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INTRODUCTION 

p. 419 The distribution function of the phase space density of particles 
in a beam satisfies the system of equations for the self-consistent field. 
Two approaches to determine the particle phase density distribution function 
may be presented /1/. 

In the first case the law of particle distribution in phase space 
reamins unknown for the motion of the beam in the self-consistent field 
(stationary problem). I.M. Kapchinskij /1/ showed that stationarity is 
ensured for a microcanonical particle distribution in 4-dimensional phase 
space in linear external fields. Then the charge density in an arbitrary 
beam cross-section does not depend on the transversal coordinates. The 
non-stationary problem has been considered in refs. /2,3,4/. 

When neglecting the dispersion of longitudinal particle velocities, 
then the stationary 6-dimensional problem may be reduced to a non-stationary 
problem in 4 dimensions, corresponding to the transversal particle coordinates 
velocities. This problem is more interesting since in this case one may 
find the particle density distribution function in phase space for arbitrary 
cross-sections of real beams if the phase density distribution is known for 
a certain arbitrary initial cross-section. 

THE SYSTEM OF EQUATIONS AND THE METHOD OF CALCULATION 

In the case of an axially symmetrical beam it is convenient to use 
as coordinates in geometrical space radius R, angle G and longitudinal 
coordinate z of a cylindrical system. It is well known that the particle 
phase density stays constant along particle trajectories only in the space 
of canonically conjugate variables / 5 / . We chose a phase space with variables 
R, θ, z, v, p, w; where v, w are the radial and axial particle velocities; 
and where p = R2θ. For non-relativistic velocities v, w, p differ from the 
generalized momenta canonically conjugate to the generalized coordinates R, 
z, θ only by a constant factor equal to the particle mass. The phase density 
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for particle motion in the space R, θ, z, v, p, w is conserved. Mathematically 
this may be written as : 
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where F(R,θ,z,v,p,w) is the particle phase density. 

For the stationary axially symmetrical case and in the absence 
of azimuthal forces equation (1) may be written as : 
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If the dispersion of longitudinal particle velocites and the dependence 
of the longitudinal velocity on the radial coordinate are neglected, 
then the longitudinal particle velocity is a single-valued function of the 
coordinates. 

After deviding equation (2) by w, we rewrite it in the following way : 
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(3) 

p. 420 The solution of equation (3) may be looked for as the solution of 
a Cauchy problem. As initial condition we may take the value of phase density 
at z = 0, which is written as : 

F
0

 =
 z = 0 = 0(R0, v0, p0)δ(w0 - w0

*), (4) 

where wo
* = const. 

Along the particle trajectories, which are the characteristic 
curves of equation (3), the following relation holds : 

F(R, v, p, Z, w) = f0(R0((R, v,p, z), V0(R, v, p, z), p0) (w0(z, w) - w0*). (5) 

We introduce the function : 

L(w)=.w0(z, w)- w0*. (6) 
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From (6), regarding z as a parameter, we have : 

dL = w dw. dL = 
w0 

dw. (7) 

We assume that there is no longitudinal overtaking of particle. 
Then we have from (5) with the help of (7) : 

+ : ∞ 
Fdw = 

f0w0 
∫ Fdw = 

f0w0 
∫ Fdw = 

w 
- : ∞ 

Fdw = 
w (8) 

Using the result (8), inserting (5) into equation (3) and integrating 
the last one, we get : 
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where g = f.w ; ∫∫g dv dp = 2πRj, j is beam current density. 

From (9) it follows that in the general case in the presence of 
an external electrical field the particle density f in phase space is not 
conserved, but the quantity g. This is a consequence of the fact that we 
neglected the longitudinal velocity dispersion. 

Particle trajectories have been found with the help of the equation : 
d2R 

= 
e IR, z) 

+ 
p2 

+ φ(R', R, z), dz 2 = 
2 π ε 0 m Rw3 

+ 
R3w2 + φ(R', R, z), (10) 

where : 
I(R, z) = ∫∫∫gdpdvdr (11) 

is the beam current, e, m are particle charge & masse, εo is the permeativity 
of the vacuum, Φ(R',R,z) is the term related to the presence of the external 
fields. 

Equation (10) has been solved numerically. The function I(R,z) 
has been computed in each step by numerical integration with the help of 
the expression (11). 
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RESULTS OF THE CALCULATION AND DISCUSSION 

With the help of the described method of calculation the redistribution 
of phase density in the proton beam of the injector I-100 has been 
investigated. The values of the distribution function in the initial crosssection, denoted in Fig. 1 as the cross-section with coordinate z = 0, 
have been obtained by measuring the ion density by the method of 4 slits 
using films for recording the beam. The results of the calculation is given 
in Figs. 1-3. Fig. 1 where the beam envelopes and current density distributions 
in some cross-sections are given illustrates some properties and 
peculiarities of real beams. 

First, the current density distribution in a beam cross-section 
is essentially different from a uniform one and has qualitatively different 
form for different cross-sections, so that one may treat it as a redistribution 
of the current density over the beam's cross-section. The presence of the 
redistribution of the current density supports the appropriateness of the 
non-stationary problem. 

Second, the beam envelopes are not symmetrical with respect to the 
cross-section corresponding to the minimal size of the current of charged 
particles. This is related to the non-uniform velocity structure of the 
proton current, as if it consisted of several beams with different average 
velocities. 

In Fig. 2 projections of the phase volume on the plane of Cartesian 
coordinates x,x' are given for several beam cross-sections. The contour of 
the projection of the phase volume continuously changes its form and for 
cross-sections sufficiently distant from the cross-over current it has 
"protrusions" observed in several experimental investigations /6,7,8/. But 
in the given case these "protrusions" may be related to the extended character 
of the example of the initial contour of the phase volume. 
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Let us say a few words on the comparison of computed results with 
experiments. In Fig. 3 the computed current density distribution in the 
cross-section corresponding to the entrance of the accelerating tube of the 
linac injector /9/ is shown. 

In Fig. 4 an enlarged representation of the beam is given, cut out from the primary current by a diaphragm with a width of 0.06 mm. As is seen from a comparison between the photography and Fig. 3, the calculated current density distribution qualitatively agrees with the measured one. The beam sizes, approximately determined with the help of a grid as scale, equally agrees with the computed one (mesh size 3,2 × 3,2 mm2). 

Finally the authors express their sincere gratitude for useful 
advice and valuable discussions to Y.U.P. Sivkob, I.M. Kapchinskij, 
O.V. Koshkapev, B.N. Plotnikob, and V.A. Batalin. 
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Fig. 1 : Beam envelope and current density distribution 
a) z = 60 cm b) z = 20 cm c) z = 0 
d) z = -20 cm e) z = -80 cm 
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Fig. 2. : Projections of the beam's phase volume on the xx' plane. 
a) z = 60 cm b) z = 0 c) z = -80 cm 
(dotted curve gives the projection computed without consideration 
of Coulomb forces). 
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Fig. 4. : Image of the beam cut out from the primarycurrent 
by a fine diaphragm 


