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ABSTRACT Quantum Neural Networks (QNNs) based on parameterized quantum circuits (PQCs) are
gaining significant research attention due to their potential to achieve quantum advantages on Near-Term
Noisy Intermediate-Scale Quantum (NISQ) computers. However, executing QNNs on NISQ devices is
challenging due to quantum noise. To address this, we propose a noise-resilient QNN (NR-QNN) that
leverages the unique characteristics of PQCs to perform noise-aware optimizations during the inference stage
of QNNs. Specifically, NR-QNN employs two optimization techniques to mitigate the impact of noise on
QNNs: quantum pruning and sensitivity-aware qubit mapping. The first technique is quantum pruning which
identifies gates with small angle of rotations and removes them to simplify circuit of QNNs. The second
optimization technique is sensitivity-aware qubit mapping which maps more important logical qubits to more
reliable physical qubits. This technique is based on the observation that there can be variation in the sensitivity
of an output to input qubits in a QNN. NR-QNN exploits this variability and guides qubit allocation to use
reliable physical qubits for sensitive logical qubits. Our evaluation on a real quantum computer demonstrates

that NR-QNN enhances the robustness of QNNs, enabling them to operate effectively on NISQ devices.

INDEX TERMS Quantum computing, NISQ device, quantum noise.

I. INTRODUCTION

Quantum computing (QC) is a new computing paradigm
that can offer substantial computational speed and efficiency
beyond the capability of classical computing. Quantum
algorithms use quantum bits (qubits) to exploit properties of
quantum mechanics such as superposition and entanglement
and rely on quantum gates to change the states of the
qubits. It has been shown that QC provides exponential or
polynomial advantages in various domains such as cryptog-
raphy [1], database search [2], quantum chemistry [3], [4],
etc. In the realm of machine learning, QC can significantly
enhance neural network models, leading to quicker and more
precise predictions [5]. This advancement has the potential to
enhance various consumer applications, including personal
assistants [6], image [7] and speech recognition [8], and
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natural language processing [9]. The field of QC is currently
undergoing a transition from purely theoretical research area
into an industrial technology thanks to some companies
such as IBM [10], Google [11], etc. offering real quantum
computers with 10’s to 100’s of qubits. These prototype
quantum computers enable researchers to understand the
challenges in QC and use these insights to improve the design
of future QC systems. Recently, Google claimed quantum
supremacy on their 53-qubit Sycamore Quantum Processing
Unit where a quantum sampling problem is completed in
200 seconds [12] while running the classical version of the
same problem on the state-of-the-art supercomputers may
take 10,000 years.

While many quantum algorithms can potentially offer
substantial speed-up over their classical counterparts, quite
often, execution of these algorithms on contemporary quan-
tum computers is not feasible due to excessive hardware
noises. A qubit is fickle which causes losing its state.
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This type of error which is related to decay of qubit
states is called coherence error. The other type of error is
related to quantum gates. Quantum gates are not perfect
and may generate outputs that differ from the correct ones.
Gate errors are relatively small for single-qubit gates (e.g.,
10~* to 10~ for IBM quantum computers), but can be
significant for two-qubit gates (e.g., 107> to 10™2 for IBM
quantum computers) [13]. Once quantum computation of a
quantum circuit is finished, the outputs of the circuit are
measured to convert the state of qubits to classical data.
This step also causes error mainly due to measurement
sensing. Additionally, non-coherent interference such as
crosstalk [14], [15] can impose computational error. Qubits
can be protected against errors using quantum error correction
codes (QECs) [16]. However, QECs are costly as they incur
significant overhead. A QEC requires 10-100 physical qubits
to encode a fault-tolerant qubit. Existing quantum computers
with 10’s to 100’s of qubits do not have the capacity to
utilize QEC for even a moderate sized quantum circuit.
Such quantum computers with noisy qubits are called Noisy
Intermediate Scale Quantum computers (NISQ) [17]. Even
though NISQ devices are unable to support QEC, they can
still provide benefits for a class of applications [18].

Due to high error rate and lack of enough qubits in
supporting QEC on NISQ devices, researchers have explored
alternative avenues for quantum algorithms that can harvest
the quantum advantages of NISQ devices. The variational
quantum algorithm (VQA) [19], [20] stands out as one
of the most prominent NISQ algorithms which employs a
classical optimizer to train circuit parameters and generate
desired outputs. VQA has been applied to several application
domains. One of the increasingly popular domains is machine
learning. Machine learning is a data-driven decision-making
method in which a computer fits a mathematical model
to data during the training phase and uses the model to
derive decisions during the inference phase. A common
method for implementation of a quantum machine learning
algorithm is a quantum neural network (QNN) that has
gained significant attention over the past few years [21],
[22], [23]. Figure 1 shows the structure of a QNN. A QNN
consists of three parts: data encoding, computation, and
measurement. Data encoding converts classical data into
quantum states. There are a variety of methods for data
encoding. One way of classical to quantum conversion is
to encode data into amplitude of a quantum state [22]. An
n-qubit register can encode 2" classical data. While amplitude
encoding benefits from the exponentially large Hilbert space,
it requires non-trivial quantum circuits to realize amplitude
encoding. This leads to resource-intensive circuits which
cannot be implemented on existing NISQ devices. Access
to the states that encode data can be done efficiently by
using a quantum random access memory (QRAM) [24].
However, implementation of a QRAM is a challenging
task and currently, no practical circuit exists for QRAMs.
An alternative approach is phase encoding where classical
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FIGURE 1. Structure of QNN (x is input data, ¢ is trainable parameter).

data are encoded through angle of quantum rotation gates.
Phase encoding requires input data to first be mapped to
angles between 0 and 2w. We use the second approach
for data encoding in this paper as it requires a simple
quantum circuit to realize on a NISQ device. The next
step in the QNN is computation. The computation part of
the QNN manipulates the encoded data to generate desired
output states. One approach to realize computation part in
the context of a quantum circuit is using multiply-and-
accumulate operation, similar to classical neural networks
(NNs). However, implementation of a quantum multiplier is
costly as it requires a large number of quantum gates with
high quantum depth [25]. A more practical approach is using
a parametrized quantum circuit (PQC) whose parameters are
used to construct a cost function that should be minimized
using a classical algorithm such as back-propagation. The
PQC approach is more convenient for NISQ devices since
it requires a short-depth circuit and its parametric nature
makes it more resilient to quantum noises. The last step
in the QNN is measurement where the states of outputs
in the computation part collapse to classical data. Prior
studies have demonstrated that QNN models are more
expressive than classical NNs [26], [27], [28]. In other words,
a QNN has a higher capability in approximating a desired
task (such as classification of data) in comparison with
classical NNs with similar size (the same number of network
parameters/weights). Recent works showed application of
QNNs in medical image analysis [29], drug discovery [30],
finance [31], and many other industrial problems [32].
Despite the success of QNNs in machine learning
algorithms, their deployment into contemporary quantum
computers is challenging as NISQ devices are noisy. Increas-
ing the number of parameters in PQCs boosts accuracy
of QNNs the same way that a larger set of neurons in
classical NNs increases accuracy of predictions. However,
more parameters mean a higher number of quantum gates
which potentially increases depth of QNNs and inevitably
error rate. Thus, reducing the impact of noise on QNN is
of pressing demand which helps to close the gap between
the requirement of quantum machine learning algorithms
and capacity of NISQ devices. Researchers have proposed
noise mitigation techniques to reduce the impact of noise on
quantum circuits. Noise adaptive qubit mapping [33], [34],
[35] optimizes logical to physical qubit mapping to minimize
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circuit errors. Noise adaptive instruction scheduling and
crosstalk mitigation techniques [14], [36] focus on inter-qubit
interference and circuit depth to mitigate quantum noises.
However, these are general techniques and do not consider
unique characteristics of QNNs.

This paper proposes noise-resilient quantum neural net-
work (NR-QNN) which is a set of QNN-specific noise
mitigation techniques to increase the intrinsic robustness of
PQCs and improve accuracy on real quantum computers.
NR-QNN comprises two optimization techniques. The first
technique is quantum pruning where the circuit of a QNN
is simplified to reduce the number of quantum gates and
circuit depth. Pruning is a popular technique in classical
machine learning to reduce computing requirements as well
as memory footprints of an NN. We prune PQC gates with
small parameters to simplify the corresponding QNN circuit.
To assure that the accuracy of a pruned QNN is not affected,
we finetune the QNN after each round of pruning to recover
the original performance of the network. At the end of
pruning, we end up with a slim circuit with similar noise-free
performance but fewer gates and shallower circuit depth
which in turn increases the robustness of the network to
hardware noises. The second technique is sensitivity-aware
qubit mapping where qubits of a QNN are mapped to physical
qubits based on characteristics of logical and physical qubits.
The error rate in physical qubits is not the same. Instead, the
error rate varies across different physical qubits by a large
margin [13], [26], [35]. For example, our detailed analysis
of IBM-Brisbane quantum computer shows that [13] the
coherence time across all qubits can vary by as much as 8x.
Such variation can have a significant impact on the overall
system reliability. On the software side, not all logical qubits
are equally important. In the context of QNNSs, the sensitivity
of outputs to input qubits varies. While small changes in
some input qubits may cause a QNN to misclassify, the QNN
may still predict correctly in the presence of moderate or
even large noises on other qubits. We exploit this sensitivity
variability in QNNs and map more sensitive logical qubits to
more robust physical qubits. It is important to note that while
prior works used a variety of techniques for qubit mapping to
reduce noise in quantum circuits [33], [34], [37], to the best of
our knowledge, this is the first work that exploits sensitivity
characteristics of QNNss to steer logical to physical mapping
on NISQ devices.

Overall, NR-QNN exploits the combination of pruning and
sensitivity-aware qubit mapping to mitigate the impact of
quantum noise on QNNs. In summary, the contributions of
NR-QNN are four-fold:

1) We exploit pruning to remove redundant gates and
simplify QNNs. To mitigate the impact of pruning on
accuracy, we finetune PQC parameters after each round
of pruning. We show that pruning reduces the number
of gates up to 63%.

2) We analyze sensitivity of QNNs to input qubits
and show that not all qubits are equally important
for outputs. We exploit this variability and propose
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mapping more sensitive logical qubits to less noisy
physical qubits.

3) We extensively evaluate NR-QNN with popular
datasets in quantum machine learning on real quantum
computers and show that the combination of pruning
and sensitivity-aware qubit mapping overcomes noise
in NISQ devices and enables QNNs to generate mean-
ingful results on contemporary quantum computers.

The rest of the paper is organized as follows. We discuss

related works in Section II. Section III presents details of
NR-QNN. Section IV describes evaluation methodology and
reports the results. Finally, Section V draws our conclusions.

Il. RELATED WORKS

Quantum computing promises computational advantages for
some applications [38], [39]. In the absence of quantum error
correction on contemporary quantum computers, optimiza-
tion techniques play a vital role in closing the gap between
the device and the application. Thus, mitigation of hardware
errors through design of highly optimized quantum circuits is
an active area of research.

A large body of prior work exists on quantum circuits
optimization to reduce the total number of gates or number
of layers [40], [41]. Maslov et al. [40] optimize a quantum
circuit without considering hardware constraints. A quantum
circuit is broken into subcircuits and then each subcircuit is
processed to be replaced by an equivalent circuit that has
lower cost. In the next step, a greedy algorithm is employed to
compact quantum layers. A layer is defined as a set of gates
that can operate in parallel. Layers in a circuit are formed
one-by-one, starting from primary inputs. Each time that a
new layer is created, it is analyzed to determine whether it
can be merged with existing layers. The shortcoming of this
technique is that it assumes that the error across qubits and
gates is the same. Qubit placement [41] is an NP-complete
problem and requires an effective heuristic-based algorithm
to map a quantum circuit to hardware. The algorithm
proposed in [41] starts with a non-optimized basic mapping
where a quantum circuit can operate on hardware. In the
next step, a hill climbing algorithm tries to match a qubit
with the optimum physical gate. Each time, a new placement
assignment is created by mapping a qubit to a new physical
gate and is compared with the existing mapping. If it is
less costly, then the new placement replaces the old one;
otherwise, it moves on to the next qubit. Our optimization
techniques are different as we focus on parametric circuits
where operation of the circuits can be adjusted by training
parameters of the circuits. On the contrary, the above
optimization techniques are designed primarily for circuits
with fixed and non-trainable gates.

Murali et al. [14] mitigate the impact of crosstalk noises
in quantum circuits through software techniques. Crosstalk
occurs when multiple quantum gates operate simultaneously,
corrupting the state of qubits. Crosstalk arises from fun-
damental challenges in quantum hardware such as leakage
of control signals (needed for gate operations) onto qubits
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which are not part of the intended hardware operation.
An approach to prevent interference between two high
crosstalk components is to schedule them serially by using
control instructions such as barrier. However, due to fragile
nature of qubits, serialization of quantum operations causes
loss of quantum information. Murali et al. [14] develop a
software module that serializes some of crosstalk operations
but also balances the need to avoid exponential decoherence
error due to serialization. As an example, only those gate
pairs that are separated by one hob are serialized as crosstalk
talk noise for gates with distance of more than one hob is
negligible. As a result, when two pairs are separated by two
or more hobs, they can be executed in parallel to reduce the
impact of serialization on coherence time.

Ding et al. [36] propose a frequency-aware software
technique to reduce crosstalk noise via dynamic frequency
tuning. In superconducting quantum computers, two qubits
interact with each other through resonance of qubit frequen-
cies. There are two main approaches to prevent accidental
interference of resonance frequencies. The first one exploits
tunable qubits where frequencies of qubits are set to be apart
so that the probability of frequency interference reduces.
The second method uses tunable couplers and temporarily
disables connections that cause interference. IBM Q system
uses fixed frequencies for all qubits and fixed couplers across
all links and leaves it to a scheduler to avoid crosstalk
noises [14]. On the contrary, Google uses tunable qubits
with either fixed or tunable couplers [42]. Higher tunability
offers more flexible hardware and provides more control over
devices. However, it induces higher hardware overhead and
causes sensitivity to control noise. Ding et al. [36] introduce
a balanced design, i.e., qubit frequencies are tunable, but
couplers are fixed. This approach offers a high program
success rate via software which maps frequency decision
to coloring of crosstalk graph. A vertex in the crosstalk
graph represents a qubit and an edge represents a link, i.e.
a capacitor in the frequency-tunable architecture. When the
qubits are idle, we would like to have different frequencies
for every pair of connected qubits. In the context of graph
theory, it is equivalent to coloring the connectivity graph
where end points of an edge have different colors. If the
graph can be colored with C colors, then the qubits require
C different frequencies to avoid interference. Crosstalk
mitigation techniques can be combined with our optimization
techniques to reduce noise in QNNs, further.

There have been numerous efforts to build tools for
implementation of quantum circuits on hardware so that the
noise level is contained. As an example, variation-aware
qubit allocation (VQA) [35] takes into account error rate of
links to map logical to physical qubits. This is in contrast
to some other mapping techniques which are oblivious to
the variation in the link reliability [33]. VQA starts with an
initial mapping and then tries to converge to a configuration
with minimum inter-qubit errors. To do so, it estimates the
most frequently used qubits by analyzing the first n quantum
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gates and calculating frequency of accesses to qubits. Then,
it maps the most frequently used qubits to the physical qubits
with the most reliable links to reduce noise in quantum
circuits. The downside of VQA is that it assumes that qubits
are equally important for outputs. However, in QNNs, the
sensitivity of an output varies from one input qubit to the
other. We exploit this variability and propose a mapping
scheme that uses more reliable hardware resources for qubits
with higher sensitivities. As such, we were able to remove
some of hardware noises that could not be eliminated by
VQA.

QunatumNAS [43] is an evolutionary-based technique
to reduce noise in variational quantum circuits. Qunatum-
NAS first constructs SuperCircuit by grouping a sufficient
number of quantum layers to cover a large fraction of a
quantum circuit. Then, the SuperCircuit is broken into small
sections called SubCircuits. QunatumNAS uses hardware
noise information and relies on a genetic algorithm to find
the most robust quantum circuits. A gene vector encodes
a SubCircuit. Each element in the sub-gene represents the
circuit width in a layer. The evolution engine searches
for reliable circuits using a combination of mutation and
crossover. Mutation randomly changes a subset of genes
with a pre-determined probability. Crossover first picks two
parents and then generates a new sample with genes which
are sampled randomly from the parents. Thus, the new
population is generated based on parent population, mutation,
and crossover. Then, the most reliable circuit is selected
from the new population. QunatumNAS can be integrated
with our optimization techniques to reduce noise in QNNs,
further.

Quantum on-chip training (QOC) [44] uses real quantum
computers to accelerate training of PQCs. QOC uses param-
eter shift to obtain PQC gradients. Parameter shift calculates
gradient of a parameter by simply shifting the parameter
and calculating the difference between the corresponding
outputs. Due to hardware noises, gradients obtained through
parameter shift have low fidelity and thus reduce accuracy of
training. QOC exploits pruning to mitigate the impact of noise
on training. When the gradient magnitude is small, noises
have more detrimental impact on signals. The unreliable
gradients have harmful impact on training convergence as
well as accuracy of the trained network. Skipping those
unreliable gradients can mitigate the impact of noise on
training of PQCs. Our approach is different as we focus on
inference of QNNs and not training.

IIl. NOISE-RESILIENT QUANTUM NEURAL NETWORK
(NR-QNN)

In this section, first, we explain the architecture of the QNN
used in this work. Then, we discuss the details of NR-QNN.

A. ARCHITECTURE OF QNNS
A QNN consists of parametric quantum gates that should be
trained to generate a desired input-output relationship. The
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FIGURE 2. (a) Architecture of a QNN. (b) Multi-layer QNN.

QNN is modeled by ®(x, 8) where x is the input data and 6 is
a set of parameters for adaptive optimization. Since on IBM
quantum computers, the default state for a qubitis |0), a QNN
that is run on an IBM quantum computer maps |0...0) to
W(x, 6) where W(x, 6) = ®(x,0)1]0...0).

Figure 2.a shows the structure of a single-layer QNN and
figure 2.b shows a multi-layer QNN. The first step in the QNN
is encoding where classical data are converted to quantum
states. For a continuous variable, a popular technique is angle
encoding where the continuous variable is encoded as an
angle of rotation along the desired axis (X/Y/Z). As a state
produced by a quantum rotation gate around any axis will
repeat itself in 27 intervals, classical data are scaled to 0 to
27 range in a data preprocessing step. At the beginning of
the encoding circuit, a Hadamard gate changes the state of
an input qubit to a superposition of |0) and |1). This allows
the encoding circuit to cover a larger subset of the Hilbert
space.

One approach for angle encoding is using a separate qubit
with one rotation gate for each classical data. This approach
reduces the depth of the encoding circuit. However, for a
classical input with n features, n qubits are needed. The
other approach is encoding multiple continuous variables
in a single qubit using sequential rotation [45]. While this
approach reduces the number of qubits in the encoding
circuit, it increases the depth of the circuit drastically. We use
a combination of the two techniques to encode classical data.
A classical input with n features (e.g., an input image with n
pixels) is encoded with n; qubits where each qubit encodes
ny input features using n, rotation gates (n = ny X np).

The second step in a QNN is computing which is
implemented using a PQC. A PQC contains a set of
parametrized gates whose parameters are used to construct
a cost function that should be minimized using a classical
algorithm such as back-propagation. A QNN should be able
to classify inputs accurately while having a low-depth circuit
so that it can be realized on NISQ devices. The depth of a
QNN with n qubits should be constrained to allow us to do
inference with a number of elementary quantum operations
that grow polylogarithmically with the width of the circuit.
If a QNN circuit only relies on single-qubit gates, then it
can exhaust only a small subset of the Hilbert space of n
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qubits. In other words, the set of output states that the circuit
can reach is limited. In the context of machine learning,
this limits the flexibility of classifiers. Similar to classical
machine learning, the challenge of finding a generic QNN
architecture is therefore to design a circuit of small depth that
still creates powerful classifiers for different datasets. In an
n-layer QNN, the PQC section is replicated n times.

An effective approach to designing a low-depth and
accurate QNN is to consider circuits that prepare strongly
entangled quantum states. An entangled circuit is capable of
reaching wide corners in the Hilbert space. In other words,
they have a better chance to project classical input x to
state W(x, 8) which generates the correct label y when it is
measured. From a theoretical point of view, a classifier should
be able to capture both short- and long-term correlations.
There is clear evidence that a shallow circuit is suitable
for this purpose if it is strongly entangled [46]. Figure 2
shows an example of an entangled QNN implemented using
a PQC. The entanglement part is realized using a set of
multi-qubit operations between the qubits such as CNOT
to generate correlated states. The rotation gates in the PQC
search through the solution space.

Entanglement in the PQC is considered as a workaround
for the limitation established by the no-cloning theorem.
Quantum computers cannot copy data and this restricts the
design of quantum circuits as it limits the movement of
quantum data. However, a classical computer does not have
such a restriction. A similar quantum neuron can use quantum
data only once. Entanglement makes it feasible to generate
two qubits with the same state. As an example, a CNOT with
target qubit in the state of |0) copies the state of the control
to the target.

Once the outputs of a PQC are measured, they are fed to a
dense layer [47]. The number of neurons in the dense layer is
equal to the number of classes in the dataset. We consider a
stochastic descent method for training the QNN. We choose a
Multi-Class Cross-Entropy Loss function to evaluate the error
of the QNN:

1 N C
L, 9) === DD vijlog®i.
N

i=1 j=1

ey
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where 7 is the number of samples in the input dataset, C is the
number of classes, y;; is the correct label, and Szij is the output
of the QNN.

The training is an iterative process and searches for the
best parameters in ®(x, #). We train the QNN using the
Adagrad gradient-based optimization algorithm. To compute
optimum values for PQC parameters, the derivative of the
QNN outputs with regard to inputs and parameters should
be computed. There are a variety of techniques to compute
the gradients. However, not all of them are suitable for
hardware. As an example, the adjoint method [48] requires
circuit intermediate state values to compute gradients that are
not accessible when the circuit runs on hardware. A pop-
ular method to compute quantum gradients is parameter-
shift [49]. It evaluates the target function at two distinct
points to compute gradients. The parameter-shift method is
implemented in the PennyLane [50] framework. In this work,
we use PyTorch [51] and PennyLane [50] frameworks to train
QNNE.

B. QUANTUM PRUNING

NISQ devices are vulnerable to quantum noise which may
compromise the fidelity of the computation results. One of
the sources of errors in quantum computers is coherence error.
If the time that it takes for a quantum circuit to compute its
output exceeds the coherence time of a qubit, then the output
of the circuit is skewed with noise and is not reliable. The
computation time of a quantum circuit is correlated with the
depth of the circuits [13]. The depth of a circuit is determined
by the critical path which is the longest path composed of
serially connected quantum gates in a quantum circuit. Thus,
reducing the depth of a quantum circuit is an effective way
to decrease computation time which in turn reduces noise
level. The other source of error in quantum circuits is quantum
gates. Each quantum gate adds noise to its qubit, reducing the
fidelity of the qubit. Thus, a quantum circuit with a smaller
number of gates is more reliable.

An effective way to reduce the depth and the number of
gates in QNN is quantum pruning. We observe that for most
rotation gates in the PQC of a QNN if the angle of rotation is
far from zero for several iterations during the training phase
of the QNN, it will likely stay far from zero in the next
several iterations. Similarly, if the angle remains small for
several iterations, it will likely stay small in the next several
iterations. Thus, the angle of rotation reliably is predictable to
some extent. We propose angle pruning to remove gates with
a small angle of rotation. This method potentially reduces
the depth of PQCs and reduces the probability of quantum
computation time exceeding coherence time. In addition,
quantum gate pruning reduces the number of gates which in
turn decreases the impact of gate errors on fidelity of PQCs.
It also decreases the number of parameters to be updated
during the training phase and thus accelerates the training of
QNNS.
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A QNN is trained first to learn the parameters of the
corresponding PQC. Next, we prune gates with small angles:
all rotation gates with angles less than a threshold are
removed from the network. Finally, we retrain the network
to adjust the remaining angles so that they can compensate
for pruned gates and maintain the accuracy of the original
network. This process is repeated several times to remove
gates as much as possible. During the retraining, it is better
to retrain the angles with initial values left from the previous
round of training rather than reinitializing the surviving gates
from scratch. NNs contain fragile co-adapted features [52]:
gradient descent is able to find a decent solution when a
network is initially trained, but not after reinitializing network
parameters from scratch and retraining them.

To put it in a formal way, let’s assume D(x, ) represents
a QNN where 0 is the set of angles in rotation gates. Our
objective is to prune the model ®(x, 0) so that rotation gates
with small angles are removed. However, the accuracy of the
original network is maintained:

Px,0) = P(x, 01) 2)

where 61 C 6. The pruning strategy selects gates based on
the magnitude of their angles. Mathematically:

0 if <x

0; otherwise

fprune(eﬁ A) = [ (3)
where A is a predefined threshold. Let’s define the spar-
sity/pruning ratio S of the pruned network as the fraction of
angles that are zero:

__ Number of pruned gates  npruned @)

Total number of gates Ntotal

where npruned is the number of pruned gates and ngotar is
the total number of rotation gates in the original network.
The goal is to increase S while maintaining the accuracy
of the original network. After pruning a set of weights,
the model often undergoes fine-tuning to recover from
any potential loss in accuracy. This involves retraining
the network with the pruned angles frozen to allow the
remaining angles to compensate for the missing gates and
connections. Mathematically, after pruning and fine-tuning,
the loss function may converge to a new local minimum:

Lfine-tuned = Ac(epruned) +e€ 5

where € represents a small adjustment due to fine-tuning.
The pruning process involves iterative rounds of pruning and
fine-tuning, progressively increasing the sparsity S until no
additional gates can be pruned.

Algorithm 1 describes quantum gate pruning for QNNs.
We divide the training phase into n epochs and perform
pruning periodically at the end of each epoch. First, the
gradient of the cost function with regard to the parameters of
the PQC is computed using the parameter shift technique [49]
(line 11). Then, parameters are updated using the gradient
descent method (line 12). Once a round of training with
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FIGURE 3. An example of QNN pruning for a circuit with two PQC layers
where threshold is 1z/4 = 0.7854. (a) Base QNN circuit. (b) QNN circuit
after pruning and fine-tuning.

all inputs from the training dataset (Sygin) is finished
(lines 10-13), the pruning phase starts. The angle of each
rotation gate in the PQC is compared with a predetermined
threshold value (line 16). If the angle is less than the
threshold, then the corresponding gate is removed from
the circuit. Since pruning a subset of rotation gates from
the quantum circuit may degrade accuracy, the network is
retrained in the following epoch so that parameters of the
remaining gates are updated to compensate for potential
accuracy drop. Retraining the pruned network starting with
parameters generated in the previous epoch requires less
computation because it is not needed to backpropagate
through the entire network. The pruned network is smaller
which accelerates the training process.

Pruning rotation gates with small angle values is an
iterative procedure. One approach for pruning would be
training a QNN for n epochs and then pruning the network
only once. This method reduces the overhead of pruning
but is not able to reach the full potential of pruning. It may
generate a network that is smaller than the original network
but it may still contain a large number of unnecessary gates.
Pruning a QNN after each epoch removes redundant gates
gradually, enables finding a QNN with a smaller number of
gates, and increases the success rate of the pruned network
when it is deployed into a NISQ device. The iterative
procedure described in algorithm 1 is very similar to the
mammalian brain [53] where synapses are created in the
first few months after a child is born. However, during the
postnatal development of the child, synapses change based
on their efficacy and activity. Synapses with no or little usage
experience a postsynaptic gating mechanism which is similar
to the pruning of gates with small angles of rotations. On the
contrary, those synapses that are used frequently remain in
the nervous system and their corresponding axon will carry
larger electrical signals.

Figure 3 shows an example of QNN pruning for a circuit
with two PQC layers using Algorithm 1. Figure 3.a is the
original circuit and Figure 3.b is the pruned circuit. Pruning
removes the rotation gates and controlled rotation gates with
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Algorithm 1 Quantum Gate Pruning

1: Inputs:

2: Srain: training set

3: C: cost function

4: n: learning rate

5: n: number of epochs
6: 6: angle of rotation
7: f(0): output of PQC

8: thld: Threshold for pruning
9: forepoch=1,2,...,ndo

10: for a batch B from Sy, do

1 VoCp(0) = 0.5(%)%%)
12: 0 =6—nVyCp(9)

13: end for

14: //PRUNING PHASE

15: for each rotation gate g(0) in PQC layers do
16: if 6 < thid then

17: remove g(0) from PQC layers
18: end If

19: end for

20: end for

21: Ourrur: Pruned QNN

angles below a predefined threshold. In this example, the
threshold is 1w /4 = 0.7854. After each round of pruning,
we retrain and fine-tune the circuit to recover accuracy.
Pruning only affects the rotation gates in computation part
(PQC layers) of the circuit and does not impact the rest of the
circuit such as encoding part.

C. SENSITIVITY-AWARE QUBIT MAPPING

It is well-known that the error of qubits in NISQ devices
changes by a large margin across physical qubits. Due
to process variation, temperature drifts, and environmental
impacts, the error of a qubit can vary by as much as 7x in IBM
quantum computers [13]. Using a NISQ device effectively
requires very efficient and near-optimal mapping of quantum
algorithms onto the hardware. In this section, we propose a
new method for mapping of QNNs onto NISQ devices.

A functional mapping of a quantum circuit onto NISQ
hardware requires first an initial placement of the circuit
qubits onto the hardware qubits in order to reduce error.
Then, an effective strategy is needed to reduce the likelihood
of decoherence and operational errors when the circuit runs
on real quantum hardware. Our work performs mapping
based on daily calibration data released by IBM in order
to avoid using unrealistic qubit errors and to prioritize
qubit positioning to reduce the likelihood of quantum errors.
IBM calibrates quantum computers regularly to mitigate
the impact of quantum errors on quantum circuits [13].
Daily calibrations include single- and two-qubit calibrations.
Hourly calibrations deal with readout errors and stability
checks. Figure 4 shows T7, T>, and Readout errors for all
127 qubits in IBM-Brisbane. A qubit in a high energy state
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(|1)) has a natural tendency to decay to a low energy state
(]0)). The time that it takes for this transition is called
T, coherence time. This type of error is similar to retention
errors in classical computers. However, classical computers
are only subject to bit-flip errors whereas quantum computers
are also susceptible to phase change errors. The time constant
associated with phase change is called 7> coherence time.
Phase error is the result of interaction between a qubit and
the environment. Over the past decade, coherence time has
improved drastically [54].

From the daily calibration log, we observe that T coher-
ence time varies up to 8x. The average and standard deviation
for T1 coherence time are 245us and 76.5us, respectively.
The T, coherence time varies up to 26.2x and the average
and standard deviation for 7, coherence time are 1585 and
88.83 us, respectively.

Readout error on IBM-Brisbane quantum device varies
from 0.41 x 1072 to 0.316. These fluctuations stem from
material defects caused by the lithographic process used to
manufacture qubits and are expected to be present in future
generations of NISQ devices [55].

We use Qiskit 0.45.0 [56] as the baseline compiler for qubit
mapping. The compiler takes into account the variability in
link errors and assigns logical qubits to physical qubits so that
the number of SWAPs is minimized. The main shortcoming
of the Qiskit compiler as well as other qubit allocation
techniques [33], [34], [37] is that none of them consider the
variability of logical qubits. In other words, these mapping
techniques are oblivious to the sensitivity of the output of a
quantum circuit to input qubits. In the context of a QNN, not
all input qubits are equally important. The sensitivity of the
output of the QNN varies from one logical qubit to the other.

To be able to guide the mapping procedure based on
the importance of logical qubits, we need a mechanism
to calculate the sensitivity of output to individual qubits.
Formally, the sensitivity of the output of a QNN to input qubit
gi can be defined as g—g{ where C is the cost function of the
QNN and 6; is the angle of rotation for g;. We can use the
chain rule to compute the derivative of the cost function with
regard to input parameters. Let’s assume {C — gfl7 > ...
gh) is the path that emerges from output towards ¢; and gf
represents a quantum gate. Since there may be more than one
such path, we use superscript p to distinguish different paths.
The sensitivity is given by:

de < dc of ogh

06 S oglog, 06

Instead of going through the burden of computing deriva-
tives for individual gates, we use a profiling approach to
extract the sensitivity of logical qubits. For qubit mapping, the
absolute value of the sensitivities is not important. We only
need a mechanism that sorts logical qubits based on their
relative sensitivity. Once a QNN is trained, we evaluate the
sensitivity of output to individual inputs by increasing the

(6)
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Algorithm 2 Logical to Physical Qubit Mapping
Steps:
1. Use IBM Qiskit compiler to generate initial mapping.
2. Use profiling to find sensitivity of individual qubits.

2.1 For each input qubit, increase the angle of the
corresponding rotation gates by A.

2.2 if QNN predicts a different class, set sensitivity to
nLA (n is the number of times the angle is
increased); otherwise go to step 2.1.

3. Sort logical qubits in descending order of sensitivity.

4. Sort physical qubits in descending order of reliability
extracted from IBM calibration data.

5. Map the sorted logical qubits to the sorted physical
qubits one by one.

angle of input rotation gates by a small value: A. It is
important to note that the angles of all rotation gates used
for the encoding of the qubit are increased by A. If the
prediction made by the QNN changes, then we record 1/A
as sensitivity for input qubit g;; otherwise, we increase the
input angle by another A. We continue this procedure (each
time, the angle is increased by A) until the prediction made
by the QNN before and after the angle increase changes.
Intuitively, A is a measure of the vulnerability of qubits to
noises. An input qubit that requires a large increase in its
angle to flip prediction has lower sensitivity. On the contrary,
if the QNN predicts a different class by a small increase in an
input angle, then the sensitivity of the qubit is high.

Once we compute the sensitivity of all input qubits, we are
ready to map logical qubits to physical qubits. Since the
Qiskit compiler optimizes the number of SWAP gates, we use
the same physical qubits selected by the compiler for the
QNN. We only change the mapping of logical qubits to
the selected physical qubits. For example, figure 5 shows
the topology of qubits in IBM-Brisbane. The four qubits
contained in a red box are selected by the compiler for
implementation of a QNN with 4-qubit. We use the same
qubits but change the logical to physical mapping based
on the sensitivities of the logical qubits. The reliability of
the physical qubits is determined based on calibration data
released by IBM and includes 77 coherence, 7> coherence,
and measurement errors. A more sensitive logical qubit is
mapped to a more reliable physical qubit. Algorithm 2 shows
steps in sensitivity-aware qubit mapping.

IV. EVALUATION

In this section, we present results for NR-QNN. We compare
the accuracy of QNNs in noiseless simulation, hardware
emulation, and NISQ hardware. The goal of this work is to
optimize QNN circuits so that they overcome noise when they
are run on NISQ devices and generate meaningful results.
We do not focus on QNN designs with the highest accuracies
as the accuracy of QNN is not the focus of this work.
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A. EVALUATION METHODOLOGY

We conduct experiments using MNIST, Fashion-MNIST, and
CIFAR-10 datasets. MNIST and Fashion-MNIST datasets
contain 28 x 28 single channel images and both share the
same number of classes for classification. MNIST dataset
contains images of handwritten digits from zero to nine.
Fashion-MNIST dataset includes images of different pieces
of clothing. Each of the two datasets is divided into 50,000
and 10,000 images for training and testing, respectively. The
CIFAR-10 dataset contains RGB images with size 3 x 32 x
32 pixels. CIFAR-10 has 50,000 images for training and
10,000 images for testing. CIFAR-10 consists of ten different
classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. We use average accuracy as a metric
to measure the performance of QNN models. The average

VOLUME 13, 2025

accuracy is calculated by performing a forward pass through
the network for each sample in the test dataset, measuring the
fraction of the samples that are classified correctly.

For MNIST and Fashion-MNIST, we use QNNs with
4 qubits [47]. The encoding section of the QNNs uses
4 rotation gates per qubit (Figure 2.a). As a result, for a
28 x 28 image, 7 x 7 = 49 quantum circuit executions are
required to generate 4 x 49 = 196 features for the next fully
connected layer. For CIFAR-10, we use 6 qubits where each
qubit uses two rotation gates for the encoding section [47].
Thus, each 3 x 32 x 32 image requires 16 x 16 = 256 circuit
executions to generate 6 x 256 1536 output features.
After measurements, the output features are concatenated and
flattened for the next fully connected layer.

We use PyTorch [51], PennyLane [50], and Qiskit [56]
packages to model and train QNNs used in this work.
All networks are trained with Adagard optimizer [57] with
a learning rate of 0.5. We use the default PennyLane
configuration to run QNNs in noiseless simulations. For
hardware emulation, we use fake backends provided in Qiskit
V0.45.0 for IBM quantum computers. The fakebackend
is used to model noise in quantum hardware. The noise
is based on IBM calibration data and involves 77 and
T, coherence errors, gate errors, and read-out (measurement)
errors. Several techniques are used to model coherence errors
such as Inversion Recovery, Ramsey Experiments, and Hahn
Echoes [58]. Errors in single-qubit gates are simulated using
a single-qubit depolarization error followed by a single-qubit
relaxation error. Similarly, errors in a two-qubit gate are
simulated by applying depolarization error and thermal
relaxation error on both qubits of the gate. Each measured
qubit is flipped with a probability to model the impact of
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FIGURE 6. Two flavors of PQCs for MNIST and Fashion-MNIST.

measurement error. IBM provides access to calibrated data
through Qiskit APIs. During the simulation, the hardware
emulator loads these noises, compiles the circuit with native
gates, and generates outputs under the aforementioned noise
model. We use the hardware emulator to compare the
performance of various QNNs under noise. We also run
QNNs on a 127-qubit real IBM quantum computer: IBM-
Brisbane. The IBM quantum computers use the Pauli-Z
expectation values for the measurement of the outputs. Each
QNN is run for 20,000 shots on the IBM-Brisbane.

B. EXPERIMENTAL RESULTS

Figure 2 is the skeleton of all QNNs used in this work.
We change the configuration of the PQC section of the
QNN to evaluate the impact of different quantum circuits
on accuracy. By no means, this is not an exhaustive
exploration of design space for PQCs. We only evaluate a few
configurations and select the best one for the rest of this paper.

The PQC in figure 2 consists of CNOT and R, gates.
Figure 6 shows two other configurations for PQCs for MNIST
and Fashion-MNIST. The first one is built out of controlled R,
and R, gates and the second one uses blocks of CNOT and R,
gates. Regardless of the configuration of PQCs, the circuits
must include two-qubit gates to benefit from entanglement
and thus cover larger regions of Hilbert space.

The images in MNIST and Fashion-MNIST are single
channels as all images in the two datasets are black-and-
white. However, the CIFAR-10 images are colored and
each image has three channels: R, G and B. To exploit
the correlation between the output of CIFAR-10 QNN and
the three input channels, we use PQCs that differ from the
configurations presented in figure 6. Figure 7 shows PQCs
for CIFAR-10. While the intra-channel PQC (figure 7.a)
uses entanglement between qubits within a channel, the
inter-channel PQC (figure 7.b) exploits entanglement across
channels. The inter-/intra-channel PQCs (figures 7.c and 7.d)
exploit entanglements both within and across channels and
thus it is expected that they offer higher accuracies. As we
already mentioned, the goal of this work is to optimize QNNs
to overcome noise in NISQ devices. Exploring the design
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space of PQCs and offering the optimum circuit is beyond
the scope of this work.

Table 1 shows the average accuracy of QNNs for MNIST,
Fashion-MNIST, and CIFAR-10. Accuracies of MNIST and
Fashion-MNIST are higher than CIFAR-10. This is mainly
due to the simplicity of the two datasets. Both datasets exploit
black-and-white images. Based on Table 1, we use CRz
gates for both MNIST and Fashion-MNIST. In CIFAR-10,
intra/inter-1 and intra/inter-2 offer higher accuracies. This is
expected as they exploit correlations both within and across
channels and are able to differentiate input images better than
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TABLE 1. Accuracy of Noiseless QNNs.

Method MNIST FashionMNIST
CRZ (Fig. 6.a) 97.50% 79.25%
CNOT (Fig. 2) 88.33% 71.66%
CNOT+RZ (Fig. 6.b)  94.17% 78.33%
CIFAR10

Intra 25.83%

Inter 30.83%
Intra/Inter-1 38.33%
Intra/Inter-2 40.83%

TABLE 2. Similarity between Pruned QNNs and Noiseless Simulations and
Pruning Rate. The number of layers changes from one to four (L; ~ Lg).

Pruning  Similarity (%) / Pruning rate (%)

Layers Angle MNIST FashionMNIST  CIFARIO
/4 87%/12% 87%/13% 87%1/16%

27l4 87%/13%  90%/13% 83%/17%

Ly 37/4 87%/37%  83%/50% 80%/42%
4m/4 83%/38% 83%/50% 80%/58%

S7l4 80%/74% 80%/63% 80%/67%

67/4 80%/75% 83%/88% 80%/92%

/4 83%/13%  83%/13% 74%113%

27/4 87%/31%  80%/31% 73%121%

Lo 37/4 83%/44% 80%/56% 73%/46%
4r/4 83%/69% 80%/63% 70%/54%

S7l4 77%/93%  73%/75% 77%1/63%

67/4 77%/94%  73%/88% 70%/79%

/4 83%/8% 73%]/17% 77%/11%

27l4 T7%125%  67%/21% 70%/33%

L3 37/4 77%/42%  73%/29% 70%/53%
4/4 77%146%  63%/46% 67%/69%

S7l4 73%/54%  63%/75% 63%/72%

67/4 73%/79%  63%/88% 60%/83%

/4 83%/9% 67 %/9% 70%/17%

27l4 77%122%  63%/34% 60%/31%

Ly 3r/4 73%/44%  63%/53% 60%/44%
47/4 70%/56%  63%/56% 60%/63%

S7i4 67%/72%  53%/75% 50%/67%

67/4 67%/78%  53%/84% 50%/79%

intra and inter-schemes. We use intra/inter-2 for CIFAR-10 as
its accuracy is slightly higher than intra/inter-1 scheme.
Table 2 compares predictions made by fake-backend and
noiseless simulations. The goal of NR-QNN is to mitigate
the impact of quantum noise on the accuracies of QNNs.
Thus, Table 2 reports similarity between pruned QNNs and
baseline noiseless QNN . For example, the similarity of 90%
in Table 2 shows that 90% of outputs in a pruned QNN on
fake-backend is the same as baseline noiseless QNN. We also
report the fraction of gates that are removed due to pruning.
To evaluate how our proposed techniques work in deep
circuits, we replicate the PQC section of QNNs. For example,
L3 in Table 2 indicates that the PQC has three layers. In other
words, the PQCs in figures 6.a and 7.d are replicated three
times. It is important to note that the fake-backend does not
model the entire spectrum of quantum noise and as a result,
the output of a quantum circuit on a real quantum computer
is not necessarily the same as the fake-backend simulation.
It is used to provide a first-order estimation of how a circuit
behaves when it is deployed on a real quantum computer.
We prune QNNs with thresholds of 7 /4 ~ 6m/4 with
strides of m/4 in Table 2. While increasing the threshold
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TABLE 3. Running MNIST, Fashion-MNIST, and CIFAR-10 on IBM-Brisbane.

Layers ngl‘:g‘l';g Bﬁ‘;;l;‘e Pglg‘N“g NR-QNN

o L1 37/4 93%  100% 100%
2] Ly 2m/4 7%  81% 93%
E Ly  lx/4 63%  80% 90%

Ly lx/4 57% 3% 80%
t L1 2r/a 67%  80% 90%
g3 Ly n/4 63%  11% 83%
2Z Ly /4 57%  63% 80%
£2 L, 1/ 3%  57% 77%
S L1 1x/4 67%  80% 87%
~ Lo 5m/4 57% 67% 7%
= Ly lr/4 53%  60% 73%
O Ly 1m/4 30% 53% 67%

reduces the cost of the pruned circuit as a greater number of
gates are eliminated, a higher threshold does not necessarily
offer a higher level of accuracy. As a PQC shrinks due to
pruning, a smaller subset of Hilbert space is covered by the
circuit which makes it more difficult for the steepest descent
algorithm to optimize the network. For each dataset, we select
the highest accuracy per PQC layer and use it for the rest of
the paper (entries with bold fonts in Table 2).

Table 3 shows the result of running QNNs on
IBM-Brisbane quantum computer. The third column of
Table 3 shows the angles determined by pruning (Table 2).
As the number of layers increases the similarity rate drops for
the baseline QNN rapidly (fourth column). This is expected
as a deeper PQC results in more quantum noise on IBM-
Brisbane, causing a rapid increase in dissimilarity between
the output of baseline QNN and noiseless simulations.
As an example, in MNIST, the similarity rate drops from
93% in Li to 57% in L4. The fifth column in Table 3
shows the similarity between noiseless circuits and pruned
QNNs whereas the last column shows the results for NR-
QNN. Pruning reduces quantum noise and enhances accuracy
over the baseline scheme. NR-QNN improves accuracy
even further and reduces the gap between NR-QNN and
noiseless simulations. On average, NR-QNN increases the
similarity between QNNs run on IBM-Brisbane and noiseless
simulations by 17%, 19%, 23%, and 31% for L1, L, L3, and
Ly, respectively.

V. CONCLUSION

We propose NR-QNN, a method to mitigate the impact
of quantum noise on QNNs. NR-QNN leverages two
optimization techniques to enhance the robustness of PQCs
in QNN s. The first technique involves pruning unnecessary
rotation gates, which reduces the number of gates and
potentially lowers the depth of QNNs. This pruning process
includes retraining PQCs to compensate for any potential
accuracy loss from removing gates. The second technique
is sensitivity-aware qubit mapping, based on the observation
that output sensitivity varies across input qubits. Prior studies
aimed at minimizing noise in QNNs have not fully exploited
this aspect. By mapping sensitive qubits to more stable ones,
the fidelity of QNNs on NISQ devices can be improved.
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Using a combination of pruning and sensitivity-aware qubit
mapping, we successfully ran a set of QNNs on real quantum
hardware using popular datasets.
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