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ABSTRACT.

Two methods of obtaining particular solutions of nonlinear differential equations
are reviewed, The first makes use of “conditional symmetries”, i.e. local Lic point
transformations leaving a subset of solutions of an equation invariant. The second
consists of adding further equations to the given one, so that the equation, together
with the supplementary conditions, figures as compatibility conditions for an algebra
of linear operators.

1. INTRODUCTION.

Virtually all of the fundamental equations of physics are nonlinear, as are most
of the differential systems describing specific physical phenomena. It is hence both
of conceptual and practical interest to develop techniques for solving nonlinear
differential equations.

In this presentation we shall concentrate on methods of obtaining exact analytical
solutions, rather than numerical ones. The motivation is that analytical solutions,
even if they are particular, rather than general ones, very often provide a lot of
insight into the qualitative behavior of a system. Analytical solutions can also serve
as the starting point for further perturbative calculations. They often turn out to
be particularly stable and may provide asymptotic formulas for solutions developing
from wide classes of initial conditions.

Two different techniques are extremely useful in constructing solutions of nonlin-
ear partial differential equations (PDE’s). One is the method of symmetry reduction.
It consists of a systematic application of Lie group theory to obtain solutions that
are invariant under some subgroup of the symmetry group of the considered sys-
tem. The invariance conditions are used to reduce the system of PDE’s to a lower
dimensional system, which may be easier to solve. The method is applicable if the
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differential system under consideration has a nontrivial symmetry group in the first
place. The price we pay for reducing the number of independent variables is that
initial conditions, or boundary conditions, can only be imposed on specific types of
surfaces.

The method of symmetry reduction goes back to S. Lie and is reviewed in nu-
merous books and articles [1]-[6]. A recent burst of activity in this area is due,
among other reasons, to the possibility of performing otherwise tedious calculations
on computers, using various symbolic languages [7], [8].

The other systematic technique for solving PDE’s analytically is that of the spec-
tral transform and its generalizations [8]-[11]. It is based on the possibility of
finding a Lax pair, i.e. a pair of linear differential equations, for which the original
nonlinear equations are compatibility conditions. The method, when applicable,
provides large classes of solutions, among them solitons, multisolitons, periodic
and quasiperiodic solutions. Nonlinear equations for which the spectral transform
method is applicable are called “completely integrable”, and they are relatively rare.

Our purpose here is to review some recent results extending the applicability of
both of the above techniques for solving nonlinear PDE’s.

2. CONDITIONAL SYMMETRIES AND THE DIMENSIONAL
REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS.

The problem that we are addressing can be formulated as follows. We are given
a system of partial differential equations (PDE’s)

[ —

Aa(m’ urua:,.aaz,.zy,...) =0
a=1,.,N, T€RP, % eR? (2.1)

of any order M for ¢ functions of p variables. How can we reduce it to a system
of equations involving k < p independent variables? We wish to do this by finding
functions U; and z, such that the substitution

ui(Z) = U@, w121, .28, o wy(21, n2k))
Zj= ZJ‘(;)) i=1,.,¢ (2.2)

will reduce the system (2.1) to a new system of differential equations of the form

-t b —

An(z,w,wza,w%z‘,,.") = {
a=1,.,N, ZecR*, WeRY, 0<k<p. (2.3)

In eq. (2.2) U; and z;j are known functions; the dimensional reduction is in the fact
that eq. (2.3) involves only wy, ...,wy and z1,...2z& with £ < p (k = 0 corresponds to
an algebraic system, k = 1 to a system of ordinary differential equations (ODE’s)).
For simplicity, we restrict ourselves to the case of one PDE, i.e. N =1 in (2.1)
and (2.3).
The classicel answer to the above question is provided by the method of symmetry
reduction. The method consists of the following steps:

(1) Find the Lie group G of local point transformations leaving the system (2.1)
invariant.
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(2) Classify all subgroups Go € G having generic orbits of codimension k + 1
in the space X ® U of independent and dependent variables, into conjugacy
classes under the action of G' and choose a representative of each class.

(3) For each representative subgroup find k + 1 functionally independent invari-
ants and choose a basis of invariants satisfying

. oF
Ii = &i(z1y.02p), 1= 1,00,k < p, Irt1 = F(z1,...2p, 1), Bu # 0. (2.4)

(4) Consider Ij4y as a function of &3, ...k, solve for n and obtain an expression
of the form (2.2), where the functions #; are identified with the invariants ¢;
and Tpq1 with w(éy,...£k).

(5) Substitute u into (2.1). The ( invariance of (2.1) and the completencss of
the set of Gp invariants guarantees that {2.3) will involve only the invariants
F,¢; and derivatives of F' with respect to £;.

The described procedure is entirely algorithmic; a classification of subgroups pro-
vides a classification of different reductions. The question is whether it provides all
possible reductions.

The answer to the above question is, in general ne and was provided by counterex-
ample in a recent article by Clarkson and Kruskal [12]. The article was devoted to
a reduction of the Boussinesq equation

Ugg + Ul gy + (u,)2 + Upppr =0 (2.5)

to an ODE. Their approach was entirely straightforward, making the substitution
(2.2) with ¢ = 1,k = 1,7 = (z,%) in (2.5) and requiring, by “brute force” that w(z)
should satisfy an ODE. In this manner they obtained known reductions, due to
translational, or dilational invariance, but also several new reductions, not related
to the symmetry group of the Boussinesq equation. The authors included a sentence
to the effect: “We hope that a group theoretic explanation of the method will be
possible in due course”.

Such an explanation was indeed subsequently provided [13], moreover the expla-
nation also yields an algorithm for performing the reduction. The framework for
the group theoretical explanation has already existed for some time, namely the
“nonclassical method” of Bluman and Cole [14].

The basic idea is to make use of “conditional symmetries ” of an equation, that
is transformations that only transform a subset of solutions into solutions, but take
other solutions out of the solution set. The subset of solutions left invariant is
characterized by a supplementary condition, i.e. an equation added to the one that
we wish to solve. The point is to choose this supplementary condition in a way that
will be as nonrestrictive as possible.

This is best done in infinitesimal language. Instead of looking for the symmetry
group G of an equation, one looks for its Lie algebra. For a scalar equation with
two independent variables, such as the Boussinesq equation (2.5), the Lie algebra
L is realized by vector fields of the form

b= &(z,t,u)0; + r(z,t,u)0 + ¢z, t,u)0y. (2.6)
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The functions &, 7 and ¢ must satisfy a set of determining equations, obtained by
requiring that the n-th prolongation pr{™v of ¢ should annihilate the equation on
its solution set:

prMaat™ =0. (2.7)
Aln)=0

Here A™ = 0 is the considered differential equation and the prolongation of © is a
diffcrential operator acting on z,t,u and derivatives of u[1],[8]. Eq.(2.7) amounts
to a system of PDE’s for £, 7 and ¢. These equations are linear even if the equation
A =0 is nonlinear.

To find “conditional symmetries”, we add a first order equation, adapted to the
vector field (2.6), namely

AW = gy, Ty — ¢ =0, (2.8)

which is automatically annihilated on its solution set by pr(1)s.
The “conditional symmetries” will now be vector fields of the form (1.6) satisfying

pr™g. A =0, prMs.AM =0, (2.9)
Aln)=0,A0)=0 A(n)=0,A(1)=0

From (2.9) we obtain a system of determining equations for the coefficients ¢, 7 and
¢. Contrary to the case of ordinary symmetries, the determining equations will be
nonlinear, since the same unknown functions £, and ¢ figure in the vector field
and in the supplementary condition.

The set of vector fields satisfying (2.9) is hence larger than the set satisfying (2.7).
It should be emphasized that these conditional symmetries do not form a vector
space, still less a Lie algebra, since each vector field 4 has its own supplementary
condition (2.8).

Each symmetry operator, be it an ordinary, or a conditional one, provides a
reduction of the PDE to an ODE.

The idea of conditional symmetries, in different contexts and with different names,
has been introduced by several authors [13}-[17]. As formulated here, conditional
symmetries for a given equation A =0, are actually ordinary symmetries for a
system of equations: A®™ = 0,A®) = 0. Hence existing software can be used to
construct these symmetries [8].

Let us now turn to the example of the Boussinesq equation (2.5). We restrict
ourselves here to the case T # 0 in (2.6) and (2.8). With no loss of generality, we
can then put 7 = 1. Using the MACSYMA program [8], we obtain 14 determining
equations. They are cocfficients of different terms of the type uful u?, ., k,¢,n € Z+
since u; is eliminated using eq. (2.8) and .. using the Boussinesq equation.
Solving the determining equations, we obtain

7(z,tu) =1, &(z,t,u) = a(t)z + B(1)

$(z,t,u) = —[20(t)u + 2a0(a’ + 2a®)z® + 2(af + '8 + 4a?F) + 26(8' + 2ap)]
(2.10)

where
o + 20’ —4a® =0, A"+ 2af —4a’8 =0. (2.11)
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The invariants of the one-dimensional group corresponding to the obtained vector
field are found by solving the characteristic system associated with .

Denoting the invariants w and 2, viewing w as a function of z and solving for u,
we obtain the reduction formulas

u(z,t) = Kz(t)w(z) —(az + 8)?

z(xz,t) = s K(t) —/0. B(s)K(s)ds, K(t)=exp [—/0‘ a(s)ds].

(2.12)
Substituting (2.12) into the Boussinesq equation, we obtain the ODE
w" + ww" + w'? + (Az + B)w' + 24w = 2(Az + B)?, (2.13)
where (2.11) implies that
o? —of aff — ﬂ
—_—— = 2.
A= T B e / B(s)I(s)ds (2.14)

are constants. To proceed further we must solve eq.(2.11) for a(t) and g(t). We
have

_ " 73 3 H H(s)
a=cm, H'= hoH™ + b1, f=c14r + 2 H/ H’(s)]ds (2.15)

where hg, by, ¢; and ¢; are constants.

(1) ho = hy = 0. Then @ = 0,8 = fo + fit, B, = const. For f; = 0 we obtain
travelling waves, due to (ordinary) translational invariance. For #; # 0 we
can use translational invariance to set S = 0. We obtain a new reduction

z=x—%t2, u=w(z)—t3, " +tww -w=2z+¢ (2.16)

and w is expressed in terms of the Painlevé transcendent Py;.

(2) ho £0, hy = 0. We obtain a = —1/t, g = f1t* + f,/t. Using ordinary
symmetries (translations and dilations), we set (8;1,82) = (1,0) or (0,0).
The reduction is

1.6 2 z 4\’
z=xt—gﬂ1t , u=w(2)t* — (-t-—ﬂlt )
w" 4 ww' — 58w = 508,z + ¢, ¢; = const. (2.17)

Depending on the values of 8y and ¢; we obtain solutions in terms of elliptic
functions, or the Painlevé transcendents P; or Pyy.

(3) ho = 0,h; # 0. Simplifying by translations and dilations, we obtain a =
1/2t,8 = Ait,B1 = 1, or 1 = 0. For B = 0 we obtain a known reduction
(due to dilational invariance). For f§; = 1 we obtain a new reduction

== 20y oo (B 1)

_\/_ 3t , u—tw(z) ( +t)

i 3 3 _9:

w™ fww' +w'? 4= zw + w—gz (2.18)
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(4) he # 0,y # 0. This is the generic case and we obtain

1P g _BP P P
=35 P=T 5105 |
(P')? =4P° — g5 (2.19)

where P(t) is the Welerstrass elliptic function. The reduction is new and can
be written as

(o0 = PO + 3020 POI [ Pl

u(z,t) = w(z)P~* — % [%]2 (x s ot ;52‘;]2)2 , (2.20a)

where w(z) satisfies an equation having the Painlevé property

3 9
wa‘l!i + ww" + w'2 — %gsw’ —_— T?;gsw = -é-ggzz. (2.20b)

At this stage we can draw some conclusions.

(1) Conditional symmetries for the Boussinesq equation are very important; they
give more reductions than ordinary symmetries.

(2) Conditional symmetries for a PDE are ordinary symmetries for the PDE
plus the supplementary conditions. Hence, existing software can be used to
derive the determining equations for the conditional symmetries.

(3) For the Boussinesq equation, the conditional and ordinary symmetries, taken
together, give all reductions of the type (2.2). The final result coincides with
that obtained by Clarkson and Kruskal using their direct method [12].

(4) The procedurc we advocate is to first find all ordinary symmetries and then
to use them to simplify the equations for the conditional symmetries.

We mention that both the direct procedure and the conditional symmetry one
have recently been applied to the Kadomtsev-Petviashvili equation [18]. New reduc-
tions to PDE’s in two variables and to ODE’s were obtained, yielding new sclutions.
The two different methods again give the same results.

Open questions that remain are:

(1) Can one tell, without going through all the calculations, when does an equa-
tion or system of equations, allow conditional symmetries[2]. For some equa-
tions, such as the Korteweq-deVries equation, the modified KdV equation,
the Burgers equation and quite a few others, all conditional symmetries co-
incide with ordinary ones.

(2) Is our conjecture, that conditional symmetries, together with ordinary ones,
provide all possible reductions of a PDE, correct?
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3. CONDITIONAL INTEGRABILITY.

We shall, somewhat loosely, call a nonlinear PDE “integrable” if large classes of
solutions of this equation can be obtained, using linear techniques. Recognising in-
tegrable equations has always been a problem, but there are some heuristic criteria.
Typically, integrable equations have the Painlevé property. For a PDE we say that
it has the Painlevé property if all of its solutions are single valued in the neighbour-
hood of any noncharacteristic singularity surface [19]. An ODE has the Painlevé
property if its solutions have no movable critical points, i.e. no singularities de-
pending on the initial conditions, other than poles [20], [21]. Another indication of
integrability is the existence of three-soliton solutions. Finally, integrable equations
in more than two space-time dimensions tend to have infinite-dimensional Lie point
symmetry groups and their Lie algebras have a Kac-Moody-Virasoro structure [6],
[22), [23].

The term “conditional integrability” has been coined to describe a situation when
a PDE is not integrable, but becomes integrable if a further condition, for instance
a further PDE is added {24].

As an example, let us consider the PDE

Wrrzy + SWayWs + Swywsy + 2wy — 3wz, = 0. (3.1)

This is the second equation of the Kadomtsev-Petviashvili hierarchy, as introduced
by Jimbo and Miwa [25]. If this equation is taken on its own, then it does not
pass the Painlevé test, its solitary wave solutions do not combine into three-soliton
solutions and its symmetry algebra, while infinite dimensional, is not of the Kac-
Moody-Virasoro type [24].

Now let us impose a further equation on w(z,y, z,t), namely the potential
Kadomtsev-Petviashvili (PKP) equation itself (for z fixed):

Wrrrz -+ Gwzwm -+ 3w,,y — 4w¢¢ = 0. (32)

Simultaneous solutions of (3.1) and (3.2) do pass the Painlevé test and the two
equations together determine three soliton solutions. The Lie point symmetry group
of the pair of equations (3.1) and (3.2), has recently been calculated and analyzed
[26]. A general element of its Lie algebra can be written as

6= Z(f) + T(9) + Y(h) + X (k) + W(G), (3:3)
where f(z),g(z), #(z), k(z) and G(z,t) are arbitrary C functions of the indicated
variables.

We have

W(G) = G(2,t)0, X(k)= k3, —yk'd,,
(k)= ha, + 31K, - -}(m' + 3tyh™)o,,

1
T(g) = g6 + ﬁ(lﬁyg' +9t%¢"10, + -Z—tg'a,, - 512-[4(3133: + 2y%)g" + 9yt*g""0,
1 3 9 1 9
z — ), + — U [l fed 8 42 pu
()= £2)0, + Jlof' + Suts" + 28510, + Sur + 2270,

E ' __]; t " 3 2 3 1t 9 3 ctn
+4tf o 4[wf +xyf +4t(y +ztm)f +-3—§yt £"0,. (3.4)
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This Lie algebra, the corresponding group transformations and their applications
are analyzed in detail in Ref. 26. Here let us just note that T, X,Y and W form
a subalgebra of a Kac-Moody algebra, (without a central extension)., The vector
fields Z(f) form a Virasoro algebra which is also centerless.

To sum up, the pair of equations (3.1) and (3.2) taken together, as opposed to
¢q.(3.1) alone, passes all the tests indicating integrability.

This example of conditional integrability gives rise to several questions, such as:
given a nonlinear PDE, how does one recognize that it is conditionally integrable?
How does one determine the conditions to be imposed? How does one proceed to
find solutions and what sort of solution set can one expect to obtain? How does
one generate families of conditionally integrable equations?

Some preliminary results in this direction have been obtained [27] and point
towards an algebra of linear operators. Indeed, consider the PKP equation (3.2) for
a function w(z,y,t,2) and 3 linear operators Ly, Ly and L3 governing the evolution
of an auxiliary function ¥(z,y, z,t), in (z,y), (, r,y) and (z, z,y), respectively. The
commutation relations [L;, Ly} = 0 and [Ly, L3] = 0 are respectively equivalent (on
solutions of the linear equations L3 = 0) to the PKP equation and a new equation
in (z,, 2) integrable in the usual sense. The commutation relation

[La, L3} = aLy + BLy + vL3 + A123 =0

for Lyt = 0,L3y = 0, where a, 8 and 7 are constants, implies & new equation,
Bizz = 0, in all four variables (z,y,2,t) under the condition that we also put
L1t = 0. In the case under consideration Ajz = 0 is equivalent to the Jimbo-
Miwa equation (3.1). The implication is that we can hope to obtain, by linear
techniques, families of solutions that depend on functions of two variables, rather
than three, as would be required to satisfy general Cauchy conditions.
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