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Einstein, Infeld, and Hoffmann (EIH) claimed that the field equations of general rela-
tivity theory alone imply the equations of motion of neutral matter particles, viewed
as point singularities in space-like slices of spacetime; they also claimed that they had
generalized their results to charged point singularities. While their analysis falls apart
upon closer scrutiny, the key idea merits our attention. This rapport identifies necessary

conditions for a well-defined general-relativistic joint initial value problem of N classi-
cal point charges and their electromagnetic and gravitational fields. Among them, in
particular, is the requirement that the electromagnetic vacuum law guarantees a finite
field energy-momentum of a point charge. This disqualifies the Maxwell(–Lorentz) law
used by EIH. On the positive side, if the electromagnetic vacuum law of Bopp, Landé–
Thomas, and Podolsky (BLTP) is used, and the singularities equipped with a non-zero
bare rest mass, then a joint initial value problem can be formulated in the spirit of the
EIH proposal, and shown to be locally well-posed — in the special-relativistic zero-G
limit. With gravitational coupling (i.e. G > 0), though, changing Maxwell’s into the
BLTP law and assigning a bare rest mass to the singularities is by itself not sufficient to
obtain even a merely well-defined joint initial value problem: the gravitational coupling
also needs to be changed, conceivably in the manner of Jordan and Brans–Dicke.

1. Brief History and State of Affairs

“I am plaguing myself with the derivation of the equations of motion of material points,

conceived of as singularities [in the gravitational field], from the equations of general

relativity.” Albert Einstein, in a letter to Max Born on Dec. 4, 1926.

We don’t know when Einstein first conceived of the notion of point particles as

singularities in relativistic fields,a but his letter to Max Born makes it plain that by

the end of 1926 his ideas had matured to the point where he pursued a dynamical

theory for such point singularities, expecting that their law of motion could be

extracted from his gravitational field equations. Already a month later Einstein

& Grommer announced that “the law of motion is completely determined by the

field equations, though shown in this work only for the case of equilibrium.” In that

paper7 the case of a static, spherically symmetric spacetime with a single time-like

singularity was studied. The truly dynamical many-body problem was treated a

decade later by Einstein, Infeld, and Hoffmann in their famous paper Ref. 8,

with follow-ups in Refs. 9, 10. They argued explicitly that the field equations of

general relativity theory alone determine the equations of motion of neutral matter

aIn 1909 he remarked that “light quanta” might be point singularities in “a field,” their motion
being guided by the electromagnetic field. See part II of our rapport.
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particles, viewed as point singularities in space-like slices of spacetime. They also

claimed that they had generalized their results to charged point-singularities, with

the details written up in a set of notes deposited with the secretary of the IAS. In

1941 the motion of charged point-singularities was revisited by Infeld’s student P.

R. Wallace, who presented the details of the calculations in Ref. 28.

Here is the gist of the Einstein-Infeld-Hoffmann argument (modern termi-

nology):

• Suppose you have a four-dimensional, time-oriented, asymptotically flat

electromagnetic Lorentz spacetimeM1,3 with N charged, time-like singu-

larities of infinite extent, presentable as a graph over R
1,3 \ {N time-like

world-lines}.
• Away from the singularities the spacetime structure obeys Einstein’s equa-

tions

R− 1
2Rg = 8πG

c4 T[F, g], (1)

where T[F, g] is the energy-momentum-stress tensor of the electromagnetic

vacuum field F, satisfying Maxwell’s field equations in vacuum,

dF = 0 & d∗F = 0. (2)

• The twice contracted second Bianchi identity implies energy-momentum

conservation:

∇· (R− 1
2Rg

)
= 0 =⇒ ∇·T[F, g] = 0. (3)

• “Massive, charged” singularities are associated with field “fluxes,” and thus

∇·T[F, g] = 0 & flux conditions =⇒ law of the time-like singularities.

(4)

The main bullet point is of course the last one. Here are EIH in

their own words (p.66): “It is shown that for two-dimensional [closed]

spatial surfaces containing singularities , certain surface integral conditions are

valid which determine the motion .” [Emphasis ours.]

Unfortunately, despite its publication in the Annals of Mathematics, the 1938

EIH paper is not only not rigorous, it contains questionable technical assumptions

and serious blunders. Some were addressed in Ref. 10, yet their main conclusions

turn out to be false. All the same, the core idea merits a deeper inquiry.

The issue is how to correctly handle singularities. EIH state (p.66): “By means

of a new method of approximation, specially suited to the treatment of quasi-

stationary fields, the gravitational field due to moving particles is determined.”

This approximation method assumes that the particles are moving slowly and the

field strengths (as seen in a Lorentz frame of Minkowski space, in which the par-

ticles move slowly) are weak. As a consequence, one has to choose the radii of the

closed surfaces sufficiently large to satisfy the weak-field assumption needed for the
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convergence of the expansion (which was not shown). Yet, on p. 92 one reads: “It

is most convenient to take definite, infinitesimally small spheres whose centers are

at the singularities, ...” which clearly violates their weak-field condition. Indeed,

EIH realize that: “... in this case infinities of the types

lim const./rn, n a positive integer, r → 0 (5)

can occur in the values of the partial integrals,” but then commit a major blunder

by stating (EIH, p. 92): “Since these must cancel, however, in the final result, we

may merely ignore them throughout the calculation of the surface integrals.”

Alas, the infinities do not cancel!

In the same year P. A. M. Dirac invented negative infinite bare mass renormal-

ization to handle those infinities, in the simpler special-relativistic purely electrody-

namical setting.6 For an electron with positive “observable mass” mobs and charge

−e he obtained the equation of motion (in Misner–Thorne–Wheeler notation)

mobs
d2

dτ2q = f ext + f Laue, (6)

where

f ext = − ecFext(q) · d
dτ q (7)

is a Lorentz Minkowski-force due to “external sources,”

f Laue = 2e2

3c3

(
g + 1

c2
d
dτ q⊗ d

dτ q
) · d3

dτ3q (8)

is von Laue’s radiation-reaction Minkowski-force of the electron, and

mobs = limr↓0
(
mb(r) + e2

2c2
1
r

)
(9)

defines mb(r). [N.B.: mb(r) ↓ −∞ as r ↓ 0]. Here, r is the radius of a sphere in the

instantaneous rest-frame of the electron, centered at the electron, which plays the

role of the surfaces containing singularities invoked by EIH.

As is well-known, such mass-renormalization computations have become the

template for the much more elaborate — and quite successful — renormalization

group computations in quantum electrodynamics (and more generally, quantum

field theory). Be that as it may, Dirac himself later in life became very dissatisfied

with this approach, and so are we.

First of all, supposing a point electron has a bare mass, then how could it possibly

depend on the radius r of a sphere over which a theoretical physicist averages the

fields?

Second, the third proper time derivative featuring in the von Laue Minkowski-

force means that (6) is a third-order ODE for the position of the particle as a

function of proper time, requiring vector initial data for position, velocity, and

acceleration. Yet a classical theory of point particle motion should only involve

initial data for position and velocity.
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In 1951 Lev Landau & Eugenii Lifshitz addressed the
...
q problem as follows:

• Test particle theory works well for many practical purposes.

• In such situations von Laue’s
...
q force term must be a small perturbation

of f ext.

• Compute
...
q perturbatively: take the proper time derivative of the test-

particle law,

d3

dτ3q ≈ − e
mobsc

d
dτ

(
Fext(q) · d

dτ q
)
. (10)

• The right-hand side depends only on q, q̇, q̈. Substitute it for d3

dτ3q in (8).

R.h.s.(8) with r.h.s.(10) substituted for d3

dτ3q will be called the Landau–Lifshitz

Minkowski-force of radiation-reaction, denoted fLL. Equation (6) with f Laue re-

placed by f LL is known as the Landau–Lifshitz equation of motion for the electron.

It seems to work quite well for practical purposes in which Fext can be approximated

by some smooth field tensor, on time scales beyond the one where test particle the-

ory works well, but not arbitrarily far beyond.25 However4, as soon as Fext is taken

to be the field generated by all other particles the Landau–Lifschitz equation of

motion is typically well-posed only until the moment that a point charge meets the

forward initial light cone of another point charge, a ludicrously short time span!

Dirac’s idea of infinite negative bare mass renormalization and Landau–

Lifshitz’s perturbative treatment of the von Laue radiation-reaction Minkowski-

force have become standard ingredients also in general-relativistic treatments of

charged point particle motion. Thus, for a point electron moving in a given curved

background, Eric Poisson, Adam Pound, & Ian Vega in their review Ref. 23

present the following equations of motion:

mobs
D
dτ u = f ext + f Laue + f tail, (11)

where u := d
dτ q and D

dτ u := d
dτ u + Γext (u,u), and f ext = − ecFext(q) · u as before,

but now

f Laue = 2
3e

2
(
g + 1

c2u⊗ u
) · ( 1

6R
ext · 1cu + 1

c3
D2

dτ2u
)

(12)

with

D2

dτ2u ≈ − e
mobsc

D
dτ (Fext(q) · u) , (13)

and

f tail = 2e2
∫ τ

−∞
H ret(q(τ),q(τ ′)) · u(τ ′)dτ ′ · u(τ), (14)

where Hret(q(τ),q(τ ′)) is a retarded type of Green function for the electromagnetic

field tensor in curved spacetime. Equation (11) does not yet include gravitational

radiation-reaction, which Poisson, Pound, & Vega discuss also, in particular the

approaches of Quinn & Wald and Detweiler & Whiting (see Ref. 23), but we

don’t need to go there because (11) already displays a major problem due to the

so-called tail force term:
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Equation (11), even with r.h.s.(13) substituted for D2

dτ2u at r.h.s.(12), does not pose

a second-order initial value problem for the position of the point electron but instead

requires the input of the entire past history of the motion!

One can try to extricate oneself from this dilemma by once again having recourse

to a Landau–Lifshitz-type perturbation argument: the tail force, also a radiation-

reaction term, must be small in situations where test particle theory works well. In

this case, backward from the initial instant (say at τ = 0) one can approximately

replace q(τ ′) and u(τ ′) in the integrand by the pertinent expressions computed

from test particle theory, with particle data for position and velocity given, and

then treat this so-modified equation as a second-order integro-differential equation

from the initial instant on forward, with q(τ ′) and u(τ ′) in the integrand for τ ′ > 0

no longer test-particle expressions. This set of “effective equations of motion” may

work well in many practical situations.

Yet from a mathematical relativity point of view this state of affairs is very

unsatisfactory, both technically (being non-rigorous) and conceptually (involving

heuristic but arbitrary arguments).

2. Rigorous Approach

In the following we report on recent rigorous advances in formulating a joint ini-

tial value problem for classical charged point particles and the electromagnetic and

gravitational fields they generate, with the key idea of the 1938 EIH paper, as out-

lined on p.1 of this rapport, serving as our point of departure. To avoid the mistakes

made by EIH, we inquire into necessary conditions on the energy-momentum-stress

tensor which allow one to extract a law of motion associated with the time-like sin-

gularities from an equation like (4) without invoking infinite mass renormalization,

nor arbitrary averaging over some neighborhood of an a-priori ill-defined force field,

as done in Ref. 23. For the simpler special-relativistic zero-gravity limit (cf. Ref. 16,

17) we even state a well-posedness theorem, so this case is treated first.

2.1. The zero-G Limit

2.1.1. Time-like particle world-lines in Minkowski spacetime

In the limit G ↓ 0, (1) is solved by M1,3 = R
1,3 \ {N time-like world-lines}, with

metric g = η away from the world-lines. The question is which conditions on T

lead, in a mathematically clean way, to the EIH-type conclusion

∇·T[F,η] = 0 & flux conditions =⇒ law of the time-like world-lines. (1)

To answer this question, we extendM1,3 continuously to R
1,3 (by adding the time-

like world-lines), and switch to a distributional formulation. We can formulate

everything for N charged, massive, time-like world-lines, but for simplicity we set

N = 1 in the following.
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Since the issue is the formulation of a well-posed initial value problem, we also

choose an arbitrary Lorentz frame, with space vector s ∈ R
3 and time t ∈ R.

Then the space part of l.h.s.(1) becomes the local conservation law for the total

momentum,

∂
∂tΠ(t, s) +∇ · T (t, s) = 0, (2)

where it is postulated (equivalent to “minimal coupling”) that

Π(t, s) := Πfield(t, s) + Πcharge(t, s) (3)

is the total momentum vector-density, with Πfield(t, s) the contribution from the

field and Πcharge(t, s) (a distribution) the usual contribution from the point charge,

which must be assigned a non-vanishing bare rest mass mb. Similarly, it is postulated

that

T (t, s) := T field(t, s) + T charge(t, s) (4)

is the symmetric total stress tensor, with T charge(t, s) the usual stress tensor of the

point particle, and T field(t, s) that of the field (except for our unconventional choice

of sign!)

Incidentally, energy conservation follows as a corollary from momentum conser-

vation.

Next, we integrate (2) over all s ∈ R
3, at t ∈ R. This yields total momentum

conservation

d
dtp(t) = − d

dt

∫
R3

Πfield(t, s)d3s. (5)

Clearly, for (5) to make sense, the field momentum vector-density Πfield(t, s) has to

be integrable over R
3, and this integral differentiable in time. This rules out the

Maxwell–Lorentz field equations, but leaves other options, notably the Maxwell–

Born–Infeld (MBI) and Maxwell–Bopp–Landé–Thomas–Podolsky (MBLTP) field equa-

tions (see below).

Comparing equation (5) with Newton’s law for the rate of change of momentum,

d
dtp(t) = f(t), (6)

where f(t) is the force acting on the particle at time t, it is clear that the force

f (t) needs to be extracted from r.h.s.(5). Since the particle’s bare momentum p(t)

is given in terms of its bare mass mb and velocity v(t) = d
dtq(t) by the Einstein-

Lorentz-Poincaré law

p(t) := mb
v(t)√

1− 1
c2 |v(t)|2

, (7)

the expression for the force also has to be compatible with the requirements of a

second-order initial value problem for the position of the point particle! Thus, beside

the existence of the time-derivative of the space integral over the field momentum

vector-density, it is important that the result involves, initially, only the initial
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electromagnetic fields and the initial data for position and velocity of the point

particle and, at later times t > 0, at most the history of position, velocity, and

acceleration of the particle, and of the fields, from the initial instant on, yet not

beyond t. Whenever this is possible we obtain a well-defined joint initial value

problem for field and particle, which may or may not be well-posed.

We were able to explicitly extract a well-defined force on the point charge from

the MBLTP field equations, and to prove that the resulting joint initial value

problem for charge and field is well-posed. We expect this to be feasible also for

the MBI field equations, but their formidable nonlinearity makes rigorous progress

a slow process.

Common to all these classical systems of electromagnetic field equations are the

pre-metric Maxwell–Lorentz field equations, viz. the evolution equations

∂tB(t, s) = −c∇×E(t, s) (8)

∂tD(t, s) = +c∇×H(t, s) + 4πeq̇(t)δq(t)(s) (9)

and the constraint equations

∇ ·B(t, s) = 0 (10)

∇ ·D(t, s) = −4πeδq(t)(s) (11)

for the B, D fields. They differ in the Electromagnetic Vacuum Law : (B,D) ↔
(H,E). The Born-Infeld law2 reads

H =
B− 1

b2D× (D×B)√
1 + 1

b2 (|B|2 + |D|2) + 1
b4 |B×D|2

(12)

E =
D− 1

b2B× (B×D)√
1 + 1

b2 (|B|2 + |D|2) + 1
b4 |B×D|2

(13)

The Bopp–Landé–Thomas–Podolsky law1,19,20,22 reads

H(t, s) =
(
1 + κ

−2�
)
B(t, s) (14)

D(t, s) =
(
1 + κ

−2�
)
E(t, s) . (15)

(N.B.: � := c−2∂2t − Δ.) When b → ∞, respectively when κ → ∞, both these

vacuum laws reduce to the Maxwell-Lorentz law H = B & E = D.

For given particle motions with subluminal velocity |q̇(t)| < c, the field Cauchy

problems are globally well-posed in the sense of distributions for both the ML and

MBLTP field equations. The MBI field Cauchy problem, unfortunately, has not

yet been conquered to the extent needed. Global well-posedness of the classical

initial value problem has only been shown with small data (no charges!) in Ref. 24;

F. Pasqualotto presented an extension of Speck’s result to MBI field evolutions

on the Schwarzschild background.21 A local well-posedness result for MBI field

evolutions with subluminal point sources (and inevitably large data) should be

possible, but so far only the special case of electrostatic solutions with N point
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charge sources has been conquered in Ref. 15. There it was shown that a unique

finite-energy electrostatic weak solution of the MBI field equations with N point

charges placed anywhere in R
3 exists, and that the solution is real analytic away

from the point charges for any choices of their signs and magnitudes.

For the field momentum densities Π (dropping the superscript “field”) one has

the following expressions. For the ML and for MBI field equations,

4πcΠ = D×B, (16)

whereas for the MBLTP field equations,

4πcΠ = D×B + E×H−E×B− κ
−2
(∇ · E)(∇×B− κ Ė

)
. (17)

For MBLTP field evolutions with point sources we showed that Π(t, s) is in

L1
loc(R

3) about each q(t), see Ref. 17. We expect such a result also for MBI

fields. It is surely false for ML fields!

With appropriate decay rates at spatial infinity imposed on the field initial

data, the MBLTP field momentum
∫
R3 Π(t, s)d3s exists for all t. Moreover, given

Lipschitz maps t �→ q(t), t �→ v(t) and bounded t �→ a(t), we showed that
d
dt

∫
R3 Π(t, s)d3s exists for all t.

The crucial step in showing that (5), with (7), yields an equation of motion is

now the following. The fields B,D,E, Ė (and H) at (t, s) are given by explicit

functionals of the vector functions q(·) and v(·), and D & H also involve a(·);
their dependence on a(·) is linear. For t < 0 we set q(t) = q(0) + v(0)t and

v(t) = v(0), and a(t) = 0. Treating q(·) and v(·) as given, and a(·) as independent

vector function variable for t > 0, (5) together with (7) is equivalent to a Volterra

integral equation for a = a[q,p], viz.

a = W [p] ·
(
fvac[q,v] + f source[q,v; a]

)
(18)

where

v =
1

mb

p√
1 + |p|2

m2
bc

2

; mb �= 0 (19)

and

W [p] := sgn(mb)
c√

m2
bc

2 + |p|2
[
I3×3 −

p⊗ p

m2
bc

2 + |p|2
]
, (20)

and where we have written the field as a sum of a source-free (vacuum) field and

a field having the point charge as source, resulting in a Lorentz force due to that

vacuum field,

fvac[q,v](t) ≡ −e [Evac(t, q(t)) + 1
cv(t)×Bvac(t, q(t))

]
, (21)

 T
he

 F
if

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

2:
81

08
:5

0b
f:

e6
b8

:e
07

b:
ca

ba
:6

8b
d:

29
6 

on
 0

1/
12

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 18, 2022 14:32 WSPC Proceedings - 9.61in x 6.69in ch66-main page 519

519

and a “self”-type force f source[q,v; a], in BLTP electrodynamicsb given by

f source[q,v; a](t) = − d

dt

∫
R3

Πsource(t, s)d3s (22)

= − d

dt

∫
Bct(q0)

(Πsource(t, s)−Πsource(0, s− q0 − v0t)) d
3s (23)

= e2

4π

[
− Z

[2]
ξ (t, t) + Z

[2]
ξ◦(t, t) (24)

− ∑
0�k�1

c2−k(2 − k)

∫ t

0

[
Z
[k]
ξ

(
t, tr
)−Z[k]

ξ◦
(
t, tr
)]

(t− tr)1−kdtr (25)

− ∑
0�k�2

c2−k
∫ t

0

[
∂
∂tZ

[k]
ξ

(
t, tr
)− ∂

∂tZ
[k]
ξ◦
(
t, tr
)]

(t− tr)2−kdtr
]

(26)

where ξ(t) ≡ (q,v, a)(t), and ξ◦(t) ≡ (q0 + v0t,v0,0), and where

Z
[k]
ξ

(
t, tr
)

=

∫ 2π

0

∫ π

0

(
1− 1

c

∣∣v(tr)
∣∣ cosϑ

)
π

[k]
ξ

(
t, q(tr) + c(t− tr)n) sinϑdϑdϕ , (27)

with n = (sinϑ cosϕ , sinϑ sinϕ , cosϑ), and where, with the kernels

Kξ(t′, t, s) :=
J1

(
κ

√
c2(t−t′)2−|s−q(t′)|2

)
√
c2(t−t′)2−|s−q(t′)|2 , (28)

Kξ(t′, t, s) :=
J2

(
κ

√
c2(t−t′)2−|s−q(t′)|2

)
c2(t−t′)2−|s−q(t′)|2 (s− q(t′)− v(t′)(t− t′)) , (29)

we have

π
[0]
ξ (t, s) =− κ

4 1

4

[
(n(q,s)− 1

cv)×(n(q,s)× 1
cv)(

1− 1
cv·n(q,s)

)2
]

ret

(30)

+ κ
4 1

2

[
n(q,s)− 1

cv

1− 1
cv·n(q,s)

]
ret

×
∫ tretξ (t,s)

−∞
v(t′)×Kξ(t′, t, s)dt′ (31)

− κ
4 1

2

[
n(q,s)× 1

cv

1− 1
cv·n(q,s)

]
ret

×
∫ tretξ (t,s)

−∞
cKξ(t′, t, s)dt′ (32)

− κ
4

∫ tretξ (t,s)

−∞
cKξ(t′, t, s)dt′×

∫ tretξ (t,s)

−∞
v(t′)×Kξ(t′, t, s)dt′ (33)

− κ
4c

∫ tretξ (t,s)

−∞
Kξ(t′, t, s)dt′

∫ tretξ (t,s)

−∞
Kξ(t′, t, s)v(t′)dt′, (34)

bNone of the four original contributors formulated a well-defined expression for the force, yet we
believe that our formulation accomplishes what they had intended; hence the name of the theory.
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π
[1]
ξ (t, s) =− κ

2 1

2

[
n(q, s)× (n(q,s)− 1

cv)×a

c2
(
1− 1

cv·n(q,s)
)3
]
ret

(35)

− κ
2

[
n(q, s)× (n(q,s)− 1

cv)×a

c2
(
1− 1

cv·n(q,s)
)3
]

ret

×
∫ tretξ (t,s)

−∞
v(t′)×Kξ(t′, t, s)dt′ (36)

+ κ
2

[
n(q, s)×

[
n(q, s)× (n(q,s)− 1

cv)×a

c2
(
1− 1

cv·n(q,s)
)3
]]

ret

×
∫ tretξ (t,s)

−∞
cKξ(t′, t, s)dt′ (37)

− κ
3
[

1
1− 1

cv·n(q,s)

]
ret

∫ tretξ (t,s)

−∞
Kξ(t′, t, s)

[
v(tretξ (t, s))) + v(t′)

]
dt′, (38)

π
[2]
ξ (t, s) =− κ

2

[
1(

1− 1
cv·n(q,s)

)2 1
cv

]

ret

(39)

+ κ
2

[[
1− 1

c2

∣∣v∣∣2]n(q, s)× n(q,s)− 1
cv(

1− 1
cv·n(q,s)

)3
]

ret

×
∫ tretξ (t,s)

−∞
cKξ(t′, t, s)dt′ (40)

− κ
2

[[
1− 1

c2

∣∣v∣∣2] n(q,s)− 1
cv(

1− 1
cv·n(q,s)

)3
]
ret

×
∫ tretξ (t,s)

−∞
v(t′)×Kξ(t′, t, s)dt′, (41)

and
∣∣
ret

means that q(t̃), v(t̃), a(t̃) are evaluated at t̃ = tretξ (t, s).

Remark 2.1. The decomposition of the electromagnetic fields into a sum of two

types of fields, one with the point charge as source, the other source-free, is to some

extent arbitrary. For this reason it is futile to try to identify the self-field force of

a point charge. At best one can speak of a “self”-field force, the scare quotes

referring to the ambiguity in identifying how much of the field is “self”-generated

by the charge and how much is not.

The following key proposition about the Volterra equation is proved in Ref. 17.

Its proof takes several dozen pages of careful estimates.

Proposition 2.2. Given C0,1 maps t �→ q(t) and t �→ p(t), with Lip(q) = v,

Lip(v) = a big enough, and |v(t)| � v < c, the Volterra equation (18) as a fixed point

map has a unique C0 solution t �→ a(t) = α[q( · ),p( · )](t) for t � 0. Moreover,

the solution depends Lipschitz continuously on the maps t �→ q(t) and t �→ p(t)

(treated as independent).

The well-posedness result of the joint initial value problem for MBLTP fields

and their point charge sources is a corollary of Proposition 2.2. Namely, now setting

a(t) := d
dtv(t) and v(t) := d

dtq(t), and recalling (7), the solution to the Volterra

integral equation for the acceleration poses a Newton-type second-order initial

value problem for the position of the point charge with a complicated yet Lipschitz-

continuous force. Once the motion is computed, inserting the vector functions q(·),
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v(·), and a(·) of the solution into the functionals of the fields yields B,D,E, Ė at

(t, s) for t > 0, too. This is a Theorem in Ref. 17, summarized informally as follows.

Theorem 2.3. As a consequence of Proposition 2.2, the joint initial value problem

for MBLTP fields and their point charge source is equivalent to the fixed point

equations

q(t) = q(0) +
1

mb

∫ t

0

p√
1 + |p|2/m2

b

(t̃)dt̃=: Qt(q(·),p(·)) (42)

p(t) = p(0)−
∫
R3

(Π(t, s)−Π(0, s)) d3s=: Pt(q(·),p(·)), (43)

where Qt and Pt are Lipschitz maps. Thus, BLTP electrodynamics is locally

well-posed.

In fact, in Ref. 17 the Cauchy problem for the MBLTP field with N point

charges is treated. Local well-posedness is proved for admissible initial data (see

below) & mb �= 0, and global well-posedness shown to hold if in finite time: (a) no

particle reaches the speed of light; (b) no particle is infinitely accelerated; (c) no

two particles reach the same location.

By “admissible” initial data we mean the following: the initial particle velocities

are subluminal (|v(0)| < c) and no two particles occupy the same location; the

electromagnetic initial fields are the sum of a spatially sufficiently rapidly decaying

vacuum field plus N fields each with a single point charge source — the sourced

fields are boosted electrostatic fields with boost velocity equal to the initial velocity

of the source.

Although our result seems to be the first formulation of a well-posed joint initial

value problem for classical electromagnetic fields and their point charge sources,

and this endows BLTP electrodynamics with a mathematically superior status

compared to the ill-defined Lorentz electrodynamics, we do not claim that BLTP

electrodynamics is the correct classical limit of the illusive mathematically well-

formulated quantum theory of electromagnetism. In particular, the MBLTP field

equations feature “physical” oddities: (a) a field energy functional which is un-

bounded below; (b) subluminal transversal electromagnetic wave modes; (c) longi-

tudinal electrical wave modes.

Moreover, since the MBLTP field equations demand initial data for B,D,E, Ė at

t = 0 while physically we only can prescribe B, D (N.B.: in Lorentz electrody-

namics, D = E; not so in BLTP electrodynamics), one needs to find a prescription

which expresses E, Ė at t = 0 in terms of B,D at t = 0. In Ref. 17 we show that

a reasonable choice is the map (B,D)0 �→ (E, Ė)0 obtained by maximizing the field

energy w.r.t. E0 and Ė0 (treated independently). This can be made co-variant

by stipulating that the maximization is carried out in the Lorentz frame in which

total momentum vanishes initially.

Back to the mathematically superior status of BLTP electrodynamics, one

can now apply rigorous analysis, and controlled numerical techniques, to study
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the theory. For instance, a rigorous comparison of our expression (22) for the “self”-

force with a differently defined “self”-field force which was studied in Ref. 12 was

carried out recently by Hoang & Radosz and their students, see Ref. 5, 13. One of

our next projects is to rigorously extract effective equations of motion with more

user-friendly expressions for the “self”-force. In particular, whether or to which

extent the Landau–Lifshitz equation approximately governs the motion is an in-

teresting question.

2.1.2. Topologically non-trivial flat spacetimes with time-like singularities

The zero-gravity limit of singular spacetimes does not automatically yield

Minkowski spacetime minus a number of world-lines. In Ref. 27 the zero-G limit

of Carter’s maximal analytical extension of the electromagnetic Kerr–Newmann

spacetime was analyzed. The limiting spacetime is axially symmetric and static.

It is locally isometric to Minkowski spacetime, but is topologically non-trivial,

featuring Zipoy topology. Its constant-time slices are double-sheeted, and have

the topology of R
3 branched over the un-knot. The spacetime is singular on a

2-dimensional time-like cylinder S
1 × R, which is the world-tube of a space-like

ring-type singularity. The most intriguing aspect of this solution is that at any in-

stant of time the ring singularity, when viewed from one of the two sheets of space,

appears to be positively charged, and from the other sheet, negatively charged, as

already noticed by Carter. The electromagnetic fields it supports where discovered

in the 19th century by P. Appell as “multi-valued electromagnetic fields,” while

A. Sommerfeld soon realized that they represent single-valued electromagnetic

fields on a topologically non-trivial multi-sheeted space.

A natural next step would be to formulate the corresponding zero-gravity two-

body problem for two space-like ring-type singularities of zGKN-type, evolving in

time jointly with the electromagnetic fields they generate. We know for example

that the space should be four-sheeted (in general, 2N sheets are needed for N ring-

type singularities). However, as the zGKN fields solve the Maxwell–Lorentz vac-

uum field equations away from the singularities, it is not surprising that one again

encounters the infinite field energy-momentum problems which plague Lorentz elec-

trodynamics. Thus one would first need to find either MBI or MBLTP analogues

of the Appell–Sommerfeld fields. The nonlinearity of the MBI field equations

makes this a daunting task, but we are confident that the feat can be accomplished

with the MBLTP field equations. In that case the zero-G EIH-type approach

explained in the previous subsection should allow the formulation of a well-posed

initial value problem for ring-type singularities and their electromagnetic MBLTP

fields. Note that the law of motion would most likely be a system of partial differ-

ential equations, as the ring-type singularity has to be allowed to bend, twist, warp,

stretch, and such.
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2.2. Turning on gravity: G > 0

2.2.1. The neighborhood of Minkowski spacetime

By rigorously establishing well-posedness of BLTP electrodynamics with point

charges as a consequence of postulating the conservation law (2) for the total

momentum vector-density (3), with the expressions for the particles given be the

usual special-relativistic ones and those for the fields determined by the field equa-

tions,Ref. 17 demonstrates that a key idea of the 1938 EIH paper is viable in the

zero-G limit when applied with a suitable set of electromagnetic field equations,

and with non-zero bare rest mass assigned to the point charges. We now address

the question whether this result extends continuously to a G > 0 neighborhood of

special relativity, free of black holes. By a result of Geroch–Traschen11 a no-

Black-Holes spacetime with a one-dimensional time-like singularity cannot exist if

the singularity has positive bare mass, different from the special-relativistic case,

where the bare mass merely had to be non-zero.

One of the main ingredients of the EIH argument is of course, that the con-

servation law of energy-momentum is implied by the twice contracted 2nd Bianchi

identity in concert with Einstein’s general-relativistic field equations. However, for

the spacetimes with time-like singularities envisaged by EIH (and Weyl) this is

not automatically true. An important step, therefore, is to determine the Lorentz

spacetimes with time-like singularities on which the twice contracted 2nd Bianchi

identity holds in a weak form.

Together with A. Y. Burtscher we have begun a systematic study of the favor-

able conditions. In Ref. 3 we study the simplest non-trivial case: static spherically

symmetric spacetimes with a single time-like singularity. We obtain some necessary

and, for certain electromagnetic vacuum laws, also sufficient conditions that the

twice contracted 2nd Bianchi identity holds in a weak form. Interestingly, in the

naked singularity regime (no Black Hole!), the answer is negative for the electro-

magnetic Reissner–Weyl–Nordström spacetime, but positive for the Hoffmann

spacetimec in which electromagnetic MBI fields are coupled with Einstein’s grav-

ity; see Ref. 26 for a rigorous discussion. Our goal is to generalize our study, one

step at a time, to dynamical spacetimes without symmetry.

The crucial question, then, is whether the weak twice contracted 2nd Bianchi

identity implies the law of the electromagnetic spacetime’s time-like singularities

with bare energy-momentum assigned to them. Interestingly, it seems that merely

changing Maxwell’s into the BLTP or MBI vacuum law is by itself not sufficient

to allow the formulation of a well-defined joint initial value problem for the mas-

sive point charges and the electromagnetic and gravitational fields they generate:

the gravitational coupling also needs to be changed, for instance in the manner of

cIt is curious that although Hoffmann14 had worked out his spacetime solution by 1935, the fact
that his spacetime with non-positive bare mass is less singular than the RWN spacetime did not
in 1938 compell EIH to use the MBI instead of Maxwell–Lorentz field theory.
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Jordan, Brans–Dicke, or f(R) gravity, to obtain a well-defined joint Cauchy

problem. Put differently, the gravitational coupling of spacetime structure with

bare matter and the electromagnetic fields needs to be “mediated” by a certain

type of scalar field which moderates the strength of the spacetime singularities

enough so that the strategy explained in the previous subsection can be applied.

This scalar field in the classical theory would play a role vaguely reminiscent of

the role played by the scalar Higgs field in the quantum field-theoretical standard

model of elementary particle physics.

2.2.2. The neighborhood of zGKN-type spacetimes

Everything stated in the previous subsection about the neighborhood of the

Minkowski spacetime has an analogue problem for the gravitational neighborhood

of topologically non-trivial flat spacetimes of (generalized) zGKN type.
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