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Einstein, Infeld, and Hoffmann (EIH) claimed that the field equations of general rela-
tivity theory alone imply the equations of motion of neutral matter particles, viewed
as point singularities in space-like slices of spacetime; they also claimed that they had
generalized their results to charged point singularities. While their analysis falls apart
upon closer scrutiny, the key idea merits our attention. This rapport identifies necessary
conditions for a well-defined general-relativistic joint initial value problem of N classi-
cal point charges and their electromagnetic and gravitational fields. Among them, in
particular, is the requirement that the electromagnetic vacuum law guarantees a finite
field energy-momentum of a point charge. This disqualifies the Maxwell(—Lorentz) law
used by EIH. On the positive side, if the electromagnetic vacuum law of Bopp, Landé—
Thomas, and Podolsky (BLTP) is used, and the singularities equipped with a non-zero
bare rest mass, then a joint initial value problem can be formulated in the spirit of the
EIH proposal, and shown to be locally well-posed — in the special-relativistic zero-G
limgt. With gravitational coupling (i.e. G > 0), though, changing Maxwell’s into the
BLTP law and assigning a bare rest mass to the singularities is by itself not sufficient to
obtain even a merely well-defined joint initial value problem: the gravitational coupling
also needs to be changed, conceivably in the manner of Jordan and Brans—Dicke.

1. Brief History and State of Affairs

“I am plaguing myself with the derivation of the equations of motion of material points,
conceived of as singularities [in the gravitational field], from the equations of general

relativity.” Albert Einstein, in a letter to Max Born on Dec. 4, 1926.

We don’t know when Einstein first conceived of the notion of point particles as
singularities in relativistic fields,* but his letter to Max Born makes it plain that by
the end of 1926 his ideas had matured to the point where he pursued a dynamical
theory for such point singularities, expecting that their law of motion could be
extracted from his gravitational field equations. Already a month later Einstein
& Grommer announced that “the law of motion is completely determined by the
field equations, though shown in this work only for the case of equilibrium.” In that
paper” the case of a static, spherically symmetric spacetime with a single time-like
singularity was studied. The truly dynamical many-body problem was treated a
decade later by Einstein, Infeld, and Hoffmann in their famous paper Ref. 8,
with follow-ups in Refs. 9, 10. They argued explicitly that the field equations of
general relativity theory alone determine the equations of motion of neutral matter

2In 1909 he remarked that “light quanta” might be point singularities in “a field,” their motion
being guided by the electromagnetic field. See part II of our rapport.
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particles, viewed as point singularities in space-like slices of spacetime. They also
claimed that they had generalized their results to charged point-singularities, with
the details written up in a set of notes deposited with the secretary of the IAS. In
1941 the motion of charged point-singularities was revisited by Infeld’s student P.
R. Wallace, who presented the details of the calculations in Ref. 28.

Here is the gist of the Einstein-Infeld-Hoffmann argument (modern termi-

nology):

e Suppose you have a four-dimensional, time-oriented, asymptotically flat
electromagnetic Lorentz spacetime M3 with N charged, time-like singu-
larities of infinite extent, presentable as a graph over R*3 \ {N time-like
world-lines}.

e Away from the singularities the spacetime structure obeys Einstein’s equa-
tions

R— 1Rg=%CT[F,g|, (1)

C

where T[F, g] is the energy-momentum-stress tensor of the electromagnetic
vacuum field F, satisfying Maxwell’s field equations in vacuum,

dF=0 &  dxF=0. (2)

e The twice contracted second Bianchi identity implies energy-momentum
conservation:

V-(R-3Rg) =0 — V-T[F,g]=0. (3)

e “Massive, charged” singularities are associated with field “fluxes,” and thus

|V-TIF,g] =0 & flux conditions

= law of the time-like singularities.
(4)

The main bullet point is of course the last one. Here are EIH in
their own words (p.66): “It is shown that for two-dimensional [closed]
spatial surfaces containing singularities , certain surface integral conditions are
valid which determine the motion .” [Emphasis ours.]

Unfortunately, despite its publication in the Annals of Mathematics, the 1938
EIH paper is not only not rigorous, it contains questionable technical assumptions
and serious blunders. Some were addressed in Ref. 10, yet their main conclusions
turn out to be false. All the same, the core idea merits a deeper inquiry.

The issue is how to correctly handle singularities. ETH state (p.66): “By means
of a new method of approximation, specially suited to the treatment of quasi-

”

stationary fields, the gravitational field due to moving particles is determined.”
This approximation method assumes that the particles are moving slowly and the
field strengths (as seen in a Lorentz frame of Minkowski space, in which the par-
ticles move slowly) are weak. As a consequence, one has to choose the radii of the
closed surfaces sufficiently large to satisfy the weak-field assumption needed for the
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convergence of the expansion (which was not shown). Yet, on p. 92 one reads: “It
is most convenient to take definite, infinitesimally small spheres whose centers are

7

at the singularities, ...” which clearly violates their weak-field condition. Indeed,

EIH realize that: “... in this case infinities of the types
lim const. /™, n a positive integer, r—0 (5)

can occur in the values of the partial integrals,” but then commit a major blunder
by stating (EIH, p. 92): “Since these must cancel, however, in the final result, we
may merely ignore them throughout the calculation of the surface integrals.”

Alas, the infinities do not cancel!

In the same year P. A. M. Dirac invented negative infinite bare mass renormal-
ization to handle those infinities, in the simpler special-relativistic purely electrody-
namical setting.® For an electron with positive “observable mass” m.,. and charge
—e he obtained the equation of motion (in Misner—Thorne—Wheeler notation)

2
mObde?q _ fext 4 fLAULu’ (6)
where
£ = —£F™(q) - 4rq (7)
is a Lorentz Minkowski-force due to “external sources,”
AUE 2 3
fr =35 (8 + #4ra® §9) G4 8)

is von Laue’s radiation-reaction Minkowski-force of the electron, and
. 2
Mg = lim,. o (mb(r) + 26?%) (9)

defines my(r). [N.B.: mp(r) | —oo as r | 0]. Here, r is the radius of a sphere in the
instantaneous rest-frame of the electron, centered at the electron, which plays the
role of the surfaces containing singularities invoked by EIH.

As is well-known, such mass-renormalization computations have become the
template for the much more elaborate — and quite successful — renormalization
group computations in quantum electrodynamics (and more generally, quantum
field theory). Be that as it may, Dirac himself later in life became very dissatisfied
with this approach, and so are we.

First of all, supposing a point electron has a bare mass, then how could it possibly
depend on the radius r of a sphere over which a theoretical physicist averages the
fields?

Second, the third proper time derivative featuring in the von Laue Minkowski-
force means that (6) is a third-order ODE for the position of the particle as a
function of proper time, requiring vector initial data for position, velocity, and
acceleration. Yet a classical theory of point particle motion should only involve
initial data for position and velocity.
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In 1951 Lev Landau & Eugenii Lifshitz addressed the q problem as follows:

Test particle theory works well for many practical purposes.

In such situations von Laue’s q force term must be a small perturbation
of £,
Compute  perturbatively: take the proper time derivative of the test-

particle law,

3 ex
A~ — s (F(a) - 4ra) - (10)

The right-hand side depends only on q, ¢, 4. Substitute it for %q in (8).

R.h.s.(8) with r.h.s.(10) substituted for (f—:'gq will be called the Landau—Lifshitz
Minkowski-force of radiation-reaction, denoted f*“. Equation (6) with £ re-
placed by £ is known as the Landau—Lifshitz equation of motion for the electron.
It seems to work quite well for practical purposes in which F** can be approximated
by some smooth field tensor, on time scales beyond the one where test particle the-

4 as soon as F™' is taken

ory works well, but not arbitrarily far beyond. 2> However
to be the field generated by all other particles the Landau—Lifschitz equation of
motion is typically well-posed only until the moment that a point charge meets the
forward initial light cone of another point charge, a ludicrously short time span!
Dirac’s idea of infinite negative bare mass renormalization and Landau—
Lifshitz’s perturbative treatment of the von Laue radiation-reaction Minkowski-
force have become standard ingredients also in general-relativistic treatments of
charged point particle motion. Thus, for a point electron moving in a given curved
background, Eric Poisson, Adam Pound, & Ian Vega in their review Ref. 23

present the following equations of motion:

mObS%u — fext + fL—\LL‘ 4 ftail, (11)
where u := f—Tq and d%u = (;1—Tu + T (u,u), and £ = —<F*'(q) - u as before,
but now

fr = 2% (g + Luu) - (%R“Xt Au4 C%%u) (12)
with
2 ext
dmu~ — e 2 (F™(a) - u), (13)
and
£ —2¢ [ H" (o)) - u(r)dr - ulo), (14)

where H™*(q(7),q(7")) is a retarded type of Green function for the electromagnetic
field tensor in curved spacetime. Equation (11) does not yet include gravitational
radiation-reaction, which Poisson, Pound, & Vega discuss also, in particular the
approaches of Quinn & Wald and Detweiler & Whiting (see Ref. 23), but we
don’t need to go there because (11) already displays a major problem due to the
so-called tail force term:
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Equation (11), even with r.h.s.(13) substituted for %u at r.h.s.(12), does not pose
a second-order initial value problem for the position of the point electron but instead
requires the input of the entire past history of the motion!

One can try to extricate oneself from this dilemma by once again having recourse
to a Landau—Lifshitz-type perturbation argument: the tail force, also a radiation-
reaction term, must be small in situations where test particle theory works well. In
this case, backward from the initial instant (say at 7 = 0) one can approximately
replace q(7’) and u(7’) in the integrand by the pertinent expressions computed
from test particle theory, with particle data for position and velocity given, and
then treat this so-modified equation as a second-order integro-differential equation
from the initial instant on forward, with g(7') and u(7’) in the integrand for 7" > 0
no longer test-particle expressions. This set of “effective equations of motion” may
work well in many practical situations.

Yet from a mathematical relativity point of view this state of affairs is very
unsatisfactory, both technically (being non-rigorous) and conceptually (involving
heuristic but arbitrary arguments).

2. Rigorous Approach

In the following we report on recent rigorous advances in formulating a joint ini-
tial value problem for classical charged point particles and the electromagnetic and
gravitational fields they generate, with the key idea of the 1938 EIH paper, as out-
lined on p.1 of this rapport, serving as our point of departure. To avoid the mistakes
made by ETH, we inquire into necessary conditions on the energy-momentum-stress
tensor which allow one to extract a law of motion associated with the time-like sin-
gularities from an equation like (4) without invoking infinite mass renormalization,
nor arbitrary averaging over some neighborhood of an a-priori ill-defined force field,
as done in Ref. 23. For the simpler special-relativistic zero-gravity limit (cf. Ref. 16,
17) we even state a well-posedness theorem, so this case is treated first.

2.1. The zero-G Limit
2.1.1. Time-like particle world-lines in Minkowski spacetime

In the limit G | 0, (1) is solved by M3 = R13\ {N time-like world-lines}, with
metric g = 1 away from the world-lines. The question is which conditions on T
lead, in a mathematically clean way, to the EIH-type conclusion

‘ V-T[F,n] =0 & flux conditions

= law of the time-like world-lines. (1)

To answer this question, we extend M3 continuously to R? (by adding the time-
like world-lines), and switch to a distributional formulation. We can formulate
everything for N charged, massive, time-like world-lines, but for simplicity we set
N =1 in the following.
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Since the issue is the formulation of a well-posed initial value problem, we also
choose an arbitrary Lorentz frame, with space vector s € R? and time t € R.
Then the space part of Lh.s.(1) becomes the local conservation law for the total
momentum,

GII(t,s)+ V- T(t,s) =0, (2)
where it is postulated (equivalent to “minimal coupling”) that
TI(t, 8) := 1" (¢, ) + TI"™*° (¢, s) (3)

is the total momentum vector-density, with II"?'‘(¢, s) the contribution from the
field and II°***°(¢, s) (a distribution) the usual contribution from the point charge,
which must be assigned a non-vanishing bare rest mass my,. Similarly, it is postulated
that

T(t,5) = T™(t,8) + T"*(t, ) (4)

is the symmetric total stress tensor, with T"*#°(¢, s) the usual stress tensor of the
point particle, and T"*"(¢, s) that of the field (except for our unconventional choice
of sign!)

Incidentally, energy conservation follows as a corollary from momentum conser-
vation.

Next, we integrate (2) over all s € R3, at ¢t € R. This yields total momentum
conservation

dp(t)= -4 . I (t, s)d>s. (5)

Clearly, for (5) to make sense, the field momentum vector-density II"*'(¢, s) has to
be integrable over R?, and this integral differentiable in time. This rules out the
Maxwell-Lorentz field equations, but leaves other options, notably the Maxwen—
Born_Infeld (MBI) and Maxwell_Bopp_Landé_Thomas_Podolsky (MBLTP) ﬁeld equa-
tions (see below).

Comparing equation (5) with Newton’s law for the rate of change of momentum,

§p(t) = f(t), (6)
where f(t) is the force acting on the particle at time ¢, it is clear that the force
f(t) needs to be extracted from r.h.s.(5). Since the particle’s bare momentum p(t)
is given in terms of its bare mass my, and velocity v(t) = 4-q(t) by the Einstein-
Lorentz-Poincaré law

p(t) := mp——on—, (7)

the expression for the force also has to be compatible with the requirements of a
second-order initial value problem for the position of the point particle! Thus, beside
the existence of the time-derivative of the space integral over the field momentum
vector-density, it is important that the result involves, initially, only the initial
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electromagnetic fields and the initial data for position and velocity of the point
particle and, at later times ¢ > 0, at most the history of position, velocity, and
acceleration of the particle, and of the fields, from the initial instant on, yet not
beyond t. Whenever this is possible we obtain a well-defined joint initial value
problem for field and particle, which may or may not be well-posed.

We were able to explicitly extract a well-defined force on the point charge from
the MBLTP field equations, and to prove that the resulting joint initial value
problem for charge and field is well-posed. We expect this to be feasible also for
the MBI field equations, but their formidable nonlinearity makes rigorous progress
a slow process.

Common to all these classical systems of electromagnetic field equations are the
pre-metric Mazxwell-Lorentz field equations, viz. the evolution equations

0,B(t,s) = —cV x E(t, s) (8)
0, D(t,5) = +cV x H(t, s) 4 4meq(t)0q(s (s) (9)
and the constraint equations
V- -B(t,s) =0 (10)
V -D(t,s) = —4medq)(s) (11)

for the B, D fields. They differ in the Electromagnetic Vacuum Law: (B,D)
(H,E). The Born-Infeld law? reads

B - %D x (D x B)

H-= (12)

1+ &(BP + D) + A[B x Df?
D-1Bx(BxD

E = b2 ( ) (13)

1+ &(BP + D) + A[B x Df?
The Bopp—Landé-Thomas—Podolsky law 192922 reads

H(t,s) = (1 + %’ZD) B(t, s) (14)
D(t,s) = (1 + %72D) E(t,s). (15)

(N.B.: O := ¢29? — A.) When b — oo, respectively when s — oo, both these
vacuum laws reduce to the Maxwell-Lorentz law H=B & E =D.

For given particle motions with subluminal velocity |¢(¢)| < ¢, the field Cauchy
problems are globally well-posed in the sense of distributions for both the ML and
MBLTP field equations. The MBI field Cauchy problem, unfortunately, has not
yet been conquered to the extent needed. Global well-posedness of the classical
initial value problem has only been shown with small data (no charges!) in Ref. 24;
F. Pasqualotto presented an extension of Speck’s result to MBI field evolutions
on the Schwarzschild background.?! A local well-posedness result for MBI field
evolutions with subluminal point sources (and inevitably large data) should be
possible, but so far only the special case of electrostatic solutions with N point
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charge sources has been conquered in Ref. 15. There it was shown that a unique
finite-energy electrostatic weak solution of the MBI field equations with N point
charges placed anywhere in R? exists, and that the solution is real analytic away
from the point charges for any choices of their signs and magnitudes.

For the field momentum densities IT (dropping the superscript “field”) one has
the following expressions. For the ML and for MBI field equations,

4dmcll = D x B, (16)
whereas for the MBLTP field equations,
4rcll=DxB+ExH-ExB-x2(V-E)(VxB-xE). (17

For MBLTP field evolutions with point sources we showed that II(¢,s) is in
L;,.(R3) about each q(t), see Ref. 17. We expect such a result also for MBI
fields. It is surely false for ML fields!

With appropriate decay rates at spatial infinity imposed on the field initial
data, the MBLTP field momentum j]'Rg I1(t, s)d?s exists for all ¢. Moreover, given
Lipschitz maps t — q(t), t — v(t) and bounded t — a(t), we showed that
& Jos T(t, 8)d%s exists for all ¢.

The crucial step in showing that (5), with (7), yields an equation of motion is
now the following. The fields B,D,E,E (and H) at (t,s) are given by explicit
functionals of the vector functions ¢(-) and v(-), and D & H also involve a(-);
their dependence on a(-) is linear. For ¢ < 0 we set q(t) = ¢(0) + v(0)t and
v(t) = v(0), and a(t) = 0. Treating g(-) and v(-) as given, and a(-) as independent
vector function variable for ¢ > 0, (5) together with (7) is equivalent to a Volterra
integral equation for a = alq, p], viz.

a=Wip|- (£la.v] + £ [q,v:a]) (18)
where
1
v:—%; my # 0 (19)
mb /1+ |T;‘ 5
mbc
and
¢ pPYPp
Wip] :=sgn(my,) —————= |I3y3— 55 13| > 20
[p] gn(my,) 2 1 PP [ 3T 2 4 |pf? (20)

and where we have written the field as a sum of a source-free (vacuum) field and
a field having the point charge as source, resulting in a Lorentz force due to that
vacuum field,

£l vl() = —e [B(t,q() + Lo(t) x B™(t,q(1))] , 2D
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and a “self”-type force f q,v;al, in BLTP electrodynamics® given by

source [

d

fsourcc [q,v; a] (t) — _E TIscuree (t, S)d38 (22)
]RS
d
_ 7& (:l—_[source(t7 S) . Hsource(O, 5—qp— ’Uot)) d35 (23)
Bct(qo)
=& { — 2t t) + 22 (8 1) (24)
t
SR /0 (28 (6 7) — 2 (1) (e — ) Rar (25)
t
_ k T k r r\2— T
2 ’“/ {%Zé](t,t )~ %z (1.t )}(tft )2 kdt} (26)
0<k<2 0

where £€(t) = (g, v,a)(t), and £°(t) = (q, + vot, vo, 0), and where

2wy = [ (- tew

with n = (sind¥cos¢ , sin¥sing , cos¥), and where, with the kernels

cos¥) Tl'[Ek] (t,q(t") + c(t — t")n) sin¥dddep, (27)

T1(se/R 1)~ [s—q(t)]?)
Ve2t—t)2—[s—q)|>

Ke(t',t,8) == (28)

Ke(t' 1, ) i= ZWEOCT T aOF) (o gy _u(ye— 1), (20)

PP [s—a()P

we have
1 [ 1 1
71'[50] (t,s) = — %41 (n(q,s)(1 Cz’)x(n(%)sz) X c'v)‘| 0)
_Ev'n(%S) ret
4l [ n(gs) 1o e (o) / / /
R _Tn(;s)}m X/ v(t') xKe(t',t, s)dt (31)
17 1 e (¢,9)
- %45 _%Let X/ cKe(t',t,s)dt’ (32)

e (t,8) e (t,8)
7%4/ ch(t’,t,s)dt’x/ v(t")xKe(t',t,8)dt’  (33)

— 00 — 00

g (t,8) e (t,8)
7%4c/ Kg(t’,t,s)dt’/ Ke(t',t, s)v(t')dt, (34)

bNone of the four original contributors formulated a well-defined expression for the force, yet we
believe that our formulation accomplishes what they had intended; hence the name of the theory.
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1] _ 21 (n(q,s)f%v)Xa
me (t,8) =— 5 ln(q,s) X—c2(17%v~n(q,s))3 (35)
t
[ n S 71'() a tret(t S)
_ 2 | n(q,s) x @S Ziv)xa | / w(t) X Ke(t', 1, 8)d’ (36)
| c2(17%v-n(q,s)) Lot oo
r . tr(_t(t s)
+ 5% |n(q, s)x n(q,s)x%ﬂ x/ cKe(t', t,s)dt”  (37)
c2(1-tv-n(q,s o
ret
- 2 (¢,8)
[t [ Kelto) U o) Ho]ar, (39)

2 n(a.s) 57 (t,8)
[ S ]n ‘173 X / Ke(t' t,s)dt’  (40)
t

(1-tvm@s) | S

1 2 n(gq,s) —tv et Y ’ ’
—s | L= & } ey d IR o(t') X Ke (t', £, 8)dt, (41)
t

(1-2v-n(q.9)) oo
re

and ’m means that q(f), v(t), a(t) are evaluated at ¢ = et (L, 8).

Remark 2.1. The decomposition of the electromagnetic fields into a sum of two
types of fields, one with the point charge as source, the other source-free, is to some
extent arbitrary. For this reason it is futile to try to identify the self-field force of

a point charge. At best one can speak of a “self”-field force, the scare quotes
referring to the ambiguity in identifying how much of the field is “self”-generated
by the charge and how much is not.

The following key proposition about the Volterra equation is proved in Ref. 17.
Its proof takes several dozen pages of careful estimates.

Proposition 2.2. Given C%' maps t — q(t) and t — p(t), with Lip(q) = v,
Lip(v) = a big enough, and |v(t)| < v < ¢, the Volterra equation (18) as a fized point
map has a unique C° solution t — a(t) = alq(-),p(-)](t) for t = 0. Moreover,
the solution depends Lipschitz continuously on the maps t — q(t) and t — p(t)
(treated as independent).

The well-posedness result of the joint initial value problem for MBLTP fields
and their point charge sources is a corollary of Proposition 2.2. Namely, now setting
a(t) := So(t) and v(t) := $q(t), and recalling (7), the solution to the Volterra
integral equation for the acceleration poses a Newton-type second-order initial
value problem for the position of the point charge with a complicated yet Lipschitz-

continuous force. Once the motion is computed, inserting the vector functions q(-),
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v(+), and a(-) of the solution into the functionals of the fields yields B, D, E, E at
(t,8) for t > 0, too. This is a Theorem in Ref. 17, summarized informally as follows.

Theorem 2.3. As a consequence of Proposition 2.2, the joint initial value problem
for MBLTP fields and their point charge source is equivalent to the fixed point
equations

a0+ [P (di= Qua()
a)=a0)+ oo [ = QaOp) @)

p(t) = p(0) — /RS (IL(t, s) — I1(0, 8)) d’s =: Pe(q(-), p(")), (43)

where Q; and P; are Lipschitz maps. Thus, BLTP electrodynamics is locally
well-posed.

In fact, in Ref. 17 the Cauchy problem for the MBLTP field with N point

charges is treated. Local well-posedness is proved for admissible initial data (see
below) & my, # 0, and global well-posedness shown to hold if in finite time: (a) no
particle reaches the speed of light; (b) no particle is infinitely accelerated; (c¢) no
two particles reach the same location.
By “admissible” initial data we mean the following: the initial particle velocities
are subluminal (Jv(0)] < ¢) and no two particles occupy the same location; the
electromagnetic initial fields are the sum of a spatially sufficiently rapidly decaying
vacuum field plus N fields each with a single point charge source — the sourced
fields are boosted electrostatic fields with boost velocity equal to the initial velocity
of the source.

Although our result seems to be the first formulation of a well-posed joint initial

value problem for classical electromagnetic fields and their point charge sources,
and this endows BLTP electrodynamics with a mathematically superior status
compared to the ill-defined Lorentz electrodynamics, we do not claim that BLTP
electrodynamics is the correct classical limit of the illusive mathematically well-
formulated quantum theory of electromagnetism. In particular, the MBLTP field
equations feature “physical” oddities: (a) a field energy functional which is un-
bounded below; (b) subluminal transversal electromagnetic wave modes; (c¢) longi-
tudinal electrical wave modes.
Moreover, since the MBLTP field equations demand initial data for B,D,E, E at
t = 0 while physically we only can prescribe B, D (N.B.: in Lorentz electrody-
namics, D = E; not so in BLTP electrodynamics), one needs to find a prescription
which expresses E, E at ¢ = 0 in terms of B,D at ¢t = 0. In Ref. 17 we show that
a reasonable choice is the map (B, D)o — (E, E)y obtained by mazimizing the field
energy w.r.t. Eg and Eo (treated independently). This can be made co-variant
by stipulating that the maximization is carried out in the Lorentz frame in which
total momentum vanishes initially.

Back to the mathematically superior status of BLTP electrodynamics, one
can now apply rigorous analysis, and controlled numerical techniques, to study
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the theory. For instance, a rigorous comparison of our expression (22) for the “self”-
force with a differently defined “self”-field force which was studied in Ref. 12 was
carried out recently by Hoang & Radosz and their students, see Ref. 5, 13. One of
our next projects is to rigorously extract effective equations of motion with more
user-friendly expressions for the “self”-force. In particular, whether or to which
extent the Landau—Lifshitz equation approximately governs the motion is an in-
teresting question.

2.1.2. Topologically non-trivial flat spacetimes with time-like singularities

The zero-gravity limit of singular spacetimes does not automatically yield
Minkowski spacetime minus a number of world-lines. In Ref. 27 the zero-G limit
of Carter’s maximal analytical extension of the electromagnetic Kerr—-Newmann
spacetime was analyzed. The limiting spacetime is axially symmetric and static.
It is locally isometric to Minkowski spacetime, but is topologically non-trivial,
featuring Zipoy topology. Its constant-time slices are double-sheeted, and have
the topology of R? branched over the un-knot. The spacetime is singular on a
2-dimensional time-like cylinder S! x R, which is the world-tube of a space-like
ring-type singularity. The most intriguing aspect of this solution is that at any in-
stant of time the ring singularity, when viewed from one of the two sheets of space,
appears to be positively charged, and from the other sheet, negatively charged, as
already noticed by Carter. The electromagnetic fields it supports where discovered
in the 19th century by P. Appell as “multi-valued electromagnetic fields,” while
A. Sommerfeld soon realized that they represent single-valued electromagnetic
fields on a topologically non-trivial multi-sheeted space.

A natural next step would be to formulate the corresponding zero-gravity two-
body problem for two space-like ring-type singularities of zGKN-type, evolving in
time jointly with the electromagnetic fields they generate. We know for example
that the space should be four-sheeted (in general, 2V sheets are needed for N ring-
type singularities). However, as the zGKN fields solve the Maxwell-Lorentz vac-
uum field equations away from the singularities, it is not surprising that one again
encounters the infinite field energy-momentum problems which plague Lorentz elec-
trodynamics. Thus one would first need to find either MBI or MBLTP analogues
of the Appell-Sommerfeld fields. The nonlinearity of the MBI field equations
makes this a daunting task, but we are confident that the feat can be accomplished
with the MBLTP field equations. In that case the zero-G EIH-type approach
explained in the previous subsection should allow the formulation of a well-posed
initial value problem for ring-type singularities and their electromagnetic MBLTP
fields. Note that the law of motion would most likely be a system of partial differ-
ential equations, as the ring-type singularity has to be allowed to bend, twist, warp,
stretch, and such.
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2.2. Turning on gravity: G > 0
2.2.1. The neighborhood of Minkowski spacetime

By rigorously establishing well-posedness of BLTP electrodynamics with point
charges as a consequence of postulating the conservation law (2) for the total
momentum vector-density (3), with the expressions for the particles given be the
usual special-relativistic ones and those for the fields determined by the field equa-
tions,Ref. 17 demonstrates that a key idea of the 1938 EIH paper is viable in the
zero-G limit when applied with a suitable set of electromagnetic field equations,
and with non-zero bare rest mass assigned to the point charges. We now address
the question whether this result extends continuously to a G > 0 neighborhood of
special relativity, free of black holes. By a result of Geroch—Traschen'! a no-
Black-Holes spacetime with a one-dimensional time-like singularity cannot exist if
the singularity has positive bare mass, different from the special-relativistic case,
where the bare mass merely had to be non-zero.

One of the main ingredients of the EIH argument is of course, that the con-
servation law of energy-momentum is implied by the twice contracted 2"¢ Bianchi
identity in concert with Einstein’s general-relativistic field equations. However, for
the spacetimes with time-like singularities envisaged by EIH (and Weyl) this is
not automatically true. An important step, therefore, is to determine the Lorentz
spacetimes with time-like singularities on which the twice contracted 2"¢ Bianchi
identity holds in a weak form.

Together with A. Y. Burtscher we have begun a systematic study of the favor-
able conditions. In Ref. 3 we study the simplest non-trivial case: static spherically
symmetric spacetimes with a single time-like singularity. We obtain some necessary
and, for certain electromagnetic vacuum laws, also sufficient conditions that the
twice contracted 2"? Bianchi identity holds in a weak form. Interestingly, in the
naked singularity regime (no Black Hole!), the answer is negative for the electro-
magnetic Reissner—-Weyl-Nordstrom spacetime, but positive for the Hoffmann
spacetime® in which electromagnetic MBI fields are coupled with Einstein’s grav-
ity; see Ref. 26 for a rigorous discussion. Our goal is to generalize our study, one
step at a time, to dynamical spacetimes without symmetry.

The crucial question, then, is whether the weak twice contracted 2"¢ Bianchi
identity implies the law of the electromagnetic spacetime’s time-like singularities
with bare energy-momentum assigned to them. Interestingly, it seems that merely
changing Maxwell’s into the BLTP or MBI vacuum law is by itself not sufficient
to allow the formulation of a well-defined joint initial value problem for the mas-
sive point charges and the electromagnetic and gravitational fields they generate:
the gravitational coupling also needs to be changed, for instance in the manner of

°It is curious that although Hoffmann* had worked out his spacetime solution by 1935, the fact
that his spacetime with non-positive bare mass is less singular than the RWN spacetime did not
in 1938 compell EIH to use the MBI instead of Maxwell-Lorentz field theory.
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Jordan, Brans—Dicke, or f(R) gravity, to obtain a well-defined joint Cauchy
problem. Put differently, the gravitational coupling of spacetime structure with
bare matter and the electromagnetic fields needs to be “mediated” by a certain
type of scalar field which moderates the strength of the spacetime singularities
enough so that the strategy explained in the previous subsection can be applied.
This scalar field in the classical theory would play a role vaguely reminiscent of
the role played by the scalar Higgs field in the quantum field-theoretical standard
model of elementary particle physics.

2.2.2. The neighborhood of G KN-type spacetimes

Everything stated in the previous subsection about the neighborhood of the
Minkowski spacetime has an analogue problem for the gravitational neighborhood
of topologically non-trivial flat spacetimes of (generalized) zGKN type.

Acknowledgments

We gratefully acknowledge interesting discussions with: E. Amorim, A. Burtscher,
H. Carley, D. Deckert, V. Hartenstein, V. Hoang, M. Kunze, V. Perlick, M. Radosz,
J. Speck, H. Spohn. We thank the organizers, R. Ruffini and R. Jantzen, for inviting
us to MG15.

References
1. Bopp, F., Fine lineare Theorie des Elektrons, Annalen Phys. 430, 345-384
(1940).

2. Born, M., and Infeld, L., Foundation of the new field theory, Proc. Roy. Soc.
London A 144, 425-451 (1934).

3. Burtscher, A., Kiessling, M.K.-H., and Tahvildar-Zadeh, A.S., Weak second
Bianchi identity for spacetimes with time-like singularities, arXiv:1901.00813
(2019).

4. Deckert, D.-A., and Hartenstein, V., On the initial value formulation of classical
electrodynamics, J. Phys. A: Math. Theor. 49, 445202 (19pp.) (2016).

5. DeLeon, A., Baza, A., Harb, A., Hoang, V. and Radosz, M., On the Self-force
for Particles Coupled to Higher-order Electrodynamics and Scalar Fields, these
proceed.

6. Dirac, P. A. M., Classical theory of radiating electrons, Proc. Roy. Soc. A 167,
148-169 (1938).

7. Einstein, A., and Grommer, J., General Relativity and the Law of Motion,
Sitzungsber. Preuss. Akad., Jan. 6, pp.2-13 (1927).

8. Einstein, A., Infeld, L., and Hoffmann, B., The gravitational equations and the
problem of motion, Annals Math. 39, 65-100 (1938).

9. Einstein, A., and Infeld, L., The gravitational equations and the problem of
motion, II, Annals Math. 41, 455-464 (1940).



The Fifteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by 2a02:8108:50bf:e6b8:e07h:caba:68bd:296 on 01/12/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

525

Einstein, A., and Infeld, L., On the motion of particles in general relativity
theory, Canad. J. Phys. 1, 209-241 (1949).

Geroch, R., and Traschen, J., Strings and other distributional sources in general
relativity, Phys. Rev. D, 36, 1017ff (1987).

Gratus, J., Perlick, V., and Tucker, R.W., On the self-force in Bopp—Podolsky
electrodynamics, J. Phys. A: Math. Theor. 48, 435401 (28pp.) (2015).

Hoang, V., and Radosz, M., On the self-force in higher-order electrodynamics,
U. Texas San Antonio Preprint, 41pp., arXiv:1902.06386 (2019).

Hoffmann, B., Gravitational and electromagnetic mass in the Born—Infeld elec-
trodynamics, Phys. Rev. 47, 877-880 (1935).

Kiessling, M.K.-H., On the quasi-linear elliptic PDE =V - (Vu/\/1 — |Vul|?) =
47y, ards, in physics and geometry, Commun. Math. Phys. 314, 509-523
(2013); Correction: Commun. Math. Phys. 364, 825-833 (2018).

Kiessling, M.K.-H., On the force which acts on a point charge source of the
classical electromagnetic field, (in preparation; 2019).

Kiessling, M.K.-H., and Tahvildar-Zadeh, A. S., BLTP electrodynamics as ini-
tial value problem (in preparation; 2019).

Landau, L. D., and Lifshitz, E., The Classical Theory of Fields, Pergamon Press
(First English edition) (1951).

Landé, A., Finite Self-Energies in Radiation Theory. Part I, Phys. Rev. 60,
121-126 (1941).

Landé, A., and Thomas, L.H., Finite Self-Energies in Radiation Theory. Part
II, Phys. Rev. 60, 514-523 (1941).

Pasqualotto, F., Nonlinear stability for the Mazwell-Born—Infeld system on a
Schwarzschild background, arXiv:1706.07764, 101pp. (2017).

Podolsky, B., A generalized electrodynamics. Part I: Non-quantum, Phys. Rev.
62, 68-71 (1942).

Poisson, E., Pound, A., and Vega, 1., The motion of point particles in curved
spacetime, Living Rev. Rel. 14,7(190) (2011).

Speck, J. R., The nonlinear stability of the trivial solution to the Mazxwell-Born-
Infeld system, J. Math. Phys. 53, 083703 (2012)

Spohn, H., Dynamics of charged particles and their radiation fields, Cambridge
UP (2004).

Tahvildar-Zadeh, A. S., On the Static Spacetime of a single Point Charge, Rev.
Mod Phys. 23, 309-346 (2011).

Tahvildar-Zadeh, A. S., On a zero-gravity limit of Kerr—Newman spacetimes
and their electromagnetic fields, Journal of Mathematical Physics. 56 042501
(2015).

Wallace, P. R., Relativistic equations of motion in electromagnetic theory, Am.
J. Math. 63, 729-749 (1941).





