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We extend the standard model with three right-handed singlet neutrinos and a real singlet scalar. We impose two 𝑍2 and 𝑍�耠2
symmetries. We explain the tiny neutrino mass-squared differences with two 𝑍2- and 𝑍�耠2-even right-handed neutrinos using type
I seesaw mechanism.The 𝑍2-odd fermion and the 𝑍�耠2-odd scalar can both serve as viable dark matter candidates. We identify new
regions in the parameter space which are consistent with relic density of the dark matter from recent direct search experiments
LUX-2016 and XENON1T-2017 and LHC data.

1. Introduction

The found Higgs boson at the Large Hadron Collider (LHC)
[1–3] completes the search for the particle content of the
standard model (SM). The hierarchy problem related to the
Higgs boson mass has motivated a plethora of models such
as supersymmetry, and extra dimensions in which the fine-
tuning is reconsidered. However, an inevitable consequence
of these models is that the new physics should lie close to the
TeV scale. Nonobservations [4] of any new physics from the
collider experiments imply that the Higgs hierarchy issue is
reverting back to being an unsolved open problem.

In addition, the SM is unable to explain some physical
phenomena in nature such as the existence of massive
neutrinos, the presence of dark matter (DM), the observed
matter-antimatter asymmetry, and so forth. In the SM, by
construction, the neutrinos aremassless as it does not include
right-handed neutrinos. However, from the neutrino oscilla-
tion experiments, we got convinced that at least twoneutrinos
have nonzero mass. The neutrino oscillation experiments
have given information about the mass-squared differences
between neutrino mass eigenstates. However the individual
value of the masses is not yet known. It has been seen that
the sum of the three neutrino masses is less than ∼0.1 eV [5–
7] which is consistent with the cosmological measurements.
Individual masses and the basic nature of neutrinos, that is,

whether they areDirac orMajorana particles, are still an open
question.

As neutrino masses are very tiny compared to the
other fermion masses, it is believed that the mechanism
behind neutrino mass generation is different from the other
fermions. The other fermions are obtained mass through the
Higgs mechanism. The most popular natural explanation of
small neutrino masses is the seesaw mechanism. There are
broadly three classes of such models, namely, type I, type II,
and type III seesaw models requiring involvement of right-
handed neutrinos, a 𝑆𝑈(2)�퐿 triplet scalar with hypercharge𝑌 = 2 and 𝑆𝑈(2)�퐿 hyperchargeless triplet fermions, respec-
tively. The minimal scenario in this respect is the canonical
type I seesaw mechanism, in which the SM is extended by
a right-handed Majorana neutrinos [8–14]. The TeV-scale
seesaw mechanism has been discussed in [15–17]. Including
extra scalar fields, it has been studied in [18–21].

Various kinds of astrophysical observations, such as ano-
malies in the galactic rotation curves, gravitational lensing
effects in the Bullet cluster, and excess gamma rays (The
excess gamma rays from the galactic centers may come
from other sources like pulsars.) from the galactic centers,
have indicated the existence of DM in the Universe. The
cosmological measurements of tiny anisotropies in Cosmic
Microwave Background Radiation (CMBR) by the WMAP
and Planck Collaboration [5] suggest that the Universe is
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made of 69% dark energy, 27% dark matter, and 4% ordinary
matter.

Astrophysical and cosmological data can tell us about the
total amount/density of the DM of the Universe. There is still
no consensus onwhat it is composed of and the properties are
still unknown.The possibilities of different kinds of baryonic
or nonbaryonic DM candidates have been discussed in [22].
The weakly interacting massive particles (WIMPs) are the
best viable DM candidates. No evidence of the WIMP has
been found from the direct detection experiments such as
XENON100 [23], LUX [24, 25], and XENON1T [26]. As these
DM-nucleon scattering experiments still have not found any
signature in the detector, these experiments have ruled out
low mass (10–50GeV) regions in the parameter space of a 𝑍-
and Higgs ℎ-portal DM. Recent LUX-2016 [25] data has also
excluded the mass range 65–550GeV of a ℎ-portal fermionic
(it depends on the mixing angle between Higgs and singlet
scalar) DM model [27] and scalar DM models [27–29]. It
indicates that wemay need themulticomponentDMparticles
to explain the experimental data. We may detect these DMs
in the more efficient detector in the future experiments.
Multicomponent DM model is needed [30] to explain the
Galactic Center gamma ray excess [31] and the colliding
galaxy cluster [32–34] simultaneously. Multicomponent DM
models have been considered in [35, 36] in various models
which also include neutrino, Axion, and supersymmetric
particles. Various models with two WIMP candidates could
lead to typical signatures at differentmass scale and have been
studied in [37–58].

We add three right-handed 𝑆𝑈(2) singlet fermions and
a singlet scalar to the SM. We also impose two 𝑍2 and𝑍�耠2 symmetries. All SM and the first two fermion fields are
even under these 𝑍2 and 𝑍�耠2 transformations. The Dirac
mass terms can be formed using these fermions and the SM
neutrinos. We use type I seesaw mechanism to explain the
tiny neutrinomass-squared differences and themixing angles
which are observed by the neutrino oscillation experiments.
The third 𝑍2-odd fermion and 𝑍�耠2-odd scalar both can serve
as viable DM particles in this work. Moreover, the requisite
rate of annihilation is ensured by postulating some 𝑍2 and𝑍�耠2 preserving dimension-four and dimension-five operators
for the scalar and fermion particles, respectively. The four-
point interaction term of the extra fermions and scalar can
be obtained from other five-dimensional operators [59]. The
interaction term of the third fermion and the scalar allows
a larger region of the parameter space than what we would
have had with a single DM particle (either fermion or scalar)
alone.This interplay brings an enriched DMphenomenology
compared to the other models having fermion or scalar DM
particle.The region of DMmasses 65–550GeV of a fermionic
or scalarHiggs portal DMmodel is excluded from the present
LUX experimental data. In this model, we show that the
region with masses 50–550GeV up to 300 TeV is still allowed
by the direct search experiments. Hence, we feel a desirable
feature of our model for future study.

Theplan of the paper is as follows. In Section 2, we present
the theoretical framework of our extended singlet scalar
fermionic standard model (ESSFSM). We also discuss the

Table 1: The 𝑍2 × 𝑍�耠2 quantum numbers. 𝑢 represents the 𝑢𝑝-𝑡𝑦𝑝𝑒
quarks of the three generations 𝑢, 𝑐, 𝑡 and 𝑑 stand for the 𝑑𝑜𝑤𝑛-𝑡𝑦𝑝𝑒
quarks 𝑑, 𝑠, 𝑏. The charged leptons are denoted by 𝑙 = 𝑒, 𝜇, 𝜏with the
corresponding left-handed neutrinos ]�푙.Φ is the SM Higgs doublet.𝐺+ (𝐺0) stand for the charged (neutral) Goldstone boson. 𝐿,𝑅 stand
for left- and right-handed chirality of fermions.

Fields
Charged under 𝑆𝑈(2) × 𝑍2 × 𝑍�耠2

transformation𝑆𝑈(2) 𝑍2 𝑍�耠2
𝑄�퐿 = (𝑢�퐿𝑑�퐿) 2 1 1
𝑢�푅, 𝑑�푅 1 1 1
𝐿 = (]�푙𝑙−) 2 1 1
𝑙�푅 1 1 1
Φ = ( 𝐺+ℎ + V + 𝑖𝐺0√2 ) 2 1 1
]�푠,1, ]�푠,2 1 1 1
]�푠,3 1 −1 1𝑆 1 1 −1
diagonalization procedure to get the neutrino mass matrix
and the relic density calculation of two dark matter particles.
We show the detailed constraints on this model in Section 3.
We present our numerical results and show the allowed
region in the parameter spaces from the neutrino mass and
mixing angle, relic density, and direct detection in Section 4.
Finally, we conclude in Section 5.

2. Theoretical Framework of the Model

In this section, we give a description of our model. We
add three right-handed neutrinos and a scalar to the SM
Lagrangian. These extra particles are singlet under 𝑆𝑈(2)
transformation. We impose two 𝑍2 and 𝑍�耠2 symmetries such
that the SM fields and first two right-handed neutrinos are
even under these𝑍2 and𝑍�耠2 transformations.The third right-
handed neutrino is odd (even) under 𝑍2 (𝑍�耠2) transforma-
tion whereas the scalar field is even (odd) under 𝑍2 (𝑍�耠2)
transformation. The 𝑍2 × 𝑍�耠2 quantum numbers of the SM
fields and extra right-handed neutrinos and scalar fields are
summarized in Table 1. The 𝑍2 × 𝑍�耠2-even neutrinos are free
to mix with the usual SM neutrinos and therefore generate
the neutrinomasses through type I seesawmechanism.These
symmetries prohibited the coupling of an odd number of the
third fermion and/or the scalar particle to the SM particles.
The part of Lagrangian that is invariant under 𝑆𝑈(2)×𝑈(1)×𝑍2 × 𝑍�耠2 transformation is given by

L = 𝑖2]�푠,�푎�𝜕]�푠,�푎 − 12𝑀]𝑠,𝑎]�푠,�푎]
�푐
�푠,�푎 + 12𝜕�휇𝑆𝜕�휇𝑆 − 𝜇�푆2 𝑆2

− 𝜆�푆4! 𝑆4,
(1)
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where summation over 𝑎 is implied, with 𝑎 = 1, 2, 3 denoting
generation indices for the right-handed fermions. 𝑐 stands for
the charge conjugation. The mutual interaction terms of the
SMHiggs, left-handed leptons, the extra scalar, and fermions
are given by

Lmix = −𝑌],�푎�푏𝐿�푎Φ�푐]�푠,�푏 −𝑀]𝑠 ,�푚�푛]�푠,�푚]
�푐
�푠,�푛 − 𝜅2 |Φ|2 𝑆2

+ 𝐶ℎ,�푚�푛Λ ℎ,�푚�푛 |Φ|2 ]�푠,�푚]�푐�푠,�푛 + 𝐶ℎ,�푎Λ ℎ,�푎 |Φ|2 ]�푠,�푎]�푐�푠,�푎
+ 𝐶�푆,�푚�푛Λ �푆,�푚�푛 𝑆2]�푠,�푚]�푐�푠,�푛 + 𝐶�푆,�푎Λ �푆,�푎 𝑆2]�푠,�푎]�푐�푠,�푎 + h.c.

(2)

Φ is the SM Higgs doublet, Φ ≡ (𝐺+, (V + ℎ + 𝑖𝐺0)/√2)�푇,
where 𝐺± and 𝐺0 are the Goldstone bosons, and ℎ is the SM
Higgs. Φ�푐 stands for charge conjugate of Φ. 𝐿 ≡ (]�푙, 𝑙)�푇 with𝑙 = 𝑒, 𝜇 and 𝜏 being the left-handed lepton doublet. 𝑏 = 1, 2
does not assume the third index as the third fermion is odd
under 𝑍2-symmetry. The indices 𝑚 ̸= 𝑛 = 1, 2; hence the
second term in (2) generates the mixing mass term between
two 𝑍2- and 𝑍�耠2 -even neutrinos. After electroweak (EW)
symmetry breaking, the fourth term, that is, the dimension-
five operator also gives an additional mixing mass term. The
Higgs to extra neutrinos couplings are also generated from
the dimension-five operators (fourth and fifth term in (2)).
This will lead to the Higgs boson decay into these extra
neutrons. As the 𝑍2- and 𝑍�耠2-even neutrinos are considered
to be very heavy, the partial decay width of the Higgs to these
neutrinos is zero. As we are allowing these dimension-five
operators in the Lagrangian, for completeness, we also add
the other dimension-five operators (𝐶�푆,�푚�푛/Λ �푆,�푚�푛)𝑆2]�푠,�푚]�푐�푠,�푛
and (𝐶�푆,�푎/Λ �푆,�푎)𝑆2]�푠,�푎]�푐�푠,�푎, which in turn give more room in
the parameter space to maneuver. In this work, we focus
on the dominant dimension-five operators related to the
neutrino and Higgs portal dark matter physics, that is, those
involving at least one Higgs and neglecting other possible
operators which are allowed by the SM gauge and 𝑍2 × 𝑍�耠2
symmetries. Λ’s are the cut-off scales for the new physics.
In our calculation, we assume Λ ℎ,�푎 = Λ �푆,�푎 = Λ ℎ,�푚�푛 =Λ �푆,�푚�푛 ≡ Λ. 𝐶ℎ,�푎, 𝐶�푆,�푎, 𝐶ℎ,�푚�푛, and C�푆,�푚�푛 are dimensionless
coupling parameters. The cut-off scale Λ and 𝐶ℎ,12 and the
Yukawa couplings 𝑌],�푎�푏 are important to explain the neutrino
oscillation observables, whereas Λ, 𝐶ℎ,3, 𝐶�푆,3, and 𝜅 could
change the masses and coupling strength of DM particles to
the Higgs. In addition, these could alter the self-annihilation
interaction probability of the heavier DM particles into the
lighter DM particles. Hence, these parameters play a crucial
role to calculate the relic density of the DM particles ]�푠,3 and𝑆. The masses of the DM particles are given by

𝑀]𝑠,3 = 𝑀]𝑠,3 − 𝐶ℎ,3Λ V2,
𝑀2�푆 = 𝜇2�푆 + 12𝜅V2,

(3)

and the coupling strength of the DM candidates with the
Higgs can be written as

ℎ]�푠,3]�푠,3 : 𝐶ℎ,3Λ ,

ℎ𝑆𝑆 : 𝜅2V.
(4)

The parameter 𝐶�푆,3 is responsible for the annihilation of𝑆𝑆 ↔ ]�푠,3]�푠,3. This process reduces the number density of the
heavier DM till the freeze-out.

It is also important to note that the gauge boson𝐵�휇 and/or𝑊�푖�휇 interactions terms are not present in the kinetic part of the
Lagrangian (see (1)). Therefore, this model does not have any
extra gauge-boson contribution to theDM-nucleus scattering
cross section which is allowing larger region in the parameter
space from the direct detection experiments. This is the
specialty of the presence of real singlet scalar and fermion in
the ESSFSM.

2.1. Diagonalization Procedure of Type I Seesaw Matrix and
Nonunitarity of PMNS Matrix. Here, we show the diagonal-
ization procedure [60, 61] of type I seesaw mechanism to
generate tiny neutrino mass-squared difference [62, 63]. In
this model, 5×5 neutrinomass matrix in the basis (]�푙, ]�푠) can
be written as

𝑀] = ( 0 𝑀�퐷𝑀�푇�퐷 𝑀]𝑠

) , (5)

where the Dirac mass𝑀�퐷 andMajorana mass𝑀]𝑠 terms can
be written as

𝑀�퐷 = (𝑌],11V 𝑌],12V𝑌],21V 𝑌],22V𝑌],31V 𝑌],32V),
𝑀]𝑠 = (𝑀11 𝑀12𝑀12 𝑀22) .

(6)

Here,𝑀11 = 𝑀]𝑠 ,1 − (𝐶ℎ,1/Λ)V2,𝑀22 = 𝑀]𝑠 ,2 − (𝐶ℎ,2/Λ)V2,
and𝑀12 = 𝑀]𝑠 ,12 − (𝐶ℎ,12/Λ)V2

Using 5×5 unitary matrices [64, 65], one can diagonalize
the neutrino mass matrix𝑀] in (5). It is given by

𝑈�푇𝑀]𝑈 = 𝑀diag
] , (7)

where𝑀diag
] = diag(𝑚�푖,𝑀�푗) with mass eigenvalues 𝑚�푖 (𝑖 =1, 2, 3) for three light neutrinos and 𝑀�푗 (𝑗 = 1, 2) for two

heavy neutrinos, respectively. In this calculation, we have two
nonzero mass eigenstates of light neutrinos. We consider 𝑚1
to be zero. In the limit 𝑀2�퐷 ≪ 𝑀2]𝑠 , the matrix 𝑈 can be
expressed as follows [61]:

𝑈 = 𝑊𝑇 = (𝑈�퐿 𝑉𝑆 𝑈�퐻)
= ((1 − 12𝜖)𝑈] 𝑀∗�퐷 (𝑀−1]𝑠 )∗𝑈�푅−𝑀−1]𝑠 𝑀�푇�퐷𝑈] (1 − 12𝜖�耠)𝑈�푅 ),

(8)
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where 𝑈�퐿, 𝑉, 𝑆 and 𝑈�퐻 are 3 × 3, 2 × 3, 3 × 2 and 2 × 2
matrices, respectively, which are not unitary. The unitary𝑊
matrix which brings the full 5×5 neutrinomatrix in the block
diagonal forms as

𝑊�푇( 0 𝑀̂�퐷𝑀�푇�퐷 𝑀]𝑠

)𝑊 = (𝑚light 00 𝑀heavy
) . (9)

Another unitary matrix 𝑇 = diag(𝑈], 𝑈�푅)matrix again diag-
onalizes the mass matrices in the light and heavy sectors are
appearing in the upper and lower block of the block diagonal
matrix, respectively. In the above-stated limit, one can then
write the light neutrino mass matrix to the leading order as

𝑚light = 𝑀�퐷𝑀−1]𝑠 𝑀�푇�퐷. (10)

In (8), 𝑈�퐿 corresponds to the PMNS matrix which ac-
quires a nonunitary correction (1 − 𝜖/2) due to the presence
of heavy neutrinos. The characterizations of nonunitarity are
denoted by the notations 𝜖 and 𝜖�耠. These are given by the
following [60]:

𝜖 = 𝑀∗�퐷𝑀−1∗]𝑠 𝑀−1]𝑠 𝑀�푇�퐷,𝜖�耠 = 𝑀−1]𝑠 𝑀�푇�퐷𝑀∗�퐷𝑀−1∗]𝑠 . (11)

2.2. Relic Density Calculation of the Two-Component Dark
Matter. In order to calculate the relic abundance of two-
component DM in the present formalism, we need to solve
the relevant coupled Boltzmann equations [66]:𝑑𝑛]𝑠,3𝑑𝑡 + 3𝐻𝑛]𝑠,3

= − ⟨𝜎V⟩]𝑠,3]𝑠,3→�푋�푋 (𝑛2]𝑠,3 − 𝑛2]𝑠,3eq)
− ⟨𝜎V⟩]𝑠,3]𝑠,3→�푆�푆(𝑛2]𝑠,3 − 𝑛2]𝑠,3eq𝑛2�푆eq 𝑛2�푆) ,𝑑𝑛�푆𝑑𝑡 + 3𝐻𝑛�푆

= − ⟨𝜎V⟩�푆�푆→�푋�푋 (𝑛2�푆 − 𝑛2�푆eq)
− ⟨𝜎V⟩�푆�푆→]𝑠,3]𝑠,3 (𝑛2�푆 − 𝑛2�푆eq𝑛2]𝑠,3eq 𝑛2]𝑠,3) ,

(12)

where 𝑍2-even (SM, ]�푠,2 and ]�푠,2) particles are denoted by𝑋.
In addition, the heavier 𝑋 can decay into lighter particles.⟨𝜎V⟩ is the average effective annihilation cross sections of the
DM candidates which include all 𝑛 ≥ 2-body final state par-
ticles. The first term on the right-hand side of (12) indicates
the contribution of annihilation to SM particles whereas the
second term in both equations takes care of the contribution
of the self-scattering of DM particles.The contributions from
the processes ]�푠,3𝑆 → ]�푠,3𝑆 are zero as it does not alter the
number density. In the very early Universe, both of the DM
candidates are in thermal and chemical equilibrium. In the

nonrelativistic case, if the temperature𝑇of theUniverse is less
than the DM masses, then the equilibrium number density
takes the form 𝑛DMeq = (𝑀DM𝑇/2𝜋)3/2 exp(−𝑀DM/𝑇). As
the temperature was falling down, some species are decou-
pled and contributing to the relic density. The heavier DM
candidate particle decouples earlier than the lighter one. In
the present Universe, they both were frozen out and giving a
partial contribution in the total relic abundance Ωtot. If the
individual contributions of the fermion and scalar are Ω]𝑠,3
andΩ�푆, then the total relic abundance Ωtot can be written asΩDM = Ω]𝑠,3 + Ω�푆, (13)

where Ω]𝑠,3 = (𝑀]𝑠,3/𝜌�푐)𝑛]𝑠,3(𝑇0) and Ω]𝑠,3 = (𝑀�푆/𝜌�푐)𝑛�푆(𝑇0).𝜌�푐 ∼ 1.05 × 10−5ℎ2 GeVcm−3 stands for the critical density of
the present Universe; ℎ = 0.72 is the Hubble parameter. 𝑛(𝑇0)
is the number density of the DM at temperature 𝑇0 today.

One can note that if the masses of the DM particles
are degenerate, then the Boltzmann equations (12) become
decoupled; that is, self-scattering cross sections of the process
]�푠,3]�푠,3 ↔ 𝑆𝑆 are very small compared to the self-annihilation
cross section of the DM. These equations describe the evo-
lution of each DM independently. In our calculation, we use
themicrOMEGAs [66] and solve the above coupledBoltzmann
equations to calculate the individual number density of the
DM particles in the present Universe.

3. Constraints on the Model

The parameter spaces of this model are constrained from
various theoretical considerations like absolute vacuum sta-
bility, perturbation, and unitarity of the scattering matrix.
The absolute stability of the Higgs potential demands that
the scalar potential should not approach to negative infinity
along any direction of the field space at large field values.The
required conditions are 𝜆 > 0, 𝜆�푆 > 0, and 𝜅 > −√2𝜆𝜆�푠/√2,
where 𝜆 is the Higgs quartic coupling [29]. Lagrangian of our
model remains perturbative [67, 68] for |𝜆| ≲ 4𝜋/3, |𝜅| ≲8𝜋, |𝜆�푆(Λ)| ≲ 8𝜋, 𝐶ℎ,�푎 ≲ 8𝜋, and 𝐶�푆,�푎 ≲ 8𝜋. The parameters
of the scalar part of Lagrangian (see (1) and (2)) of this model
are constrained by the unitarity of the scattering matrix (S-
matrix). One can obtain the S-matrix by using various scalar-
scalar, gauge boson-gauge boson, and scalar-gauge boson
scattering amplitudes. We use the equivalence theorem [69–
71] to reproduce the S-matrix for this model [68].The unitary
bounds demand that the eigenvalues of this matrix should
be less than 8𝜋 which imply 𝜆 ≤ 8𝜋 and |12𝜆 + 𝜆�푆 ±√16𝜅2 + (−12𝜆 + 𝜆�푆)2| ≤ 32𝜋.

The observed neutrino mass-squared differences and
mixing angles by the neutrino oscillation experiments put
stringent constraints on the parameter space of this model.
The Higgs signal strength and the decay width measured by
the LHC, the relic density, and direct-indirect searches of DM
all alone restrict the allowed parameter space considerably.
We discuss these in the following.

3.1. Bounds from theNeutral FermionMass andMixingAngles.
The global analysis of neutrino oscillation measurements
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provides the neutrino oscillation parameters for both normal
and inverted hierarchies scenario. These can be found in
[62, 63]. The measurements of the electroweak precision
observables along with other experimental data put severe
constraints on the light neutrino mixing matrix 𝑈�퐿. The
detailed analysis has been given in Refs [72, 73].

The L3 collaboration at the LEP had analyzed the decay
channels 𝑁 → 𝑒±𝑊∓ to find the evidence of the heavy neu-
trino. No signature had been found for the mass range in
between 80GeV ( with |𝑉�훼�푖|2 ≤ 2 × 10−5) and 205GeV ( with|𝑉�훼�푖|2 ≤ 1) [74]. 𝑉 is the light-heavy mixing matrix, given
in (8). This puts a lower bound on the mass of the heavy
neutrino and the mixing matrix elements 𝑉�훼�푖. |𝑉�훼�푖|2 ≳ 10−5
and 3 < 𝑀1,2 < 𝑀�푍 regions have also been ruled out from
the invisible decay width of the 𝑍-boson [75–77].

The experimental data [78] Br(𝜇 → 𝑒𝛾) < 4.2 × 10−13 of
the flavor changing decay processes has restricted the arbi-
trary Yukawa coupling 𝑌]. In this model, the branching ratio
can be written as follows [79]:

Br (𝜇 󳨀→ 𝑒𝛾) = 3𝛼8𝜋 󵄨󵄨󵄨󵄨󵄨𝑉�푒�푖𝑉†�푖�휇𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨2 , (14)

where 𝑥 = (𝑀2�푖 /𝑀2�푊), 𝑖 = 1, 2, stands for the mass of heavy
neutrinos and 𝑓(𝑥) is the slowly varying function can be
found in [79].

3.2. Bounds from the Higgs Signal Strength at the LHC.
The dominant contribution of the Higgs ℎ-production cross
section is coming through the gluon fusion. In this work, the
Higgs to diphoton signal strength 𝜇�훾�훾 can be written as

𝜇�훾�훾 ≃ 𝜎 (𝑔𝑔 → ℎ → 𝛾𝛾)ESSFSM𝜎 (𝑔𝑔 → ℎ → 𝛾𝛾)SM
= 𝜎 (𝑔𝑔 → ℎ)ESSFSM𝜎 (𝑔𝑔 → ℎ)SM Br (ℎ → 𝛾𝛾)ESSFSM

Br (ℎ → 𝛾𝛾)SM . (15)

The production cross section of ℎ is the same as in the SM.
Then 𝜇�훾�훾 can be written as

𝜇�훾�훾 = Γtotalℎ,SMΓtotal
ℎ,ESSFM

, as
Γtotalℎ𝑀ℎ 󳨀→ 0. (16)

As we do not have any extra charged particle, the decay widthΓ(ℎ → 𝛾𝛾) is the same as in the SM. If the extra particles
(scalar and fermions) have the mass less than half of the
Higgs mass𝑀ℎ/2, then the diphoton signal strength could be
changed due to the invisible decay of the Higgs boson. Using
the global fit analysis [80] that such an invisible branching
ratio is less than ∼20%, so the decay width in (16) provides a
suppression of about ∼80–100 percent.The present combined
value of𝜇�훾�훾 by theATLAS andCMS collaborations is 1.14+0.19−0.18
[81]. As the partial decay width of the Higgs to the heavy𝑍2- and 𝑍�耠2-even neutrinos is zero, it cannot alter 𝜇�훾�훾. We
also check that the mass region 𝑀DM < 55GeV of the 𝑍�耠2-
odd scalar and 𝑍2-odd neutrino DM along with |𝜅| ≳ 0.004
and/or |𝐶ℎ,3| ≳ 0.2 is excluded at 2𝜎.

3.3. Relic Density and Direct Search Limits. The relic density
of DM all alone restricts the allowed parameter space.
The parameter space of this model should also satisfy the
combined WMAP and Planck [82] imposed dark matter
relic density constraint Ωtotℎ2 = 0.1198 ± 0.0026. In our
calculation, we use the micrOMEGAs [66] to calculate the total
relic density of the two DM particles. In this model, we find
the correct relic density for the dark matter particles mass𝑀DM < 55GeV. However, these regions in the parameter
spaces are ruled out from the invisible Higgs decay width and
direct search data. In the following, we discuss the detailed
constraints from direct detection of two-component dark
matter particles.

The WIMPs, in particular, those that have nonvanishing
weak interactions with the SM and therefore can be tested.
They are actively being searched for in the direct detection
experiments which look for their nuclear scatterings in the
deep underground detectors. If the DM scatters from atomic
nucleus, then it leaves their signature in form of a recoiled
nucleus. However, no confirmed detection of the DM in the
experimental laboratory has beenmade so far. If a discovery is
within the reach of a near-future direct detection experiment,
then these experiments will be able to constrain the WIMP
properties such as its mass, DM-nucleus scattering cross
section, and possibly spin.

As we have two-component DM, it is very difficult
to distinguish these DM particles in the direct detection
experiment. The local number density of the DM particles
in the solar neighborhood is important in determining the
total number of event rate in the experiment. It is not entirely
straightforward to determine which component dominates
the event rate.There have been only a fewworks regarding the
direct detection of multicomponent DM [83–85]. The signal
rate generated from two-component DM in the detector
is different compared to a single-component DM and it
completely depends on the DMmasses and local densities in
the solar neighborhood. The particle masses will determine
their individual rates (see section 3.2 of [85]) that can
distinguish one- or two-component DM if the DM particles
have different masses.

Presently, nonobservation of DM in the direct detection
experiments such as XENON100 [23], LUX [24, 25], and
XENON1T [26] sets a limit on WIMP-nucleon scattering
cross section for given DM masses. The most stringent
bound is set by the XENON1T [26] and LUX 2016 [25]
exclusion data. The region above the green line in Figure 2
is excluded. We translate the LUX exclusion data into some
allowed or excluded zones in the parameter spaces of our
model comprising𝐶ℎ,3, 𝑀]𝑠,3 , 𝜅, 𝑀�푆 and𝐶�푆,3. In thismodel,
the Feynman diagrams for the scattering of DM particles
]�푠,3, 𝑆 with the nuclei are shown in Figure 1. In the limit𝑀DM(𝑀]𝑠,3 ,𝑀�푆) ≫ 𝑀�푁, the fermion-nucleon and scalar-
nucleon scattering cross sections are roughly given by

𝜎]𝑠,3 ,�푁 = 𝑋�푁( 𝐶ℎ,3Λ𝑀]𝑠,3
)2 ,

𝜎�푆,�푁 = 𝑋�푁2 ( 𝜅𝑀�푆)
2 , (17)
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Figure 1: (a) Lowest order Feynman diagram for singlet neutrino-nucleus elastic scattering via the Higgs mediation. (b) A similar diagram
for the singlet scalar-nucleus elastic scattering.

where 𝑋�푁 = (𝑚�푟𝑚�푁𝑓/√𝜋𝑀2ℎ)2 and 𝑓 ≈ 0.3 is the form
factor of the nucleus. 𝑚�푟 represents the reduced mass of the
nucleus and the scattered DM particle.

Using (17), we calculate the DM-nucleon cross sections
for the two dark matter components of different mass. The
region in the parameter space for which DM-nucleon cross
section falls above the green line in Figure 2 is ruled out by
the recent LUX-2016 [25] exclusion data. The region above
the purple line is ruled out by the recent XENON-2017 [26]
data.

4. Numerical Results

We explain the neutrino mass using type I seesaw mech-
anism. We show that our results are compatible with the
various constraints such as the charged lepton flavor violating
decay 𝜇 → 𝑒𝛾. In addition, the extra 𝑍2-odd fermion and
the 𝑍�耠2-odd scalar both can serve as viable DM particles
producing the relic density in the right ballpark. We show
that the regions in the parameter space are consistent with the
Planck/WMAP as well as LUX-2016 and XENON-2017 data.
In this study,we useFeynRules [86] alongwithmicrOMEGAs
[66] to compute the relic density of the DM candidates ]�푠,3
and 𝑆. We will discuss these in the following.

4.1. NeutrinoOscillation Parameters. Weobtain tiny neutrino
mass through type I seesaw mechanism. We use the input
parameters such as the new Yukawa couplings 𝑌],�푖�푗 (𝑖 = 1, 2, 3
and 𝑗 = 1, 2), dimensionless couplings 𝐶ℎ,1, 𝐶ℎ,2, 𝐶ℎ,12, and
the mass terms 𝑀]𝑠 ,1, 𝑀]𝑠,2, and 𝑀]𝑠 ,12. In our calculation,
we assume cut-off scale for the new physics is Λ = 10TeV.
In order to explain successful leptogenesis [87, 88], we need
complex Yukawa coupling to have nonzero CP-violation.
The detailed discussion can be found in [61]. The presence
of the extra Majorana neutrinos will allow for neutrinoless
double 𝛽-decay [12]. In this work, we use the nonzero and
real Yukawa couplings 𝑌],12 = 𝑌],23 (≡y]). Other Yukawa
couplings are taken to zero.We chose the values of parameters𝑀]𝑠 ,12 and𝐶ℎ,12 such that the off-diagonal components of the

heavy mass matrix𝑀]𝑠 become zero (see (6)). We consider
three heavy neutrino masses O(1011)GeV, O(105)GeV, and
O(103)GeV and the corresponding three different Yukawa
couplings 𝑦] to obtain tiny the neutrino masses. We present
these benchmark points and the corresponding low-energy
variables in Table 2. These variables are consistent with the
experimental data. As the cut-off scale for the new physicsΛ is very large, the dimensionless couplings 𝐶ℎ (within per-
turbative limit) could not alter the neutrino mass consider-
ably.

4.2. New Regions in the DM Parameter Space. We have seen
that the region in the parameter space𝑀DM < O(500)GeV
of a single Higgs portal WIMP DM particle is ruled out by
the recent LUX experiment. Hence, it becomes important
to show that these regions in the parameter space are still
alive in the ESSFSM. In Table 3, we present five benchmark
points for this model which are producing right relic density
and allowed by the recent nonobservation of DM-nucleon
scattering in the LUX experiment. The DM mass regions
below the half of the Higgs mass are also consistent with
the Higgs invisible decay width [80]. If the mass difference
between the fermionic and scalar DM particles is very large,
then it is expected that lighter one will dominate over the
heavier one in contributing to the relic density. For 𝑀]𝑠,3 ≃𝑀�푆 and tiny interaction coupling 𝐶�푆,3, the contribution of
these DM particles is nearly equal to the total relic density,
whereas the interaction coupling 𝐶�푆,3 ∼ O(1) and a huge
mass difference in the DM particles with particular Higgs
portal couplings 𝜅 and 𝐶ℎ,3 can produce equal relic density
in the Universe. For example, see benchmark points I−IV.
The lighter DMmass near 60GeV will always dominate over
the heavier one because the contribution of self-annihilation
processes DM, DM → 𝑏𝑏 into the relic density is larger
than the other processes. The other processes can dominate
over the DM, DM → 𝑏𝑏 process for the choice of the
large Higgs portal coupling 𝜅. In this case, the relic density
and the direct detection data restrict such a choice of𝜅.
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Table 2:Three lists of benchmark points used in our analysis. Using these BPs, we have obtained the outputs for ourmodel which are satisfying
all the low energy constraints.

Parameters Benchmark points for 𝑍2- and 𝑍�耠2-even fermions
BM-I BM-II BM-III𝑀11 GeV 1.2 × 1011 7.1 × 105 6.9 × 103𝐶ℎ,1 0.1 0.01 0𝑀22 GeV 1.4 × 1012 2.36 × 105 2.41 × 103𝐶ℎ,2 0.1 0.01 0𝑀12 GeV 0 0 0𝑦] 0.01 10−5 10−6

Outputs Corresponding low-energy variablesΔ𝑚221/10−5 eV2 7.5001 7.2909 7.7197Δ𝑚231/10−3 eV2 2.55234 2.63959 2.5312𝜃12 0.5883 0.5774 0.5720𝜃23 0.7953 0.7854 0.7803𝜃13 0.1476 0.1473 0.1469𝛿PMNS rad 10−5 10−4 10−3𝛼 rad 1.7 1.8 1.9𝑚�푖 eV 0, 0.0087, 0.0505 0, 0.0085, 0.0514 0, 0.0088, 0.0505
Br(𝜇 → 𝑒𝛾) 3.0 × 10−48 1.9 × 10−37 1.69 × 10−33
Table 3: Lists of benchmark points used in our analysis. Using these BPs we obtain the relic density in the right ballpark allowed by LUX-2016
direct detection data.

Benchmark points Parameters Relic densityΩℎ2 Percentage of DM DM-N cross section in [zb]𝑀]𝑠,3 GeV 𝐶ℎ,3 𝑀�푆 GeV 𝜅 𝐶�푆,3 Fermion Scalar Fermion Scalar
BP-I 260 0.05 59 0.0015 0.1 0.1271 39.12 61.88 0.33 0.0054
BP-II 130 0.01 60 0.001 0.1 0.1263 40.68 59.32 0.013 0.0023
BP-III 86 −0.01 59.8 0.0012 0.1 0.1129 53.10 46.90 0.013 0.0033
BP-IV 62 −0.01 60.9 0.0016 0.1 0.1156 69.76 30.24 0.013 0.0058
BP-V 59 0.02 250 0.0025 0.1 0.1201 99.6 0.4 0.053 0.0008
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Figure 2: WIMP-nucleon cross section versus DM mass keeping 𝐶�푆,3 = 0.1. The gray region indicates the neutrino background. Note that
each plot contains only 107 data (red) points. Larger data points can fill the gap between the red bands.
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Figure 3: Percentage of DM contributing to the total relic density. Red points correspond to the fermionic DM contributions whereas blue
points correspond to the singlet scalar.

In order to find the favored regions in the parameter
space which satisfies DM relic density constraints and the
recent LUX direct detection data, in Figure 2, we present two
contour plots of relic density Ωℎ2 in the DM-nucleon cross
section versus mass plane. The red points are consistent with
the relic density Ωℎ2 = 0.1198 ± 0.0026 within 3𝜎. We vary𝐶ℎ,3 from −0.7 to 0.7 and 𝜅 from 0 to 0.75 to obtain Figure 2.
We also fix the coupling 𝐶�푆,3 = 0.1 in these plots.

In Figure 2(a), we vary the scalar DM mass between
55GeV and 65GeV and the fermion DM mass between 40
and 1000GeV. In Figure 2(b), we take the variation of the
fermionic DM mass between 55GeV and 65GeV and the
scalar mass between 40 and 1000GeV. We find that a large
region in the parameter space satisfies the bound on WIMP-
nucleon cross section as imposed by the recent LUX-2016
and XENON-2017 experimental data. We find that the scalar
DM mass 𝑀�푆∼60Gev provides the dominant contributions
in the relic density. The contribution decreases with 𝑀�푆.
However, we need this scalar part to achieve the relic density
as observed by the WMAP/Planck. In the second case, the
fermionic contribution remains the same (∼50%) in the
region 55 ≲ 𝑀�푆 ≲ 65GeV. We show these variations of
the DM contribution in Figure 3 with the DM mass. The
red points indicate the fermionic contribution whereas blue
points stand for the scalar contribution to the correct relic
density (Ωℎ2 = 0.1198 ± 0.0026) within 3𝜎.
5. Conclusion

In this paper, using two right-handed singlet fermions, we
have explained the neutrino mass through type I seesaw
mechanism. We have chosen three representative “bench-
mark points” of three different Majorana mass parameter

spaces (∼103, 106, and 1012) and particular structure of the
Yukawa couplings matrix, that is, the Dirac mass matrix to
explain the neutrino mass-squared differences as observed
by the neutrino experiments. We have also calculated the
PMNS mixing angles and the other low-energy variables,
that is, nonunitary constraints on the PMNSmatrix and LFV
constraints from 𝜇 → 𝑒𝛾. The combinations of the new
Yukawa couplings and the heavy neutrino mass satisfied the
neutrino mass and mixing angles constraints [89].

In the presence of 𝑍2 and 𝑍�耠2 symmetries, we have also
analyzed the two-component Higgs portal self-annihilating
dark matter particles. The regions of mass 65–550GeV of
a Higgs portal fermionic or scalar dark matter models are
excluded by the recent LUX experiment. In this model, we
have shown that the regions of the parameter space with
two-component dark matter particles are still allowed from
direct search experiment and the WMAP/Planck data. For
different fermionic Higgs portal coupling 𝐶ℎ,3 and fermion
dark matter mass, we have obtained viable scalar dark matter
mass between 50GeV and ∼300 TeV. We have also obtained
the similar region of fermionic dark matter mass for different
scalar Higgs portal coupling 𝜅. The unitary bounds are
violated the dark matter mass above 300 TeV [90]. Here, we
do not intend to show that all the parameter spaces satisfy the
experimental results. Rather, in the framework of our model,
we have wanted to use the advantage of a two-component
dark matter which has a large region of parameter spaces
satisfying the constraint of various dark matter experiments.

The model ESSFSM is considered here to present the
minimal seesaw mechanism and two-component dark mat-
ters in terms of particles content. This model can explain
the observed tiny neutrino mass-squared differences and the
mixing angles in oscillation experiments. The regions in the
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parameter space are also consistent with the relic density of
dark matter observed by the Planck, WMAP experiments,
and the recent null results of the WIMPs dark matter from
the direct search LUX-2016 and XENON-2017 experiments.
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