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Abstract. In the special theory of relativity (SR) it is usual to highlight so-called paradoxes.
One of these paradoxes is the formal appearance of speed values grater then the light speed. In
this paper we show that most of these paradoxes arise due to the incompleteness of relativistic
calculus over velocities. Namely, operation over speeds form a group by composition. In this
case, the extension to the field is usually carried out using non-relativistic operations.

1. Introduction
In the special relativity theory there are widely known paradoxes in which formally appear
velocities exceeding the speed of light. The authors make the assumption that these paradoxes
can be solved by introducing special operations of speed multiplication by scalar and speed
multiplication along with the standard speed addition. Strictly speaking, it is necessary to
extend the velocity space to algebra. In this paper, such an extension is produced by means of
hyperbolic numbers by which one can represent the two-dimensional Minkowski space as well as
the Lorentz transform.

2. Superluminal speed paradoxes
We list some of the well known paradoxes of superluminal motion, where the speed v of some
system is greater then c.

2.1. The inclined light incidence
The simplest model of superluminal motion may serve inclined light incidence. Light pulse is
formed by flat waves incident on the plane of some flat media boundary (also called screen)
[1–4]. Let ϕ be the angle of incidence of the wave on the screen, that is, the angle between the
wave vector and the normal vector of the screen. That light spot on the screen moves through
the screen at a speed of:

v =
c

n sinϕ

where n is the refractive index of the medium, there the light pulse propagates (the medium
above the screen). As far as sinϕ ≤ 1 ≤ c the speed of the light spot when decreasing the angle
of incidence ϕ can be made greater than the speed of light c. When considering the case of wave
propagation in a vacuum, this becomes most obvious:

v =
c

sinϕ
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The velocity v can be arbitrarily large, because when the light pulse tends to a normal direction
incident (ϕ→ 0), the velocity tends to infinity (v →∞).

2.2. The lighthouse paradox
Similarly to the incident light pulse, one can consider a rotating source [2–4]. Let us imagine a
rotating spotlight. The angular velocity of the spotlight (lighthouse) is ω and the screen is at a
distance r from the source. Then the light spot will move at a speed:

v = ωr

The speed can increase unlimited, while r increasing.

2.3. The superluminal scissors
The superluminal scissors is mechanical analog of the inclined light incidence. The speed of the
blades intersection point may be grater then lightspeed.

2.4. Phase speed
Phase velocity is the speed of movement of a point having a constant phase of oscillatory motion
in space along a given direction. The phase velocity in the direction of the wave vector coincides
with the velocity of the phase front the surface of the constant phase.

The phase velocity along the wave vector is given as follows:

vp =
ω

k
= vp(0)

where ω is the angular frequency, k is the wave number. In vacuum for electromagnetic wave
phase velocity value along the vector is equal to the speed of light c.

The deviation from the wave vector by an angle ϕ the phase velocity is equal to:

vp(ϕ) =
vp(0)

cosϕ

so the phase velocity can be superluminal.

2.5. Hartman effect
According to Hartman’s formula [5], the time of particle tunneling through the barrier,
determined by the phase of the barrier transmission function, does not depend on the length of
the tunneling path. With a sufficiently large path, the particle velocity can reach superluminal
values [6,7].

3. Hyperbolic numbers
Hyperbolic numbers [8–10], along with elliptic and parabolic numbers, are a generalization of
complex numbers. Hyperbolic numbers can be defined as follows:

z = x+ jy, j2 = 1, j 6= ±1.

The set of hyperbolic numbers is denoted as C+. The hyperbolic numbers are also called double
numbers, split complex numbers and perplex numbers.

For two hyperbolic numbers z1 = x1 + jy1 and z2 = x2 + jy2 it is possible to define the
following operations.

• Addition z1 + z2 = (x1 + x2) + j(y1 + y2).
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• Multiplication z1z2 = (x1x2 + y1y2) + j(x1y2 + x2y1).

• Conjunction z† = x− jy.

• Inverse number z−1 = x
x2+y2

− j y
x2−y2 .

• Division z1
z2

= x1x2−y1y2
x22−y22

+ j x1y1−x1y2
x22−y22

.

Hyperbolic numbers can be represented in matrix form:

x+ jy ↔
(
x y
y x

)
Then the addition, multiplication of numbers and finding the inverse number are reduced to the
addition, multiplication of matrices and finding the inverse matrix.

For hyperbolic numbers, the analog of Euler’s formula is true

ejϕ = coshϕ+ j sinhϕ, ϕ ∈ R.

It can be proved by exponent decomposition into a series ejϕ:

ejϕ = 1 +
jϕ

1!
+
j2ϕ2

2!
+
j3ϕ3

3!
+ ...

Using j2 = 1, j3 = j, j4 = 1, j5 = j etc. we get:

ejϕ =

(
1 +

ϕ2

2!
+
ϕ4

4!
+ ...

)
+ j

(
ϕ

1!
+
ϕ3

3!
+ ...

)
= coshϕ+ j sinhϕ.

The Euler formula can be used to express the hyperbolic sine and cosine through an exponent:

coshϕ =
ejϕ + e−jϕ

2
, sinhϕ =

ejϕ − e−jϕ

2j
.

These formulas are analogs to the corresponding formulas for the trigonometric cosine and sine,
but instead of the imaginary unit i2 = −1 the “imaginary” unit j2 = 1 is used.

Hyperbolic numbers can be used to represent a point in two-dimensional Minkowski space
E2

1,1:

x0 + jx1 ↔ (x0, x1) ∈ E2
1,1.

This is possible due to the fact that

|∆z|2 = ∆z ·∆z† = ∆2x0 −∆2x1.

The absolute value (or modulus) r of number z = x+ jy

|z| = r =

{ √
x2 − y2, |x| > |y| ,√
y2 − x2, |x| < |y| .

Just as complex numbers have a geometric representation using polar coordinates, hyperbolic
numbers can also be represented using hyperbolic functions, which will give us a geometric
representation of hyperbolic numbers on the plane (Minkowski space model E2

1,1 on the Euclidean
plane).

z =

{
r (coshϕ+ j sinhϕ) , |x| > |y| ,
jr (sinhϕ+ j sinhϕ) , |x| < |y| .
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Combining the geometric representation and Euler’s formula we obtain a exponential
representation

z =

{
rejϕ, |x| > |y| ,
jrejϕ, |x| < |y| .

The value of ϕ is called the hyperbolic angle or argument of z (ϕ = argz) and is expressed in
terms of the hyperbolic arctangent.

ϕ =

{
tanh−1 yx , |x| > |y| ,
tanh−1 xy , |x| < |y| .

4. The hyperbolic numbers in SR
4.1. Lorentz transformations and hyperbolic numbers
With the help of the hyperbolic numbers, one can rearrange the Lorentz transformation for the
two dimensional case. Let’s start by writing the transformation formulas from the coordinate
system (ct, x) to the dashed coordinate system (ct′, x′) in the classical form, and then rewrite
them using hyperbolic functions.(

ct′

x′

)
=

(
γ −γ vc
−γ vc γ

)(
ct
x

)
=

(
coshϕ − sinhϕ
− sinhϕ coshϕ

)(
ct
x

)
The coefficient γ is called the Lorentz factor

γ =
1√

1− v2
/
c2

Since coshϕ = 1/
√

1− tanh2 ϕ, then putting tanhϕ = v/c get coshϕ = γ. Then sinhϕ =
tanhϕ coshϕ = γv/c. These relations allow us to move to the hyperbolic form of the Lorentz
transformation matrix.

Since hyperbolic numbers have a matrix representation and the Lorentz transformation
matrix corresponds to the matrix representing the hyperbolic number, we can replace this matrix
with the corresponding hyperbolic number.(

coshϕ − sinhϕ
− sinhϕ coshϕ

)
↔ coshϕ− j sinhϕ = e−jϕ

It is especially convenient to use the exponential form, since in this case the Lorentz
transformation is reduced to the ratio

(ct′, x′) = e−jϕ(ct, x).

4.2. Velocity-addition formula
Velocity-addition formula can be derived by performing two Lorentz transformations. The
composition of the two Lorentz transformations is reduced to the addition of hyperbolic angles:

ϕ3 = ϕ1 + ϕ2.

Taking into account that tanhϕ = v/c we get:

tanhϕ3 = tanh (ϕ1 + ϕ2) =
tanhϕ1 + tanhϕ2

1− tanhϕ1 tanhϕ2
=
v1/c+ v2/c

1− v1v2/c2
.

By replacing tanhϕ3 = v3/c we get velocity-addition formula

v3 = c
v1/c+ v2/c

1− v1v2
/
c2

=
v1 + v2

1− v1v2
/
c2
.
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4.3. Multiplying velocity by number
Consider the operation of multiplying the velocity vector by a scalar (α ∈ R), which is equivalent
to multiplying the hyperbolic angle by a number:

ϕ2 = αϕ1.

Expressing a hyperbolic tangent through an exponent, we obtain:

tanhϕ2 = tanhαϕ1 =
e2αϕ1 − 1

e2αϕ1 + 1
=

exp
[
α ln 1+v/c

1−v/c

]
− 1

exp
[
α ln 1+v/c

1−v/c

]
+ 1

=

(
1+v/c
1−v/c

)α
− 1(

1+v/c
1−v/c

)α
+ 1

Taking into account that tanhϕ = v/c, we get:

v2 = c
(1 + v/c)α − (1− v/c)α

(1 + v/c)α + (1− v/c)α

To test this formula, let us calculate 2v as v + v and compare the results. Using multiplication
formula we obtain:

2v = c
(1 + v/c)2 − (1− v/c)2

(1 + v/c)2 + (1− v/c)2
= c

4v/c

2 (1 + v2/c2)
.

Using Velocity-addition formula, we also get:

v + v =
2v

1 + v2/v2
.

As we can see, the result are the same.

5. Conclusions
We consider the use of hyperbolic numbers to write Lorentz transformations for two-dimensional
space-time and then to write the velocity-addition formula. In hyperbolic numbers, the addition
of velocities was reduced to the addition of hyperbolic angles.

Since the multiplication operation by scalar α ∈ R is naturally defined for the hyperbolic
angle, the corresponding operation can also be defined for the relativistic velocity. This operation
is not identical to the simple multiplication of the vector by a number. In the case of the natural
number α it is reduced to multiple addition of velocities. It follows from the formula that
multiplication by any α cannot lead to superluminal speed.
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