
A GENERIC FINITE STATE MACHINE FRAMEWORK FOR THE ACNET

CONTROL SYSTEM *

L. Carmichael
#
, A. Warner, FNAL, Batavia, IL 60543 U.S.A.

*

Abstract
A significant level of automation and flexibility has

been added to the ACNET control system through the

development of a Java-based Finite State Machine (FSM)

infrastructure. These FSMs are integrated into ACNET

and allow users to easily build, test and execute scripts

that have full access to ACNET’s functionality. In this

paper, a description will be given of the FSM design and

its ties to the Java-based Data Acquisition Engine (DAE)

framework. Each FSM is part of a client-server model

with FSM display clients using Remote Method

Invocation (RMI) to communicate with DAE servers

heavily coupled to ACNET. A web-based monitoring

system that allows users to utilize browsers to observe

persistent FSMs will also be discussed. Finally, some key

implementations such as the crash recovery FSM

developed for the Electron Cooling machine protection

system will be presented.

 .

INTRODUCTION

Operation of an accelerator control system involves the

creation of many transient and persistent tasks. These

tasks generally access and integrate various components

of the control system, such as accelerator devices,

databases, timing systems, etc. A Finite State Machine

(FSM) framework with the capacity to respond to state

and input data and with hooks into different parts of the

control system provides a mechanism to generate these

tasks in a simple and reusable form.

A Java-based Data Acquisition Engine (DAE)

infrastructure [1] has been used at Fermilab for many

years to provide a Java layer to ACNET data acquisition

and control. This infrastructure has been extended to

provide a generic FSM framework embedded in a client-

server model. FSM client applications start jobs on remote

FSM servers which collect and process all input data and

return state and requested data to the client. This

framework is illustrated in Figure 1. These FSMs provide

users with the ability to quickly build, test and deploy

reusable tasks.

This paper will provide a description of the FSM

structure and functionality, a detailed look at the client-

server framework and an overview of the web tier that

allows for the monitoring of persistent FSMs.

Additionally, several key FSM implementations will be

covered, including a detailed illustration of the crash

recovery FSM that serves as the regulation component of

the Pelletron’s Machine Protection System (MPS) [2].

Figure 1: FSM Framework

FSM DESCRIPTION

 The FSM design is based loosely upon StateCharts[3].

Each FSM is constructed with an entrance state, an exit

state and a set of intermediate states. Within each state,

there can be multiple transitions and actions defined. The

actions can be classified by when they are evaluated; on

entering, exiting or periodically within the state.

Furthermore, each action is conditional and if fired can

result in devices being set, database tables being inserted,

etc. Figure 2 shows the FSM Builder application that is

used to construct the FSMs and provides a graphical

illustration of the FSM structure.

Figure 2: FSM Builder Application

* FNAL is operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.
#warner@fnal.gov

FERMILAB-CONF-09-455-AD-APC

FSM Functionality

The execution of a FSM occurs as a single threaded

process that involves collecting and processing all state

inputs before executing any of the fired actions or

transitions. A list of the FSM attributes, including

allowable inputs and outputs, is given as follows:

• FSM inputs fall into a wide range of categories

including device readings, events, database queries,

ACNET messages, XML-RPC requests, etc.

• FSM outputs can be classified as device settings,

event triggers, database inserts, ACNET messages,

internal variables, etc.

• An expression parser is the central component of

the FSM. Collected inputs are first embedded in

expression strings. The parser then employs a set of

predefined functions and Java reflection in order to

evaluate the output of these expressions. Once

computed, the output type is used to dictate what is

done with these calculated values.

• FSM timing is user specified and is driven by the

return rate of the devices defined in a particular

state. On entering a state, the FSM blocks until

fresh readings are received. It then continues on

with processing the state.

The FSM execution process is handled by the server

component of the FSM framework.

CLIENT-SERVER FRAMEWORK

 The FSM client is a Java application that uses Remote

Method Invocation (RMI) to communicate with the FSM

server. The client starts and stops jobs on the remote

server and also receives state and any requested data from

the server. Figure 3 illustrates the FSM Display

application which is used to launch the FSM. As shown,

the states are traversed and outputs are displayed with

data returned from the server. Users may also use widgets

on this application to send data to the server. FSMs

launched with this application persist only as long as the

application is open.

Figure 3: FSM Display Application

 Main Server

 The central FSM server exists as a component of the

DAE infrastructure. The FSM class is imbedded in the

Java-based Data Acquisition Engine (DAE) infrastructure

[1] that sits on top of the Fermilab accelerator control

network (ACNET). The ACNET control system is a 3-tier

system that uses a connectionless User Datagram Protocol

(UDP) to connect different machines. The DAE

infrastructure refers to a client server model where Java

clients use RMI to communicate with the DAE servers

that are tied directly to the ACNET control system. The

DAE servers are on high bandwidth nodes which emit and

listen to multicast messages, work with raw bytes and

speak proprietary ACNET. The DAE framework

introduces the concept of a job which consists of a 6-

tuple; a disposition to send data to, a source to receive

data from, an item to describe the data, an event that

specifies the data collection rate, a user to provide

security and job control. The FSM server can be viewed

as an item in the DAE framework while the FSM client is

the disposition that receives data. The process of

launching a FSM can be regarded as starting a DAE job

where the server (item) collects the data from the

accelerator (source), processes it and returns it to the

client (disposition).

Alternate Servers

The framework that has been discussed so far handles

the execution of transitory FSMs. An extension to this

framework, which utilizes the Open Access Client (OAC)

architecture [1] developed at Fermilab, has been

established to handle persistent FSMs. The OAC

architecture exists at the ACNET middle tier and serves to

emulate the front end tier. It provides access to all of the

ACNET protocol available at the frontend without

requiring front end programming. This protocol includes

alarms, device downloads, setting uploads, etc. The FSM

OAC links persistent FSM jobs to specific ACNET

devices. The control values of these devices are used to

start and stop FSM jobs. Device settings are sent to the

FSM server and data returned from the server are placed

in the device readings. FSM job persistence is guaranteed

for the life of the OAC.

An alternative server is currently under development

that utilizes XML-RPC [4] to allow remote access to the

FSM framework. It is envisioned that not all FSM users

will be within the firewall. So, the XML-RPC server

would provide them with limited access to the FSM

server. These users would only be able to start FSMs in

safe mode with settings and any other control access to

the control system disabled. This server has been

developed and is illustrated in Figure 1. It is currently

undergoing beta testing and is expected to be released

shortly

WEB TIER

 A web interface has been developed for the FSM

infrastructure that allows browsers to act as the client to

the FSM server. The HTML pages that serve as the

interface use the Asynchronous JavaScript and XML

(AJAX) [5] protocol and allow users to view and monitor

persistent FSMs. Users may also start FSMs, but only in

safe mode. The HTML pages illustrate the concept of

FSM views that is provided by the FSM framework. This

refers to the client-side processing that is undergone by

data returned to the FSM client. This processing utilizes

expression parsing and Java reflection to produce user

panels and graphs from the data. These panels or graphs

are then converted to Scalar Vector Graphics (SVG) and

displayed on the web browser. Figure 4 illustrates some of

these FSM views. In order to mitigate security concerns,

any FSM launched from the browser is done in safe mode

with all settings and control disabled.

Figure 4: FSM Views

FSM EXAMPLES

The FSM framework is well integrated into the ACNET

control system at Fermilab and several operational

implementations have been developed for the collider

physics program. For example, the electron cooling

facility utilizes this FSM framework in the

implementation of its Machine Protection System (MPS)

recovery scheme. The Electron cooler is based on a 4.3-

MV, 0.1-A, DC electrostatic accelerator (Pelletron) for

which current losses have to remain low (~10
-5
) in order

to operate reliably. The Pelletron itself is subject to high-

voltage discharges and other system interruptions which

are monitored and recovered via an FSM.

The FSM provides the functionality to maintain or

recover the nominal electron beam current whenever

drifts or unexpected changes occur (e.g.: operator errors),

it reduces the gun current as needed to compensate for

soft fault conditions such as vacuum deterioration and

slow (i.e. ~milliseconds) HV drops, and it executes a

consistent set of steps and checks whenever the machine

needs to recover from a trip. It is particularly important

when the trip is due to a large HV discharge. In addition

to the crash recovery process during electron cooling

operations, separate FSMs operate to perform slow feed-

back (1 Hz) of the Pelletron’s voltage regulation system

and energy set-point respectively. These processes

counteract long term drifts of the machine due to

temperature changes and other slow effects.

Figure 5: FSM Display. The plot shows the FSM

regulating the gun control electrode voltage in order to

reduce the beam current back to its nominal value.

The Crash recovery FSM has proven to be very useful

operationally as it significantly reduces manual

interventions while running beam. It in turn increased the

electron beam uptime, which is now close to 100%

(except for occasional hardware failures). The FSM

infrastructure has become an integral part of the

Pelletron’s machine protection scheme at various levels

and helped in streamlining fault analyses. It not only

captures operational knowledge in the regulation script,

but also allows for the easy testing and implementation of

additional scripts to improve operational efficiency.

 SUMMARY

The FSM framework is a crucial component of the

ACNET control system. Its ability to quickly and robustly

build, test and launch automated tasks has become a great

asset. It has operated with a high level of reliability as

emphasized by its integration into the Pelletron’s MPS.

The web tier is a recent addition to the FSM framework,

but its capacity to provide different views of persistent

FSMs is expected to quite useful.

REFERENCES

 [1] Guide to Data Acquisition Engine, K. Cahill, Beams

Document 666-v1

 [2] Arden Warner, Linden Carmichael, et al, The Design

and Implementation of the Machine Protection

system for the Fermilab Electron Cooling Facility.

DIPAC 09

[3] Harel, David, StateCharts: A visual Formalism for

Complex Systems. Science of Computer

Programming (1987)

[4] Simon St. Laurent, “Programming Web sevices with

XML-RPC (2001)

[5] Jesse James, AJAX: A new approach to web

applications.

