–

Bonnet Gravity; excited states

PACS: 11.25.Tq; 04.70.Bw; 74.20.-z

1. Introduction

The holographic correspondence, which is expected to be a version of the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence if the bulk is an AdS space [1],
shows that the perturbation theory in the bulk and in a theory with one extra dimension
can be used to investigate the field theory living on the boundary of AdS with strong
coupling [2–4]. In recent years, this correspondence has been extended to explore the
phenomena of high-temperature superconductivity [5–8], which is one of the unsolved
mysteries in modern condensed matter physics. Neglecting the backreaction of matter
fields on the spacetime metric, Hartnoll et al. first built the holographic s-wave super-
conductor [9] by spontaneously breaking an Abelian gauge symmetry of a charged scalar
field in the Schwarzschild-AdS spacetime [10] and successfully reproduced the important
properties of a (2+ 1)-dimensional superconductor. Gubser et al. constructed a holographic
p-wave superconductor model by introducing an SU(2) Yang–Mills field into the bulk [11],
and the authors of [12,13] presented a holographic realization of d-wave superconductivity
by introducing a charged massive spin two field propagating in the bulk. Considering a
charged vector field into an Einstein–Maxwell theory, Cai et al. introduced a new holo-
graphic p-wave superconductor [14] and pointed out that this model is a generalization of
the SU(2) model with a general mass and gyromagnetic ratio [15].

It should be noted that the aforementioned holographic superconductor models focus
on the ground state that corresponds to the minimum free energy state. More recently,
Wang et al. constructed the holographic s-wave superconductor with the excited states in
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the probe limit [16] and beyond the probe limit [17], which shows that, as in the evidence of
the existence of excited states, the conductivity of each excited state has an additional pole
in the imaginary part and a delta function in the real part arising at the low temperature
inside the gap. To go a step further, Li et al. studied the non-equilibrium process of the
excited states for the holographic s-wave superconductor in detail [18], and we developed
a general analytic technique to investigate the excited states of the holographic s-wave and
p-wave superconductors [19]. Owing to the importance of the excited states in condensed
matter physics, there has been an increasing interest in the excited states regarding the
studies of holographic superconductors in the AdS black hole spacetime [20–23] and soliton
spacetime [24].

In this work, in order to systematically understand the influences of the 1/N or 1/λ (λ
is the ’t Hooft coupling) corrections on the holographic dual models, we will generalize the
investigation on the excited states in the holographic p-wave superconductor to the (2 + 1)-
dimensional Gauss–Bonnet model inspired by the work of Glavan and Lin [25], where a 4D
Einstein–Gauss–Bonnet gravity was introduced by adopting the Gauss–Bonnet coupling
parameter α to scale as 1/(D − 4) in the limit D → 4. This novel 4D gravity preserves
the number of graviton degrees of freedom, thus being free from Ostrogradsky instability,
and the Gauss–Bonnet coupling will produce the nontrivial dynamics. However, some
independent groups pointed out quite serious doubts regarding the credibility of this 4D
Gauss–Bonnet bulk construction since the original claim of [25] explicitly contradicts with
the established theorem, i.e., the Lovelock theorem [26–32]. Thus, the researchers further
proposed the regularized 4D Einstein–Gauss–Bonnet gravity [33,34] and the consistent
D → 4 Einstein–Gauss–Bonnet gravity [35]. In particular, the consistent theory of D → 4
Einstein–Gauss–Bonnet gravity, which is also called the 4D Aoki–Gorji–Mukohyama theory
of gravity, can be served as a consistent realization of D → 4 Einstein–Gauss–Bonnet
gravity with the rescaled Gauss–Bonnet coupling constant by taking into account all of
the above issues [36,37], and recover the black hole solutions provided in [25] and the
well-known Friedmann–Lemaître–Robertson–Walker (FLRW) metric. These 4D Einstein–
Gauss–Bonnet gravity theories exhibit a number of interesting phenomena in different
areas, for reviews, see [38] and the references therein. Interestingly, an exact solution of the
same form, named the 4D planar Gauss–Bonnet-AdS black hole, can be obtained via these
gravity theories [33–37,39–41]:

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2(dx2 + dy2), (1)

with the metric coefficient

f = f (r) =
r2

2α



1 −

√

√

√

√1 − 4α

L2

(

1 − r3
+

r3

)



, (2)

where α is the Gauss–Bonnet coupling and r+ is the black hole horizon related to the
Hawking temperature TH = 3r+/(4πL2). Since f ≈ r2(1 −

√
1 − 4α/L2)/(2α), we can

define the so-called effective asymptotic AdS scale by [42]

L2
eff =

2α

1 −
√

1 − 4α
L2

, (3)

where the upper bound α = L2/4 is the Chern–Simons limit [43]. It should be noted
that, since we are interested in the application of the Mermin–Wagner theorem to the
holographic superconductors, we prefer the Einstein–Gauss–Bonnet gravity theory, where
specific combinations of the curvature tensors are used, over other modified theories, such
as the f (R) gravity, where powers of the Ricci scalar only are used [44–46].
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As a matter of fact, for the s-wave superconductor, we have constructed the holo-
graphic dual model with the excited states away from the probe limit in the 4D Aoki–Gorji–
Mukohyama theory of gravity, and observed that the combination of the Gauss–Bonnet
gravity and excited state provides richer physics in the scalar condensates and conductiv-
ity in the (2 + 1)-dimensional superconductor [47], which exhibits a very interesting and
different feature when compared to the higher-dimensional Gauss–Bonnet superconduc-
tor [44–46]. Bao et al. studied the excited states of the holographic s-wave superconductor
with the scalar field coupled to the Gauss–Bonnet invariance and found that the Gauss–
Bonnet coupling has interesting prints on the critical temperature, condensation strength,
and optical conductivity for the ground state and excited states [48]. However, the study on
the (2 + 1)-dimensional Gauss–Bonnet p-wave superconductor is called for. Thus, we will
build the holographic p-wave superconductor in the 4D Einstein–Gauss–Bonnet gravity
via the Maxwell complex vector field model and investigate the effects of the curvature
corrections on the excited states of the (2 + 1)-dimensional p-wave superconductor. Since
the probe limit can extract the main physics of the holographic dual system and avoid the
complex computation, we will concentrate on this limit in the following.

This work is organized as follows. In Section 2, we will construct the holographic
p-wave superconductor model in the 4D Gauss–Bonnet-AdS black hole background. In
Section 3, we will investigate the condensate of the vector field and the phase transition
in the (2 + 1)-dimensional Gauss–Bonnet p-wave superconductor both for the ground
state and excited states. In Section 4, we will calculate the electrical conductivity of our
holographic p-wave model with the excited states. We will conclude, in the last section,
with our main results.

2. Description of the p-Wave Model

We will build the holographic p-wave superconductor by using the Maxwell complex
vector field model [14,15]:

S =
∫

d4x
√

−g

(

−1

4
FµνFµν − 1

2
ρ†

µνρµν − m2ρ†
µρµ + iqγ0ρµρ†

νFµν

)

, (4)

with the Maxwell field strength Fµν = ∇µ Aν −∇ν Aµ and the tensor ρµν = Dµρν − Dνρµ.
Here, ρµ is the complex vector field with mass m and charge q, Dµ = ∇µ − iqAµ denotes
the covariant derivative, and γ0 represents the interaction between the vector field ρµ and
the gauge field Aµ.

Since we work in a probe limit where the backreaction of matter fields on the spacetime
metric is neglected, the gravitational background will be fixed and the matter fields can be
treated as the perturbations. Varying the action (4) with respect to the vector field ρµ and
gauge field Aµ, we have

Dνρνµ − m2ρµ + iqγ0ρνFνµ = 0, (5)

∇νFνµ − iq(ρνρ†
νµ − ρν†ρνµ)− iqγ0∇ν(ρνρ†

µ − ρ†
νρµ) = 0. (6)

As in [14,15], we also adopt the ansatz for the matter fields ρµdxµ = ρx(r)dx and
Aµdxµ = At(r)dt. Thus, under the metric (1), the above equations of motion become

ρ′′x +
f ′

f
ρ′x −

1

f

(

m2 − q2 A2
t

f

)

ρx = 0, (7)

A′′
t +

2

r
A′

t −
2q2ρ2

x

r2 f
At = 0, (8)

where the prime denotes the differentiation in r.
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In order to investigate the excited states of the holographic p-wave superconductor in
the 4D Einstein–Gauss–Bonnet gravity, we have to numerically solve Equations (7) and (8)
by using the shooting method [9]. For the boundary condition at the horizon r = r+, the
field ρx is regular but At obeys At(r+) = 0. Near the AdS boundary r → ∞, we obtain the
asymptotic behaviors

ρx =
ρx−
r∆−

+
ρx+

r∆+
, At = µ − ρ

r
, (9)

with the characteristic exponents defined by ∆± =
(

1 ±
√

1 + 4m2L2
eff

)

/2. From the

AdS/CFT correspondence, µ and ρ are interpreted as the chemical potential and charge
density, and ρx− and ρx+ correspond to the source and vacuum expectation value of the
vector operator Ox in the dual field theory, respectively. In this work, we will impose the
boundary condition ρx− = 0 and set ∆ = ∆+ for clarity.

3. Condensate and Phase Transition

It is well known that a phase transition is a change in state from one phase to another;
it can be driven by many parameters, such as the temperature, pressure, etc. Choosing the
temperature as the driving parameter, one finds that the high-temperature phase is almost
always more disordered, i.e., has a higher symmetry than the low-temperature phase.
In the holographic superconductor model, a charged condensate forms below a critical
temperature Tc, which is the symmetry breaking phase transition to a superconducting
phase. Now, we are in a position to generalize the investigation on the vector condensate
and phase transition for the ground state of the holographic p-wave superconductor in the
4D Einstein–Gauss–Bonnet gravity [49] to those for the excited states. When performing
numerical calculations, we will use the following scaling symmetries

r → λr, (t, x, y) → λ−1(t, x, y), q → q, (ρx, At) → λ(ρx, At),

µ → λµ, ρ → λ2ρ, ρx+ → λ1+∆ρx+, (10)

to build the invariant and dimensionless quantities, where λ is a real positive number.
For simplicity, we set r+ = 1 and q = 1 in the following calculation. On the other hand,
from [49], we observe that, regardless of the choice of the mass of the vector field, by
choosing the value of m2L2 or m2L2

eff, the critical temperature Tc decreases as α increases for
all vector field masses in the ground state. We will check it in the excited states and expect
this tendency to be the same. For concreteness, we choose the Gauss–Bonnet parameter in
the range −L2/10 ≤ α ≤ L2/4 as in [49] and fix the masses of the vector field m2L2 = 3/4
and m2L2

eff = 3/4 in our calculation. It should be noted that the other choices of the vector
mass will not qualitatively modify our results.

In Figure 1, we present the condensates of the vector operator Ox as a function of
temperature for various Gauss–Bonnet parameters α from the ground state (n = 0) to
the second excited state (n = 2) with the fixed vector masses m2L2 = 3/4 and m2L2

eff =
3/4. Obviously, there exists the critical behavior of the second-order phase transition
〈Ox〉 ∼ (1 − T/Tc)1/2 for the fixed α and n, and each curve is in agreement with that of the
holographic p-wave superconducting phase in the literature, where the condensate goes to a
constant at zero temperature. For the fixed number of nodes n, we observe that this constant,
which corresponds to the condensation gap, increases as α increases, which suggests that,
regardless of the ground state or the excited states, the higher curvature correction causes
the vector hair to be more difficult to be developed in the (2 + 1)-dimensional p-wave
superconductor. This result is independent of the choice of the vector mass by selecting
the value of m2L2 or m2L2

eff, which can be used to back up the numerical finding as shown
in [49] for the ground state of the (2 + 1)-dimensional Gauss–Bonnet superconductor.
For the fixed Gauss–Bonnet parameter α, we see that the condensation gap increases as
n increases, which indicates that the higher excited state causes it to be harder for the
condensate of the vector operator to form. Thus, the p-wave superconductor still exists
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even when we consider the Gauss–Bonnet corrections to the standard (2 + 1)-dimensional
holographic superconductor model with the excited states.
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Figure 1. (Color online) The condensates of the vector operator Ox as a function of temperature for

the masses of the vector field m2L2 = 3/4 (left) and m2L2
eff = 3/4 (right) with different values of the

Gauss–Bonnet parameter from the ground state to the second excited state. In each panel, the four

lines correspond to increasing Gauss–Bonnet parameters, i.e., α = −0.1 (red and dashed), 0.0 (blue),

0.1 (green), and 0.25 (black and dashed), respectively.

In order to further support the observation obtained in Figure 1, we provide the
critical temperature Tc as a function of the Gauss–Bonnet parameter from the ground state
(n = 0) to the third excited state (n = 3) for the fixed vector masses m2L2 = 3/4 and
m2L2

eff = 3/4 in Figure 2. It is shown that, regardless of the choice of the mass of the vector
field by choosing the value of m2L2 or m2L2

eff, we find that the increase in the Gauss–Bonnet
parameter α or the number of nodes n results in the decrease in the critical temperature Tc,
which can be used to back up the numerical finding as shown in Figure 1 that the higher
curvature correction or the higher excited state can hinder the condensate to be formed
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in the full parameter space. This behavior is reminiscent of that seen for the s-wave case
where the curvature correction has a more subtle effect, i.e., the critical temperature first
decreases then increases as the curvature correction tends toward the Chern–Simons value.
Increasing n will weaken this subtle effect of the Gauss–Bonnet parameter on the critical
temperature [47], so we conclude that the curvature correction has completely different
effects on the critical temperature Tc for the s-wave and p-wave superconductors with the
excited states in (2 + 1)-dimensions.
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n=3

m
2
L
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Figure 2. (Color online) The critical temperature Tc of the vector operator Ox as a function of the

Gauss–Bonnet parameter for the fixed masses of the vector field m2L2 = 3/4 (left) and m2L2
eff = 3/4

(right) from the ground state to the third excited state.

As a matter of fact, we can also realize the phase transition of the holographic super-
conductor around the critical chemical potential µc, above which the vector field begins to
condensate. Therefore, we present the critical chemical potential µc of the vector operator
Ox with the masses of the vector field m2L2 = 3/4 and m2L2

eff = 3/4 from the ground state
to the 20-th excited state for different values of the Gauss–Bonnet parameter, i.e., α = −0.10,
0, 0.10, and 0.25 in Table 1. It is found that the critical chemical potential µc increases with
the increase in α or n, which agrees well with the finding of the critical temperature Tc

and indicates that the higher curvature correction or the higher excited state causes the
condensate of the vector operator Ox to be harder. Obviously, the critical chemical potential
µc of m2L2 = 3/4 (left column) is much closer to that of m2L2

eff = 3/4 (right column) as
the number of nodes n increases for each α, for example, in the case of n = 20 here, which
means that, regardless of the choice of the mass by selecting the value of m2L2 or m2L2

eff,
the critical chemical potentials are the same for a sufficiently large n. Fitting the relation
between µc and n by using the results in Table 1, we have

µc ≈







































4.820n + 5.042 , for α = −0.10 ,

5.189n + 5.345 , for α = 0.00 ,

5.714n + 5.772 , for α = 0.10 ,

7.931n + 7.391 , for α = 0.25 ,

(11)
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for the vector mass m2L2 = 3/4 and

µc ≈







































4.821n + 4.941 , for α = −0.10 ,

5.189n + 5.345 , for α = 0.00 ,

5.712n + 5.927 , for α = 0.10 ,

7.919n + 8.479 , for α = 0.25 ,

(12)

for the vector mass m2L2
eff = 3/4, which shows that the critical chemical potential µc

becomes evenly spaced for the number of nodes n and that the difference of µc between
the consecutive states does not depend on the choice of the vector mass but does depend
on the Gauss–Bonnet parameter, i.e., ∆µc = 4.8 for α = −0.10, ∆µc = 5.2 for α = 0.00,
∆µc = 5.7 for α = 0.10, and ∆µc = 7.9 for α = 0.25. Interestingly, increasing the Gauss–
Bonnet parameter α increases this difference of the critical chemical potential between the
consecutive states.

Table 1. The critical chemical potential µc of the vector operator Ox for the masses of the vector field

m2L2 = 3/4 (left column) and m2L2
eff = 3/4 (right column) with different values of the Gauss–Bonnet

parameter from the ground state to the 20-th excited state. It should be noted that the critical chemical

potentials for the different choices of the vector mass are the same for the case of α = 0, i.e., the

Schwarzschild-AdS black hole.

n α = −0.10 α = 0 α = 0.10 α = 0.25

0 5.163 5.047 5.465 5.896 6.073 7.629 8.887
1 9.896 9.790 10.569 11.527 11.688 15.389 16.524
2 14.682 14.581 15.723 17.203 17.356 23.251 24.321
3 19.486 19.389 20.894 22.897 23.045 31.149 32.178
4 24.298 24.203 26.074 28.601 28.745 39.064 40.064
5 29.115 29.021 31.258 34.309 34.451 46.987 47.967
6 33.934 33.842 36.445 40.021 40.161 54.916 55.880
7 38.755 38.664 41.635 45.735 45.873 62.848 63.800
8 43.578 43.488 46.825 51.451 51.588 70.783 71.725
9 48.401 48.312 52.016 57.168 57.304 78.720 79.653
10 53.225 53.136 57.208 62.886 63.021 86.658 87.584
11 58.050 57.961 62.401 68.604 68.738 94.597 95.517
12 62.875 62.787 67.594 74.323 74.457 102.537 103.452
13 67.700 67.612 72.788 80.042 80.175 110.478 111.388
14 72.526 72.438 77.982 85.762 85.895 118.419 119.325
15 77.351 77.264 83.176 91.482 91.615 126.361 127.263
16 82.177 82.090 88.370 97.203 97.334 134.303 135.202
17 87.003 86.916 93.565 102.923 103.054 142.246 143.142
18 91.829 91.743 98.759 108.644 108.774 150.188 151.081
19 96.656 96.569 103.954 114.365 114.495 158.131 159.022
20 101.482 101.396 109.149 120.086 120.216 166.074 166.963

4. Conductivity

In order to calculate the conductivity of the (2 + 1)-dimensional Gauss–Bonnet p-wave
superconductor with the excited states, we assume that the perturbed Maxwell field has a
form δAy = e−iωt Ay(r)dy, just as in [14]. Thus, the equation of motion of the perturbation
Ay(r) is

A′′
y +

f ′

f
A′

y +

(

ω2

f 2
− 2q2ρ2

x

r2 f

)

Ay = 0. (13)
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At the horizon, we impose the ingoing wave boundary condition Ay(r) ∼ f (r)−iω/(4πTH).
At the asymptotic boundary (r → ∞), we obtain

Ay = A(0) +
A(1)

r
, (14)

which leads to the conductivity of the dual superconductor

σ = − iA(1)

ωA(0)
. (15)

Considering that the different choices of the vector mass do not qualitatively modify
the effect of the Gauss–Bonnet correction on the behavior of the condensates for the vector
operator Ox, we will fix the mass of the vector field by m2L2

eff = 3/4 in this section.
In Figure 3, we plot the conductivity of the (2+ 1)-dimensional p-wave superconductor

for the vector mass m2L2
eff = 3/4 with different values of the Gauss–Bonnet parameter

from the ground state to the third excited state at temperature T/Tc ≈ 0.20. It is shown that,
similar to the ground state [49], there also exists a gap in the conductivity of the excited
state and the gap frequency ωg increases as the Gauss–Bonnet parameter α increases, where
we define the gap frequency ωg as the frequency minimizing Im[σ(ω)] [50]. Obviously,
the increasing Gauss–Bonnet parameter α or number of nodes n is to increase ωg/Tc,
which implies that the higher curvature correction or the higher excited state will alter
the universal relation ωg/Tc ≈ 8 [50] for the (2 + 1)-dimensional p-wave superconductor.
Moreover, we find that, as evidence of the existence of excited states, there exist additional
poles in Im[σ(ω)] and delta functions in Re[σ(ω)] arising at low temperatures for the
excited states, which is similar to the holographic s-wave superconductor with the excited
states [16,17]. Interestingly, as α increases, we clearly see that the pole and delta function can
be broadened into the peaks with the finite width, which is consistent with the finding in
the (2 + 1)-dimensional Gauss–Bonnet s-wave superconductor with the excited states [47].
This may be a quite general feature for the holographic superconductor with the excited
states in the 4D Einstein–Gauss–Bonnet gravity.
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Figure 3. (Color online) The conductivity for the mass of the vector field m2L2
eff = 3/4 with different

values of the Gauss–Bonnet parameter from the ground state to the third excited state, where the

solid line and dashed line represent the real part and imaginary part of the conductivity σ(ω). In

each panel, the blue, green, red, and black lines denote the ground (n = 0), first (n = 1), second

(n = 2), and third (n = 3) states, respectively.

5. Conclusions

In order to understand the influences of the 1/N or 1/λ corrections on the vector
condensate, we have built the (2 + 1)-dimensional p-wave superconductor with the excited
states in the 4D Einstein–Gauss–Bonnet gravity using the Maxwell complex vector field
model. In the probe limit, regardless of the choice of the mass of the vector field by choosing
the value of m2L2 or m2L2

eff, the system undergoes a second-order phase transition near the
critical temperature Tc both for the ground state and excited states. We noted that, different
from the holographic s-wave superconductor where the Gauss–Bonnet parameter α and the
number of nodes n have a more subtle effect on the critical temperature, in the holographic
p-wave case, the critical temperature Tc always decreases as α or n increases in the full
parameter space. This means that the curvature corrections have completely different effects
on the critical temperature Tc for the s-wave and p-wave superconductors with the excited
states in (2 + 1)-dimensions and implies that the higher curvature correction or the higher
excited state will cause the vector hair to be more difficult to develop. We also calculated
the critical chemical potential µc of the excited states, and found that µc becomes evenly
spaced for the number of nodes n and that the difference of µc between the consecutive
states is independent of the choice of the vector mass but dependent of the Gauss–Bonnet
parameter α, i.e., increasing α increases the difference of µc between the consecutive states.
Furthermore, we investigated the conductivity of the system and showed that the gap
frequency ωg/Tc increases with the increase in the Gauss–Bonnet parameter α or number of
nodes n, which indicates that the higher curvature correction or the higher excited state will
alter the universal relation ωg/Tc ≈ 8 for the (2 + 1)-dimensional p-wave superconductors.
Interestingly, we observed that, as the Gauss–Bonnet parameter α increases, the pole in the
imaginary part of the conductivity and delta function in the real part for the excited states
can be broadened into the peaks with the finite width, which agrees well with the finding
in the (2 + 1)-dimensional Gauss–Bonnet s-wave superconductor with the excited states.
This may be a quite general feature for the holographic superconductors with the excited
states in the 4D Einstein–Gauss–Bonnet gravity.
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