
August 31, 2017 17:13 ws-procs961x669 MG-14 – Proceedings (Part C) C404 page 3170

3170

Development of KAGRA Algorithmic Library (KAGALI)

Ken’ichi Oohara

Department of Physics, Niigata University,
Niigata, 950-2181, Japan

E-mail: oohara@astro.sc.niigata-u.ac.jp

Koh Ueno1, Hirotaka Yuzurihara1, Yosuke Itoh2, Hirotaka Takahasi3, Tsukasa Arima1, Kazunari

Eda2, Yoshinori Fujii2, Kazuhiro Hayama1, Yuta Hiranuma4, Shigeki Hirobayashi5, Nobuyuki

Kanda1, Masato Kaneyama1, Jeongcho Kim6, Chunglee Kim7, Hyung Won Lee6, Shuhei Mano8,

Kyohei Miyake5, Akinobu Miyamoto1, Yuta Nakanishi5, Naoko Ohishi9, Masaya Nakano5,

Hayato Nakao1, Tatsuya Narikawa1, Kazuki Sakai3, Yukitsugu Sasaki3, Ayaka Shoda9, Hiroto

Suwabe4, Hideyuki Tagoshi1, Kazuyuki Tanaka,1 Satoshi Ueki3, Takeshi Wakamatsu4, Takahiro

Yamamoto1, Jun’ichi Yokoyama2 , Takaaki Yokozawa1

1Osaka City University, 2the University of Tokyo, 3Nagaoka University of Technology, 4Niigata
University, 5Toyama University, 6Inje University, 7Kyung Hee University, 8The Institute of

Statistical Mathematics, 9National Astronomical Observatory of Japan

We will report the present status of development of KAGRA Algorithmic Library
(KAGALI) for data analysis of gravitational waves. It includes the concept and the
basic structure of the library.

Keywords: Gravitational waves; data analysis.

1. Introduction

As for software for gravitational wave data analysis, the Data Analysis Software

Working Group of the LIGO Scientific Collaboration (LSC) has already opened

a fine software suite, LALSuite, to the public.
1
Nevertheless, we should prepare

routines proper to KAGRA, especially for data handling tools and for new methods

we are developing. The LSC Algorithm Library (LAL) prepares a clever error

handling, bug tracking system.
2
But it seems to be very complicated for us to

append new functions. Thus KAGRA Data Analysis Subsystem (DAS) decided

to develop our own software suite that is independent to the LAL in principle.

As the first step, we began to develop the KAGRA Algorithmic Library, hereafter

KAGALI.

KAGALI Suite is comprised of KAGALI and KAGALI-Apps. KAGALI is a

library of routines for gravitational wave data analysis and KAGALI-Apps is a data

analysis application packages build upon not only KAGALI but also LALSuite and

libraries developed by Virgo. We will make KAGALI Suite work independently

of LAL, while any of available software including KAGALI, LALSuite, the Virgo

software, etc. will be used for KAGRA data analysis.

 T
he

 F
ou

rt
ee

nt
h

M
ar

ce
l G

ro
ss

m
an

n
M

ee
tin

g
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n

04
/2

6/
21

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 31, 2017 17:13 ws-procs961x669 MG-14 – Proceedings (Part C) C404 page 3171

3171

2. KAGALI C-coding Guidelines

KAGRA DAS published “KAGALI C-coding style guide”
3
for internal use only for

the time being, in order to reduce bugs, to make code-debugging easy, to produce

a common properties by which the KAGRA data analysis team can develop data

analysis programs efficiently and quickly, and to make programs easily re-usable and

understandable by standardizing code appearances. Source codes must be easy to

understand for others and you-at-some-time-later, and easy to understand without

a comment.

KAGALI does not specify what language we have to use to develop them, but

C language is used in the major part at the moment. The style guide specifies that

KAGALI must be written in “Clean C” and C99, where “Clean C” is a common

subset of the C and C++. KAGALI must be written in the way such that it can

run on any computers on which main data analysis tasks are executed. However, we

don’t place first priority on portability. We mainly intend instead to achieve higher

performance. KAGALI is assumed to be installed and work on various systems

of, at least, Unix-like OS including Linux and Mac OS X anyway. It is confirmed

for Mac OS X as well as for Red Hat Enterprise Linux (RHEL) 6.x, 7.x and its

compatibles, for example, Scientific Linux and CentOS with the GNU C compiler

(gcc) and the Intel C compiler (icc).

GNU extensions may be used if the performance is improved, but the alternative

part that works on standard C99 must be added; one of them will be chosen by the

preprocessor as follows,

#ifdef GNUC

(the GNU extensions (-std=gnu99) part)

#else

(the C99 (-std=c99) part)

#endif

KAGALI routines should not call file input/output routines with a few excep-

tions including functions that handles Frame Library. They should not call any

system-dependent functions such as system(), getenv(), srand(), and so on.

Functions in the library should not terminate the program, that is, should not

call abort(), exit() or issue signal() except for some particular cases. They

should return a status code via the designated structure KGLStatus, instead.

Use the atomic data type of C99 (char, unsigned char, int, double, etc.)

rather than the LAL-specific atomic data types (CHAR, UCHAR, INT4, REAL8, etc).

If clarification of data size of integers is necessary, use int32_t, int64_t, etc. of

C99. Use _Bool of C99 for boolean data type. You can use bool, true and false

defined in the C99 header stdbool.h.

Particular attention may be given to the complex data type, since some li-

braries including FFTW3 and GSL on which KAGALI depends define their own

complex type in order to adapt to C compilers before C99. However, FFTW3

 T
he

 F
ou

rt
ee

nt
h

M
ar

ce
l G

ro
ss

m
an

n
M

ee
tin

g
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n

04
/2

6/
21

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 31, 2017 17:13 ws-procs961x669 MG-14 – Proceedings (Part C) C404 page 3172

3172

defines its own fftw_complex to be the native complex type of C99 if you

#include <complex.h> before <fftw3.h>4
. Representation of complex numbers

of GSL is binary-compatible with that of the native complex type of C99 at least as

long as you use GNU C compiler for Intel CPUs. Therefore, KAGALI will include

<complex.h> in default and you can use typedef and macros defined there as well

as the native complex type of C99, while you need to cast it to gsl_complex when

you call functions of GSL.

The same rules as LAL are applied to names of functions, variables, etc., while

the prefix “KGL” or “kgl” rather than “LAL” or “lal” is used. The use of Studly

Caps is recommended except for macros, which are generally all in uppercase and

underscores if necessary.

Every variable should have a different name from each other even if there is no

overlap in the scope and/or the lifetime between any of two variables.

3. Version Control

We use “git” for the version control and the git server for KAGRA DAS is prepared

at the University of Tokyo. The KAGALI sources are located in the KAGALI git

repository on it. It is still a pre-alpha version and only developers can access the

repository at this moment.

The version identifier of KAGALI is embedded in the library via KGLVersion.c

and KAGLVersion.h. KAGLVersion.h will be updated automatically from the “git-

log” when a developer modifies the source and commit it to git. The identifier

includes the date and the name of the latest committer as well as the commit hash

of git, such as

$KGL: 2015-06-11 18:58:51 +0900 oohara

e1c4a138e786d147e733699d97ee3a1f74f0a237 $

4. Analysis Tools of the Sources

Tools that can automatically detect various bugs is indispensable in developing a

library. LAL provides the sophisticated mechanisms, such as the error reporting

system and memory leak checking. It is a heavy task to port all of them into our

system or to construct the same mechanisms by ourselves. Instead, we made a

simpler mechanism of reporting error during the execution of a program. All the

KAGALI functions generally have a pointer to a KGLStatus structure type as their

first argument. Each function set an error code and message if a failure occurs. The

message includes the function name and the line number to point out where the

failure accrues.

For memory leak checking, we decided to use external applications rather than

to use custom functions for memory management, such as LALMalloc, LALFree,

etc.

 T
he

 F
ou

rt
ee

nt
h

M
ar

ce
l G

ro
ss

m
an

n
M

ee
tin

g
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n

04
/2

6/
21

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 31, 2017 17:13 ws-procs961x669 MG-14 – Proceedings (Part C) C404 page 3173

3173

One is “cppcheck”,
5
which is a static analysis tool for C/C++ code. It primarily

detects the types of bugs that the compiler normally do not detect, such as out

of bounds checking, memory leaks checking, checking for uninitialized variables,

warning if obsolete or unsafe functions are used, etc. When the sources are modified

and pushed to the KAGALI git server, they will be checked by cppcheck nightly.

The automatic checking system has been provided under Jenkins
6
on the server.

However, there may be memory leaks that cannot be detected by cppcheck,

since it makes a static analysis without actual execution of the program. Thus

we use “Valgrind” to detect dynamically memory leaks. It is an instrumentation

framework for building dynamic analysis tools. There are Valgrind tools that can

automatically detect many memory management and threading bugs, and profile

your programs in detail. Valgrind redirects malloc, calloc, etc. to the functions

that Valgrind provides to detect memory errors. Users don’t need to change the

source code or link a special library.

5. The Present Status of KAGALI

The latest version of KAGALI Suite is 0.4-alpha, but it is not open to the public

yet. This version requires the GNU Scientific Library (GSL, version 1.13 to 1.16),

FFTW (version 3.2.0 or up) and LIGO/Virgo Frame library (FrameL, version 8.0.0

or up). Some of application programming interface of GSL were changed for gsl-

2.x. Since it may cause errors in compiling KAGALI, please avoid using gsl-2.x

for the time being. GNU autotools (autoconf/automake/libtools) are required for

a maintainer and developer. KAGALI library calls CBLAS functions and thus it

is recommended to link one of tuned CBLAS libraries in order to speed up linear

algebra operations. At present, configure script supports OpenBLAS, ATLAS,

Intel Math Kernel Library (MKL) as well as gslcblas, which is a part of GSL.

The current source tree is temporally

• kagali

� kglcommon

◦ estimatepsd (averaged power spectral density)

◦ fft (FFTW wrappers)

◦ frame (FrameL wrappers)

◦ nha (least square fits)

◦ noisepsd (noise power spectral density)

◦ std (error report, version control, etc.)

◦ tools (bandpass filters, impulse response, linear algebra,

mathematical functions in geometry, etc.)

� cbc (for compact binary coalescence)

� hht (for the Hilbert-Huang transform)

� waveform (various wave forms)

 T
he

 F
ou

rt
ee

nt
h

M
ar

ce
l G

ro
ss

m
an

n
M

ee
tin

g
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n

04
/2

6/
21

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

August 31, 2017 17:13 ws-procs961x669 MG-14 – Proceedings (Part C) C404 page 3174

3174

• kagaliapps

� cbc

� nha

The source tree may be changed later.

6. Summary

Now we started to develop KAGALI. The basic frame work has been determined,

including bug tracing mechanism, FFT wrappers and FrameL wrappers. To detect

memory leak and other bugs, external applications such as cppcheck or Valgrind are

used. However, it is still a pre-alpha version and we have to examine throughout the

code. Some of routines in KAGALI will be applied to build the analysis pipeline for

iKAGRA. The first release version will be open to public by 2017 when bKAGRA

will be operated.

Acknowledgments

This work was supported by MEXT Grant-in-Aid for Scientific Research on Inno-

vative Areas ”New Developments in Astrophysics Through Multi-Messenger Obser-

vations of Gravitational Wave Sources” (Grant Number 24103005) and by MEXT

Grant-in-Aid for Scientific Research(C) Grant Number 15K05071.

References

1. https://www.lsc-group.phys.uwm.edu/daswg/

2. B. Allen, et. al., LIGO Scientific Collaboration Algorithm Library Specification and

Style Guide, LIGO-T990030-v2, 2010,

https://dcc.ligo.org/T990030/public

3. KAGRA Data Analysis Subsystem, KAGALI C-coding style guide, 2014, published

internally only.

4. http://www.fftw.org/doc/Complex-numbers.html

5. http://cppcheck.sourceforge.net/

6. https://jenkins-ci.org/ T
he

 F
ou

rt
ee

nt
h

M
ar

ce
l G

ro
ss

m
an

n
M

ee
tin

g
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n

04
/2

6/
21

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

