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Abstract 
A significant level of automation and flexibility has 

been added to the ACNET control system through the 

development of a Java-based Finite State Machine (FSM) 

infrastructure. These FSMs are integrated into ACNET 

and allow users to easily build, test and execute scripts 

that have full access to ACNET’s functionality. In this 

paper, a description will be given of the FSM design and 

its ties to the Java-based Data Acquisition Engine (DAE) 

framework. Each FSM is part of a client-server model 

with FSM display clients using Remote Method 

Invocation (RMI) to communicate with DAE servers 

heavily coupled to ACNET.  A web-based monitoring 

system that allows users to utilize browsers to observe 

persistent FSMs will also be discussed. Finally, some key 

implementations such as the crash recovery FSM 

developed for the Electron Cooling machine protection 

system will be presented.  

  . 

INTRODUCTION 

Operation of an accelerator control system involves the 

creation of many transient and persistent tasks. These 

tasks generally access and integrate various components 

of the control system, such as accelerator devices, 

databases, timing systems, etc. A Finite State Machine 

(FSM) framework with the capacity to respond to state 

and input data and with hooks into different parts of the 

control system provides a mechanism to generate these 

tasks in a simple and reusable form. 

A Java-based Data Acquisition Engine (DAE) 

infrastructure [1] has been used at Fermilab for many 

years to provide a Java layer to ACNET data acquisition 

and control. This infrastructure has been extended to 

provide a generic FSM framework embedded in a client-

server model. FSM client applications start jobs on remote 

FSM servers which collect and process all input data and 

return state and requested data to the client. This 

framework is illustrated in Figure 1. These FSMs provide 

users with the ability to quickly build, test and deploy 

reusable tasks. 

This paper will provide a description of the FSM 

structure and functionality, a detailed look at the client-

server framework and an overview of the web tier that 

allows for the monitoring of persistent FSMs. 

Additionally, several key FSM implementations will be 

covered, including a detailed illustration of the crash 

recovery FSM that serves as the regulation component of 

the Pelletron’s Machine Protection System (MPS) [2]. 

 

 
                           

Figure 1:  FSM Framework 

FSM DESCRIPTION 

 

  The FSM design is based loosely upon  StateCharts[3]. 

Each FSM is constructed with an entrance state, an exit 

state and a set of intermediate states. Within each state, 

there can be multiple transitions and actions defined. The 

actions can be classified by when they are evaluated; on 

entering, exiting or periodically within the state. 

Furthermore, each action is conditional and if fired can 

result in devices being set, database tables being inserted, 

etc. Figure 2 shows the FSM Builder application that is 

used to construct the FSMs and provides a graphical 

illustration of the FSM structure.  

 

 
 

Figure 2: FSM Builder Application 
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FSM Functionality  

 

The execution of a FSM occurs as a single threaded 

process that involves collecting and processing all state 

inputs before executing any of the fired actions or 

transitions. A list of the FSM attributes, including 

allowable inputs and outputs, is given as follows:   

• FSM inputs fall into a wide range of categories 

including device readings, events, database queries, 

ACNET messages, XML-RPC requests, etc. 

• FSM outputs can be classified as device settings, 

event triggers, database inserts, ACNET messages, 

internal variables, etc. 

• An expression parser is the central component of 

the FSM. Collected inputs are first embedded in 

expression strings. The parser then employs a set of 

predefined functions and Java reflection in order to 

evaluate the output of these expressions. Once 

computed, the output type is used to dictate what is 

done with these calculated values. 

• FSM timing is user specified and is driven by the 

return rate of the devices defined in a particular 

state. On entering a state, the FSM blocks until 

fresh readings are received. It then continues on 

with processing the state. 

The FSM execution process is handled by the server 

component of the FSM framework. 

CLIENT-SERVER FRAMEWORK 

  The FSM client is a Java application that uses Remote 

Method Invocation (RMI) to communicate with the FSM 

server. The client starts and stops jobs on the remote 

server and also receives state and any requested data from 

the server. Figure 3 illustrates the FSM Display 

application which is used to launch the FSM. As shown, 

the states are traversed and outputs are displayed with 

data returned from the server. Users may also use widgets 

on this application to send data to the server. FSMs 

launched with this application persist only as long as the 

application is open. 

 

 
 

Figure 3: FSM Display Application 

 

 Main Server 

  The central FSM server exists as a component of the 

DAE infrastructure. The FSM class is imbedded in the 

Java-based Data Acquisition Engine (DAE) infrastructure 

[1] that sits on top of the Fermilab accelerator control 

network (ACNET). The ACNET control system is a 3-tier 

system that uses a connectionless User Datagram Protocol 

(UDP) to connect different machines. The DAE 

infrastructure refers to a client server model where Java 

clients use RMI to communicate with the DAE servers 

that are tied directly to the ACNET control system. The 

DAE servers are on high bandwidth nodes which emit and 

listen to multicast messages, work with raw bytes and 

speak proprietary ACNET. The DAE framework 

introduces the concept of a job which consists of a 6-

tuple; a disposition to send data to, a source to receive 

data from, an item to describe the data, an event that 

specifies the data collection rate, a user to provide 

security and job control. The FSM server can be viewed 

as an item in the DAE framework while the FSM client is 

the disposition that receives data. The process of 

launching a FSM can be regarded as starting a DAE job 

where the server (item) collects the data from the 

accelerator (source), processes it and returns it to the 

client (disposition).  

 

Alternate Servers 

The framework that has been discussed so far handles 

the execution of transitory FSMs. An extension to this 

framework, which utilizes the Open Access Client (OAC) 

architecture [1] developed at Fermilab, has been 

established to handle persistent FSMs. The OAC 

architecture exists at the ACNET middle tier and serves to 

emulate the front end tier. It provides access to all of the 

ACNET protocol available at the frontend without 

requiring front end programming. This protocol includes 

alarms, device downloads, setting uploads, etc.  The FSM 

OAC links persistent FSM jobs to specific ACNET 

devices. The control values of these devices are used to 

start and stop FSM jobs. Device settings are sent to the 

FSM server and data returned from the server are placed 

in the device readings. FSM job persistence is guaranteed 

for the life of the OAC.  

An alternative server is currently under development 

that utilizes XML-RPC [4] to allow remote access to the 

FSM framework. It is envisioned that not all FSM users 

will be within the firewall. So, the XML-RPC server 

would provide them with limited access to the FSM 

server. These users would only be able to start FSMs in 

safe mode with settings and any other control access to 

the control system disabled. This server has been 

developed and is illustrated in Figure 1. It is currently 

undergoing beta testing and is expected to be released 

shortly  

WEB TIER 

    A web interface has been developed for the FSM 

infrastructure that allows browsers to act as the client to 

the FSM server. The HTML pages that serve as the 

interface use the Asynchronous JavaScript and XML 

(AJAX) [5] protocol and allow users to view and monitor 

persistent FSMs. Users may also start FSMs, but only in 



safe mode. The HTML pages illustrate the concept of 

FSM views that is provided by the FSM framework. This 

refers to the client-side processing that is undergone by 

data returned to the FSM client. This processing utilizes 

expression parsing and Java reflection to produce user 

panels and graphs from the data. These panels or graphs 

are then converted to Scalar Vector Graphics (SVG) and 

displayed on the web browser. Figure 4 illustrates some of 

these FSM views. In order to mitigate security concerns, 

any FSM launched from the browser is done in safe mode 

with all settings and control disabled.  

 

 
Figure 4: FSM Views 

FSM EXAMPLES  

The FSM framework is well integrated into the ACNET 

control system at Fermilab and several operational 

implementations have been developed for the collider 

physics program. For example, the electron cooling 

facility utilizes this FSM framework in the 

implementation of its Machine Protection System (MPS) 

recovery scheme. The Electron cooler is based on a 4.3-

MV, 0.1-A, DC electrostatic accelerator (Pelletron) for 

which current losses have to remain low (~10
-5
) in order 

to operate reliably. The Pelletron itself is subject to high- 

voltage discharges and other system interruptions which 

are monitored and recovered via an FSM. 

The FSM provides the functionality to maintain or 

recover the nominal electron beam current whenever 

drifts or unexpected changes occur (e.g.: operator errors), 

it reduces the gun current as needed to compensate for 

soft fault conditions such as vacuum deterioration and 

slow (i.e. ~milliseconds) HV drops, and it executes a 

consistent set of steps and checks whenever the machine 

needs to recover from a trip. It is particularly important 

when the trip is due to a large HV discharge. In addition 

to the crash recovery process during electron cooling 

operations, separate FSMs operate to perform slow feed-

back (1 Hz) of the Pelletron’s voltage regulation system 

and energy set-point respectively. These processes 

counteract long term drifts of the machine due to 

temperature changes and other slow effects.  

 

Figure 5: FSM Display. The plot shows the FSM 

regulating the gun control electrode voltage in order to 

reduce the beam current back to its nominal value. 

 

The Crash recovery FSM has proven to be very useful 

operationally as it significantly reduces manual 

interventions while running beam. It in turn increased the 

electron beam uptime, which is now close to 100% 

(except for occasional hardware failures). The FSM 

infrastructure has become an integral part of the 

Pelletron’s machine protection scheme at various levels 

and helped in streamlining fault analyses. It not only 

captures operational knowledge in the regulation script, 

but also allows for the easy testing and implementation of 

additional scripts to improve operational efficiency. 

                             SUMMARY 

The FSM framework is a crucial component of the 

ACNET control system. Its ability to quickly and robustly 

build, test and launch automated tasks has become a great 

asset. It has operated with a high level of reliability as 

emphasized by its integration into the Pelletron’s MPS. 

The web tier is a recent addition to the FSM framework, 

but its capacity to provide different views of persistent 

FSMs is expected to quite useful. 
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