The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3170

Development of KAGRA Algorithmic Library (KAGALI)

Ken’ichi Oohara

Department of Physics, Niigata University,
Niigata, 950-2181, Japan
E-mail: oohara@astro.sc.niigata-u.ac.jp

Koh Ueno!, Hirotaka Yuzuriharal, Yosuke Itoh2, Hirotaka Takahasi®, Tsukasa Arimal, Kazunari
Eda?, Yoshinori Fujii?, Kazuhiro Hayama!, Yuta Hiranuma?*, Shigeki Hirobayashi®, Nobuyuki
Kanda!, Masato Kaneyama!, Jeongcho Kim®, Chunglee Kim”, Hyung Won Lee®, Shuhei Mano®,
Kyohei Miyake®, Akinobu Miyamoto®!, Yuta Nakanishi®, Naoko Ohishi?, Masaya Nakano®,
Hayato Nakaol, Tatsuya Narikawa!, Kazuki Sakai?, Yukitsugu Sasaki®, Ayaka Shoda?, Hiroto
Suwabe?, Hideyuki Tagoshi!, Kazuyuki Tanaka,! Satoshi Ueki®, Takeshi Wakamatsu?, Takahiro

Yamamoto!, Jun’ichi Yokoyama?, Takaaki Yokozawal

LOsaka City University, >the University of Tokyo, 3 Nagaoka University of Technology, * Niigata
University, ® Toyama University, 8 Inje University, " Kyung Hee University, 8 The Institute of
Statistical Mathematics, ® National Astronomical Observatory of Japan

We will report the present status of development of KAGRA Algorithmic Library
(KAGALI) for data analysis of gravitational waves. It includes the concept and the
basic structure of the library.

Keywords: Gravitational waves; data analysis.

1. Introduction

As for software for gravitational wave data analysis, the Data Analysis Software
Working Group of the LIGO Scientific Collaboration (LSC) has already opened
a fine software suite, LALSuite, to the public.! Nevertheless, we should prepare
routines proper to KAGRA, especially for data handling tools and for new methods
we are developing. The LSC Algorithm Library (LAL) prepares a clever error
handling, bug tracking system.? But it seems to be very complicated for us to
append new functions. Thus KAGRA Data Analysis Subsystem (DAS) decided
to develop our own software suite that is independent to the LAL in principle.
As the first step, we began to develop the KAGRA Algorithmic Library, hereafter
KAGALL

KAGALI Suite is comprised of KAGALI and KAGALI-Apps. KAGALI is a
library of routines for gravitational wave data analysis and KAGALI-Apps is a data
analysis application packages build upon not only KAGALI but also LALSuite and
libraries developed by Virgo. We will make KAGALI Suite work independently
of LAL, while any of available software including KAGALI, LALSuite, the Virgo
software, etc. will be used for KAGRA data analysis.

The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3171

2. KAGALI C-coding Guidelines

KAGRA DAS published “KAGALI C-coding style guide”? for internal use only for
the time being, in order to reduce bugs, to make code-debugging easy, to produce
a common properties by which the KAGRA data analysis team can develop data
analysis programs efficiently and quickly, and to make programs easily re-usable and
understandable by standardizing code appearances. Source codes must be easy to
understand for others and you-at-some-time-later, and easy to understand without
a comment.

KAGALI does not specify what language we have to use to develop them, but
C language is used in the major part at the moment. The style guide specifies that
KAGALI must be written in “Clean C” and C99, where “Clean C” is a common
subset of the C and C++. KAGALI must be written in the way such that it can
run on any computers on which main data analysis tasks are executed. However, we
don’t place first priority on portability. We mainly intend instead to achieve higher
performance. KAGALI is assumed to be installed and work on various systems
of, at least, Unix-like OS including Linux and Mac OS X anyway. It is confirmed
for Mac OS X as well as for Red Hat Enterprise Linux (RHEL) 6.x, 7.x and its
compatibles, for example, Scientific Linux and CentOS with the GNU C compiler
(gee) and the Intel C compiler (icc).

GNU extensions may be used if the performance is improved, but the alternative
part that works on standard C99 must be added; one of them will be chosen by the
preprocessor as follows,

#ifdef __GNUC_.

(the GNU extensions (-std=gnu99) part)
F#else

(the C99 (-std=c99) part)
#endif

KAGALI routines should not call file input/output routines with a few excep-
tions including functions that handles Frame Library. They should not call any
system-dependent functions such as system(), getenv(), srand(), and so on.
Functions in the library should not terminate the program, that is, should not
call abort(), exit() or issue signal() except for some particular cases. They
should return a status code via the designated structure KGLStatus, instead.

Use the atomic data type of C99 (char, unsigned char, int, double, etc.)
rather than the LAL-specific atomic data types (CHAR, UCHAR, INT4, REALS, etc).
If clarification of data size of integers is necessary, use int32_t, int64_t, etc. of
(C99. Use _Bool of C99 for boolean data type. You can use bool, true and false
defined in the C99 header stdbool.h.

Particular attention may be given to the complex data type, since some li-
braries including FFTW3 and GSL on which KAGALI depends define their own
complex type in order to adapt to C compilers before C99. However, FFTW3

The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3172

defines its own fftw_complex to be the native complex type of C99 if you
#include <complex.h> before <fftw3.h>% Representation of complex numbers
of GSL is binary-compatible with that of the native complex type of C99 at least as
long as you use GNU C compiler for Intel CPUs. Therefore, KAGALI will include
<complex.h> in default and you can use typedef and macros defined there as well
as the native complex type of C99, while you need to cast it to gsl_complex when
you call functions of GSL.

The same rules as LAL are applied to names of functions, variables, etc., while
the prefix “KGL” or “kgl” rather than “LAL” or “lal” is used. The use of Studly
Caps is recommended except for macros, which are generally all in uppercase and
underscores if necessary.

Every variable should have a different name from each other even if there is no
overlap in the scope and/or the lifetime between any of two variables.

3. Version Control

We use “git” for the version control and the git server for KAGRA DAS is prepared
at the University of Tokyo. The KAGALI sources are located in the KAGALI git
repository on it. It is still a pre-alpha version and only developers can access the
repository at this moment.

The version identifier of KAGALI is embedded in the library via KGLVersion.c
and KAGLVersion.h. KAGLVersion.h will be updated automatically from the “git-
log” when a developer modifies the source and commit it to git. The identifier
includes the date and the name of the latest committer as well as the commit hash
of git, such as

$KGL: 2015-06-11 18:58:51 +0900 oohara
e1c4al138e786d147e733699d97ee3al1f74£0a237 $

4. Analysis Tools of the Sources

Tools that can automatically detect various bugs is indispensable in developing a
library. LAL provides the sophisticated mechanisms, such as the error reporting
system and memory leak checking. It is a heavy task to port all of them into our
system or to construct the same mechanisms by ourselves. Instead, we made a
simpler mechanism of reporting error during the execution of a program. All the
KAGALI functions generally have a pointer to a KGLStatus structure type as their
first argument. Each function set an error code and message if a failure occurs. The
message includes the function name and the line number to point out where the
failure accrues.

For memory leak checking, we decided to use external applications rather than
to use custom functions for memory management, such as LALMalloc, LALFree,
etc.

The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3173

One is “cppcheck”,® which is a static analysis tool for C/C++ code. It primarily
detects the types of bugs that the compiler normally do not detect, such as out
of bounds checking, memory leaks checking, checking for uninitialized variables,
warning if obsolete or unsafe functions are used, etc. When the sources are modified
and pushed to the KAGALI git server, they will be checked by cppcheck nightly.
The automatic checking system has been provided under Jenkins® on the server.

However, there may be memory leaks that cannot be detected by cppcheck,
since it makes a static analysis without actual execution of the program. Thus
we use “Valgrind” to detect dynamically memory leaks. It is an instrumentation
framework for building dynamic analysis tools. There are Valgrind tools that can
automatically detect many memory management and threading bugs, and profile
your programs in detail. Valgrind redirects malloc, calloc, etc. to the functions
that Valgrind provides to detect memory errors. Users don’t need to change the
source code or link a special library.

5. The Present Status of KAGALI

The latest version of KAGALI Suite is 0.4-alpha, but it is not open to the public
yet. This version requires the GNU Scientific Library (GSL, version 1.13 to 1.16),
FFTW (version 3.2.0 or up) and LIGO/Virgo Frame library (FrameL, version 8.0.0
or up). Some of application programming interface of GSL were changed for gsl-
2.x. Since it may cause errors in compiling KAGALI, please avoid using gsl-2.x
for the time being. GNU autotools (autoconf/automake/libtools) are required for
a maintainer and developer. KAGALI library calls CBLAS functions and thus it
is recommended to link one of tuned CBLAS libraries in order to speed up linear
algebra operations. At present, configure script supports OpenBLAS, ATLAS,
Intel Math Kernel Library (MKL) as well as gslcblas, which is a part of GSL.
The current source tree is temporally

e kagali

o kglcommon

o estimatepsd (averaged power spectral density)
o fft (FFTW wrappers)
o frame (FrameL, wrappers)
o nha (least square fits)
o noisepsd (noise power spectral density)
o std (error report, version control, etc.)
o tools (bandpass filters, impulse response, linear algebra,
mathematical functions in geometry, etc.)
o cbhe (for compact binary coalescence)
¢ hht (for the Hilbert-Huang transform)

o waveform (various wave forms)

The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3174

e kagaliapps

o cbe
¢ nha

The source tree may be changed later.

6. Summary

Now we started to develop KAGALI. The basic frame work has been determined,
including bug tracing mechanism, FFT wrappers and Framel. wrappers. To detect
memory leak and other bugs, external applications such as cppcheck or Valgrind are
used. However, it is still a pre-alpha version and we have to examine throughout the
code. Some of routines in KAGALI will be applied to build the analysis pipeline for
iKAGRA. The first release version will be open to public by 2017 when bKAGRA
will be operated.

Acknowledgments

This work was supported by MEXT Grant-in-Aid for Scientific Research on Inno-
vative Areas ”New Developments in Astrophysics Through Multi-Messenger Obser-
vations of Gravitational Wave Sources” (Grant Number 24103005) and by MEXT
Grant-in-Aid for Scientific Research(C) Grant Number 15K05071.

References

1. https://www.lsc-group.phys.uwn.edu/daswg/

2. B. Allen, et. al., LIGO Scientific Collaboration Algorithm Library Specification and
Style Guide, LIGO-T990030-v2, 2010,
https://dcc.ligo.org/T990030/public

3. KAGRA Data Analysis Subsystem, KAGALI C-coding style guide, 2014, published
internally only.

4. http://wuw.fftw.org/doc/Complex-numbers.html

http://cppcheck.sourceforge.net/

6. https://jenkins-ci.org/

o

