
END-TO-END DIFFERENTIABLE DIGITAL TWIN FOR THE IOTA/FAST
FACILITY∗

N. Kuklev†, M. Wallbank, N. Banerjee, J. Jarvis, A. Romanov
Fermi National National Laboratory, Batavia, IL, USA

Abstract
As the design complexity of modern accelerators grows,

there is more interest in using controllable-fidelity simula-
tions that have fast execution time or can yield additional
insights about accelerator state. One notable example of
additional information are gradients of physical observables
with respect to design parameters produced by differentiable
simulations. The IOTA/FAST facility has recently begun a
program to implement and experimentally validate an end-
to-end digital twin to serve as a virtual accelerator test stand,
allowing for rapid prototyping of new software and experi-
ments with minimal beam time costs. In this contribution
we will discuss our plans and progress. Specifically, we will
cover the selection and benchmarking of both physics and
ML codes for linac and ring simulation, the development
of generic interfaces between surrogate and physics-based
sections, and presenting the control interface as either a de-
terministic event loop or a fully asynchronous EPICS soft
input/output controller. We will also discuss challenges in
model calibration and uncertainty quantification, as well as
future plans to implement larger proton accelerators like
PIPII and Booster.

INTRODUCTION
Particle accelerator projects face increasing performance

demands, resulting in tighter tolerances on lattice accuracy
and stability. Achieving these tolerances requires both more
advanced diagnostics and more commissioning time, which
contributes to rising costs and lower beam availability.

A common approach to reduce commissioning risks is to
implement a realistic version of the accelerator lattice as a
simulation and perform full simulated commissioning. A
recent successful example of this approach is the Advanced
Photon Source Upgrade Project (APS-U), which developed
a commissioning plan that included advanced ELEGANT
simulations, detailed task scheduling, and many validation
studies, including within a dedicated EPICS control network
[1, 2].

However, so far most commissioning simulations have
focused on the specific needs and quirks of their respective
machines, avoiding complexity through implementing only
physics models and control system behavior relevant to a par-
ticular project. This approach is not scalable, especially for a
research facility like IOTA/FAST, since our machines are in
constant flux and undergoing upgrades as the various exper-

∗ This manuscript has been authored by FermiForward Discovery Group,
LLC under Contract No. 89243024CSC000002 with the U.S. Department
of Energy, Office of Science, Office of High Energy Physics.

† nkuklev@fnal.gov

iments and elements are installed. Moreover, Fermilab main
complex is currently undergoing several major upgrades,
PIP-II (Proton Improvement Plan II) and ACORN (Accel-
erator Controls Operations Research Network). These will
result in a mix of ACNET and EPICS controls systems, with
brand new devices having to interface with those over 40
years old.

Given above complexity, it is clear that significant simu-
lated efforts will be needed to ensure smooth commissioning
and operation. We require a tool capable of testing classic
methods (such as optics measurements via LOCO [3,4]), but
also amenable to training and validating a new generation of
machine learning (ML) tools. Notable examples of the latter
include Bayesian optimization (BO) [5–7], reinforcement
learning (RL) [8], and phase space reconstruction [9]. ML
methods are especially promising to address issues that have
previously relied on operator experience and incomplete,
qualitative simulations due to both errors/uncertainties in
the models and unsuitability of classical optimization meth-
ods. This paper presents our implementation of a ‘digital
twin’ toolkit as a potential unified solution. We will first de-
scribe the key requirements. Then, architectural details will
be presented, with emphasis on differentiability. Finally, we
will show use cases and our first upcoming commissioning
project, the IOTA proton injector.

DIGITAL TWINS

Throughout this paper, we will use the term ‘(surrogate)
model’ to describe the specific (approximate) implementa-
tions of accelerator simulations, for example an ImpactX
simulation or a neural network that can approximate the
tracking of a beam with space charge. We will use the term
‘digital twin’ to describe a complete framework that exposes
and coordinates both standard and surrogate models to form
a complete virtual environment. One can think of digital
twins as backend engines for a virtual accelerator test stand,
whereby various programs and users can interact with the
models in a configurable environment with appropriate mix
of control systems, simulation fidelity, and computational
requirements.

Our plan for digital twin development has three main goals
aligned both with internal Fermilab project priorities and
more global challenges described in the recent DOE GARD
accelerator and beam physics roadmap [10, 11]:

• To provide a high fidelity virtual test stand for testing
tools and procedures, including commissioning and
operational applications as well as research codes

FERMILAB-CONF-25-0370-AD



• To enable training and validation environments for ML-
based surrogates and computational methods (differ-
entiable modelling), including integration with both
standard physics codes and ML frameworks

• To generate a near real-time model of the accelerator
that is adaptively calibrated against incoming data and
provides accurate prediction and uncertainty quantifi-
cation of key lattice and beam parameters

ARCHITECTURE
While interlinked, above goals place unique requirement

on the digital twin architecture. For instance, to ensure
compatibility of several simulation codes, data structures
are necessary that can keep track of and convert phase space
coordinates. To enable model calibration, a bidirectional
data flow interface is necessary along with capability to
‘assimilate’ experimental readings. At its core however, most
of these challenges boil down to either optimization (of
real or model parameters) and/or doing simulations quickly.
Thus, inspired by Greek mythology, we chose to name our
library Apollo (Accelerator Pipeline for Optimization and
Low-Latency Operation). Figure 1 shows the general 3 layer
architecture of Apollo.

Figure 1: Apollo modular architecture.

Physics pipeline
The first layer of Apollo serves to create or wrap various

standard and ML-based simulation code into a pipeline that
can be portably executed as a single unit. After a large review
of active simulation codes, we chose to support two natively
- ImpactX [12] and Xsuite [13]. Key determining factors
were availability of Python bindings, active development
community, and enough physics models to cover most of the
elements we expect to use. Of special importance is support
for intense space charge and other collective effects. Other
Fermilab groups also had good experiences with these codes.
Native support indicates that Apollo can ‘synthesize’ both
simulation commands and lattices on the fly from a common

shared format, transparently handling implementation de-
tails like dipole edges and coordinate transformations. For
other codes, or custom models, a black-box interface specifi-
cation can be used. For differentiable models, we support
Jax and PyTorch-based arbitrary modules and provide our
own tracking code, as discussed in the next section.

Device models
Second layer of Apollo is responsible for determining

how to convert parameters and outputs between the physics
pipeline and the real world. For example, calculating the
magnet gradient based on the virtual power supply current,
or beam position from the phase space. Device interface is
kept generic, resembling that of discrete event simulators and
allowing for complex time-dependent implementation logic.
For example, our standard power supply model includes hys-
teresis, ADC noise, and overshoot behavior. Active devices
set determines which simulation outputs are requested, so
as to minimize unnecessary computations.

Control interface
Final layer of Apollo is responsible for presenting the

devices to clients through a control system layer. It runs
asynchronously to the simulation loop, ensuring prompt
network communication with multiple clients. We use exter-
nal libraries for EPICS implementation, with CA interface
through ‘caproto’ and PV access through ‘pvapy’. Both
present devices as configurable sets of records, with appro-
priate fields and support for monitoring and scanning. No
Python server implementation exists for ACNET, so we sup-
ply a custom shim that transparently reroutes client requests.

System design
Throughout Apollo we imposed additional requirements

to ensure the implementation remains flexible, portable, and
yet robust to misconfigurations or bugs. Namely, each layer
must be independently serializable and executable (i.e. in
cluster environment). Parameters and return values should
be validated against specifications at every step. This is
accomplished by using ‘Pydantic’ library and a set of declar-
ative inputs and output for each model and device. Pydantic
enables serialization to and from json, yaml, and other for-
mats. For example, a model might declare phase space
output through OpenPMD standard [14] or as a custom one
with:

" o u t p u t s " : {
" pha s e_ spac e " : {

" t ype " : " c o o r d i n a t e s " ,
" d t ype " : " f l o a t 6 4 " ,
" t s y s t e m " : " momenta " ,
" l s y s t e m " : " z e t a _ p t a u " ,
. . .

}
. . .

}



We avoid complexity of nested data containers by using
a single shared namespace, and a single state object that
carries both current values and history. This ensures syn-
chronized modification, but does limit scalability, especially
in Python. We mitigate this by offloading execution to dis-
tributed frameworks like Ray and Dask, keeping coordinator
thread free.

DIFFERENTIABLE SIMULATIONS

Modern ML frameworks have made it feasible to imple-
ment complex physics models with automatic differentiation.
Such differentiable models can be run just like regular simu-
lations, but in addition to output values yield the gradients of
outputs with respect to a designated set of parameters (from
lattice or beam). They are useful in accelerator design, opti-
mization, model calibration, and machine learning. Apollo
implements a special pipeline type if all component models
can do gradient propagation, with support for PyTorch and
Jax. The former is more dynamic and easier to work with,
while the latter is significantly faster. Both ecosystems also
have packages for NN training/serving, RL, and Bayesian
inference (Pyro [15], NumPyro [16]), and will be useful for
both calibration and surrogate modelling [17]. Uniquely
for PyTorch, we support uncertainty-aware modules like
Gaussian processes.

Because Apollo prioritizes fast execution, we developed a
new native Jax-based accelerator tracking code called JACC
(Jax for ACCelerators). It implements standard 6x6 first
order matrices as well as select second order matrices and
drift-kick integrators through bends, quads, multipoles, and
RF elements. There is also a single-bunch space charge im-
plementation, and implicit vectorization capability consis-
tent with Jax ‘vmap’ style. The whole beamline is compiled
as a single unit to either CPU or GPU, with pruning and
element fusion where possible.

USE CASES

IOTA proton injector
IOTA proton injector (IPI) project aims to add a 2.5MeV

proton injector alongside existing 150MeV electron injection
line [18, 19]. Scientifically, this will add capability to study
space charge dominated beams and their control methods
using a stable storage ring with lattice accuracy comparable
to light sources. Hardware is currently being installed, with
commissioning set to begin in the fall of 2025. Diagram of
the IPI is shown in Figure 2.

IPI will be the first machine to use Apollo to simulate
commissioning and infer currently unclear beamline param-
eters, such as the beam phase space coming from the RFQ
and element misalignments. Full MEBT section lattice is
already implemented in both standard and differentiable for-
mats, and work is ongoing to construct an open-source RFQ
tracking model.

Figure 2: IOTA proton injector layout and integration with
existing electron beamlines. Proton line consists of the duo-
plasmotron source (left end, gray), LEBT (yellow, short),
RFQ (red), and MEBT (yellow, long) section with dogleg,
debuncher, and various diagnostics.

FNAL main complex in the PIP-II era
Supporting all main complex machines is the long term

goal for Apollo. This is made difficult due to the complex
physics (SRF cavities, ramping machines, impedances, feed-
back systems) and a large number of codes used by vari-
ous departments. For PIP-II, we have started adding ad-
vanced cavity and RFQ models to better match the refer-
ence TraceWin implementation of the PIP-II linac. Because
TraceWin is commercial software, we cannot use it as one
of the models directly. For Booster, for key beam power
limiting factors like beam loss locations we are training
data-driven surrogates, since simulations do not yet have
quantitative agreement. Main Injector already uses Xsuite
simulation extensively, and we expect no major roadblocks.

CONCLUSION
Robust virtual simulation and testing environments are im-

portant for ensuring efficient design, commissioning, and op-
eration of the new generation of particle accelerators. They
enable development of many other capabilities, and thanks
to differentiable codes are a powerful inference and model
calibration tool in their own right. In this paper we have
described our development of a differentiable digital twin
framework ‘Apollo’. It is our hope that using a modern soft-
ware stack, robust system design practices, and a modular
architecture will cover the majority of use cases at Fermilab
and beyond, creating a first generic digital twin framework
for accelerators. We are planning on using Apollo for IOTA
IPI commissioning this fall, and through this early experi-
mental testing discover and address any issues well ahead of
PIP-II commissioning. Future work will focus on improving
user experience, integration with live data readout, as well
as extending the differentiable capabilities with advanced
impedance, cavity, and feedback models.

REFERENCES
[1] V. Sajaev, “Commissioning simulations for the argonne ad-

vanced photon source upgrade lattice”, Phys. Rev. Accel.
Beams, vol. 22, no. 4, p. 040 102, 2019.
doi:10.1103/PhysRevAccelBeams.22.040102

[2] V. Sajaev, “Improvements to the commissioning simulations
of the APS Upgrade storage ring”, in Proc. IPAC’23, Venice,
Italy, pp. 3112–3115, 2023.
doi:10.18429/JACoW-IPAC2023-WEPL006

https://doi.org/10.1103/PhysRevAccelBeams.22.040102
https://doi.org/10.18429/JACoW-IPAC2023-WEPL006


[3] D. Vilsmeier, R. Singh, and M. Bai, “Inverse modeling of
circular lattices via orbit response measurements in the pres-
ence of degeneracy”, Phys. Rev. Accel. Beams, vol. 26, no. 3,
p. 032 803, 2023.
doi:10.1103/PhysRevAccelBeams.26.032803

[4] A. Romanov et al., Correction of magnetic optics and beam
trajectory using loco based algorithm with expanded experi-
mental data sets, 2017.
doi:10.48550/arXiv.1703.09757

[5] N. Kuklev, M. Borland, G. I. Fystro, H. Shang, and Y. Sun,
“Online Accelerator Tuning with Adaptive Bayesian Opti-
mization”, in Proc. NAPAC’22, Albuquerque, NM, USA,
pp. 842–845, 2022.
doi:10.18429/JACoW-NAPAC2022-THXD4

[6] N. Kuklev, M. Borland, G. Fystro, H. Shang, and Y. Sun,
“Robust adaptive bayesian optimization”, in Proc. IPAC’23,
Venice, Italy, pp. 4428–4431, 2023.
doi:10.18429/JACoW-IPAC2023-THPL007

[7] R. Roussel et al., “Bayesian optimization algorithms for ac-
celerator physics”, Phys. Rev. Accel. Beams, vol. 27, no. 8,
p. 084 801, 2024.
doi:10.1103/PhysRevAccelBeams.27.084801

[8] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Belle-
mare, and J. Pineau, “An Introduction to Deep Reinforce-
ment Learning”, FNT in Machine Learning, vol. 11, no. 3-4,
pp. 219–354, 2018. doi:10.1561/2200000071

[9] R. Roussel et al., “Efficient six-dimensional phase space
reconstructions from experimental measurements using gen-
erative machine learning”, Phys. Rev. Accel. Beams, vol. 27,
no. 9, p. 094 601, 2024.
doi:10.1103/PhysRevAccelBeams.27.094601

[10] Accelerator beam physics research roadmap. https:
//science.osti.gov/hep/-/media/hep/pdf/2022/
ABP_Roadmap_2023_final.pdf

[11] S. Nagaitsev et al., Accelerator and beam physics research
goals and opportunities, 2021. https://arxiv.org/abs/
2101.04107

[12] A. Huebl et al., “Next Generation Computational Tools for
the Modeling and Design of Particle Accelerators at Exas-
cale”, in Proc. NAPAC’22, Albuquerque, NM, USA, pp. 302–
306, 2022. doi:10.18429/JACoW-NAPAC2022-TUYE2

[13] G. Iadarola et al., “Xsuite: An Integrated Beam Physics Sim-
ulation Framework”, JACoW, vol. HB2023, p. TUA2I1, 2024.
doi:10.18429/JACoW-HB2023-TUA2I1

[14] C++ and python api for scientific i/o with openpmd. https:
//github.com/openPMD/openPMD-api

[15] E. Bingham et al., “Pyro: Deep universal probabilistic pro-
gramming”, J. Mach. Learn. Res., vol. 20, p. 28:1–28:6, 2019.
http://jmlr.org/papers/v20/18-403.html

[16] J. Bradbury et al., JAX: Composable transformations of
Python+NumPy programs, version 0.4.8, 2023. http://
github.com/google/jax

[17] N. Kuklev, “Differentiable beam optics optimization and
measurement”, in Proc. IPAC’23, Venice, Italy, pp. 3108–
3111, 2023. doi:10.18429/JACoW-IPAC2023-WEPL004

[18] D. Edstrom et al., “IOTA Proton Injector Beamline Installa-
tion”, in Proc. IPAC’23, Venice, Italy, pp. 1737–1739, 2023.
doi:10.18429/JACoW-IPAC2023-TUPA183

[19] J. Wieland and A. Romanov, “Injection simulations of space
charge dominated proton beams in IOTA”.

https://doi.org/10.1103/PhysRevAccelBeams.26.032803
https://doi.org/10.48550/arXiv.1703.09757
https://doi.org/10.18429/JACoW-NAPAC2022-THXD4
https://doi.org/10.18429/JACoW-IPAC2023-THPL007
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.1561/2200000071
https://doi.org/10.1103/PhysRevAccelBeams.27.094601
https://doi.org/10.18429/JACoW-NAPAC2022-TUYE2
https://doi.org/10.18429/JACoW-HB2023-TUA2I1
https://doi.org/10.18429/JACoW-IPAC2023-WEPL004
https://doi.org/10.18429/JACoW-IPAC2023-TUPA183

