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Abstract We study finite-coupling corrections on the
energy loss of light quarks in strongly coupled N = 4
super Yang–Mills (SYM) plasma. We perform the analysis
by computing the stopping distance of an image jet induced
by a massless source field, characterized by a massless par-
ticle falling along the null geodesic in Einstein gravity with
curvature-squared (R2) corrections. It turns out that the stop-
ping distance in the R2 theories can be larger or smaller than
its SYM counterpart depending on the higher-derivative coef-
ficients. Moreover, we evaluate the stopping distance in the
Gauss–Bonnet background and find that increasing λGB (a
dimensionless parameter in Gauss–Bonnet gravity) leads to a
decrease in the stopping distance, thus enhancing the energy
loss of light quarks, in agreement with previous findings for
the drag force, jet quenching parameter, and the instanta-
neous energy loss of light quarks using shooting strings.

1 Introduction

Various findings from the quark gluon plasma (QGP) pro-
duced in heavy-ion collision experiments at the Relativis-
tic Heavy Ion Collider (RHIC) and Large Hadron Collider
(LHC) suggest that QGP is strongly coupled [1], and thus
calculational tools beyond the perturbative quantum chro-
modynamics (QCD) are called for. Such tools are now avail-
able via the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [2–5], which can relate the N = 4 super
Yang–Mills (SYM) theory in four dimensions to the type IIB
superstring theory formulated on AdS5 × S5 at the large ’t
Hooft coupling λ and large number of colors Nc limit. With
this method, challenging questions about QCD in the strong
coupling regime can be mapped to processes in theories of
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gravity that are easily handled. Over the last two decades,
the AdS/CFT correspondence has been used to study various
aspects of QGP (see [6,7] for reviews with many phenomeno-
logical applications). One of its important applications is jet
quenching: the rapid energy loss of highly energetic partons
traversing QGP. For example, the energy loss of heavy quarks
in SYM plasma has been studied by the drag force obtained
from a trailing string moving in the dual geometry [8,9].
On the other hand, the energy loss of light quarks in SYM
plasma has been discussed in different ways: for example, the
jet quenching parameter extracted from a light-cone Wilson
loop probing the infrared scale [10,11], the stopping distance
of light quarks using falling string [12–16], and the instan-
taneous energy loss of light quarks using shooting strings
[17,18].

It is known that string theory (or any quantum theory of
gravity) may contain higher-derivative corrections because
of stringy or quantum effects. Although we are not sure of
the forms of higher-derivative corrections in string theory, we
expect that generic corrections can occur due to the vastness
of the string landscape [19]. For example, for the well-known
N = 4 SYM theory, the gravity dual corresponds to the type
IIB string theory formulated on AdS5×S5. Using the relation√

λ = L2/α′, the O(α′) expansion in type IIB string theory
becomes the 1/

√
λ expansion in SYM theory, where L is

the AdS radius and α′ is the reciprocal of the string tension.
The leading-order corrections, i.e., first higher-derivative cor-
rections (commonly known as R4 corrections), in 1/λ arise
from stringy corrections to the type IIB tree-level effective
action of the form α′3R4. On the other hand, the curvature-
squared interactions (commonly known as R2 corrections) to
the gravity sector of AdS5 are related to the leading 1/Nc cor-
rections in the presence of a D7-brane [20–22]. Motivated by
these vast string landscapes, various observables or quantities
have been studied in higher-derivative gravity. For instance,
the ratio of shear viscosity to entropy density [23–27], heavy
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quark potential [28–30], drag force [31–33], and jet quench-
ing parameter [34,35] have been discussed under R4 or R2

corrections. Other interesting results can be found in [36–
51]. To the best of our knowledge, although the calculation
of the stopping distance under R4 corrections was performed
by [52], the R2 corrections on this quantity have never been
addressed in the literature. The intent of the present work is
to fill that gap.

This paper is structured as follows. In the next section, we
investigate the stopping distance of a light quark in general
R2 theories. In Sect. 3, we perform the analysis in Gauss–
Bonnet (GB) gravity, a special kind of R2 theory. The last
part is devoted to conclusions and discussion.

2 Stopping distance with R2 corrections

If considering the gravity sector in AdS5, the R2 theories can
be defined by the following action

I = 1

16πG5

∫
d5x

√−g

[
R + 12

L2

+L2(c1R
2 + c2RμνR

μν + c3Rμνρσ R
μνρσ )

]
, (1)

where G5 is the five-dimensional Newton constant, R is the
Ricci scalar, Rμν and Rμνρσ are the Ricci tensor and Riemann
tensor, respectively, and L is the AdS5 radius at leading order
in ci , with ci ∼ α′

L2 � 1. Other terms with factors of R or
additional derivatives will be suppressed by higher powers of
α′
L2 [25]. Note that ci are arbitrary small coefficients, where
c3 is unambiguous at leading order while c1 and c2 can be
arbitrarily varied by a metric redefinition [27].

A black hole solution for (1) can be written as

ds2 = − f (r)dt2 + r2

L2 d�x2 + 1

f (r)
dr2, (2)

where

f (r) = r2

L2

(
1 − r4

0

r4 + α + β
r8

0

r8

)
, (3)

with

α = 2

3
(10c1 + 2c2 + c3), β = 2c3, (4)

where r is the coordinate of the fifth dimension, and t, �x
label the directions along the boundary at spatial infinity. In
these coordinates, the boundary of the black brane geometry
is r = ∞ and the horizon is located at r = rh , which can be
found by solving f (rh) = 0. The parameter r0 depends on
α, β and rh .

The temperature of the black hole is

TR2 = r0

πL2

(
1 + 1

4
α − 5

4
β

)
. (5)

Now we will study the jet quenching of a light probe by
computing the stopping distance of a massless particle mov-
ing along the null geodesic in the background metric (2). Fol-
lowing [15,16] (see also [53–56]), the R-charged current can
be generated by a massless gauge field in the corresponding
gravity dual, and the induced current can then be considered
as an energetic jet passing through the medium. Once the
wave packet of the massless field falls into the horizon, the
image jet on the boundary will dissipate and thus thermalize
in the medium. Therefore, the stopping distance (or penetra-
tion depth) is defined as the distance for a jet passing through
the medium before it thermalizes.

At the Wentzel–Kramers–Brillouin (WKB) approxima-
tion, one may consider the wave packet of the gauge field in
the gravity dual localized in the momentum space. Then the
wave function of the gauge field can be written as

A j (t, z) = exp

[
i

h̄

(
qkxk +

∫
dzqz

)]
Ã j (t, z), (6)

where qk is the 4-momentum, which is conserved as the
metric preserves the translational symmetry along the four-
dimensional spacetime, z is the five-dimensional coordinate
(note that the calculations of [15,16] were performed using
the z coordinate, but one can go back to the r coordinate
by the coordinate transformation z = L2/r ), qz refers to
the momentum along the bulk direction, j, k =0,1,2,3 are
the four-dimensional spacetime coordinates, and Ã j (t, z)
denotes the slowly varying with respect to t and z.

In the limit h̄ → 0, the equation of motion of the wave
packet will reduce to a null geodesic in the dual geometry,

0 = (ds2) = dxi gi jdx
j + dzgzzdz, (7)

which results in

dz

dζ
= 1√

gzz

[
−gi j

dxi

dζ

dx j

dζ

]1/2

, (8)

where ζ denotes an affine parameter for the trajectory. The
four-dimensional translation invariance

gi j
dx j

dζ
(9)

is conserved and proportional to qi , yielding

dxi

dζ
∝ gi j q j . (10)

Then, dividing (10) by (8), one has

dxi

dz
= √

gzz
gi j q j

(−qkgklql)1/2 ; (11)

one can check that the null geodesic in (11) will remain
unchanged even when one uses the Einstein frame.
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To proceed, we compute the stopping distance. Assuming
that the 3-momentum �q points in one of the �x directions, e.g.,
the x3 direction, implying that qi = (−ω, 0, 0, |�q|), where
ω and �q are the energy and spacial momentum of the light
quarks, respectively, plugging (2) into (11) and doing some
algebraic transformations, the stopping distances of light
quarks moving in SYM plasma with the effect of curvature-
squared corrections is found as follows

xR2 =
∫ ∞

rh

dr

r2
(

ω2

|�q|2 −
(

1 − r4
0
r4 + α + β

r8
0
r8

))1/2 , (12)

where for convenience we have set the AdS radius L as unity.
Note that if one takes α = β = 0 in (12), the results of SYM
[15,16] will be recovered.

Now we analyze the R2 corrections on the stopping dis-
tance. As was mentioned above, the exact interval of ci has
not been determined, which means that α and β are arbitrary
constants (usually small). Ideally, one should discuss differ-
ent values of α and β. In Figs. 1 and 2, we plot xR2/xSYM

versus α (or β) for various cases, where xSYM denotes the
corresponding stopping distance in SYM (i.e., without R2

corrections). From these figures, one can see that increasing
either α or β leads to an increase in xR2/xSYM. Moreover,
by comparing Figs. 1 and 2, one finds that α has a stronger
effect than β. That is understandable, because α exists alone
in f (r) while β is multiplied by (r0/r)8, with r0/r < 1.
Moreover, with some chosen values of α and β, xR2/xSYM

can be larger or smaller than 1, indicating that R2 corrections
can increase or decrease the stopping distance depending on
α and β, similar to the results of the drag force [32]. To sum-
marize, given the uncertainty of α and β, exact or firm R2

corrections on the stopping distance are hard to come by.
However, the GB gravity, a special case of R2 theories, may
improve this situation. We will discuss this topic in the next
section.

3 Stopping distance in Gauss–Bonnet gravity
background

GB theory, the most general theory of gravity with quadratic
powers of curvature in five dimensions, is defined by the
classical action of the form [57]

I = 1

16πG5

∫
d5x

√−g

[
R + 12

L2

+λGB

2
L2

(
R2 − 4RμνR

μν + Rμνρσ R
μνρσ

)]
, (13)

where λGB is a dimensionless parameter, constrained in

− 7

36
< λGB ≤ 9

100
, (14)

where the upper bound originates from avoiding a causality
violation in the boundary [26], while the lower bound comes
from requiring the boundary energy density to be positive-
definite [58].

A black hole solution for (13) is known analytically as
[59]

ds2 = −a2 r
2

L2 f (r)dt2 + r2

L2 d�x2 + L2

r2

dr2

f (r)
, (15)

with

f (r) = 1

2λGB

⎡
⎣1 −

√√√√1 − 4λGB

(
1 − r4

h

r4

)⎤
⎦ , (16)

and

a2 = 1

2
(1 + √

1 − 4λGB). (17)

The temperature is given by

TGB = arh
πL2 . (18)

It is remarkable that the ratio of shear viscosity to entropy
density in GB gravity [25–27]

η

s
= 1

4π
(1 − 4λGB), (19)

can violate the conjectured viscosity bound for λGB > 0.
The next analysis is parallel to the previous section, so

we only show the final result. The stopping distance of light
quarks in GB gravity is as follows

xGB =
∫ ∞

rh

dr

r2( 1
a2

ω2

|�q|2 − 1
2λGB

(1 −
√

1 − 4λGB(1 − r4
h
r4 )))1/2

.

(20)

In Fig. 3, we plot xGB/xSYM as a function of λGB for the
range − 7

36 < λGB ≤ 9
100 (note that the point of λGB = 0

is excluded from the numerical plot, since it appears in the
denominator, but we will analyze it later using an analyti-
cal method). One can see that as λGB increases, xGB/xSYM

decreases. As we know, for light quarks, the greater the
kinetic energy (or momentum), the larger the stopping dis-
tance. Therefore, one can conclude that increasing λGB leads
to a decrease in the stopping distance, thus enhancing the
energy loss of light quarks, consistent with the findings for
the drag force [32], jet quenching parameter [33,35], and
the instantaneous energy loss of light quarks using shooting
strings [18].

Moreover, from Fig. 3 one can see that positive (nega-
tive) λGB gives xGB/xSYM < 1 (xGB/xSYM > 1), indicating
that the stopping distance in GB gravity will be smaller or
larger than the SYM case depending on λGB. In particular, for
λGB = −7/36, the ratio increases the SYM result by about
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Fig. 1 x/xSYM versus α with fixed β. Left: complete graph. Right: local image. Here we take |�q| = 0.99ω

Fig. 2 x/xSYM versus β with fixed α. Left: complete graph. Right: local image. Here we take |�q| = 0.99ω

10 percent, while for λGB = 9/100 it decreases it by about
7 percent.

Now we discuss λGB = 0 for (20) using an analytical
method. For λGB > 0, (20) can be rewritten as

xGB =
∫ 1

0
dz

L2

rh

√
2λGB|�q|

(−q2(1 − √
1 − 4λGB) + �q2(

√
1 − 4λGB(1 − z4) − √

1 − 4λGB))1/2
, (21)

where z = rh/r and −q2 = ω2 − �q2. Since |λGB| < 1,
one can apply Taylor expansion (21) to the leading-order
correction to λGB = 0 as

xGB �
∫ 1

0
dz

L2

rh

|�q|
(−q2 + �q2z4 + λGB(−q2 + 2�q2z4 − �q2z8))1/2 . (22)

Note that the above integrand is dominated by small z,
with z ∼ (−q2/�q2)1/4. After dropping the z8 term, (22)
approximately [15,16]

xGB �
∫ ∞

0
dz

L2

rh

|�q|
(−q2 + �q2z4 + λGB(−q2 + 2�q2z4))1/2

∝ (ω2/(−q2))1/4(1 + 3λGB)−1/4. (23)

Similarly, for λGB < 0, one finds
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Fig. 3 xGB/xSYM versus λGB. Here we take |�q| = 0.99ω

xGB =
∫ 1

0
dz

L2

rh

√−2λGB|�q|
(q2(1 − √

1 − 4λGB) + �q2(−√
1 − 4λGB(1 − z4) + √

1 − 4λGB))1/2

∝ (ω2/(−q2))1/4(1 + 3λGB)−1/4. (24)

(23) or (24) implies that for λGB > 0 (λGB < 0), the stopping
distance of light quarks in GB gravity is smaller (larger) than
its counterpart of SYM, consistent with previous numerical
results.

4 Conclusion and discussion

We have studied the energy loss of light quarks in strongly
coupled SYM plasma under R2 corrections. We performed
the analysis by computing the stopping distance of an image
jet induced by a massless source field, characterized by a
massless particle falling along the null geodesic in a general
AdS5 space with R2 corrections and the GB background. For
the general case, we found that the stopping distance with R2

corrections can be larger or smaller than its SYM counter-
part depending on α and β, and for smaller α and β, these
corrections may not count for much. For the GB case, we
observed that increasing λGB leads to a decrease in the stop-
ping distance, thus enhancing the light quark energy loss,
consistent with previous findings regarding the drag force
[32], jet quenching parameter [33,35], and the instantaneous
energy loss using shooting strings [18]. Taking all this into
account, one may draw a general conclusion that increas-
ing λGB enhances the energy loss of heavy quarks and light
quarks. However, it should be noted that the energy loss will
be larger or smaller than its SYM counterpart because λGB

can be positive or negative. Incidentally, the choice of λ = 1,
including R2 corrections with λGB = −0.2 (which gives

η/s = 1.8/(4π)), matches well with the nuclear suppres-
sion factor RAA at LHC [18].

Also, the results may provide an estimate of how the
energy loss changes with η/s at strong coupling. From (19)
one can see that increasing λGB leads to a decrease in η/s,
thus making the fluid more “perfect.” Here, we found that
increasing λGB leads to increased energy loss. Thus, one may
conclude that at strong coupling, as η/s decreases, the energy
loss of both heavy quarks and light quarks is enhanced.
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