
OPENDIGITIZER: DIGITIZER MODERNISATION USING
OPENCMW AND GNU RADIO 4.0 FOR FAIR

Ralph J. Steinhagen, Alexander Krimm, David Ondreka
GSI Helmholtzzentrum, Darmstadt, Germany

Frank Osterfeld, Ivan Čukić, Björn Balzs, Giulio Camuffo, KDAB, Berlin, Germany
Abstract

OpenDigitizer is an open-source project modernizing
FAIR’s digitizer infrastructure and GUI using OpenCMW,
WebAssembly, and GNU Radio 4.0 frameworks. It pro-
vides monitoring, diagnostics, and supports development
of advanced measurement and control loops. Utilizing di-
rected signal flow graphs for efficient post-processing and
feedback control, the core is accessible to domain experts
with minimal programming experience. The WebAssembly-
compatible UI enables native deployment on mobile and
browser platforms, facilitating flexible use during commis-
sioning, troubleshooting, and control room operations.

INTRODUCTION
OpenDigitizer is an open-source project aimed at mod-

ernizing the digitizer infrastructure and user interfaces at
the Facility for Antiproton and Ion Research (FAIR) [1, 2].
The project embraces modern C++20 development stan-
dards and leverages OpenCMW, GNU Radio 4.0, ImGUI,
and WebAssembly ecosystems(Fig. 1) [3–7]. The primary
applications of OpenDigitizer include:

• First-line diagnostics and fault identification, serving as
a distributed diagnostic tool for accelerator equipment
with nanosecond-level synchronization, offering func-
tionalities similar to oscilloscopes, software-defined
radios, spectrum analyzers, VNAs, and other hardware
monitoring equipment.

• Providing building blocks for higher-level diagnostics
and monitoring tools, assisting equipment experts, oper-

ators, and FAIR users in developing basic to advanced
top-level diagnostics and feedback control loops.

• Supporting a rapid prototyping R&D environment for
quick adaptation, testing, and integration of solutions
developed on lab test stands or during machine studies
into the 24/7 operation of the facility.

The existing FESA-based system has been deployed for
over 200 data acquisition systems [8, 9]. Around 350 systems
directly connected to hardware and an additional 300 post-
processing services are expected for FAIR. All these systems
will share the same OpenCMW, GNU Radio, OpenDigitizer,
and UI/UX software stack.

The motivation for the OpenDigitizer reimplementation
stems from the issues encountered with the FESA-based
prototype, which include [10]:

• Heavy reliance on proprietary, largely undocumented
code developed for another accelerator facility, not en-
tirely aligned with FAIR’s requirements.

• The need for flexible handling of signal post-processing
on both front-end systems directly connected to digitiz-
ers and middle-tier services providing high-level diag-
nostics monitoring and feedback control loops based
on the same data.

• Difficulties with evolving the system towards the crit-
ical needs for commissioning and operation of FAIR
accelerators due to departure of many original develop-
ers and the accompanying loss of expertise.

This paper provides an overview of OpenDigitizer’s ob-
jectives, main components, and applications.

0.95
DNS:

Dynamic (Signal) Name Service
<protocol>://<FEC>:<port>/<device>/<signal>
…
…

Digitizer Expert Application
 (native & WASM-based)

based on best-practices in existing
test- and Instrumentation lab-type equipment
modular composition

generic application (simple/pre-defined layout)
re-usable components → for custom apps/special layouts

composition of signals from different digitizer FECs
configurable numerical post-/pre-processing

Settings Store

Worker

Majordomo-Broker

Front-End

...Worker

>500 Front-Ends (FECs) x 40-100 signals/FEC → few 100k++ signals

register/update

Majordomo-Broker

Majordomo-Broker

Settings Store

Worker

query available signals
+ protocol info

subscribe/get/set

Vendor SW
interface

Abstraction
(GNU-Radio)

Signal Post-Processing
(GNU-Radio)

msg

flow-graph

signal post-processing
(user logic)

Settings Store

device #1-4 -AFE 1-4 Digitizer/SDR
(hardware)

up to 15 digital input signals

Worker

Majordomo-Broker

Signal Post-Processing
(GNU-Radio)

up to four devices
(only limited by

CPU/RAM/bandwidth

Front-End

Flow-Graph

...Worker

m
s
g

Digitizer|SDR
(SW Abstraction)

signal post-processing
(user logic)

<ctx>

m
s
g

White-Rabbit|GPS|UDP
Timing Receiver

(optional)

nano-sec. timing

4-7 analog signals

trigger signals

USB, PCIe,

LXI, ...

LSA-based Settings Management,
Archiving System, Sequencer,

other Clients, GUIs, ...

Signal Post-Processing
(GNU-Radio)

Flow-Graph

Expert GUI

OpenCMW
(transport: ZeroMQ, REST, …; serialiser: binary, JSON, YML, ...)

Figure 1: Architecture of the opencmw digitizer implementation.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL098

4684

MC6.T03: Beam Diagnostics and Instrumentation

THPL098

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

OPENDIGITIZER GOALS
OpenDigitizer focuses on the following key objectives:

1. Streamline the codebase by eliminating unnecessary
complexities and features of the legacy systems, while
retaining their tried-and-tested functionalities, making
it more adaptable, flexible, and maintainable.

2. Use and contribute to existing standards such as GNU
Radio and OpenCMW to avoid redundancy and pro-
mote interoperability [11]. Key improvements include:

(a) Improved timing integration within GNU Radio,
supporting ms- to ns-level industrial and in-house
timing system standards (e.g., software-based,
GPS, White Rabbit [12]).

(b) Advanced GNU Radio integration for both contin-
uous and indexed chunked data (e.g., event-driven
data for processes like injection, ramp, slow or
fast-extraction, and transient recording).

(c) Bridging the gap between RSE and accelera-
tor domain expertise through the use of graphs
for general signal processing, diagnostics, semi-
automation, and feedback loops.

(d) Enabling transfer of processing algorithms from
ad-hoc experiments to routine operation by utilis-
ing the same framework in services and UI.

3. Improve accessibility for new contributors by reducing
cognitive complexity and flattening the learning curve,
allowing academics, industrial partners, and students
to participate and contribute more effectively.

4. Use a distributed micro-service architecture reducing
dependencies on centralised services to provide redun-
dancy and avoid restriction to preconfigured environ-
ments.

5. Promote collaboration and knowledge exchange across
industries, academic institutions, and government orga-
nizations, enabling the sharing of ideas and expertise
by contributing to a shared ecosystem.

By focusing on these objectives, OpenDigitizer aims to fa-
cilitate innovation, adaptation, and collaboration to address
FAIR’s complex requirements effectively. By committing
to modern C++, RSE standards, and the FAIR principles
(Findability, Accessability, …), OpenDigitizer encourages
collaboration within a shared cross-domain ecosystem, sig-
nificantly increasing the pool of developers contributing.
This approach ensures a safe, well tested, and maintainable
codebase, reduced total cost of ownership, and minimized
continuous maintenance effort.

KEY COMPONENTS OF OPENDIGITIZER
The OpenDigitizer system builds on several essential com-

ponents that contribute to its flexibility and ease of use as
shown in Fig. 1. The two key components are: OpenCMW,
an open-source middleware solution developed at GSI and
FAIR providing flexible data transport, efficient data seriali-
sation, and intuitive domain objects based on compile-time

reflection [3], and the GNU Radio framework (version 4.0),
a powerful software toolkit designed for signal processing
and software-defined radio [7, 11, 13, 14]. GNU Radio uses
directed signal flow graphs for efficient expression of post-
processing and feedback control loop logic. This feature
makes it easy for domain experts with minimal programming
experience to inspect and reconfigure existing systems.

ImGUI and WebAssembly (WASM, through Emscripten)
are used for the user interfaces, enabling cross-platform
compatibility, and native deployment on mobile as well as
other browser-based platforms supporting flexible use during
commissioning and troubleshooting [15, 16].

User Interface
The importance of a simple, yet powerful user interface

became evident from the experience with the existing sys-
tem [1]. A comprehensive user interface facilitates quick
demonstrations, error analysis, and prototyping. It helps
shortening development cycles and avoides expensive paral-
lel developments by keeping users and developers synchro-
nised. UX and UI are thus considered core aspects during
the OpenDigitizer implementation. An overview of the pro-
totype elements can be seen in Fig. 2.

(a) Dashboard with Data (b) Dasboard Editor

(c) Postprocessing Flowgraph (d) Dashboard Browser

Figure 2: Screenshots of the UI of the system.

The UI is implemented in C++ to ensure algorithms can
be moved freely between the different system layers. This
provides some flexibility regarding refactoring and address-
ing implementations and potentially bottlenecks at the most
suitable location of the overall vertical stack, as well as also
addresses Java-related performance issues of the existing
system. The service incorporates n HTTP server that, in
addition to a high-performance ZeroMQ-based transport in-
terface, exposes the data via a generic REST interface as well
as the UI client. The client compiles into a WebAssembly
binary of less than 2 MB including all dependencies [17].

The primary UI consists of an dashboard displaying a
set of charts and a processing flow graph. Both views can
be configured, modified, stored and retrieved locally or on
the service at the user preferences. This provides a greater
control over data processing without the immediate need
for programming expertise and enhances the overall user

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL098

MC6.T03: Beam Diagnostics and Instrumentation

4685

THPL: Thursday Poster Session: THPL

THPL098

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

experience. This store/retrieve feature facilitates collabo-
ration among all users and helps to maintain an organised
commissioning and operation of FAIR.

OPEN SOURCE & AGILE APPROACH
OpenDigitizer reduces dependency on specialized hard-

ware systems and proprietary or in-house software, encour-
aging contributions from external partners and streamlining
the onboarding process. Emphasizing open-source princi-
ples, continuous improvement, usability, and maintainability,
OpenDigitizer fosters collaboration and knowledge sharing.
Through the adoption of an open-source strategy and an
agile approach, OpenDigitizer:

• Facilitates collaboration and the exchange of ideas
• Promotes better abstractions and clean code principles
• Enhances collective ownership and mitigates the risks

associated with critical knowledge being held by a small
group, which is commonly known as small insufficient
’bus factor’

• Aligns with the Public Money, Public Code campaign
to leverage taxpayer-funded research for the benefit
of the broader public, promote high-quality software
development, and avoid costly vendor lock-in, feature
creep, and technical debt [18].

OpenDigitizer’s commitment to open-source principles
extends to embracing modern software engineering practices,
ensuring sustainability and maintainability, and fostering
public-private partnerships with industry partners like, for
example, KDAB.

Adhering to FAIR principles, OpenDigitizer minimizes
the total cost of ownership and supports continuous improve-
ment during hardware and beam commissioning. By uti-
lizing free and open-source solutions, OpenDigitizer con-
tributes to other domains and benefits the general public.

Through its open-source strategy and agile approach, as
well as its alignment with the Public Money, Public Code
campaign, OpenDigitizer reduces costs, fosters collabora-
tion, promotes innovation, and contributes to the broader
scientific community. We hope that the commitment to
high-quality software development and sustainability sets a
positive example for others to follow.

FUTURE DEVELOPMENTS
As OpenDigitizer continues to develop and adapt, its fu-

ture enhancements will address the evolving requirements
of the FAIR facility as well as other core users and further
expand its capabilities. Currently, OpenDigitizer achieved a
Minimum Viable Product (MVP) state with a vertical stack
implementation that covers most critical core features but
not necessarily all in their full horizontal breadth. Key areas
of focus for the next development steps include:

• Migrating the existing GNU Radio post-processing
blocks from version 3.X to version 4.0. This transi-
tion will occur within the context of the GNU Radio
ecosystem and its large user community.

• Refining the user experience (UX) and enhancing com-
mon features: OpenDigitizer will continue iterating on
its UX design and functionality, ensuring that users
have access to intuitive, powerful tools that cater to
their needs.

• Strengthening integration with other systems:
OpenDigitizer aims to boost its interoperability with
other instrumentation and control platforms to facilitate
seamless data exchange and collaboration among
different FAIR facility components.

• Enhancing scalability, performance, and efficiency:
OpenDigitizer will work on improving its ability to
manage increased data volumes and support more de-
vices while optimizing its software stack, data process-
ing algorithms, and hardware compatibility.

• Investigating mobile and augmented reality (AR) solu-
tions: OpenDigitizer may explore mobile platforms and
hands-free AR solutions during the FAIR facility com-
missioning to improve efficiency and offer innovative
ways to visualize and interact with data.

• Upholding open-source principles: OpenDigitizer will
remain dedicated to open-source principles, fostering
collaboration, and promoting high-quality, reusable,
and maintainable code development while seeking part-
nerships with other organizations and research institu-
tions.

By focusing on these aspects and consistently refining its
capabilities, OpenDigitizer aspires to stay at the forefront
of data acquisition, processing, and visualization within the
FAIR facility and beyond. Its emphasis on open-source
principles and collaboration ensures that OpenDigitizer will
keep adapting and growing in the ever-changing landscape
of accelerator science and technology.

CONCLUSION
The OpenDigitizer project introduces a modern, open-

source approach to distributed synchronised digitizer infras-
tructure. While initially designed for the FAIR facility, the
expressed intent is to be highly adaptable also for use by
other similar research facilities, industry, academia, as well
as private users. By leveraging the power of OpenCMW, We-
bAssembly, and GNU Radio 4.0 frameworks, OpenDigitizer
simplifies the codebase, enhances integration with existing
standards, lowers cognitive complexity for new contributors,
and fosters collaboration and knowledge sharing.

Interested readers are invited to explore the OpenDigitizer
project website, try out the system, and consider adopting
and contributing to its development. Your participation can
help shape the future of digitizer infrastructure, not just at
FAIR, but across various domains. By collaborating with
fellow users and contributors, you can benefit from shared
knowledge and expertise, fostering innovation and advancing
digitizer modernization in diverse industries and disciplines.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL098

4686

MC6.T03: Beam Diagnostics and Instrumentation

THPL098

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

REFERENCES
[1] R. J. Steinhagen et al., “Generic Digitization of Analog Sig-

nals at FAIR – First Prototype Results at GSI,” in Proc.
IPAC’19, Melbourne, Australia, May 2019, pp. 2514–2517.
doi:10.18429/JACoW-IPAC2019-WEPGW021

[2] A. Krimm and R. Steinhagen, “FAIR Common Specification
- On the Digitization of Analog Signals in the FAIR Accel-
erator Complex,” FAIR, Tech. Rep., 2020. https://edms.
cern.ch/document/1823376

[3] R. Steinhagen et al., “OpenCMW - A Modular Open Com-
mon Middle-Ware Library for Equipment- and Beam-Based
Control Systems at FAIR,” in Proc. ICALEPCS’21, Shanghai,
China, 2022, paper TUPV009, pp. 392–399.
doi:10.18429/JACoW-ICALEPCS2021-TUPV009

[4] A. Krimm and R. Steinhagen, “FAIR Common Specifica-
tion - Modular Open Common Middle-Ware Library for
Equipment- and Beam-Based Control Systems of the FAIR
Accelerators,” FAIR, Tech. Rep., 2020. https://edms.
cern.ch/document/2444348

[5] FAIR, Opencmw c++ repository, https://github.com/
fair-acc/opencmw-cpp, Accessed: May 3, 2023, 2023.

[6] FAIR, Opendigitizer java repository, https://github.
com/fair-acc/opencmw-java, Accessed: May 3, 2023,
2023.

[7] GNU Radio Development Team, Gnu radio, https://www.
gnuradio.org, Accessed: May 3, 2023, 2001.

[8] L. Fernandez et al., “Front-End Software Architec-
ture,” in Proc. ICALEPCS’07, Oak Ridge, TN, USA,
Oct. 2007, pp. 310–312. https://jacow.org/ica07/
papers/WOPA04.pdf

[9] T. Hoffmann, “FESA - The Front-End Software Architecture
at FAIR,” in Proc. PCaPAC’08, Ljbuljana, Slovenia, Oct.
2008, pp. 183–185. https://jacow.org/pc08/papers/
WEP007.pdf

[10] FAIR, Opendigitizer, https://github.com/fair-acc/
opendigitizer, Accessed: May 3, 2023, 2023.

[11] R. J. Steinhagen et al., “GNU Radio 4.0 for Real-Time Signal-
Processing and Feedback Applications at FAIR,” in Proc.
IPAC’23, Venice, Italy, pp. 2514–2517. http://jacow.
org/ipac2023/papers/thpl099.pdf

[12] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and
G. Gaderer, “White rabbit: Sub-nanosecond timing distri-
bution over ethernet,” in 2009 International Symposium on
Precision Clock Synchronization for Measurement, Control
and Communication, 2009, pp. 1–5.
doi:10.1109/ISPCS.2009.5340196

[13] GNU Radio Development Team, GNU Radio GitHub repo,
https://github.com/gnuradio/gnuradio, 2001.

[14] FAIR & GNU Radio Development Team, GNU Radio
4.0 – graph-prototype, https://github.com/fair-acc/
graph-prototype, 2022.

[15] W3C WebAssembly Community Group, Webassembly spec-
ifications, https://webassembly.org/specs, Accessed:
May 3, 2023, 2023.

[16] O. Cornut, Dear imgui, 2015-2021. https://github.com/
ocornut/imgui

[17] FAIR, Opendigitizer online demo, https://fair-acc.
github.io/opendigitizer, Accessed: May 3, 2023,
2023.

[18] Free Software Foundation Europe, Public money? public
code! https://publiccode.eu/en/, Accessed: May 3,
2023, 2017.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL098

MC6.T03: Beam Diagnostics and Instrumentation

4687

THPL: Thursday Poster Session: THPL

THPL098

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

