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In this proceeding, we review our recent work in which we performed the first global analysis of
nuclear modified Transverse Momentum Distribution Functions (TMDs). We demonstrate for the
first time that the global set of TMD experimental data from HERMES, E866, E772, RHIC, ATLAS,
and CMS, can be described using a simple model which accounts for the nuclear modifications for
the TMDs as a non-perturbative correction. Using this model, we extract the nuclear modified TMDs
for the first time.
KEYWORDS: transverse momentum distributions (TMDs), nuclear medium, QCD global
analysis, non-perturbative QCD

1. Introduction

Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) encode three-
dimensional information for the distribution of partons within hadrons, and provide vital information
needed for imaging free nucleons. Due to the non-perturbative nature of QCD, global extractions from
experimental data or lattice methods are required in order to obtain the full information of TMDs.
Over the past decade tremendous advancements have been made in imaging hadron structure through
intense experimental and theoretical studies in unpolarized and polarized TMDs, see for instance
Refs. [1,2]. However, recently there has been additional interest in not only understanding TMDs for
free nucleons, but also nuclear modified TMDs (nTMDs). In this proceeding, we review our recent
global analysis for nTMDs using the world data from Semi-Inclusive DIS (SIDIS) and Drell-Yan
processes with nuclei in Ref. [3]. We present detailed information of our methodology and results.
This proceeding is organized as follows: in Sec. 2 we provide the factorization and resummation
formalism for SIDIS and Drell-Yan collisions with protons. In Sec. 3, we provide the details of our
global fitting procedure. In Sec. 4 we summarize the results of our study. We conclude this proceeding
in Sec. 5
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2. TMD Factorization Formalism

The differential cross section for SIDIS, e(l) + p(P) → e(l′) + h(Ph) + X, in the TMD region for
a proton target is given by the expression

dσ
dxB dQ2 dzh d2Ph⊥

= σDIS
0 HDIS(Q)

∑
q

e2
q

∫ ∞

0

b db
2π

J0 (b q⊥) Dh/q(zh, b; Q) fq/p(xB, b; Q) . (1)

In this expression, b is the Fourier conjugate variable to the transverse momentum of the fragmenting
quark, which is defined as q⊥ = Ph⊥/zh. Furthermore, we can define the momentum of the virtual
photon to be given by q = l − l′. The standard kinematic variables can be written in terms of this
momentum as

Q2 = −q2 , xB =
Q2

2P · q
, zh =

P · Ph

P · q
. (2)

Furthermore in Eq. (1), σDIS
0 and HDIS are the usual Born cross section and the hard function for

this process. The functions fq/p(xB, b; Q) and Dh/q(zh, b; Q) denote the TMD PDF and the TMD
Fragmentation Function (TMD FF), which provides three-dimensional information for a quark of
flavor q to form a hadron of species h. We note that in our notation both the TMD PDF and the TMD
FF depend on the hard scale Q. In writing the TMDs in this form, we have set both the renormalization
scale and the rapidity scale to be equal to Q. Using the usual Collins-Soper-Sterman formalism, these
TMDs can be written as [4]

fq/p(xB, b; Q) =
[
Cq←i ⊗ fi/p

]
(xB, µb∗) exp

{
−S pert(µb∗ ,Q) − S f

NP(xB; Q0, µb∗ ,Q)
}
, (3)

Dh/q(zh, b; Q) =
1
z2

h

[Ĉi←q ⊗ Dh/i](zh, µb∗) exp
{
−S pert(µb∗ ,Q) − S D

NP(zh; Q0, µb∗ ,Q)
}
. (4)

In these expressions, Cq←i and Ĉi←q are the Wilson coefficient functions for the TMD PDF and the
TMD FF, which match the TMDs onto their collinear counterparts. In these expressions, ⊗ denotes
the convolution operator, while fi/p(x, µb∗) and Dh/i(z, µb∗) are the collinear PDF and collinear FF. The
scale µb∗ = 2e−γE/b∗ represents the natural scale for TMD evolution, while b∗ is the standard pre-
scription. We note that since the convolutions are evaluated at the natural scale µb∗ , these convolution
integrals require contributions from DGLAP evolution when computed for different b. Furthermore,
in these expressions, S pert is the perturbative Sudakov term associated with the TMD evolution. Fi-
nally, the S f

NP and S D
NP functions are the non-perturbative Sudakov factors associated with evolving

the TMDs from the initial scale Q0 to the hard scale Q. In the next section, we will provide our pa-
rameterization for these functions. We also note at this time that the goal of this study is to obtain
these contributions for the nuclear TMDs.

The Drell-Yan differential cross section for pp collisions, p(P1) + p(P2)→ γ∗/Z(q) + X, is given
in the TMD region as

dσ
dQ2 dy d2q⊥

= σDY
0 HDY(Q)P

(
η, p``⊥

) ∑
q

cq(Q) (5)

×

∫ ∞

0

b db
2π

J0 (b q⊥) fq̄/p(x1, b; Q) fq/p(x2, b; Q) .

In this expression, Q2, y, and q⊥ denote the invariant mass, rapidity, and transverse momentum of the
produced vector boson. Furthermore, cq(Q) denotes the quark coupling to the produced vector boson.
The term P takes into account the kinematic cuts on the transverse momentum, p``⊥ , and the rapidity,
η, of the final state lepton pair.
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3. Global Fitting Procedure

In this section, we first discuss the available experimental data for the global analysis. We then
discuss our parameterization for the non-perturbative physics. We note at this time, that we work at
NLO+NNLL perturbative accuracy for all the perturbative physics.

Experimental measurement were performed at HERMES in Ref. [6] for the multiplicity ratio
RA

h = MA
h /M

D
h , where the multiplicity is defined as MA

h = 2πPh⊥
dσA

dx dQ2 dz d2Ph⊥
/ dσA

dxdQ2 . The superscript
of this expression denotes the species of the nuclear target and the subscript denotes the species
of the produced final-state hadron. Experimental measurements were performed for both π and K
production at HERMES. In our analysis however, we consider only the π data and leave the analysis
for the K data for future work. We note that in order to calculate the multiplicities, one needs to
compute the inclusive DIS cross section. To accomplish this, we use the APFEL library in Ref. [5].
We also note at this time that we take the following cuts to select data within the TMD region:
P2

h⊥ < 0.3 GeV2, and z < 0.7. On the other hand, measurements of the Drell-Yan differential cross
section ratio, RAB = dσA

dQ2 dy dq⊥
/ dσB

dQ2 dy dq⊥
, were performed by the E772 [7], E866 [8], and PHENIX [9]

collaborations. Finally, experimental measurements of the q⊥ distribution, dσPb

dq⊥
, were performed by

both the ATLAS [10] and CMS [11] collaborations in p Pb collisions. To implement the fiducial cuts
on these data, we use the Artemides library in Ref. [12]. Finally, we note for Drell-Yan data, we will
always take the kinematic cuts q⊥/Q < 0.3. In total, from the global set of data, we are left with 126
points.

As we have seen in the previous paragraph, in order to describe experimental data, we must first
parameterize the non-perturbative physics for protons. In this work, we follow the parameterization
in Ref. [17] to define the non-perturbative Sudakov to be

S f
NP(xh; Q0, µb∗ ,Q) = gq b2 +

g2

2
ln

(
b
b∗

)
ln

(
Q
Q0

)
, (6)

S D
NP(zh; Q0, µb∗ ,Q) =

gh

z2
h

b2 +
g2

2
ln

(
b
b∗

)
ln

(
Q
Q0

)
. (7)

In Ref. [17], the parameter values were found from a global analysis of Semi-Inclusive DIS and Drell-
Yan data to be gq = 0.106 GeV2, gh = 0.042 GeV2, g2 = 0.84, and Q0 =

√
2.4 GeV. Finally, in order

to parameterize the collinear PDF, we use the CT14nlo parameterization in Ref. [13]. To parameterize
the collinear FF, we use the DSS14 parameterization in Ref. [14].

To obtain the factorized cross section for interactions involving nuclei, we follow the same pro-
cedure that was used for both nuclear collinear PDFs and FFs in Refs. [15, 16]. Firstly, we assume
that TMD factorization for nuclei is the same as that for free nucleons, except that one replaces the
distributions by their nuclear modified versions. Secondly, we assume that the perturbative physics
for TMDs inside the nucleus and the free nucleon is the same. Under this assumption, the Wilson co-
efficient functions and the perturbative Sudakov term are left unchanged. Furthermore, the DGLAP
evolution kernels which enter into the convolution integrals are also left unchanged. While the per-
turbative contributions to the cross sections remain unchanged, we follow the work that was done
for the collinear PDFs and FFs. Namely we treat the nuclear modifications to enter only into the
non-perturbative parameterizations. To parameterize the nuclear modified collinear PDF and FF, we
use the EPPS16 and LIKEn parameterization in Refs. [15, 16]. To parameterize the non-perturbative
Sudakov, we take

gA
q (x,Q) = gq + aN L , gA

h (z,Q) = gh + bN L . (8)

In this expression L = A1/3, where A is the atomic mass number, represents the transverse distance of
the nucleus. Furthermore, aN and bN represent non-perturbative parameters to be tuned from exper-

3

020126-3JPS Conf. Proc. , 020126 (2022)37

Proceedings of the 24th International Spin Symposium (SPIN2021)
Downloaded from journals.jps.jp by Deutsches Elek Synchrotron on 12/31/22



imental data involving nuclei. In order to obtain the numerical values of the parameters aN and bN ,
we fit the experimental data using the Minuit package. The normalization factors N of the LHC data
are accounted for in the definition of the χ2 according to the procedure of [15].

4. Results
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Fig. 1. Our description of the considered experimental data. The dark band represents the uncertainty from
our fit while the light band represents the uncertainty from the collinear distributions.

The global analysis of these parameters results in a χ2/d.o. f of 1.045 where the parameter values
are given by aN = 0.0171 ± 0.003 GeV2 and bN = 0.0144 ± 0.001 GeV2. In Fig. 1, we plot our
description of the experimental data. The multiplicity ratio HERMES is plotted in the first three
columns of the upper row. The q⊥ distributions at the LHC are given in the upper right panel. In the
bottom row, we plot our description of the RAB ratio from E772, E866, and RHIC experiments. In
each subplot, we have provided the uncertainty from our fit as a dark band, and the uncertainty from
the collinear distributions as a light band.

Fig. 2. Left: The ratio of the u-quark TMD PDFs for a proton bounded in a Au nucleus to that in a free
proton. Right: The ratio of the TMD FFs for a u-quark to fragment into a π+ in the presence of a Xe nucleus.
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In the left panel of Fig. 2, we plot the ratio of the u-quark TMD PDF of a bound proton in a gold
nucleus and that in a free proton as a function of x and k⊥, the transverse momentum of the quark.
In the right panel of this figure, we plot the ratio of the nTMD FF for u → π+ in a Xe nucleus and
that in vacuum as a function of z and p⊥, the transverse momentum of the hadron with respect to
the fragmenting quark. Analogous to the nTMD PDFs, we see that as p⊥ grows, this ratio becomes
larger, indicating that hadrons originating from fragmentation in the presence of a nuclear medium
will tend to have a broader distribution of transverse momentum relative to vacuum TMD FFs.

5. Conclusion

In this proceeding, we have reviewed our recent global analysis of nuclear modified TMDs. We
have considered experimental data from HERMES, E772, E866, RHIC, and the LHC. We find that
we can describe the global set of experimental data using a simple model which accounts for the
nuclear modification as a non-perturbative effect.
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