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ABSTRACT. 

Two methods of obtaining particular solutions of nonlinear differential equations 
are reviewed. The first makes use of "conditional symmetries", i.e. local Lie point 
transformations leaving a subset of solutions of an equation invariant. The second 
consists of adding further equations to the given one, so that the equation, together 
with the supplementary conditions, figures as compatibility conditions for an algebra 
of linear operators. 

1. INTRODUCTION. 

Virtually all of the fundamentM equations of physics are nonlinear, as are most 
of the differential systems describing specific physical phenomena. It is hence both 
of conceptual and practical interest to develop techniques for solving nonlinear 
differential equations. 

In this presentation we shall concentrate on methods of obtaining exact analytical 
solutions, rather than numerical ones. The motivation is that analytical solutions, 
even if they are particular, rather than general ones, very often provide a lot of 
insight into the qualitative behavior of a system. Analytical solutions can also serve 
as the starting point for further perturbative calculations. They often turn out to 
be particularly stable and may provide asymptotic formulas for solutions developing 
from wide classes of initial conditions. 

Two different teclmiques are extremely useful in constructing solutions of nonlin- 
ear partial differential equations (PDE's). One is the method of ~ymme~ry reduction. 
It consists of a systematic application of Lie group theory to obtain solutions that 
are invariant under some subgroup of the symmetry group of the considered sys- 
tem. The invariance conditions are used to reduce the system of PDE's to a lower 
dimensional system, which may be easier to so.lve. The method is applicable if the 
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differential system under consideration has a nontrivial symmetry group in the first 
place. The price we pay for reducing the number of independent variables is that  
initial conditions, or boundary conditions, can only be imposed on specific types of 
surfaces. 

The method of symmetry reduction goes back to S. Lie and is reviewed in nu- 
merous books and articles [1]-[6]. A recent burst of activity in this area is due, 
among other reasons, to the possibility of performing otherwise tedious calculations 
on computers, using various symbolic languages [7], [8]. 

The other systematic technique for solving PDE's analytically is that of the spec- 
tral transform and its generalizations [9]-[11]. It is based on the possibility of 
finding a Lax pair, i.e. a pair of linear differential equations, for which the original 
nonlinear equations are compatibility conditions. The method, when applicable, 
provides large classes of solutions, among them solitons, multisolitons, periodic 
and quasiperiodic solutions. Nonlinear equations for which the spectral transform 
method is applicable are called "completely integrable", and they are relatively rave. 

Our purpose here is to review some recent results extending the applicability of 
both of the above techniques for solving nonlinear PDE's. 

2. CONDITIONAL SYMMETRIES AND THE DIMENSIONAL 
REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS. 

The problem that we are addressing can be formulated as follows. We are given 
a system of partial differential equations (PDE's) 

A=(¥ ,~ ' ,~ '= . ,  ~'=.= ..... ) = 0 

a = l , . . . , N ,  ~ E R  P, ~ E R q  (2.1) 

of any order M for q functions of p variables. How can we reduce it to a system 
of equations involving k < p independent variables? We wish to do this by finding 
functions Ui and za such that the substitution 

~( ¥) = u i ( - ; ,  ~ i  ( ~ , ...~k ), . . . ~ (  ~i ,  ...~ k ) ) 

: j  = ~ j ( 7 ) ,  + = I , . . . ,  q (2.2) 

will reduce the system (2.1) to a new system of differential equations of the form 

£ . ( 7 ,  ~, 3+~, ;zo z,, ...) = o 
a=l,...,N, "~ER k, ~ER q, O<k<p. (2.3) 

In eq. (2.2) Ui and zj are known functions; the dimensional reduction is in tile fact 
that eq. (2.3) involves only wl, ...,wq and zl .... zk with k < p (k = 0 corresponds to 
an algebraic system, k = 1 to a system of ordinary differential equations (ODE's)). 

For simplicity, we restrict ourselves to the case of one PDE, i.e. N = 1 in (2.1) 
=d (2.3). 

The classical answer to the above question is provided by the method of symmetry 
reduction. The method consists of the following steps: 

(1) Find the Lie group G of local point transformations leaving the system (2.1) 
invariant. 
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(2) Classify all subgroups Go C G having generic orbits of codimension k + 1 
in the space X ® U of independent and dependent variables, into conjugacy 
classes under the action of G and choose a representative of each class. 

(3) For each representative subgroup find k q- 1 functionally independent invari- 
ants and clmose a basis of invariants satisfying 

OF 
Ii "~" ~i(Xl, ...aYp), i = 1, ..., k < p, Ik-I-1 = F (z l ,  ...Xp, u), "~u ~ O. (2.4) 

(4) Consider Ik+l as a function of ~1, ...~k, solve for n and obtain an expression 
of the form (2.2), where the functions zi are identified with the invariants ~i 
and h + l  with w(~l, ...~k). 

(5) Substitute u into (2.1). The G invariance of (2.1) and the completencss of 
the set of Go invariants guarantees that  (2.3) will involve only the invariants 
F, ~i and derivatives of F with respect to ~i. 

The described procedure is entirely algorithmic; a classification of subgroups pro- 
vides a classification of different reductions. The question is whether it provides all 
possible reductions. 

The answer to the above question is, in general no and was provided by counterex- 
muple in a recent article by Clarkson and Kruskal [12]. The article was devoted to 
a reduction of the Boussinesq equation 

u .  + u u ~  + ( u = )  2 + u ~ = ~  = 0 (2.5) 

to an ODE. Their approach was entirely straightforward, making the substitution 
(2.2) with q = 1, k = 1, ~ = (x, t) in (2.5) and requiring, by "brute force" that w(z )  
should satisfy an ODE. In this manner they obtained known reductions, due to 
translational, or dilational invariance, but also several new reductions, not related 
to the symmetry group of the Boussinesq equation. The authors included a sentence 
to the effect: "We hope that a group theoretic explanation of the method will be 
possible in due course". 

Such an explanation was indeed subsequently provided [13], moreover the expla- 
nation also yields an algorithm for performing the reduction. The framework for 
the group theoretical explanation has already existed for some time, namely the 
"nonclassical method" of Bluman and Cole I14]. 

The basic idea is to make use of "conditional symmetries " of an equation, that 
is transformations that only transform a subset of solutions into solutions, but take 
other solutions out of the solution set. The subset of solutions left invariant is 
characterized by a supplementary condition, i.e. an equation added to the one that 
we wish to solve. The point is to choose this supplementary condition in a way that 
will be as nonrestrictive as possible. 

This is best done in infinitesimal language. Instead of looking for the symmetry 
group G of an equation, one looks for its Lie algebra. For a scalar equation with 
two independent variables, such as the Boussinesq equation (2.5), the Lie algebra 
L is realized by vector fields of the form 

= t, + t, u)0, + ¢(x,  t, u)0=. (2.6) 
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The functions ~, r and ff must satisfy a set of determining equations, obtained by 
requiring that the n-th prolongation pr(")v of '3 should annihilate the equation on 
its solution set: 

pr(")'3A (") = 0. (2.7) 
A(")=O 

Here A (n) = 0 is the considered differential equation and the prolongation of '3 is a 
differential operator acting on z,t, u and derivatives of u[1],[8]. Eq.(2.7) amounts 
to a system of PDE's for ~, r and ft. These equations are linear even if the equation 
A(") = 0 is nonlinear. 

To find "conditional symmetries", we add a first order equation, adapted to tile 
vector field (2.6), namdy  

A m  = + 7-u, - ¢ = 0, (2 .8)  

which is automatically annihilated on its solution set by pr(X)'3. 
The "conditional symmetries" will now be vector fields of the form (1.6) satisfying 

p r (" ) '3 .A ('0 ] = 0 ,  pr(1)'3.AO) 1 = 0 .  (2.9) 
IA(n)=O,A(1)=O |A(-)=O,A(t)=O 

From (2.9) we obtain a system of determining equations for the coefficients ~) 7- and 
~b. Contrary to the case of ordinary symmetries, the determining equations will be 
nonlinear, since the same unknown functions ~, 7- and ~b figure in the vector field 
and in the supplementary condition. 

The set of vector fields satisfying (2.9) is hence larger than the set satisfying (2.7). 
It should be emphasized that these conditional symmetries do not form a vector 
space, still less a Lie algebra, since each vector field ,3 has its own supplementary 
condition (2.8). 

Each symmetry operator, be it an ordinary, or a conditional one, provides a 
reduction of the PDE to an ODE. 

The idea of conditional symmetries, in different contexts and with different names, 
has been introduced by several authors [13]-[17]. As formulated here, condiGonal 
symmetries for a given equation A(") = 0, are actually ordinary symmetries for a 
system of equations: A(") = 0, AO) = 0. Hence existing software can be used to 
construct these symmetries [8]. 

Let us now turn to the example of the Boussinesq equation (2.5). We restrict 
ourselves here to the case r # 0 in (2.6) and (2.8). With no loss of generality, we 
can then put r = 1. Using the MACSYMA program [8], we obtain 14 determining 
equations. They are coefficients of different terms k e , Z + of the type u~:u~u~z~:, k, g, n E 
since ut is eliminated using eq. (2.8) and u~z~z using the Boussinesq equation. 
Solving the determining equations, we obtain 

r (z ,  t, u) = 1, {(z, t, u) = ~(t)z + 3(t) 
~b(x, t, u) = -[2~(g)u + 2~(cr' + 2cr2)z 2 + 2(tr/~' + ~'/~ + 4a2#) + 2/~(#' + 2crfl)] 

(2 .10)  

where 
o~" + 2o~(x' -- 4c~ a = O, fl" + 20#~' -- 4cr~fl = O. (2.11) 
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The  invariants  of the one-dimensionai  group corresponding to the ob ta ined  vector  
field are found by solving the characterist ic  sys tem associated with  ~. 

Denot ing the invariants w and z, viewing w as a function of z and solving for u, 
we obta in  the reduct ion formulas 

~,(~,t) = K~(t)~o(z) - ( , ~  + ~)~ 

z(~,t) = ~ g ( t )  - ~ ( ~ ) g ( s ) d s ,  K(t)  = exp [-/o' tr(s)ds]. 

Subst i tu t ing  (2.12) into the Boussinesq equation,  we obta in  the O D E  

(2.12) 

w'"' + ww" + w n + (Az + B)w' + 2Aw = 2(Az + B) ~, (2.13) 

where (2.11) implies tha t  

(~2 ~ Oil ¢:~/~ - -  fit 0/2 - -  O/ f f  
A -  K--------T-- , B - K-""T- + I(----T- Jo fl(s)K(s)ds (2.14) 

are constants .  To proceed fur ther  we must  solve eq.(2.11) for a ( t )  and fl(t). We 
h&ve  

H' H' [' 
H' H n = h o H 3  +hz ,  f l = c z ~ - - + c 2 - ~ - j 0  [ ( )]ds, (2.15) 

where h0, hi ,  cl and c2 are constmlts.  

(1) h0 = hi = 0. Then  a = 0, fl = fl0 + tilt, fir = const.  For fll = 0 we obta in  
travelling waves, due to (ordinary)  t ranslat ional  invariance. For fl~ ~ 0 we 
can use t rans la t ional  invaxiance to set fl0 = 0. ~Ve obta in  a new reduct ion 

z = x - ! : ,  u = w ( z ) _ : ,  w " ' + w w ' - w = 2 z + c l  (2.16) 
2 

and w is expressed in t e rms  of the Painlev6 t ranscendent  P H .  

(2) h0 ~t 0, hi = 0. We o b t a i n e r  = - l f l ,  f l = f l l t  4 + & / t .  Using ordinary  
symmetr ies  ( t ranslat ions and  dilations), we set (fll ,fl2) = (1,0)  or (0,0).  
The  reduct ion is 

= = t  - ~ f l ~ t ,  ~ = w ( ~ ) t  ~ - -/. - , o ~ :  

w'" + w w' - 5fll w = 50fll z + cl, cl = const.  (2.17) 

Depending on the values of fll and  cl we obta in  solutions in t e rms  of elliptic 
functions,  or the Painlev4 t ranscendents  Pz or P I I .  

h0 = 0, hi ~ 0. Simplifying by translat ions and d~lations, we obta in  a = 
1/2t, /~ = tilt, ill = 1, or fll = 0. For fll = 0 we obta in  a known reduct ion 
(due to dilational invariance).  For fll = 1 we obta in  a new reduct ion 

= ' ~ - 3 "  ' , ~ =  w ( z ) -  + t  

(3) 
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(4) ho ~ 0, hi ~ 0. This is the generic case and we obtain 

t 7~' ~ 7~' ~' f 7:,(t)dt 

(~,)2 = 4p3 _ g3 (2.19) 

where 7~(t) is the Weierstrass elliptic function. The reduction is new and can 
be written as 

= + f0' 

where w(z) satisfies an equation having the Pa~nlev~ property 

3 , 3 9 ~  t l j  t i l t  
+ + - -  gs= 

(2.20a) 

(2.20b) 

At this stage we can draw some conclusions. 

(1) Conditional symmetries for the Boussinesq equation are very important; they 
give more reductions than ordinary symmetries. 

(2) ConditionM symmetries for a PDE are ordinary symmetries for the PDE 
plus the supplementary conditions. Hence, existing software can be used to 
derive the determining equations for the conditional symmetries. 

(3) For the Boussinesq equation, the conditional and ordinary symmetries, taken 
together, give all reductions of the type (2.2). The final result coincides with 
that obtained by Clarkson and Kruskal using their direct method [12]. 

(4) The procedure we advocate is to first find all ordinary symmetries and then 
to use them to simplify the equations for the conditional symmetries. 

We mention that both the direct procedure and the conditional symmetry one 
have recently been applied to the Kadomtsev-Petviashvili equation [18]. New reduc- 
tions to PDE's in two variables and to ODE's were obtained, yielding new solutions. 
The two different methods again give the same results. 

Open questions that remain are: 

(1) C~n one tell, without going through all the calculations, when does art equa- 
tion or system of equations, allow conditional symmetries[2]. For some equa- 
tions, such as the Korteweq-deVries equation, the modified KdV equation, 
the Burgers equation and quite a few others, all conditional symmetries co- 
incide with ordinary ones. 

(2) Is our conjecture, that conditional symmetries, together with ordinary ones, 
provide all possible reductions of a PDE, correct? 
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3. CONDITIONAL INTEGRABILITY. 

We shall, somewhat loosely, call a nonlinear PDE "integrable" if large classes of 
solutions of this equation can be obtained, using linear techniques. Recognising in- 
tegrable equations has always been a problem, but there are some heuristic criteria. 
Typically, integrable equations have the Painlev~ property. For a PDE we say that  
it has the Palnlev~ property if all of its solutions are single valued in the neighbour- 
hood of any noncharacteristle singularity surface [19]. An ODE has the Painlev~ 
property if its solutions have no movable critical points, i.e. no singularities de- 
pending on the initial conditions, other than poles [20], [21]. Another indication of 
integrability is the existence of three-sotiton solutions. Finally, integrable equations 
in more than two space-tlme dimensions tend to have infinite-dimensional Lie point 
symmetry groups and their Lie algebras have a Kac-Moody-Virasoro structure [6], 
[22], [23]. 

The term "conditional integrability" has been coined to describe a situation when 
a PDE is not integrable, but becomes integrable if a further condition, for instance 
a further PDE is added [24]. 

As an example, let us consider the PDE 

w===y + 3w=~w= + 3w~wxz + 2w~t - 3w== =. 0. (3.1) 

This is the second equation of the Kadomtsev-Petviashvili hierarchy, as introduced 
by 3imbo and Miwa [25]. If this equation is taken on its own, then it does not 
pass the Painlev~ test, its solitary wave solutions do not combine into three-soliton 
solutions and its symmetry algebra, while infinite dimensional, is not of the Kac- 
Moody-Virasoro type [24]. 

Now let us impose a further equation on w(z,  y, z, t), namely the potential 
Kadomtsev-Petviashvili (PKP) equation itself (for z fixed): 

w==== + 6w=w== + 3wyy - 4w=t = 0. (3.2) 

Simultaneous solutions of (3.1) and (3.2) do pass the Painlev~ test and the two 
equations together determine three soliton solutions. The Lie point symmetry group 
of the pair of equations (3.1) and (3.2), has recently been calculated and analyzed 
[26]. A general element of its Lie algebra can be written as 

~, = Z ( f )  + T(g) + Y(h )  + Z ( k )  + W(G) ,  (3.3) 

where f (z) ,  g(z), h(z), k(z)  and G(z,  t) are arbitrary C °O functions of the indicated 
variables. 

We have 

W(C) = C(z , t )0 , ,  X(k) = k0~ - yk '0 , ,  

r ( h )  = ho, + - + 3  ,h")Ow 

3 tg'O~ - 114(3tx  -F 2y~)g " -t- 9yt.2 g"']O,,, T(g)  = gO, -F l ( 1 6 y g '  "t- 9t 2g'''01 = + 4 

1 , 3 .,, ~ t V " ' ] o = + l  , z ( f )  = f(~)o. + .~[~f + ~yt.t  + o~ .~(,¢f + ~ t ~ f " ) o ,  
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This Lie algebra, the corresponding group transformations and their applications 
are analyzed in detail in Ref. 26. Here let us just note that  T, X, Y and W form 
a subalgebra of a Kac-Moody algebra, (without a central extension). The vector 
fields Z(f) form a Virasoro algebra which is also centerless. 

To sum up, the pair of equations (3.1) and (3.2) taken together, as opposed to 
eq.(3.1) alone, passes all the tests indicating integrability. 

This example of conditional integrability gives rise to several questions, such as: 
given a nonlinear PDE,  how does one recognize that  it is conditionally integrable? 
How does one determine the conditions to be imposed? How does one proceed to 
find solutions and what sort of solution set can one expect to obtain? How does 
one generate families of conditionally integrable equations? 

Some preliminary results in this direction have been obtained [27] and point 
towards an algebra of linear operators. Indeed, consider the P K P  equation (3.2) for 
a function w(x, y, t, z) and 3 linear operators L1, L2 and L3 governing the evolution 
of an auxiliary function ¢(x,  y, z, t), in (x, y), (L x, y) and (z, x, y), respectively. The 
commutat ion relations ILl, L2] = 0 and [L~, L3] = 0 are respectively equivalent (on 
solutions of the linear equations Lie = 0) to the P K P  equation and a new equation 
in (x, y, z) integrable in the usual sense. The commutat ion relation 

[L2, L3] = aL2 + i lL: + 7Ls + A 1 2  3 : 0 

for L2¢ = 0, L3¢ = 0, where or, fl and 3' are constants, implies a new equation, 
A123 = 0, in all four variables (x,y,z,t) under the condition that  we also put 
L1¢ = 0. In the case under consideration A1~3 = 0 is equivalent to the Jimbo- 
Miwa equation (3.1). The implication is that  we can hope to obtain, by linear 
techniques, families of solutions that  depend on functions of two variables, ra ther  
than three, as would be required to satisfy general Cauchy conditions. 
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