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E-mail: guillego@uis.edu.co, OSCAR.PIMENTEL@correo.uis.edu.co

Abstract. Two infinite families of axially symmetric relativistic thin disks of dust immersed
in spheroidal matter haloes are presented. The disks are obtained from solutions of the Einstein
equations for an axially symmetric conformastatic spacetime in which the metric tensor is
characterised only by one metric function. By introducing a finite discontinuity on the first
derivatives of the metric tensor, solutions with a singularity of the delta function type are
obtained, so describing thin disks. The nonzero components of the energy-momentum tensor,
both for the disk and the halo, are obtained from the Einstein equations. In this way, the
energy densities and pressures of the sources are determined. By imposing the fulfilment of all
the energy conditions we obtain a constraint over the solutions, in such a way that the metric
function can be properly expressed in terms of a solution of the Laplace equation. By using the
solution to Laplace equation in cylindrical coordinates we find infinite disks and by using the
solution to Laplace equation in oblate spheroidal coordinates we find finite disks. In both cases
we obtain particular solutions with energy densities and pressures well behaved everywhere. We
also show that the masses of de disks and the haloes are finite. Finally we solve the geodesic
equation for circular orbits in the plane of the disk.

1. Introduction
Many isolated astrophysical objects in the universe have axial symmetry, some examples are the
galaxies in thermodynamic equilibrium, stars, planets, accretion disks, black holes, etc. Since
the study of these massive systems requires in some cases the use of the general relativity to
give an appropriate description of the problem, it is very important to obtain as many exact
solutions to the Einstein equations as possible, and to interpret them as astrophysical sources.
For the case of a galactic system, the problem is not easy because those systems usually consists
of many components like a thin disk, a central bulb, a black hole, a spheroidal matter halo,
etc. Nevertheless, to simplify the problem, in this work we only consider the disk and the halo
because they are the largest components. The problem of solving the Einstein equations with
thin disks sources has been of great interest in theoretical physics due to their relevance in the
description of galaxies and stars. Nevertheless, in literature there are only two references for the
system consisting of a thin disk immersed in a fluid or matter halo. In the first one, Vogt and
Letelier [1] apply the displacement, cut and reflect method to some known solutions to get disks
with haloes. In the second work, Gutiérres-Piñeres, González and Quevedo [2] obtain a family
of disks with halo by solving the Einstein-Maxwell equations for a conformastatic spacetime.

In this work we obtain new solutions to the electro-vacuum Einstein equations for a
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conformastatic metric, and interpret them as thin disks of infinite and finite extension immersed
in spheroidal matter haloes. The paper is organised as follows. First we present, in Section 2,
the solutions to the Einstein equations for the halo and for the disk, the expressions to compute
the mass of the system, and the rotational curves. In Section 3 we choose a particular solution to
obtain an family of infinite disks immersed in spheroidal matter haloes. Finally, In Section 4 we
do the same as in Section 3 but this time we find the solutions in oblate spheroidal coordinates
in order to define a finite radius for the disk.

2. Axially Symmetric Disklike Solutions With Halo
In order to find the energy-momentum tensor of a system that consists of a thin disk with a
halo, the disk is modeled by a thin shell Σ with equation φ(xα) = z which separates the space
in two regions: M+ (above Σ) and M− (below Σ). By using the distributional method [3], we
can write the Einstein equations as,

T±

αβ = R±

αβ −
1

2
gαβR

±, (1)

Qαβ = Hαβ − 1

2
gαβH, (2)

where Qαβ and Hαβ are the energy-momentum tensor and the Ricci tensor in Σ. The equations
(1) are the Einstein equations for the halo, and equations (2) are the Einstein equations of the
disk.

Now, we introduce the conformastatic metric,

ds2 = −e2ψdt2 + e−2ψ(dr2 + r2dϕ2 + dz2), (3)

where we demand ψ(r,−z) = ψ(r, z) in order to have axial symmetry and reflexion symmetry.
With this metric and equation (1) we compute the energy density and the stress of the halo,

ρ = e2ψ(2∇2ψ −∇ψ · ∇ψ), (4)

p =
1

3
e2ψ∇ψ · ∇ψ, (5)

and with equation (2) we compute the energy density of de disk

σ = 4eψψ,z, (6)

which is evaluated in z = 0+. As the stress of the disk is zero, we have a fluid of dust.
In order to have physically well behaved solutions, the energy densities and the stress of the

halo need to satisfy the energy conditions [4], that can be fulfilled if we consider ψ functions
that are solutions to the equation

∇2ψ = k∇ψ · ∇ψ, (7)

with k ≥ 1 and ψ,z|
z=0+

> 0 (it can not be zero in order to have σ �= 0). For the fluid in the
halo,the above equation leads to

p =
ρ

3(2k − 1)
, (8)

the state equation of a gamma fluid. Equation (7) can be rewritten as ∇2(e−kψ) = 0, which is
related to Laplace equation ∇2U = 0 through the relation

e−kψ = 1− U, (9)
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where U is the solution to Laplace equation.
Now, to compute the mass of the disk-halo system, we use the Komar formulae [5],

M = 2

∫ (
Tαβ − 1

2
Tgαβ

)
mαξ

β
(t)

√
hd3y, (10)

where mα is the normal vector to the time-like hypersurface, ξβ(t) is the time-like killing vector,

and
√
hd3y is the volume element. Finally, to compute the circular velocity we solve the geodesic

equation for a time-like particle that moves in the plane of the disk. By constraining the four-
velocity of the particle to uα = u0(1, 0, ω, 0), the resulting expression for the square of the
circular velocity yield to

v2c =
rU,r

k(1− U)− rU,r
. (11)

3. Kuzmin-Toomre Disks With Halo (Infinite Disks)
To obtain solutions describing thin disks of infinite extension immersed in a spheroidal halo, we
take U as the solution to Laplace equation in spherical coordinates (R, θ, ϕ),

Un(r, θ) = −
n∑
l=0

Al
Rl+1

Pl(cos θ), (12)

where Pl are the Legendre Polynomials and Al are constants. Here, in order to have ψ|z=0+ �= 0,
we need to use the displacement, cut and reflexion method [6] which is equivalent to the
transformation z → |z|+ a, so R2 = r2 + (|z|+ a)2, and cos θ = (|z| + a)/R.

With the solution to Laplace equation presented in (12) and the relation (9) we can compute
the energy density of the disk (6). For the n = 2 model, σ takes the form

σ̃2 =

[
(Ã0 − Ã1)m

2 + 3(Ã1 − Ã2)m+ 5
2Ã2(2− r̃2)

]
m

5−2k

k

[
2m5/2 + 2Ã0m2 + 2Ã1m+ Ã2(2− r̃2)

] 1+k

k

, (13)

where m = 1 + r̃2, r̃ = r/a, Ã0 = A0/a, Ã1 = A1/a
2, Ã2 = A2/a

3, and σ̃n = (ka/4)σn. We can
also compute the energy density of the halo (4) for n = 2,

ρ̃2 =
M̃ (5−2k)/k

[
Ã0r̃M̃

2 + (3Ã1Z̃ + Ã2)r̃M̃ + 5
2Ã2(2Z̃

2 − r̃2)
]2

[
M̃5/2 + Ã0M̃2 + Ã1M̃Z̃ + 1

2 Ã2(Z̃2 − r̃2)
]2(1+k)/k +

M̃ (5−2k)/k
[
(Ã0Z̃ − Ã1)M̃

2 + 3Z̃(Ã1Z̃ − Ã2)M̃ + 5
2 Ã2Z̃(2Z̃

2 − r̃2)
]2

[
M̃5/2 + Ã0M̃2 + Ã1M̃Z̃ + 1

2 Ã2(Z̃2 − r̃2)
]2(1+k)/k , (14)

where M̃ = r̃2 + Z̃2, Z̃ = |z̃|+ 1, z̃ = z/a, r̃ = r/a, Ã0 = A0/a, Ã1 = A1/a
2, Ã2 = A2/a

3, and
ρ̃2 = [(ka)2/(2k − 1)]ρ2.

To analyse the behaviour of these quantities, we plot σ̃2 in figure 1 and ρ̃2 in figure 2. The
constants values were chosen to show the different behaviours that can be obtained from the
solutions. We can see in both figures that the energy densities have a maximum at the center
of the system and go to zero at infinity. By varying the constants we can have different energy
density profiles: we can manipulate its maximum at the center, its rate of decrease, and in some
cases we can obtain more than one maximum.
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Figure 1. σ̃3 as a function of r̃ for the
n = 3 model. Each curve is labeled by
the set of numbers (k, Ã0, Ã1, Ã2)
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Figure 2. Contour plots of ρ̃2 as a function
of r̃ (horizontal axis) and z̃ (vertical axis)
for the n = 3 model and for the constans
k = 18.12, Ã0 = 100, Ã1 = −20, Ã2 = 90.
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Figure 3. vc2 as a function of r̃. Each curve is labeled by the set of numbers (k, Ã0, Ã1, Ã2)

Now, we can show that the disk-halo system has finite mass, despite the fact that the matter
distribution extends to infinity. To do this we use the limit comparison test to show that if the
total mass of the system for the n = 0 model is finite, then all the family of solutions has finite
masses. We compute the total mass of the system for n = 0 by solving the integral (10). This
yields

MT0 =MD0
+MH0

=
8πA0

k
, (15)

where MH0
is the mass of the halo, and MD0

= 8πa
k ln(1 + A0/k) is the mass of the disk. With

this, it is possible to say that the masses of all the solutions are finite.
Finally, we compute vc for the n = 2 model from equation (11) to obtain

v2c2 =
r̃2[3Ã2 + 3Ã1m

2 + Ã0m
4 + 3

2 Ã2(3−m)m]

k[m2 +mÃ1 +m3Ã0 +
1
2Ã2(3−m)]m3 − r̃2[3Ã2 + 3Ã1m2 + Ã0m4 + 3

2 Ã2(3−m)m]
.

(16)
In figure 3 we present the rotational curves asociated to vc2 . We can see that the circular velocity
increases very fast until a maximum value which remains approximately constant. As we can
see, in some cases it is possible to obtain a rotational curve with more than one maximum. This
kind of behavior is qualitatively similar to those observed for spiral galaxies.
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4. Kalnajs disks with halo (finite disks)
Another family of solutions can be obtained by taking U as the solution to Laplace equation in
oblate spheroidal coordinates (ξ, η, φ),

Um(ξ, η) = −
m∑
n=0

C2nq2n(ξ)P2n(η), (17)

where q2n = i2n+1Q2n(iξ), with Q2n(iξ) the Legendre functions of second kind of imaginary
argument, and the constants C2n are choosen properly to be [7]

C2n =
M̃/2

(2n+ 1)q2n+1(0)

[
π1/2(4n + 1)(2m+ 1)!

22m(m− n)!Γ(m+ n+ 3/2)

]
(18)

if n ≤ m, and zero if n > m for m ≥ 1. With Um we can compute the energy density of the
disk for the first three models of the family of solutions (m = 1, 2, 3) and the energy density of
the halo for the m = 3 model. The plots of σ̃m = (ka/M̃ )σm for m = 1, 2, 3 are presented in
figure 4, and the contours of ρ̃3 = [(k2a2)/((2k− 1)M̃2)]ρ3 are presented in figure 5. We can see
in these figures that the energy densities have a maximum at the center of the system. In the
disk, σ̃m goes to zero at the radious of the disk r̃ = 1 (finite disk), while for the halo ρ̃3 goes to
zero at infinity.
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Figure 4. σ̃m as a function of r̃ = r/a
for fixed values k = 20 and M̃ = 30.
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Figure 5. Contour plots of ρ̃3 as a function
of r̃ = r/a (horizontal axis) and z̃ = z/a
(vertical axis) for the m = 3 model and for
k = 17.2 and M̃ = 3.9

Now, we can show, as in section 3, that the mass of the system is finite despite the fact that
the halo matter distribution extends to infinity. To do that we use the limit comparison test
and show that if the total mass is finite for m = 1, then all the family of kalnajs disks with halo
are finite too. By using the integral (10) we find that MTm = MDm

+MHm
= 8πaC0/k, where

MHm
is the mass of the halo and MDm

is the mass of the disk. Here we can see that the total
mass is the same for every m. For m = 1, we have

MD1
=

64a

k

[
1−

√
1 +

8

3πC0
arcot

√
3πC0

3πC0 + 8

]
(19)

so the total mass of all the family of solutions are finite.
Finaly, in figure 6 we present the circular velocity profiles that we find by using the functions

U1, U2 and U3 in the expression (11). This curves correspond to the first three solutions for vcm .
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Figure 6. vcm as a function of r̃ = r/a for the m = 1, 2, 3 models, and for k = 20 and M̃ = 30

In this figure we note that the rotational curve for m = 1 has a discontinuity in the derivative.
This no longer happens when we take particular solutions with m ≥ 2. It is clear that vc
increases until a maximum value that remains approximately constant.

5. Conclusions
We have obtained two infinite families of exact solutions to the Einstein equations that describe
thin dust disks immersed in spheroidal matter haloes whose energy density and stress goes to
zero at infinity. For the fliud in the halo we have obtained an equation of state of the form
p = γρ, with γ = [3(2k − 1)]−1. In the first family of solutions, the energy density of the disk-
like source goes to zero at infinity, while for the second family of solutions the energy density of
the disk goes to zero at the edge of the disk. All the solutions satisfy the energy conditions and
yield to finite masses. Finaly, we have obtained the rotational curves by solving the geodesic
equation of a test particle moving in circular orbits in the plane of the disk. This curves are
qualitatively similar to the observed rotational curves for spiral galaxies.
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