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Abstract: OTOC has been used to characterize the information scrambling in quantum systems.

Recent studies have shown that local conserved quantities play a crucial role in governing the

relaxation dynamics of OTOC in non-integrable systems. In particular, the slow scrambling of OTOC

is seen for observables that have an overlap with local conserved quantities. However, an observable

may not overlap with the Hamiltonian but instead with the Hamiltonian elevated to an exponent

larger than one. Here, we show that higher exponents correspond to faster relaxation, although

still algebraic, and such exponents can increase indefinitely. Our analytical results are supported by

numerical experiments.

Keywords: OTOC; information scrambling; relaxation dynamics

1. Introduction

For generic many-body quantum systems, information initially encoded in a few local
degrees of freedom can spread in time over the entire accessible space. This process is
called information scrambling and can be characterized by out-of-time ordered correlators
(OTOCs) [1–21]. For quantum systems with a classical limit, OTOCs can be mapped to
Lyapunov exponents [22–33]. Because of this, OTOCs have been applied to understand
the thermalization in many-body quantum systems [3–13].

Recent studies have pointed out the relevance of local conserved quantities in the
relaxation dynamics of OTOCs [34,34–40]. In particular, in [39] it was shown that the
emergence of algebraic relaxation can stem from the locality of the Hamiltonian, i.e.,
the ensuing presence of a Lieb–Robinson bound [41], and the eigestate thermalization
hypothesis (ETH) [42,43]. Importantly, with the approach developed in [39] it was also
possible to show that the algebraic relaxation of the OTOC is typical.

In the scenarios considered until now, the operators in the OTOC had non-zero overlap
with the Hamiltonian or a local conserved quantity (i.e., total magnetization). Here, we
investigate how the relaxation dynamics would be affected if the operators in the OTOC,
e.g., A, do not overlap with the Hamiltonian H but only with one of its powers, i.e.,
tr(AH) = 0, but tr(AHm) 6= 0 for m, being an integer larger than one. We show that
depending on the exponent m at which the overlap becomes non-zero, we expect an
algebraic relaxation of the OTOC in time with an exponent proportional to m. To obtain
this result, we also show the relation between the first non-zero derivative of the diagonals
of an operator in the energy basis, with the exponent m at which tr(AHm) 6= 0.

The paper is organized as follows. In Section 2, we introduce the definition of OTOCs
and explain the relaxation dynamics of OTOCs from the knowledge of the matrix elements
of the observables in the eigenenergy basis. In Section 3, we show analytically our main
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result, i.e., that any different exponents can emerge in the relaxation of the OTOC, depend-
ing on the order at which the operators in the OTOC overlap with the Hamiltonian. Our
numerical results are presented in Section 4. We draw our conclusions in Section 5.

2. Emergence of Slow Scrambling

2.1. Definition

Consider the infinite-temperature out-of-time-ordered correlator (OTOC) between
two local observables A and B defined as

OAB(t) =
1

2
〈[A(t), B][A(t), B]†〉 (1)

where A(t) = U† AU is the time evolved operator A due to the unitary evolution U =

T e−i
∫ t

0 H(τ)dτ from the time-ordered integration of the (generically) time-dependent Hamil-
tonian H(t). Expanding the commutators, we can rewrite Equation (1) as

1

2
〈[A(t), B][A(t), B]†〉 = 〈B2 A(t)2〉 − 〈A(t)BA(t)B〉

= GAB(t)− FAB(t),

(2)

where GAB(t) = 〈B2 A(t)2〉 is the time-ordered part of OTOC and FAB(t) = 〈A(t)BA(t)B〉
is the not-time-ordered part. We consider only unitary and Hermitian observables for
which G(t) = 1, and hence we restrict ourselves to F(t) in the remaining part. Taking
energy eigenstates as the basis of the Hilbert space, the time evolution of OTOC can be
written in the eigenenergy basis |p〉 as

FAB(t) =
1

V ∑
p,q,k,l

ei(Ep−Eq+Ek−El)t ApqBqk Akl Blp (3)

where Ep is the eigenenergy, Apq = 〈p|A|q〉, and Bqk = 〈q|B|k〉. We work in units for which
h̄ = 1.

As t → ∞, dominant terms in the above expression are those for which Ep − Eq + Ek −
El = 0. Hence, for generic systems [44,45], the infinite-time value of FAB(t) is given by

FAB(∞) =
1

V

(

∑
p

A2
ppB2

pp + ∑
p,q 6=p

(

AppBpq AqqBqp

+ApqBqq AqpBpp

)

)

. (4)

Equation (4) highlights the importance of diagonal elements of A and B in the eigenenergy
basis in the infinite-time value of OTOC. Indeed, a non-zero diagonal element in A or B is
necessary to guarantee a non-zero value of FAB(∞).

2.2. Conditions for Algebraic Relaxation of OTOC

Two sufficient conditions for the emergence of algebraic relaxation of OTOC [39,40]
are

• A Lieb–Robinson bound (or even an algebraic spreading of correlation that occurs in
systems with power-law interactions),

• The algebraic scaling of the infinite-time value of the OTOC with the system size.

In local and bounded Hamiltonians, the speed of propagation of the correlations is
limited by Lieb–Robinson bound [41,46]. Hence, an accurate description of the evolution of
OTOC of a thermodynamically large system can be obtained simply considering a finite
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portion of it. Assuming that the system is maximally scrambled within the region of size L,
the decay of FAB

L=∞(t) is bounded by the Lieb–Robinson velocity vLR as

FAB
L=∞(t) ≈ FAB

L=s vLR t(∞), (5)

where s is a real number larger than 1. Hence, L increases with time and is a time-dependent
quantity. Therefore, the scaling of FAB

L (∞) is crucial to predict the bound for the relaxation
of OTOC. In particular, when FAB

L (∞) decays algebraically with the system size, e.g.,
FAB

L (∞) ∝ L−α, then the OTOC of the thermodynamic size system cannot decay faster than
algebraically in time, or more precisely from Equation (5) one can write that it cannot be
faster than

FAB
L=∞(t) ∝

1

tα
(6)

because L = s vLR t.
The actual decay of the OTOC may even be slower, for example, considering cases in

which the system goes through prethermalization [47] or in which the system is many-body
localized [48]. However, the relaxation cannot be faster; hence, the OTOC will have a slow,
non-exponential relaxation. A comprehensive analysis of this is presented in [39].

3. Generic Algebraic Relaxation in Short-Ranged Systems

3.1. Estimate of the Infinite Time Value of OTOC

In this section, we show how to obtain the approximate value of the infinite-time,
finite-size, OTOC FAB

L (∞)

FAB
L (∞) =

1

V ∑
p

A2
ppB2

pp +
1

V ∑
p,q 6=p

App Aqq|Bpq|
2

+
1

V ∑
p,q 6=p

BppBqq|Apq|
2

≈
1

V ∑
p

A2
ppB2

pp +
1

V ∑
p

App App

[

(BB†)pp − B2
pp

]

+
1

V ∑
p

BppBpp

[

(AA†)pp − A2
pp

]

≈
1

V ∑
p

A2
ppB2

pp +
1

V ∑
p

[

tr(BB†)− B2
pp

]

A2
pp

+
1

V ∑
p

[

tr(AA†)− A2
pp

]

B2
pp

≈
1

V ∑
p

A2
ppB2

pp +
1

V ∑
p

[

1 − B2
pp

]

A2
pp

+
1

V ∑
p

[

1 − A2
pp

]

B2
pp

≈
1

V ∑
p

[

A2
pp + B2

pp − A2
ppB2

pp

]

≈
1

V ∑
p

[

A2
pp + B2

pp

]

, (7)

where we have used steps similar to [39,45], and a similar discussion can be found in [40].
Thus, the main contribution of the infinite-time finite-size OTOC comes from the A2

pp and

B2
pp terms, which we will be discussing in the following.
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3.2. Structure of the Diagonal Elements

In short, the diagonal element App can be approximated by a function of eigenen-
ergy Ep

|App − fA(Ep/L)| ≤ e−(Ω(L)), (8)

where fA(Ep/L) can be expanded as

fA(Ep/L) = fA(0) + f
(1)
A (0)Ep/L +

1

2
f
(2)
A (0)E2

p/L2 + ...

= ∑
q

f
(q)
A

q!

(

Ep

L

)q

(9)

with f
(q)
A being the q-th derivative of fA. We also note that, using Lemma 1 in [45], one can

write

1

V ∑
p

E
q
p = 〈Hq〉 = O(Lq/2). (10)

In [45] it was shown that, for traceless operators fA(0) = 0, and if f
(1)
A (0) 6= 0, then we can

write

tr(AH) =
1

V ∑
p

AppEp

≈
1

VL ∑
p

E2
p f

(1)
A (0)

≈
〈H2〉

L
f
(1)
A (0) (11)

and thus

f
(1)
A (0) ≈

tr(AH)L

〈H2〉
. (12)

Hence, the first derivative of a local observable A is independent of the system size. From
Equation (12), we obtain

FAB
L (∞) ≈

1

V ∑
p

(A2
pp + B2

pp)

≈
1

V ∑
p

E2
p

L2

[

(

f
(1)
A (0)

)2
+

(

f
(1)
B (0)

)2
]

≈
1

V ∑
p

E2
p

L2

[

tr(AH)2 + tr(BH)2
]

L2

〈H2〉2

≈
tr(AH)2 + tr(BH)2

〈H2〉

∝
1

L
. (13)

The last step stems from the fact that tr(AH) and tr(BH) are independent of the system
size, while 〈H2〉 ∝ L from Equation (10).
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If tr(AH) = 0 but, for instance, tr(AHp) 6= 0 only for p ≥ pc then one can generalize

the previous result. Considering f
(q)
A (0) as the smalles non-zero derivative of fA at zero

energy (with the same parity as pc), then we can write

tr(AHpc) = ∑
n

f
(q)
A

q!

E
q+pc
n

Lq (14)

which implies that

f
(q)
A =

q!tr(AHpc)Lq

〈Hpc+q〉
. (15)

Now, if q < pc then f
(q)
A would decay as L−(pc−q)/2, which implies that they are 0, and

the non-size dependent f
(q)
A (0) would occur exactly at q = pc. This implies that the first

non-zero derivative of fA(0) is the pc-th one. Thus, when tr(AHp) 6= 0 only for p ≥ pc we
can write

FAB
L (∞) ≈

1

V ∑
n

(

En

L

)2pc
[

(

f
(pc)
A (0)

)2
+

(

f
(pc)
B (0)

)2
]

≈
1

V ∑
n

(

En

L

)2pc

[

tr(AHpc)2 + tr(BHpc)2
]

L2pc

〈H2pc〉2

≈
tr(AHpc)2 + tr(BHpc)2

〈H2pc〉

∝
1

Lpc
. (16)

Building on Equation (16), and combining it with the Lieb–Robinson bound L = s vLR t,
we can thus guarantee that FAB cannot relax faster than t−pc . Furthermore, for systems in
which correlations mostly spread diffusively, i.e., proportional to t1/2, we can can expect
FAB to relax as t−pc/2. Hence, the structure of the diagonal elements of the observables,
which is the first non-zero derivative at 0 energy, i.e., which is the first exponent of the
Hamiltonian that has non-zero overlap with the operators A and B considered, plays an
important role in the relaxation dynamics of the OTOC in the system. This is numerically
verified in detail in the following section.

4. Results

4.1. Model

We consider a prototypical non-integrable model, the tilted Ising chain with Hamiltonian

H =
L−1

∑
l=1

Jzσ
z
l σ

z
l+1 +

L

∑
l=1

(hxσ
x
l + hzσ

z
l ), (17)

where Jz is the coupling constant in the z direction, while hx and hz are the transverse
and the longitudinal field strengths. The model is integrable when either hx = 0 or
hz = 0. This can be verified by studying the level spacing statistics, which typically
follows a Poisson distribution for integrable systems and a Wigner–Dyson distribution
for non-integrable ones [49,50]. In particular, δn = En+1 − En, the level spacing between
two consecutive energy levels En and En+1 within a single symmetry sector, define the
ratio rn = max(δn, δn+1)/min(δn, δn+1) and take an average r = ∑n rn/N, where N is
the number of energy level differences considered. For a Poisson distribution, r can be
computed analytically, and it gives r = 2 ln 2 − 1 ≈ 0.386, while for a Wigner–Dyson
distribution r can be evaluated numerically to be r ≈ 0.529 [51]. In the current work, we
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use parameters Jz = 1, hz = 0.809, and hx = 0.9, which result in r ≈ 0.53 already for a
system size of L = 12 spins.

4.2. Observables and Structure of Their Diagonal Elements

To span over a variety of different structures, and to have operators A, which have
tr(AHp) 6= 0 only for p ≤ pc with pc, which can be different from 1, we analyze both
single-site and multi-site observables in our study. In particular, we consider the following
four types of observables:

single − site → σ
α

l (18)

double − site → σ
α

l σ
α

l+1 (19)

triple − site → σ
α

l−1σ
α

l σ
α

l+1 (20)

quadruple − site → σ
α

l−2σ
α

l−1σ
α

l σ
α

l+1 (21)

where α = x, y or z. The diagonal elements of these operators in the eigenbasis of Hamilto-
nian Equation (17) are shown in Figure 1. The left column is for α = x, the center column
is for α = y, and the right column is for α = z. The rows are for increasing the range of
operators from top to bottom, with the top row for single-site operators and the fourth row
for four-site operators. In all of the panels, the dashed lines represent the expected algebraic
energy dependence of fA near energy zero from Section 3.2. We note that these fits are

evaluated directly from calculating f
(n)
A (0) with Equation (15) along with eigenenergies En

for the system Hamiltonian in Equation (17) with no fitting parameters.
For single-site observables A = σ

x
l and σ

z
l , and for the non-integrable Ising chain

tr(AH) 6= 0 and so f
(1)
A (0) 6= 0. However, with A = σ

y
l , tr(AHn) = 0 for any n. Hence,

we expect a linear variation of the diagonal elements of σ
x
l and σ

z
l with energy density

En/L and a flat profile for σ
y
l . This can be seen in Figure 1a–c. To conform our analytical

predictions, we plot f
(1)
A (0)En/L where f

(1)
A (0) is calculated explicity form Equation (12).

The two-site observables A = σ
α

L/2σ
α

L/2+1, are shown in the panels (d–f). For A =

σ
x
L/2σ

x
L/2+1, tr(AH2) 6= 0, whereas tr(AH) = 0 and, as predicted in Section 3.2, we thus

observe that fA can be fitted by a parabola f
(2)
A (0)E2

n/(2!L2) indicated by the dashed black
lines. Since tr(AH) 6= 0 for A = σ

z
L/2σ

z
L/2+1, we see a linear scaling of Ann with En/L. For

the A = σ
y
L/2σ

y
L/2+1 observable, tr(AHm) 6= 0 for m ≥ 3. Hence, we see a cubic structure of

the diagonal elements with a fitting of the form f
(3)
A (0)E3

n/(3!L3).
We also consider triple-site observables A = σ

α

L/2−1σ
α

L/2σ
α

L/2+1. These are depicted in
the panels (g–i). Here, tr(AHm) 6= 0 for m ≥ 3 for σ

x
l observables, and we clearly see a cubic

structure for the diagonal elements that can be fitted with lines of the form f
(3)
A (0)E3

n/(3!L3).
Since there are no diagonal elements for any power of H for the σ

y observable, a flat profile
is seen. With the σ

z observable, a parabolic structure is seen since tr(AH2) 6= 0, whereas

tr(AH) = 0. This is also nicely fitted by f
(2)
A (0)E2

n/(2!L2) in panel (i).
For the four site observable, we study A = σ

α

L/2−2σ
α

L/2−1σ
α

L/2σ
α

L/2+1. For A =
σ

x
L/2−2σ

x
L/2−1σ

x
L/2σ

x
L/2+1, a quartic structure can be seen as tr(AHm) 6= 0 only for m ≥ 4.

This is fitted by f
(4)
A (0)E4

n/(4!L4) (black dashed lines). With σ
y
l observables, the expected

structure is hexic (polynomial of sixth degree) because tr(AHm) 6= 0 only for m ≥ 6.

Though it is less clear, we fit it with the expected scaling f
(6)
A (0)E6

n/(6!L6) using the black
dashed lines. For the σ

z observable, we find a parabolic structure in accordance with
our prediction as tr(AH2) 6= 0, whereas tr(AH) = 0. Since we consider systems of size
L = 14, the results in Figure 1j–l are partially affected by finite-size effects. Despite this, the
numerics are aligned with our theoretical predictions.
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Figure 1. Diagonal elements of the observable in the energyeigen basis for single-site observ-

ables A = σ
α

L/2 panel (a–c), double-site observables A = σ
α

L/2σ
α

L/2+1 (d–f), triple-site observables

A = σ
α

L/2−1σ
α

L/2σ
α

L/2+1 (g–i), and quadruple-site observables A = σ
α

L/2−2σ
α

L/2−1σ
α

L/2σ
α

L/2+1 (j–l). Left

panels are for σ
x
l (α = x) observables, middle panels are for σ

y
l (α = y) observables, and right panels

are for σ
z
l (α = z) observables. Dashed lines are the lowest order fits in the Taylor expansion of the

observable in Equation (9). Here, L = 14, Jz = 1, hx = 0.9, and hz = 0.809.

To summarize this section, we observe clearly that the diagonal elements of operators
can have a very different dependence as a function of energy near zero. In particular, we
have numerically verified the prediction that Ann ∼ 1/Lp, where p is the lowest positive
integer such that tr(AHp) 6= 0.

4.3. Scaling of the Infinite Time Value of OTOC

In Figure 2, we show numerical confirmation that, given the minimum positive integer
pc such that tr(AHpc) 6= 0 or tr(BHpc) 6= 0, then FAB

L=∞(t) ∝ 1/Lpc . In each of the panels,
we show how the infinite time value of the OTOC FAB

L (t = ∞) varies as a function of the
system size L. In the different panels, we will focus on single-site, panel (a); two-site, panel
(b), three-site, panel (c); and four-site, panel (d), observables. In each panel, the red line
with circles corresponds to α = x, blue with stars to α = y, and green with diamonds
to α = z. In panel Figure 2a, we plot the infinite time values of OTOC with single-site
observables A, B = σ

α

l , where l = L/2 for observable B and l = L/2 − 1 for observable A.
We see that these observables have pc = 1, and hence they follow 1/L scaling, as shown
by dashed line. σ

y
l has no overlap with any local conserved quantities, and hence the

diagonal elements as well as the infinite time values of OTOC are zero. Figure 2b is for
double-site observables Equation (19), where l = L/2 for observable B and l = L/2 − 2
for observable A. We compare the numerical results with fitted lines, in particular with
1/L2 (dotted), 1/L3 (dashed dotted lines), and 1/L (dashed), respectively, corresponding
to operators with pc = 2, 3 and 1. We note that due to the small value of the overlap of
σ

y
j σ

y
j+1 with the Hamiltonian, the expected scaling is followed only at larger system sizes.

In panel (c), we plot the triple-site observables Equation (20), where j = L/2 − 3 for A and
j = L/2 for B. Fitted lines are for 1/L2 and 1/L3 scalings, as expected, since α = 2 and 3,
respectively. Since the diagonal elements of σ

y
j σ

y
j+1σ

y
j+2 are zero, the infinite time value of



Entropy 2023, 25, 59 8 of 11

the OTOC FAB
L (t = ∞) is zero. Panel (d) is for quadruple-site observables Equation (21),

where j = L/2− 4 for A and j = L/2 for B. The expected scalings are pc = 4, 6, 2. However,
due to the fact that the observables have a large support at initial time, we see that the
correct scaling of 1/L4, 1/L6, 1/L2 is followed only at large system sizes.

0.05

0.1

0.15

6 8 10 12 14 16
10

-6

10
-4

10
-2

6 8 10 12 14 16

10
-4

10
-2

10
-5

10
0

(a)

(c)

(b)

(d)

Figure 2. Infinite time values of OTOC corresponding to the single-site observables with A = σ
α

L/2−1,

B = σ
α

L/2 panel (a), double-site observables with A = σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1 (b), triple-

site observables with A = σ
α

L/2−3σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1σ
α

L/2+2 (c), and quadruple-site

observables with A = σ
α

L/2−4σ
α

L/2−3σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1σ
α

L/2+2σ
α

L/2+3 (d). Green lines

with diamonds are for observables involving only σ
z
l (α = z) operators, red lines with circles are

for σ
x
l (α = x), and blue lines with stars are for σ

y
l (α = y) operators, respectively. Black-dashed,

brown-dotted, and grey-dashed dotted lines are the fits for σ
z
l , σ

x
l , and σ

y
l observables. Here, Jz = 1,

hx = 0.9, and hz = 0.809.

4.4. Dynamics of OTOCs

We study the dynamics of OTOC in Figure 3, where each panel reflects the same case
analyzed in the corresponding panel of Figure 2. Green lines are for observables involving
only σ

z
l operators, red lines are for σ

x
l , and blue lines are for σ

y
l operators, respectively. In

these plots, we need to study the long-time evolution. We thus need to disregard initial
transients. At the same time, though, our results are affected by finite size, so we would
need to concentrate on long yet intermediate times to evaluate the relaxation of the OTOC
over time. Light shades are for L = 14, and dark shades for L = 12. Black-dashed, brown-
dotted, and grey-dashed dotted lines are the fits for σ

z
l , σ

x
l , and σ

y
l observables. Figure 3a is

for single-site observables, as in Equation (18). We have already seen that since tr(OH) 6= 0,
for (O = A, B), then the infinite time value of OTOC FAB

L (t = ∞) scales as 1/L. From our
discussion at the end of Section 3.2, we thus expect that FAB(t) ∝ 1/t1/2, and the numerical
result of the dynamics, is well fitted by the black dashed line proportional to t1/2.

In Figure 3b, we study the two-site observables of Equation (19) with l = L/2 for
observable B and l = L/2 − 2 for observable A. As already discussed, the lowest order
terms that have non zero values in the Taylor expansion for these observables are 1, 2 and
3, respectively, for the σ

z
l , σ

x
l , σ

y
l observables. In Figure 2b, we showed the scaling of the

infinite-time OTOC for these observables as 1/L, 1/L2, 1/L3. Here, we would thus expect
a scaling with times of 1/t1/2, 1/t, and 1/t3/2, as shown in the plots by dotted, dashed
dotted, and dashed lines, respectively. We study the evolution of three-site observables
of Equation (20) in Figure 3c. Here, l = L/2 − 3 for A and l = L/2 for B. Fitted lines are
for 1/t and 1/t3/2 scaling as expected since tr(OH) 6= 0 for σ

z
l and tr(OH2) 6= 0 for the

σ
x
l observable. Panel (d) shows the dynamics for four site observables with l = L/2 − 4

for A and l = L/2 for B. The expected scaling is 1/t, 1/t2, and 1/t3 for α = z, x and y,
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respectively, whose operators for the corresponding critical exponent pc that gives non-zero
overlap are 2, 4, and 6 .

10
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0

10
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0
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0
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-4

10
-2

10
0

10
0

10
2

10
-5

10
0

(a)

(c)

(d)

(b)

Figure 3. Time evolution of OTOC corresponding to the single-site observables with A = σ
α

L/2−1,

B = σ
α

L/2 panel (a), double-site observables with A = σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1 (b), triple-site

observables A = σ
α

L/2−3σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1σ
α

L/2+2 (c), and quadruple-site observables

A = σ
α

L/2−4σ
α

L/2−3σ
α

L/2−2σ
α

L/2−1, B = σ
α

L/2σ
α

L/2+1σ
α

L/2+2σ
α

L/2+3 (d). Green lines are for observables

involving only σ
z
l (α = z) operators, red lines are for σ

x
l (α = x), and blue lines are for σ

y
l (α = y)

operators respectively. Black-dashed, brown-dotted, and grey-dashed dotted lines are the fits for σ
z
l ,

σ
x
l , and σ

y
l observables discussed in the text. Here, L = 14 for lighter shades and L = 12 for darker

shades and Jz = 1, hx = 0.9, and hz = 0.809.

5. Conclusions

OTOCs have been studied as a probe for quantum information scrambling. Slow, alge-
braic scrambling has been reported in systems with local conserved quantities [34,38–40].

In this paper, we showed that the higher the exponent at which ones elevates the
Hamiltonian in order to have a non-zero overlap with the operators in the OTOC, the faster
is the relaxation of the OTOC over time. Furthermore, if there is an exponent such that the
overlap is non-zero, then the relaxation, even if it appears to be fast, is bounded to be, at
the fastest, algebraic, and only if there is no overlap with any power of the Hamiltonian (or
other conserved quantities), then the relaxation can be exponential.

From our results, it follows that considering single-site operators in the OTOC, and
a local Hamiltonian with only a single site and nearest neighbours term, relaxation can
only take a limited set of exponents. It is thus necessary to consider operators with larger
support, such as two-site, three-site, and four-site operators, to observe a larger variety and
magnitude of relaxation exponents. This, however, leads to the difficulty of studying the
relaxation numerically due to more pronounced finite-size effects when studying operators
with larger support. Future developments in numerical methods could help to test our
results for larger systems.

In order to derive these results, we also found a relation between the first non-zero
derivative of the function representing the diagonals of an operator in the energy basis
and the first non-zero exponent of the Hamiltonian (which has non-zero overlap with
the operators of the OTOC). Future works could extend these results to time-dependent
systems with other types of conserved quantities.
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