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INTRODUCTION

The distribution function of the phase space density of particles
in a beam satisfies the system of equations for the self-consistent field.
Two approaches to determine the particle phase density distribution function

may be presented /1/.

In the first case the law of particle distribution in phase space
reamins unknown for the motion of the beam in the seif-consistent field
(stationary problem). I.M. Kapchinskij /1/ showed that stationarity is
ensured for a microcanonical particle distribution in 4~dimensional phase
space in linear external fields. Then the charge density in an arbitrary
beam cross-section does not depend on the transversal coordinates. The

non—-stationary problem has been considered in refs. /2,3,4/.

When neglecting the dispersion of longitudinal particle velocities,
then the stationary 6-dimensional problem may be reduced to a non-stationary
problem in 4 dimensions, corresponding to the transversal particle coordinates
velocities. This problem is more interesting since in this case one may
find the particle density distribution function in phase space for arbitrary
cross—sections of real beams if the phase density distribution is known for

a certain arbitrary initial cross-section.

THE SYSTEM OF EQUATIONS AND THE METHOD OF CALCULATION

In the case of an axially symmetrical beam it is convenient to use
as coordinates in geometrical space radius R, angle 6 and longitudinal
coordinate z of a cylindrical system. It is well known that the particle
phase density stays constant along particle trajectories only in the space
of canonically conjugate variables /5/. We chose a phase space with variables
R, 6, z, v, p, W; where v, w are the radial and axial particle velocities;
and where p = R?6. For non-relativistic velocities v, w, p differ from the
generalized momenta canonically conjugate to the generalized coordinates R,

z, 6 only by a constant factor equal to the particle mass. The phase density



for particle motion in the space R, 6, z, v, p, w is conserved. Mathematically

this may be written as :
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where F(R,0,z,v,p,w) is the particle phase density.

For the stationary axially symmetrical case and in the absence

of azimuthal forces equation (1) may be written as :
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If the dispersion of longitudinal particle velocites and the depend-
ence of the longitudinal velocity on the radial coordinate are neglected,

then the longitudinal particle velocity is a single-valued function of the

coordinates.

After deviding equation (2) by w, we rewrite it in the following way :
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420 The solution of equation (3) may be looked for as the solution of

a Cauchy problem. As initial condition we may take the value of phase density

at z = 0, which is written as :
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*
where w0 = const.

Along the particle trajectories, which are the characteristic

curves of equation (3), the foliowing relation holds :
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We introduce the function :
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From (6), regarding z as a parameter, we have :

dL = __w-wo dw. )

We assume that there is no longitudinal overtaking of particle.

Then we have from (5) with the help of (7)
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Using the result (8), inserting (5) into equation (3) and integrating

the last one, we get :
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where g = f.w ; [fg dv dp = 2rRj, j is beam current density.

From (9) it follows that in the general case in the presence of
an external electrical field the particle density f in phase space 1is not
conserved, but the quantity g. This is a consequence of the fact that we

neglected the longitudinal velocity dispersion.

Particle trajectories have been found with the help of the equation :
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where :
IR, 2) = f[[gdpdvdr (11)

is the beam current, e, m are particle charge g masse, ¢ is the permeativity
o
of the vacuum, ¢(R',R,z) is the term related to the presence of the external

fields.

Equation (10) has been solved numerically. The function I(R,z)
has been computed in each step by numerical integration with the help of

the expression (1l1).



RESULTS OF THE CALCULATION AND DISCUSSION

With the help of the described method of calculation the redistri-
bution of phase density in the proton beam of the injector I-100 has been
investigated. The values of the distribution function in the initial cross-
section, denoted in Fig. 1 as the cross-section with coordinate z = 0,
have been obtained by measuring the ion density by the method of 4 slits
using films for recording the beam. The results of the calculation is given
in Figs. 1 - 3, Fig. 1 where the beam envelopes and current density distribu-
tions in some cross-sections are given illustrates some properties and

peculiarities of real beams.

First, the current density distribution in a beam cross-section
is essentially different from a uniform one and has qualitatively different
form for different cross-sections, so that one may treat it as a redistribution
of the current density over the beam's cross-section. The presence of the
redistribution of the current density supports the appropriateness of the

non-stationary problem.

Second, the beam envelopes are not symmetrical with respect to the
cross—-section corresponding to the minimal size of the current of charged
particles., This is related to the.non-uniform velocity structure of the
proton current , as if it consisted of several beams with different average

velocities.

In Fig. 2 projections of the phase volume on the plane of Cartesian
coordinates x,x' are given for several beam cross—sections. The contour of
the projection of the phase volume continuously changes its form and for
cross—-sections sufficiently distant from the cross-over current it has
"protrusions'" observed in several experimental investigations /6,7,8/. But

in the given case these 'protrusions' may be related to the extended character

of the example of the initial contour of the phase volume.



Let us say a few words on the comparison of computed results with
experiments. In Fig. 3 the computed current density distribution in the
cross-section corresponding to the entrance of the accelerating tube of the

linac injector /9/ is shown.

In Fig. 4 an enlarged representation of the beam is given, cut out
from the primary current by a diaphragm with a width of 0.06 mm. As is seen
from a comparison between the photography and Fig. 3, the calculated current
density distribution qualitatively agrees with the measured one. The beam
sizes, approximately determined with the help of a grid as scale, equally

. . 2
agrees with the computed one (mesh size 3,2 x 3,2 mm ).

Finally the authors express their sincere gratitude for useful
advice and valuable discussions to Y.U.P. Sivkob, I.M. Kapchinskij,

0.V. Koshkapev, B.N. Plotnikob, and V.A. Batalin.
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Fig. 1 ¢ Beam envelope and current density distribution

a) z=60cm b) z =20 cr c) z=20
d) z =-20 cm e) z = -80 cm
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Fig. 2. : Projections of the beam's phase volume on the xx' plane.

a) z = 60 cm b) z =0 c) z = -80 cm

(dotted curve gives the projection computed without comnsideration
of Coulomb forces).
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Fig. 4. : TImage of the beam cut out from the primary

current by a fine diaphragm



