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© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

Nuclei as we now know them have sphere-like geometry.
Wheeler suggested that under appropriate conditions the nuclear
fluid may assume a toroidal shape [1-3]. Toroidal nuclei are how-
ever plagued with various instabilities [3], and the search remains
elusive [4-6]. It was found previously from the liquid-drop model
that a “rotation” about the symmetry axis with an angular mo-
mentum I = I, above a threshold can stabilize the toroidal nucleus
and can lead to a high-spin isomer [7].

The toroidal high-spin isomer, whose large angular momentum
I = I; must be generated by the alignment of individual nucleon
angular momenta along the symmetry axis [8], provides an ele-
gant example in quantum mechanics as how an axially-symmetric
system can acquire a quantized angular momentum. Furthermore,
the nuclear fluid in the toroidal isomeric state may be so severely
distorted by the change from sphere-like geometry to the toroidal
shape that it may acquire bulk properties of its own, to make it a
distinct type of quantum fluid. Finally, the toroidal high-spin iso-
mer may be a source of energy, as its decay to the ground state
can release a large amount of excitation energy. The possibility of
toroidal high-spin isomers may stimulate also future reaction stud-
ies to explore their production and detection by fusion of two ions
at high angular momenta [9,10]. For all these reasons, the investi-
gation on toroidal high-spin isomers is of general interest.

In the liquid-drop model of a toroidal nucleus, we can select
the major radius R, the minor radius d, the angular momentum

* Corresponding author.
E-mail addresses: stas@tytan.umcs.lublin.pl (A. Staszczak), wongc@ornl.gov
(C.Y. Wong).

http://dx.doi.org/10.1016/j.physletb.2014.10.013

I = I, about the symmetry axis, and the corresponding rigid-body
moment of inertia Jyigiq as macroscopic variables. (For a sketch
of R and d, see Fig. 1 of [3].) The energy I(I + 1)/23igiq associ-
ated with the angular momentum I can be called the “rotational”
energy. The variation of the rotational energy and the Coulomb en-
ergy tend to counterbalance the variation of the surface energy [7].
As a consequence, there is an [-threshold above which the rotat-
ing toroidal nucleus can be stable against a variation of R/d. The
toroidal nucleus is stable also against axially-asymmetric sausage
distortions [3] within an [-window [7]. Beyond the I[-window
with R/d > 1, the sausage instabilities (known also as Plateau-
Rayleigh instabilities, for review, see [11]) will break the toroid
into sausages, which subsequently turn into beads (see e.g. Fig. 2
of [12]).

To study toroidal high-spin states theoretically, we need a sys-
tematic way to determine the quantized I value, which is a non-
trivial function of N and Z. The quantized I can be obtained
from the single-particle state diagrams under the constraint of
a fixed aligned angular momentum. For simplicity, we limit our
present studies to even-even N = Z nuclei. Previously, an inves-
tigation of “°Ca as the evolution of a chain of 10 alpha particles
revealed that 4°Ca with I = 60k may represent a toroidal high-K
isomeric state [13], in qualitative agreement with the I-threshold
and I-window concepts in [7].

Accordingly, we need the energy diagram of the single-particle
states in a toroidal nucleus for different aligned angular mo-
menta I. For I = Oh, the single-particle potential for a nucleon in
a toroidal nucleus with azimuthal symmetry in cylindrical coordi-
nates (r, z) can be represented by [3]
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Fig. 1. (Color online.) (a) Single-particle states of a toroidal nucleus with I = Oh
as a function of R/d, calculated with (ptorus)/{00) = 0.64 and A ~ 40. Each state
is labeled by (n, A, £2), with n=n; +n, and degenerate £2,. (b) Single-particle
Routhians of a toroidal nucleus with R/d = 4.5, as a function of a cranking fre-
quency hw. Routhians of positive- and negative-£2, states are given by the solid
and dashed lines, respectively. The listed pair numbers (N, I) refer to the occupa-
tion number N and the total angular momentum I = I, aligned along the symmetry
z-axis.

Vo(r,z) = 1mwo(r —R)?+ ;ma)gzz, (1)
where fiwg = [(37R/2d)'/241/AV31(prorus)/(00). We have in-
cluded the ratio (ptorus)/{00) Where (ptorus) and (po) are the av-
erage nuclear densities in the toroidal and the spherical configura-
tions respectively, because the mean-field potential is proportional
approximately to the nuclear density. In microscopic calculations,
{(Prorus)/{po) is found to be approximately 1/2 to 2/3. For R > d
and low-lying states with the radial nodal quantum number n, =0
and the azimuthal nodal quantum number n, = 0, the expectation
value of the spin-orbit interaction is approximately zero [3], and
we can neglect the spin-orbit interaction.

We label a state by (nA£2£2;), where n= (n; +ny), £A is the
z-component of the orbital angular momentum, and 2 = |A£1/2|
is the single-particle total angular momentum with z-components
2, =£82. For R > d, the single-particle energy of the (n,n,A$2)
state with I = Of is therefore

h2 A2
2mR?’ @)
Fig. 1(a) gives the single-particle state energies as a function of
R/d for a toroidal nucleus with I = Oh.

For a non-collectively rotating toroidal nucleus with aligned
angular momentum, I =1 2, We use a Lagrange multiplier w to de-
scribe the constraint I, = ]Z Zl 1 £2;i. The constrained single-

EMAR) ~hwo(n+ 1) +

particle Hamiltonian becomes R =h- a)]z,, and the aligned an-
gular momentum [ is a step-wise function of the Lagrange mul-
tiplier w [14], with each I spanning a small region of fiw. The
single-particle Routhian with quantum numbers (nA$2£2;), under
the constraint of the non-collective aligned angular momentum [
is

2 42

h
EMAQ2:) ~hoo+1) + 2 — h Q.. (3)

Fig. 1(b) gives the smgle-partlcle Routhians as a function of the
constraining Lagrange multiplier fiw, for a toroidal nucleus with
R/d = 4.5, approximately the aspect ratio for many toroidal nuclei
in this region. We can use Fig. 1(b) to determine I = I, as a func-
tion of N and hw. Specifically, for a given N and hw, the aligned

I,-component of the total angular momentum [ from the N nu-
cleons can be obtained by summing £2,; over all states below the
Fermi energy.

There are shell gaps for different (N, I,) configurations in Fig. 1.
They represent configurations with relative stability for which ad-
ditional shell corrections on top of the liquid-drop-type energy
surface [15,3] may enhance the stability for toroidal configurations.
The energy scales of the hw and E axes in Fig. 1(b) depend on
N, R/d, {prorus)/{po) which vary individually at different isomeric
toroidal energy minima, but the structure of the (N, I,) shells and
their relative positions in Fig. 1(b) remain approximately the same
in this A ~ 40 mass region. We can use Fig. 1(b) as a qualitative
guide to explore the landscape of the energy surface for different
(N, I) configurations, by employing a reliable microscopic model.

A microscopic theory that includes both the single-particle shell
effects and the bulk properties of a nucleus is the Skyrme en-
ergy density functional approach in which we solve an equality-
constrained problem:

rnantOt[l_)]

P

subject to: (N) Ng, (4)
(Qan) = Qups
<]>—1,,

where an objective function, E™[p] = (fg), is the Skyrme en-
ergy density functional [16]. The constraint functions are defined
by average values of the proton/neutron particle-number operator,
Np/n, the mass-multiple-moment operators, Qw, and the com-

ponents of the angular momentum operator ]i. Npm =Z/N are
the proton/neutron numbers, Q,, are the constraint values of the
multiple-moments, and I; are the constraint components of the
angular momentum vector.

The above constraint equations were solved using an aug-
mented Lagrangian method [17] with the symmetry-unrestricted
code HFODD [18]. In the particle-hole channel the Skyrme SkM*
force [19] was applied and a density-dependent mixed pair-
ing [20,21] interaction in the particle-particle channel was used.
The code HFODD uses the basis expansion method in a three-
dimensional Cartesian deformed harmonic oscillator basis. In the
present study, we used the basis which consists of states having
not more than Ng = 26 quanta in the Cartesian directions, and not
more than 1140 states.

Our objective is to locate local toroidal figures of equilibrium,
if any, in the multi-dimensional search space of (A, Q20,1). We
first map out the energy landscape for axially-symmetric toroidal
shapes under these Q¢ and I constraints, with fine grids in Q2o
and all allowed non-collective rotations in 0 < I < 132h for differ-
ent A. If the topographical landscape reveals a local energy mini-
mum then the quadrupole constraint is removed at that minimum
and free-convergence is tested to ensure that the non-collectively
rotating toroid nucleus is indeed a figure of equilibrium.

For the case of I = 0, as shown in Fig. 2, the Skyrme-
Hartree-Fock-Bogoliubov (HFB) calculations for N = Z with 24 <
A <52 reveal that as the quadrupole moment constraint, Qg, de-
creases to become more negative, the density configurations with
sphere-like geometry (open circles) turn into those of an axially-
symmetric torus (full circles), as would be expected from the
single-particle state diagrams of Fig. 1(a). The energies of axially-
symmetric toroidal configurations as a function of Q¢ lie on a
slope. This indicates that even though the shell effects cause the
density to become toroidal when there is a quadrupole constraint,
the magnitudes of the shell corrections are not sufficient to sta-
bilize the tori against the bulk tendency to return to sphere-like
geometry.
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Fig. 2. (Color online.) The total HFB energy of 2*Mg, 28sSi, 325, 36Ar, 40Ca, #4Tj,
48Cr, and °2Fe as a function of the quadrupole moment for the case of I = 0.
Axially-symmetric toroidal configurations are indicated by the full circles, axially-
asymmetric toroidal configurations by the full squares, and configurations with a
sphere-like geometry by the open circles. Some toroidal density distributions are
displayed.

We next extend our Skyrme-HFB calculations further to include
both the quadrupole moment Q3¢ constraint and the angular mo-
mentum constraint, I = I,. The pairing energies are smaller for
toroidal nuclei than with a spherical geometry for a case of I =0,
additionally pairing interaction is suppressed as the two degener-
ate +£2, states split apart under the constraining ficw when I # 0.
We shall carry out the cranking calculations without the pairing
interaction, using a Skyrme-HF approach. The results of such cal-
culations for 28 < A < 48 are presented in Fig. 3, where we plot
the excitation energy of the high-spin toroidal states relative to the
spherical ground state energy, E* = E*'(I) — Eg; (0), as a function
of the constrained Q»g, for different quantized I. For each point
(Q20,1) on an I curve for a fixed A, it was necessary to adjust
hw judiciously within a range to ensure that the total aligned an-
gular momentum of all nucleons in the occupied states gives the
quantized I value of interest. The energy curves in Fig. 3 become
flatter as I increases, similar to the energy curves in the liquid-
drop model as the angular momentum increases [7].

With our systematic method outlined above, we are able to lo-
cate many high-spin toroidal isomeric states: 28Si(I = 44h), 32S(I =
48, 66h), 36Ar(I = 56,72, 92h), 40Ca(I = 60, 82h), **Ti(I = 68, 88,
112h), “8Cr(I = 72,98,120h), and >2Fe(I = 52, 80,104, 132h) as
listed in Table 1. Note that with a fixed initial shape of a ring
of 10 alpha particles, the earlier result of [13] finds only a single
case of 4°Ca(I = 60h) as an isomeric toroidal figure of equilibrium.
However, with the help of Fig. 1(b) and the fine grids in the large
multi-dimensional space of (A, Q29, I), we find a large number of
isomers, demonstrating the general occurrence of toroidal high-
spin states. The A and I values have their correspondences in the
(N, I) shells in Fig. 1(b). The equilibrium configurations at the en-
ergy minima have been tested and found to be self-consistently
free-converging after the removal of the quadrupole moment Qg
constraint.

Table 1 gives the properties of the high-spin toroidal isomers
in 28 < A < 52: their Qyp, hiw, and excitation energy E* val-
ues, obtained with the Skyrme SkM* interaction. The excitation
energy is of order 140-290 MeV. The toroidal density can be
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Fig. 3. (Color online.) The excitation energy of high-spin toroidal states (E*) of 285,
32, 36, 40Ca, #4Ti, and “8Cr as a function of Qg for different angular momentum
along the symmetry axis, I = I,. The density distributions and locations of isomeric
toroidal energy minima are indicated by the star symbols.

Table 1
Properties of high-spin toroidal isomers at their local energy minima in 28 <
A < 52.

I/h Q20 hw E* R d R/d Pmax

(b) (MeV) (MeV)  (fm) (fm) (fm—3)

28 44 -586 2.8 143.18 433 145 299 0119
32g 48 -822 1.9 153.87 4.87 142 343 0122
66 —1051 2.2 19335 557 140 398 0108

36Ar 56 —1131 1.7 168.03 544 1.40 3.88 0125
72 -1373 185 198.63 6.04 139 434 0113

92 -1678 2.0 23856 673 137 491 0103
40ca 60 —1496 15 17836 597 140 426 0126
82 —1761 19 21423 651 139 468 0117

44Ti 68 —1957 1.2 195.46 655 139 471 0128
88  —2227 14 22309 7.01 138 508 0120

112 —2576 16 26024 7.56 137 552 0113
48cr 72 —2508 1.2 207.12 712 138 516 0128
98  —2800 1.4 23926 754 137 550 0122

120 —3055 1.43 27102 790 136 581 0118
52Fe 52  —2924 08 20286 739 138 535 0134
80  —3143 0.95 22754 7.68 138 556 0130

104 —3354 13 25265 7.94 137 579 0126
132 —-3562 15 28891 820 136 6.03 0123

parametrized as a Gaussian function, p(r,z) = pPmaxexp{—[( —
R)? + 721/(d?/In2)}, where R, d, and pmax for isomeric states are
listed. While the major radius R and R/d increase with increas-
ing A, the minor radius d remains to be approximately the same.
We plot in Fig. 4 the density distributions of the toroidal config-
urations of 49Ca with I = 60h as a cut in the radial x-direction for
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Fig. 5. (Color online.) (a) The total energy difference E®!(I) — E*(0) as a function
of I(I + 1) for toroidal 4°Ca at different Q9. The inverses of the slopes of differ-
ent lines give the effective moments of inertia Jef. (b) The effective moments of
inertia Jefr and the rigid body moments of inertia Jygig as a function of Qa9 for
toroidal “°Ca.

different Q9. One notes that the average density for 4°Ca(I = 60h)
at the toroidal energy minimum of Q39 = —15 b (thick solid curve)
is only 0.64 of the average nuclear density for a spherical 4°Ca
(dash-dot curve).

To gain new insights into the nature of the non-collective ro-
tational motion, we determine an effective moment of inertia Sefr
for toroidal “°Ca from the total energy of the system as a func-
tion of I as E™(I) = E®Y(0) 4+ I(I + 1)/23.f. Using the results in
Fig. 3, we find in Fig. 5(a) that such a linear dependence between
E®™Y(I) — E®™%(0) and I(I 4+ 1) holds for different Q5. An effective

moment of inertia Jef can be extracted as a function of Q2g. On
the other hand, for different Qp, one can calculate the rigid-body
moment of inertia Syigia = Mn272R (A2 /In2) pmax[R? +3/(2In2)d?]
from the density distributions in Fig. 4. The comparison of Sefr
and Jygid in Fig. 5(b) indicates the approximate equality of e
and Syigig. This is in agreement with the result of Bohr and Mot-
telson who showed that the moment of inertia associated with the
alignment of single-particle orbits along an axis of symmetry is
equal to the rigid-body moment of inertia [22] and justifies the
use of Sygig in the earlier liquid-drop model of a rotating toroidal
nucleus in [7].

It is clear from Fig. 1(b) that large shell effects are expected
for some odd N and Z at various I values, and for combining dif-
ferent (N, Iy) with (Z,I;) at the same hiw. Hence light toroidal
nuclei with odd-N, odd-Z, and N # Z may be possible. The large
shell gaps for (N, I) = (58, 58h), (64,32h), and (64, 96h) call for
future exploration of high-spin toroidal isomers in the mass region
of A~ 120.

In conclusion, under the considerations of the aligned single-
particle angular momentum and the bulk behavior, the constrained
self-consistent Skyrme-Hartree-Fock model calculations reveal
that high-spin toroidal isomers may have general occurrences in
the mass region of 28 < A < 52. Experimental search for these nu-
clei may allow the extraction of the bulk properties of this new
type of nuclear fluid and its possible utilization as a source of en-

ergy.
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