
CDF/PHYS/BOTTOM/CDFR/10264
Version 3.

July 14, 2011

Measurements of branching fractions and CP asymmetries
in the Doubly Cabibbo Suppressed decay modes B± → D0h±

on 7 fb−1
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Abstract

The branching fractions and CP asymmetries of B− → D0K− modes allow a
theoretically-clean way of measuring the CKM angle γ. The “ADS method”[1][2]
makes use of modes where the D0 decays in a Doubly Cabibbo Suppressed (DCS):
D0 → K+π−. This is a powerful method, but the corresponding decay has not yet
been observed due to its rarity and the presence of large backgrounds.

Using a sample of about 7 fb−1 of data, we obtain evidence for the B → D0
DCS

K
signal, at a level of 3.2σ, and we perform a measurement of the direct CP asymmetry
for the DCS modes B± → D0π± and B± → D0K±.

We obtain, for the ADS parameters (definitions in the text):

RADS(π) = (2.8± 0.7 (stat.)± 0.4 (syst.)) · 10−3

RADS(K) = (22.0± 8.6 (stat.)± 2.6 (syst.)) · 10−3

AADS(π) = 0.13± 0.25 (stat.)± 0.02 (syst.)

AADS(K) = −0.82± 0.44 (stat.)± 0.09 (syst.)

R+(π) = (2.4± 1.0 (stat.)± 0.4 (syst.)) · 10−3

R−(π) = (3.1± 1.1 (stat.)± 0.4 (syst.)) · 10−3

R+(K) = (42.6± 13.7 (stat.)± 2.8 (syst.)) · 10−3

R−(K) = (3.8± 10.3 (stat.)± 2.7 (syst.)) · 10−3
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1 Introduction

Several methods have been devised, based on the partial widths of B → D0K modes, to
obtain a measurement of angle γ = arg(−VudV

∗
ub/VcdV

∗
cb):

• The GLW (Gronau-London-Wyler) method [3][4] uses D0
flav → K−π+, D0

CP+ →
K+K−, π+π− and D0

CP− → K0
sπ

0,K0
sΦ,K

0
sω.

• The ADS (Atwood-Dunietz,-Soni) method [1][2] uses D0
flav → K−π+ and the doubly

cabibbo suppressed D0
DCS → K+π−.

• The Dalitz method [2][5] uses D0
flav → K0

sπ
+π−.

All these methods require no tagging of the flavor or time-dependent measurements.
In this note we apply the ADS method. The ADS method exploits the interference

between the B− → D0K− → [K+π−]K− amplitude (color allowed b → c transition

followed by the DCS D0 decay) and the B− → D
0
K− → [K+π−]K− amplitude (color

suppressed b → u transition followed by a Cabibbo allowed D
0
decay). The observables

needed for the γ measurement are:

• RADS =
BR(B− → [K+π−]DK

−) +BR(B+ → [K−π+]DK
+)

BR(B− → [K−π+]DK−) +BR(B+ → [K+π−]DK+)

• AADS =
BR(B− → [K+π−]DK

−)−BR(B+ → [K−π+]DK
+)

BR(B− → [K+π−]DK−) +BR(B+ → [K−π+]DK+)
.

where D can be both D0 or D
0
.

AADS and RADS are related to the angle γ, rB , δB , the magnitude rD of the ratio of the

suppressed process D
0 → K−π+ over the favored D0 → K−π+, and the relative strong

phase δD between these two amplitudes, through the relations:

RADS = r2D + r2B + 2rDrB cos γ cos δB + δD (1)

AADS = 2rBrD sin γ sin δB + δD/RADS (2)

The current status of experimental knowledge is [6]:

• Babar (N(BB̄) = 467 M): RADS(K) = 0.011 ± 0.006 ± 0.002, AADS(K) = −0.86 ±
0.47+0.12

−0.16

• Belle (N(BB̄) = 772 M): RADS(K) = 0.0162±0.0042+0.0016
−0.0019, AADS(K) = −0.39±0.26+0.06

−0.04

We measured also RADS and AADS also for the B → D0π decay mode [6]. As can
be seen from the expression (1), the maximum achievable value of the asymmetry is
AADS(max) = 2rBrD/(r

2
B+r2D), where rB can be rB(DK) or rB(Dπ). While rD is known

with a good precision (r2D = (3.80 ± 0.18) · 10−3) [17] and measurements on rB(DK) are
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improving its resolution (rB(DK) = 0.103+0.015
−0.024) [7], there are no precise measurements

for rB(Dπ). Looking at the Feynman diagrams, we expect that rB(Dπ) is suppressed
by a factor |VcdVus/VudVcs| ∼ tan2 θC with respect to rB(DK): we consider the same
color suppression factor for both DK and Dπ modes and θC the Cabibbo angle. For
rB(DK) = 0.10 and rB(Dπ) = 0.005 we expect AADS(max) ≈ 0.90 for the kaon and
AADS(max) ≈ 0.16 for the pion, both different from zero.
In [6] they estimate the order of magnitude rB(π) ∼ 0.01, for which AADS(max) ≈ 0.30.

For the B → D0π mode the current experimental status is:

• Babar (N(BB̄) = 467 M): RADS(π) = 0.0033± 0.0006± 0.0004, AADS(π) = 0.03±
0.17 ± 0.04

• Belle (N(BB̄) = 772 M): RADS(π) = 0.00328±0.00037+0.00022
−0.00023, AADS(π) = −0.04±

0.11+0.01
−0.02

In this note we present the analysis of these modes using 5 fb−1. We performed a
simultaneous unbinned Maximum Likelihood fit of all modes mentioned above, combining
mass and particle identification information. This is similar to the method used in the
DCP analysis [8][9] and uses most of the same tools.

2 Data sample

To perform the analysis we need to reconstruct the following decays:

• CF: B− → D0
CFh

− → [K−π+]D h− + c.c.

• DCS: B− → D0
DCSh

− → [K+π−]D h− + c.c

• CS: B−
CS → D

0
h− → [K+π−]D h− + c.c.

where CF is the Cabibbo Favored mode, h can be π or K, DCS means Doubly Cabibbo
Suppressed and CS is Color Suppressed.
Experimentally there is no distinction between DCS and CS decays, as they decay exactly
in the same final state. They make up a single sample that in the following we will call
“DCS” for brevity.

Our data sample was collected by the B CHARM trigger until July 2010, Period 0 to
Period 31. We used the standard good run list following the prescription of the B-Group
(Good Run list V37, goodrun b bs nocal nomu.list). The integrated luminosity of the
sample is about 7 fb−1. The offline version used is the 6.1.4 and the datasets used are:
xbhdid, xbhdih, xbhdii, xbhdij, xbhdik, xbhdfm, xbhdfn and xbhdfp.

The candidates B → D0π and B → D0K are reconstructed from the B-DPi-KPi block
of BStntuple.

The relevant cuts applied in this block are:

- minimum B mass = 4.40 GeV/c2
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- maximum B mass = 6.60 GeV/c2

- minimum D0 mass = 1.770 GeV/c2

- maximum D0 mass = 1.970 GeV/c2

- maximum χ2 = 25

- set Mass Constraint

- Include Wrong Sign.

Each D0 candidate is reconstructed with both possible Kπ mass assignments. Only
one candidate is kept in each case, based on the reconstructed masses (see next section),
leading to two mutually exclusive samples “CF” and “DCS”.

3 Cuts Optimization

Due to the smallness of the DCS Branching Ratio (∼ 3.5 · 10−3 times the CF Branching
Ratio), the main issue for this analysis is the suppression of the backgrounds.

3.1 Basic requirements

The cuts optimization has been performed on 5 fb−1. In Fig. 1 we can see the distribution
of the B candidate masses for the two samples, after the preliminary cuts listed below.
A B → D0π CF signal is visible, while the DCS signal appears to be buried in the
combinatorial background.

• B decay length significance:
Lxy(B)

σLxy(B)
≥ 8;

• B decay length error: σLxy(B) ≤ 0.01;

• B impact parameter: |d0(B)| ≤ 0.008 cm;

• B transverse momentum: pt(B) ≥ 5 GeV/c2;

• D decay length measured with respect to the B decay vertex: Lxy(D)B ≥ −0.015
cm;

• ∆R =
√

∆Φ2 +∆η2 between the track from B and the D0: ∆R ≤ 2;

• Eta of the track from B: |η| ≤ 1.;

• Eta of the tracks from D: |η| ≤ 1.;

• transverse momentum of the track from B: pt ≥ 1 GeV/c2;

4



]2 mass [GeV/cππK
4.8 5.0 5.2 5.4 5.6 5.8

2
E

ve
nt

s 
pe

r 
10

 M
eV

/c

0

5000

10000

15000

20000

 + c.c.-π] +π - [K→ -π CF
0 D→ -B

Cabibbo Favored

-1 = 7 fb
int

CDF Run II Preliminary L

]2 mass [GeV/cππK
4.8 5.0 5.2 5.4 5.6 5.8

2
E

ve
nt

s 
pe

r 
10

 M
eV

/c

0

2000

4000

6000

8000

 + c.c.-π] -π + [K→ -π DCS
0 D→ -B

Doubly Cabibbo Suppressed

-1 = 7 fb
int

CDF Run II Preliminary L

Figure 1: Invariant mass distribution of B− → D0π− CF on the left and DCS on the right after
preliminary cuts.

We also apply three cuts (one of selection + two vetos) to the D0 mass. We apply cuts
symmetrically to both CF and DCS samples to ensure equal selection efficiency. Indeed,
the strict similarity between CF and DCS signals is a strong point of this analysis.

• the final cut value for the D0 mass is obtained in the optimization procedure 3.2

• veto cut of 4σ on Wrong Sign (WS) D0 mass assignment:
M(D0

WS) ≤ 1.8245, M(D0
WS) ≥ 1.9045.

If the correct mass assumption (RS) to the tracks forming a D0 is Kπ, we calculated,
for each event, also the invariant mass in the assumption of πK (WS). In Fig. 2 is
shown the distribution of the correct mass assignment (y-axis) vs the wrong sign
(x-axis) for DCS. The veto cuts a slice in the x-axis removing the events that can
have both right sign and wrong sign assignment.

• veto cut of 4σ on the D0 invariant mass constructed with one track from D0 and
the track from B:
M(D0

KπB
) ≤ 1.8245, M(D0

KπB
) ≥ 1.9045.

This cut insure that CF events passing the DCS selection, in which the invariant
mass constructed with a track from B and the kaon from D0 is peaked on D0 mass,
are removed. The vice versa is also applied.

To have a good agreement between MC and data we applied offline trigger cuts, re-
quiring the confirmation of “Scenario A” for one of the two tracks from D0 and the track
from B. These cuts have the only aim to remove “volunteers” tracks from data, that are
not simulated in MC.

5



D0 WS Mass
1.2 1.4 1.6 1.8 2 2.2 2.4

D
0 

D
C

S
 M

as
s 

1.7

1.75

1.8

1.85

1.9

1.95

2

RIGHTmass_vs_WRONGmass_cutB

Entries  53228
Mean x   1.872
Mean y   1.851
RMS x  0.1769
RMS y  0.04671
Integral   5.161e+04
Skewness x  -0.2949
Skewness y  0.2497
       0       8       1

     900   51610     705
       0       3       1

RIGHTmass_vs_WRONGmass_cutB

Entries  53228
Mean x   1.872
Mean y   1.851
RMS x  0.1769
RMS y  0.04671
Integral   5.161e+04
Skewness x  -0.2949
Skewness y  0.2497
       0       8       1

     900   51610     705
       0       3       1

RIGHT mass vs WRONG mass

Figure 2: Invariant mass distribution of D0 candidate in the Kπ hypothesis vs πK hypothesis
(wrong-sign).

3.2 Details on cuts optimization

The cuts optimization is focused on finding an evidence for B → D0
DCSπ mode. Since

the sample B → D0
CFπ has the same topology of the DCS one, we performed the cuts

optimization on CF mode.
We chose the B → D0π signal region between ±2σ around B mass (5.243 GeV/c2 ≤
M(B) ≤ 5.315 GeV/c2), sideband subtracted, and, as background region, the mass window
5.4 GeV/c2 ≤ M(B) ≤ 5.8 GeV/c2, where only combinatorial background and no physics
background appears.

We maximized the figure of merit
S

1.5 +
√
B

[10], where S is the signal and B the

background number of events.
The variables used for the optimization are:

• D0 Mass: M(D);

• B decay length significance:
Lxy(B)

σLxy(B)
;

• B impact parameter: |d0(B)|

• B tridimensional vertex quality: χ2
3D(B)

• ∆R between the track from B and the D0

• B Isolation (Cone of Radius 1): Isol1;

• B Isolation (Cone of Radius 0.4): Isol0.4;

• B pointing angle: PA(B);

• D angular distribution: cos θ∗D;

• Difference κ(KD)− κ(πD).
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All these variables have a different distribution for signal and background, so they can
distinguish signal from background. Figs. 3 and 4 show the distributions for all variables:
in black for signal events (sideband subtracted) and in red for the background.
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Figure 3: From left to right we have the distribution of variables D0 Mass,
Lxy(B)
σLxy(B)

, |d0(B)| and
χ2
3D(B) in the signal region (in black) and in the background region (in red).
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The two Isolations at radius 1. and 0.4 have a small correlation and together can
remove better the background than using only one of them.
The Pointing Angle is defined as the angle between the 3-dimensional momentum of B
and the 3-dimensional decay lenght. Signal events will have small pointing angles, while
background events will have bigger angles.
The angular distribution of D0 is defined as the cosine of the angle between the D0 in the
Center of Mass (CM) of the B, and the flight direction of B.

The variable κ(i), called kaoness, is defined as κ(i) =
dE/dxmeas(i) − dE/dxexp(π)

dE/dxexp(K)− dE/dxexp(π)
, where

i = K,π from D0. The kaoness is centered in 0 if the track is a pion and in 1 if it is a
kaon. We verified that the difference has a greater power separation than using single κ.

The cuts selection that maximize the figure of merit is the following:

• D0 mass: M(D) ≤ 1.8645 + 1.5× 0.01 and M(D) ≤ 1.8645 − 1.5 × 0.01;

• B decay length significance:
Lxy(B)

σLxy(B)
≥ 12;

• B impact parameter: |d0(B)| ≤ 0.005 cm;

• B tridimensional vertex quality: χ3D ≤ 13;

• ∆R =
√

∆Φ2 +∆η2 between the track from B and the D0: ∆R ≤ 1.5;

• B Isolation (Cone 1): Isol ≥ 0.4;

• B Isolation (Cone 0.4): Isol ≥ 0.7;

• B pointing angle: PA(B) ≤ 0.15;

• D angular distribution: | cos(θ∗D)| ≤ 0.6;

• Difference κ(KD)− κ(πD) ≥ −1.

We added also a cut on the D0 decay length measured with respect to the B decay
vertex (Lxy(D)B).
This cut is not included in the optimization procedure, since it is chosen to suppress the
physics background B to three body decay. As can be seen in Fig. 5, three body decays
(red curve) have a smaller Lxy(D)B than charm B decays (black curve).

Adding the cut:

• Lxy(D)B ≥ 0.01

we verified from MC that 3-body backgrounds are removed of about 75% and signal of
about 20%.
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Figure 5: Distribution of Lxy(D)B of a three body decay (red curve) and a charm B decay (black
curve).

The resulting invariant mass distributions, with pion mass assignment to the track from
B, were reported in Fig. 6, the invariant mass distribution of B− → D0π− → [K−π+]Dπ

−

(CF) and B− → D0π− → [K+π−]Dπ
− (DCS).

We can see that the combinatorial background is almost reduced to zero, as was our
aim.
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Figure 6: Invariant mass distribution of B− → D0π− CF on the left and DCS on the right after
optimized cuts.
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4 MC simulation

Monte Carlo sample of B− → D0h− has been generated with final state radiation (loss
of energy from soft photon emission from the charged final state particles) modeled with
PHOTOS as implemented in EvtGen. We used the standard B-Monte Carlo release, patch
r, good run list named 6.1.4
We observed a discrepancy between the pt(B) distributions of the simulated B candidates
and of B candidates reconstructed on real data (Fig. 7). We selected the signal region
in a window of plus/minos 2σ around the B peak, sideband subtracted. For the side-
band subtraction, after defining the background region in the window [5.4,5.8] GeV/c2,
we normalized the background to the signal region and we subtracted the events. We
reweighted the MC pt(B) distribution in order to obtain a better agreement between data
and simulation. We fit with an Erfc function plus a first degree polynomial (shown in Fig.
8) the distribution of the data/MC ratio and we reweigthed the pt(B) distribution of the
simulated events accordingly. The agreement between MC and data after the reweighting
is satisfactory (Figs. 9-14). In all the Figs. we show data as points with error bars and
MC as lines.
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Figure 7: Data (points) - simulation (line) comparison of the pt(B) distribution. Left plot: pt(B)
distributions before the reweighting. Right plot: pt(B) distributions after the reweighting.
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5 Fit range

We are performing a fit using the information of mass shapes and particle identification
(PID). For the mass we chose the range between 5.17 and 6.5 GeV/c2. As in the DCP
analysis [8][9], we chose the lower limit 5.17 since the only other mode significantly con-

tributing to the B → DK mass region is the B+ → D
0∗
π+. We extend the fit up to

6.5 because the combinatorial background with the optimized cuts is very low and we
need to have a major lever to take into the right way the slope and the fraction of the
combinatorial background.

For what concern particle identification we fit PID variable (see Sec. 9) in the region
[-3,+3].

6 Background study for the DCS mode

There are several physics backgrounds that appear in the DCS reconstruction. We will
consider each category.

6.1 B → D0π with D0 → X

The CF mode itself is a source of background for the DCS. We checked from MC that
CF events in which the D0 radiate a photon in the final state, if reconstructed as DCS,
can skip the WS veto cut. We estimate a fraction of these events, with respect to the
B → D0π (CF) to be about 1.4 · 10−3. Since the B → D0π DCS branching fraction with
respect to CF is about 3.5 · 10−3 this background is significant.

We found many other decays that behave as background for the DCS, such as B →
D0π, with D0 → π−µ+νµ, D

0 → K−π+π0, D0 → ρ−π+, D0 → ρ+π−.
We decided to consider all decays together as a single background, generating a MC

sample of B → D0π with D0 → X, with official relative BRs, that we report also in
Appendix A. After removing B− → D0π− → [K+π−]Dπ

− in the reconstruction we
evaluated the remaining background fraction, with respect to B → D0π CF, of about
5.1 · 10−3, which corresponds to about 100 events in the mass fit window.
Considering all backgrounds together will produce a better resolution in the final fit, since
we will fit only the normalization, while all contributions are each other fixed to the relative
BRs.

6.2 B → D0K with D0 → X

As for the previous case we generated a MC sample of B → D0K with D0 → X with
relative D0 BRs as in Appendix A. After removing B− → D0K− → [K+π−]DK

− in the
reconstruction, we evaluated a fraction of background, over the B → D0K CF, of about
2.3 · 10−3, which corresponds to about 5 events in the mass fit window.
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6.3 B → D
0(∗)
CP h with D0 → K+K−, π+π−

We verified using MC samples that none of B → D
0(∗)
CP h modes, where D0(∗) can be D0

or D0∗, reconstructed as DCS, appear as background. The only “dangerous” could be
B → D0K with D0 → π+π−, but, after all the cuts and normalizing for the BR, its
contribution is negligible.

6.4 B− to three-body decays

The only two 3-body decays that can affect our measurement are B− → K+π−K−,
peaking in the B → D0K mass region, and B− → K+π−π−, peaking in the B → D0π
mass region.
The first one is negligible after the cut on Lxy(D)B . The second one has a fraction of
events with respect to B → D0π CF of about 5.5 · 10−4, which corresponds to about 11
events in the mass fit window. It has been added to the fit.

6.5 B0 → D∗−
0 e+νe

We generated MC samples of B0 → D∗−
0 e+νe and we evaluated a fraction with respect to

B → D0π CF of about 2.4 · 10−4, corresponding to about 5 events in the mass window.

6.6 Other decays

We generated MC samples of Bs → D−
s π

+, with D−
s → X, B0 → D−π+, with D− → X,

B− → D0ρ− with D0 → K−π+, B− → D0µ−νµ with D0 → K−π+, B− → D0e−νe with
D0 → K−π+, B− → D∗0K− with D0 → K−π+, B− → D∗0µ−νµ with D0 → K−π+,
B− → K+π−K− and we found that all of them does not appear in the DCS reconstruc-
tion or give a negligible effect.

In conclusion the four backgrounds that we are going to consider for the DCS are:
B → D0π with D0 → X, B → D0K with D0 → X, B− → K−π+π− and B0 → D∗−

0 e+νe.
We applied a Gaussian constraint to the fit Likelihood to bind the fractions of these
backgrounds. We chose as sigma of the constraint the sum in quadrature of the error
propagated from the PDG BRs and the relative error coming from the MC statistics. In
this way we include in the statistical error the error due to MC statistics.

• Nexpected(B → D0π, D0 → X/B → D0π) = 100
Sigma in the constraint = 3% (PDG) + 5.9% (coming from 290 reconstructed events
in the final state) = 6.5%.

• Nexpected(B → D0K, D0 → X) = 5
Sigma in the constraint = 9% (PDG) + 22% (coming from 20 reconstructed events
in the final state) = 24%.

• Nexpected(B → K−π+π−) = 11
Sigma in the constraint = 6.6% (PDG) + 5.5% (coming from 333 reconstructed
events in the final state) = 8.6%.
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• Nexpected(B
0 → D∗−

0 e+νe) = 5
Sigma in the constraint = 40% (PDG) + 14% (coming from 54 reconstructed events
in the final state) = 42%.

7 Simultaneous Fit of B → Dπ and DK modes

We implemented an extended maximum Likelihood fit that combines the invariant mass
(MKππ) and the particle identification information.

We perform a simultaneous fit on CF mode and DCS modes. The expression of the
non extended Likelihood is:

Ln.e. = LCF+ · LCF− · LDCS+ · LDCS−. (3)

We multiply each factor for a Poisson distribution, with each expected mean values equal
to the number of events on each sub-samples.

L = PCF+ · LCF+ · PCF− · LCF− · PDCS+ · LDCS+ · PDCS− · LDCS−. (4)

The product of the four independent Poisson distributions is equivalent to take the
product of a Poisson distribution, with expected mean values equal to the total number of
events, multiplied by a multinomial distribution, which take into account the subdivision
into the four sub-samples (cap 6.9 and 6.10 of [14]). Using an extended fit we ensure
that errors take into account all correlations between fitted numbers of events and fitted
fractions.

The single components are defined as:

Pi =
µNi

Ni!
e−µ

LCF+ =

NCF+
TOT
∏

i

[

(1− bCF+) ·
(

fCF+
π · pdfπ(M,κ) + c+ · fCF+

π · pdfD∗(M,κ)+

+
(

1− fCF+
π − c+ · fCF+

π

)

· pdfK(M,κ)
)

+ bCF+ · pdfcomb(M,κ)
]

LCF− =

NCF−

TOT
∏

i

[

(1− bCF−) ·
(

fCF−
π · pdfπ(M,κ) + c− · fCF−

π · pdfD∗(M,κ)+

+
(

1− fCF−
π − c− · fCF−

π

)

· pdfK(M,κ)
)

+ bCF− · pdfcomb(M,κ)
]

LDCS+ =

NDCS+
TOT
∏

i

[

(1− bDCS+) ·
(

fDCS+
π · pdfπ(M,κ) + c+ · fDCS+

π · pdfD∗(M,κ)+
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+
(

1− fDCS+
π − c+ · fDCS+

π

)

· pdfK(M,κ)
)

+

+bDCS+ ·
(

f+
[X]π · pdf[X]π(M,κ) + f+

[X]K · pdf[X]K + f+
Kππ · pdfKππ(M,κ)+

f+
B0 · pdfB0(M,κ) + (1− f+

[X]π − f+
[X]K − f+

Kππ − f+
B0) · pdfcomb(M,κ)

)]

LDCS− =

NDCS−

TOT
∏

i

[

(1− bDCS−) ·
(

fDCS−
π · pdfπ(M,κ) + c− · fDCS−

π · pdfD∗(M,κ)+

+
(

1− fDCS−
π − c− · fDCS−

π

)

· pdfK(M,κ)
)

+

+bDCS− ·
(

f−
[X]π · pdf[X]π(M,κ) + f−

[X]K · pdf[X]K + f−
Kππ · pdfKππ(M,κ)+

f−
B0 · pdfB0(M,κ) + (1− f−

[X]π − f−
[X]K − f−

Kππ − f−
B0) · pdfcomb(M,κ)

)]

The parameters bCF+, bCF−, bDCS+ and bDCS− are the fractions of the background
for each mode and charge. In the CF likelihood the only background considered is the
combinatorial, for which we use a single pdfcomb for both positive and negative charges.
For the DCS we are considering the combinatorial (with the same pdf of CF mode) and the
physical background, as B → Kππ in three-body decay (of which the fraction is f±

Kππ and
pdfKππ), B → D0π with D0 → X (of which the fraction is f±

[X]π and pdf[X]π), B → D0K

with D0 → X (of which the fraction is f±
[X]K and pdf[X]K), and B0 → D∗−

0 e+νe (of which

the fraction is f±
B0 and pdfB0).

For the signals, fCF,DCS,±
π is the fraction of B → D0π CF, DCS, positive and negative

charges, c± is the common parameter for CF and DCS likelihood and corresponds to the
ratio of the B → D∗π over B → D0π. We verified from MC that for CF and DCP modes
this fraction remains constant and we are using it also for the DCS. The simultaneous
fit allows us to take advantage of the CF channel with more statistics to constrain the
common parameter c in a consistent way.

The fraction of B → D0K is written as (1 − fπ − c · fπ), so it is not explicitly fitted,
but is calculated from the fraction of B → D0π and B → D∗0π. In this way, when we
had to fix that fraction to zero, to evaluate the B → D0K DCS significance, the fit found
problems of convergence to realistic values. For this reason we decided to apply this change
of variables in the DCS part of the likelihood:

1− fDCS
π − c · fDCS

π = fDCS
K

fDCS
π = 1− fDCS

K − c · fDCS
π ,

where the second expression can be simplified in: fDCS
π = (1− fDCS

K )/(1 + c).
In this way the formal expressions of the DCS likelihood are:

LDCS+ =

NDCS+
TOT
∏

i

[

(1− bDCS+) ·
(

(1− fDCS+
K )/(1 + c+) · pdfπ(M,κ)+
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+c+fDCS+
π · pdfD∗(M,κ) + fDCS+

K · pdfK(M,κ)
)

+

+bDCS+ ·
(

f+
[X]π · pdf[X]π(M,κ) + f+

[X]K · pdf[X]K + f+
Kππ · pdfKππ(M,κ)+

f+
B0 · pdfB0(M,κ) + (1− f+

[X]π − f+
[X]K − f+

Kππ − f+
B0) · pdfcomb(M,κ)

)]

LDCS− =

NDCS−

TOT
∏

i

[

(1− bDCS−) ·
(

(1− fDCS−
K )/(1 + c−) · pdfπ(M,κ)+

+c−fDCS−
π · pdfD∗(M,κ) + fDCS−

K · pdfK(M,κ)
)

+

+bDCS− ·
(

f−
[X]π · pdf[X]π(M,κ) + f−

[X]K · pdf[X]K + f−
Kππ · pdfKππ(M,κ)+

f−
B0 · pdfB0(M,κ) + (1− f−

[X]π − f−
[X]K − f−

Kππ − f−
B0) · pdfcomb(M,κ)

)]

The likelihood is the same as before, as a cross-check we verified that all yields and
observables results remain the same, but the fraction of B → DK can be now directly
fixed to zero allowing an easier evaluation of the significance. This is chosen as the final
fit configuration.

pdf functions are functions of the Mass (M) in [Kπ]π hypothesis and of Particle Iden-
tification (the κ kaoness variable applied to the track from B, defined in 3.2). They are
different for each decay, but equal for CF and DCS Likelihoods.

In the next sections we will consider piece by piece all pdfs, and describe the parame-
terizations used for mass and Particle Identification variables.

8 Mass templates

8.1 Signal mass template

Monte Carlo samples of B− → D0π− and of B− → D0K− have been generated with final
state radiation modeled with PHOTOS as implemented in EvtGen.

The mass line shape is parameterized using the following asymmetric pdf:

pdf(m; ~θ) = ffsr ·
(

1

norm
· ebfsr ·(m−(mu+∆)) · erfc(cfsr · (m− (mu+∆)))

)

+ (1− ffsr) ·
(

f1
1

σ1 · s ·
√
2π

e
− 1

2

(

m−(mu+∆)
σ1·s

)2

+ f2
1

σ2 · s ·
√
2π

e
− 1

2

(

m−(mu+∆)
σ2·s

)2

+ f3
1

σ3 ·
√
2π

e
− 1

2

(

m−(mu+∆)
σ3

)2)

(5)

where ffsr is the contribution of the radiative tail fraction. f1, f2, f3 and σ1, σ2, σ3 are
respectively the fractions and the widths of the three gaussians (f1 + f2 + f3 = 1). ∆ is a
mass scale parameter that is left free to be determined by the fit. We also introduced a free
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scale parameter (s) in the likelihood fit, multiplying the width of the three gaussians, to
account for differences between data and MC. Fig. 15 show the invariant mass distribution
of the simulated B− → D0π− events, while Fig. 16 show the invariant mass distribution
of the simulated B− → D0K− events, both with the superimposition of the fit function 5.
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sg2       0.00265± 0.04919 
sg3       0.00060± 0.01958 
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 B Mass

Figure 15: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated

B+ → D
0
π+ events on logarithmic scale. We overlaided the fit function 5.

8.2 Physics background

8.2.1 B+ → D
∗0
π+

As defined in section 5, the fit window is [5.17, 6.5] GeV/c2 to have as physics background

only the B+ → D
∗0
π+ contribution in CF sample. In Fig. 17 the invariant mass distribu-

tion of D0∗π (log-scale), of MC events, is shown. The distribution has been fitted in the
window [5.14,5.6] GeV/c2 with three gaussians plus an exponential.

8.2.2 Three-body decay

Fig. 18 show the invariant mass distribution of B− → K−π+π− from MC simulation.
The decay is reconstructed as B− → DDCSπ

−. The distribution has been fitted with two
gaussians.
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Prob   0.001506
Norm      3.6±  1267 
Frac Tail  0.00307± 0.02054 
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Figure 16: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated

B+ → D
0
K+ events on logarithmic scale. We overlaided the fit function (5).

8.2.3 B → Dπ with D → X

The B− → D0π− decay with D0 → X is reconstructed as B− → DDCSπ
−. Fig. 19 shows

the invariant mass distribution of this background with superimposed the fit function (a
Pearson function of IV type).

8.2.4 B → DK with D → X

The B− → D0K− decay with D0 → X is reconstructed as B− → DDCSπ
−. Fig. 20 shows

the invariant mass distribution of this background with superimposed the fit function (one
gaussian).

8.2.5 B0 → D∗−
0 e+νe

The B0 → D∗−
0 e+νe, with D∗−

0 → D̄0π−, with D̄0 → K+π− is reconstructed as B− →
DDCSπ

−. Fig. 21 shows the invariant mass distribution of this background with super-
imposed the fit function (one gaussian).

8.3 Combinatorial background

We described the combinatorial background mass shape with an exponential. The slope
and the normalization of the exponential are left free in the main fit. We considered
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 B Mass

Figure 17: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated

B+ → D
0∗
π+ events on logarithmic scale. We overlaided the fit function (three gaussians plus an

exponential).
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Figure 18: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B− → K−π+π− events. We overlaided the fit function (two gaussians).
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DCS B Mass

Figure 19: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B− → D0π− with D0 → X events. We overlaided the fit function (a Pearson function of IV type).
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 B Mass

Figure 20: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B− → D0K− with D0 → X events. We overlaided the fit function (one gaussian).

different shapes for each decay mode, but same slope for positive and negative of the same
mode.
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Figure 21: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B0 → D∗−

0 e+νe, with D∗−

0 → D̄0π−, with D̄0 → K+π− events. We overlaided the fit function
(one gaussian).
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9 PID parameterization (signal and background)

To distinguish between B → DK and B → Dπ modes, particle identification is applied to
the track from the B. Since that track has pT > 2 GeV/c2, we can use dE/dx information,
obtained from dE/dx calibrations and Universal Curve (UC).
We use official calibrations, blessed by the B-Group [15], while the UC are extrapolated
in a pure sample of D∗ → D0π, with D0 → Kπ, using data collected up to p28 (about 6
fb−1 of integrated luminosity). Those UC are not yet blessed, but there are plans to be
blessed soon.

The motivation to have new UC is that we need to have consistent UC for each sample
of data, since we know that dE/dx performances degraded over time. For this reason,
blessed UC are not valid up to p31, since they have been performed up to p17 and ex-
tended up to p25.
Superimposing new and old UC we can see a shift one respect to the other, which disap-
pears when the two UC are compared in the sub-sample up to p17. Because of this, we
think the new UC are correct to be used. Also we verified that these distributions remain
unchanged and valid also up to p31.

The PID information can be represented by the single observable κ, defined in sec-
tion 3.2:

κ =

dE
dx meas

− dE
dx exp

(π)

dE
dx exp

(K)− dE
dx exp

(π)
. (6)

where dE
dx meas

is the measured energy lost by the charged particle in the drift chamber

volume and dE
dx exp

(π,K) is the corresponding expected value in a given particle hypothesis.
The average κ, respectively in pion and kaon hypothesis is < κ >π= 0 and < κ >K= 1.
This variable take advantage of the fact that is, at the first order, momentum independent.

We determined the pdfs of the κ variable directly from our data-sample. We selected
kaons and pions from the D0 of the B+ decay, requiring both the pion and the kaon from
D0 to be trigger tracks. We didn’t use the residual parameterization blessed by the B-
Group because, again, that parameterization was done up to period 17 and we are using
data up to period 31.
Parameterizing this variable in our sample it allows us to take into account any systematic
effect due to the fact that the UC are not extracted in our sample and to avoid sample
dependence effects. This is because the PID templates are constructed in the same data
that we fit.

Then we reweighted the transverse momentum distribution (pt) of kaons and pions
from D0 with the pt of kaons and pions from B+. The pt distributions of kaons and pions
from D0 are taken from data, while the pt distributions of kaons and pions from B+ are
taken from MC (in the section 4 Fig. 12 show the good agreement between data and
MC for the pt distribution of the track from B). This reweighting is necessary due to the
fact that the kaon-pion separation is momentum dependent so we can parameterize the κ
distribution using kaons and pions from D0 but only after the pt reweighting.

Fig. 22 shows the κ distribution, for pions on the left and for kaons on the right after
the reweighting. The two distribution have been fitted using three gaussians. We are
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going to use this parameterization in the maximum likelihood fit.
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Figure 22: Left: ID distribution for the pion from D0 from B+. Right: ID distribution for the
kaon from D0 from B+. The fit functions are superimposed.

Assuming that the combinatorial background is composed only of pions and kaons, the
corresponding PID pdf has the form:

a · pdfπ(κ) + (1− a) · pdfK(κ) (7)

where a is the fraction of pions in the combinatorial background. This fraction is left free
to float in the maximum likelihood fit.

10 Uncorrected fit results

The fit is performed on the sample selected with the optimized cuts (Fig. 6), with the
invariant mass distribution of the B-candidate in the range 5.17 ≤ mD0π ≤ 6.5 GeV/c2.
The results of the fit are:

RADS(π)raw = (2.8 ± 0.7 (stat.)) · 10−3

RADS(K)raw = (22.2 ± 8.6 (stat.)) · 10−3 (8)

AADS(π)raw = 0.13 ± 0.25 (stat.)

AADS(K)raw = −0.82 ± 0.44 (stat.)

R+(π)raw = (2.4 ± 1.0 (stat.)) · 10−3

R−(π)raw = (3.1 ± 1.1 (stat.)) · 10−3

R+(K)raw = (42.6 ± 13.7 (stat.)) · 10−3

R−(K)raw = (3.8 ± 10.3 (stat.)) · 10−3

We label with the subscript “raw” the fit output which has not yet been corrected for
the relative efficiencies.
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In table 1 we quote the yields for each decay. The error on the yield is obtained
propagating the errors on the fractions and on the numbers of fitted events, according to
the formula:

V ar(y) =
n
∑

i=1

n
∑

j=1

∂y

∂xi

∂y

∂xj
|~c=~µ (V ar(~x))i,j (9)

The same formula is applied also to calculate the errors on the observables (RADS(π,K)
and AADS(π,K)), that are expressed as functions of the fractions and total numbers of
events in each subsample.

Parameter fraction yield

B+ → D
0
π+ (fCF+

π ) 0.904 ± 0.004 9882 ± 103
B− → D0π− (fCF−

π ) 0.893 ± 0.004 9892 ± 103

B+ → D
0
K+ (fCF+

K ) 0.063 ± 0.004 694 ± 39

B− → D0K− (fCF−
K ) 0.069 ± 0.004 767 ± 41

B+ → D
0
π+ (fDCS+

π ) 0.44± 0.12 24± 9
B− → D0π− (fDCS−

π ) 0.88± 0.20 31± 10

B+ → D
0
K+ (fDCS+

K ) 0.55± 0.13 29± 9

B− → D0K− (fDCS−
K ) 0.08± 0.20 3± 8

Table 1: Raw results from the maximum likelihood fit.

Decay Yield

B+ → D0∗π+ CF 355 ± 27

B− → D
0∗
π− CF 415 ± 29

B+ → D0∗π+ DCS 1± 1

B− → D
0∗
π− DCS 1± 1

B+ → D0π+ with D0 → X 50± 7
B− → D0π− with D0 → X 50± 7
B+ → D0K+ with D0 → X 1± 1
B− → D0K− with D0 → X 2± 2

B+ → K+π−π+ 5± 2
B− → K−π−π+ 6± 2
B0 → D∗−

0 e+νe 2± 2
B0 → D∗+

0 e−ν̄e 3± 2

Table 2: Other parameters resulting from the fit.
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Parameter Value

c+ 0.034 ± 0.003
c− 0.041 ± 0.003

background fraction (CF pos) (bCF+) 0.026 ± 0.002
background fraction (CF neg) (bCF−) 0.025 ± 0.002

background fraction (DCS pos) (bDCS+) 0.86 ± 0.03
background fraction (DCS neg) (bDCS−) 0.90 ± 0.03

B+ → D0π+ with D0 → X (f+
[X]π) 0.16 ± 0.01

B− → D0π− with D0 → X (f−
[X]π) 0.15 ± 0.01

B+ → D0K+ with D0 → X (f+
[X]K) 0.005 ± 0.001

B− → D0K− with D0 → X (f−
[X]K) 0.005 ± 0.001

B+ → K+π−π+ (f+
Kππ) 0.017 ± 0.001

B− → K−π−π+ (f−
Kππ) 0.016 ± 0.001

B0 → D∗−
0 e+νe (f+

B0) 0.007 ± 0.003
B0 → D∗+

0 e−ν̄e (f−
B0) 0.007 ± 0.003

fπ in the comb. back (CF & DCS) 0.69 ± 0.03
slope (CF & DCS) −2.6± 0.1

∆ (3± 1) · 10−4

Scale (s) 1.107 ± 0.008

Table 3: Other parameters resulting from the fit.
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11 Fit checks

11.1 Toys for the fit consistency

In order to test the fit consistency we used Toy MC. We generated 1000 toys with the
fractions and number of events obtained from data (see Table 8). We evaluated the
residuals (fitted value − input value) for all four observable and we fitted them with a
gaussian function.

The results are shown in Figs. 23, 24.
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Figure 23: Residuals of RADS(π) (left) and AADS(π) (right) fitted with a gaussian. “p1” is the
mean and“p2” is the sigma of the gaussian.
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Figure 24: Residuals of RADS(K) (left) and AADS(K) (right) fitted with a gaussian.“p1” is the
mean and“p2” is the sigma of the gaussian.

Looking at the mean and sigma of the residuals, we can evaluate the bias (the “p1”
value) and express it as fraction of sigma (the“p2” value). For RADS(π) the bias is 8·10−5,
which corresponds to 1/10σ. For RADS(K) the bias is 0.007, which corresponds to 1/2σ.
For AADS(π) the bias is 0.018, which corresponds to 1/10σ. For AADS(K) the bias is 0.12,
which corresponds to 1/3σ.
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We can easily see that the residual of the asymmetry of the kaon is cut at the value
−0.2. This limit point comes from the boundaries in the asymmetry, that has to lie in
the range [−1, 1]. Also, the toys are generated with fractions found on data, with the
asymmetry very close to −1 and the low statistics spread the distribution making more
visible the limit point.
This boundary exist also in the other residual distributions, R for example has to be in
the range [0, 1], but it is less visible.

We generated more events in the toys, in particular 10 and 20 times the statistic on
data. The residuals for the first case are in Figs. 25 and 26, while for the second are in
Figs. 27 and 28. We found a reduction in the width of the residuals and also a reduction
in the bias for the kaon observables, while for the pion the bias looks to remain constant.
Since the latter is still negligible for our data statistics, we are not going to correct for it.
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Figure 25: Residuals of RADS(π) (left) and AADS(π) (right), with a statistics 10 times greater
than in data, fitted with a gaussian.“p1” is the mean and “p2” is the sigma of the gaussian.
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Figure 26: Residuals of RADS(K) (left) and AADS(K) (right), with a statistics 10 times greater
than in data, fitted with a gaussian. “p1” is the mean and “p2” is the sigma of the gaussian.

We found that the reason of the bias is due to the boundary in the B → D0
DCSK

fraction, which, up to now, has to be in the range [0, 1]. This cause the limited residual
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Figure 27: Residuals of RADS(π) (left) and AADS(π) (right), with a statistics 20 times greater
than in data, fitted with a gaussian. “p1” is the mean and “p2” is the sigma of the gaussian.
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Figure 28: Residuals of RADS(K) (left) and AADS(K) (right), with a statistics 20 times greater
than in data, fitted with a gaussian. “p1” is the mean and “p2” is the sigma of the gaussian.

distributions and also the bias. We generated toys with the fraction of B → D0
DCSK

floating in the range [−1, 1]. The residuals are shown in Figs. 29 and 30 and we can now
clearly see that there is no bias nor boundaries in the distributions. We checked that the
fit with the fraction of B → D0

DCSK in [−1, 1] return on data the same results as in the
case of [0, 1].

We can conclude that our fit has a bias due to the physical boundary in the fraction
of B → D0

DCSK signal to be greater than 0. But since, after removing this boundary, the
fit results remain unchanged and the bias disappear, we do not correct for any bias.

11.2 Likelihood profile

We performed the likelihood profile of the two fractions of B → DDCSK positive and
negative, minimizing the other parameters at each point. In the Fig. 31 we can see the
Likelihood profile at one (red), two (green) and three (blue) sigmas. No suspicious behavior
appear from the profile.
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Figure 29: Residuals of RADS(π) (left) and AADS(π) (right), with the same statistics on data
and the fraction of B → D0

DCS
K floating in [−1, 1] range in the fit, fitted with a gaussian. “p1”

is the mean and “p2” is the sigma of the gaussian.
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Figure 30: Residuals of RADS(K) (left) and AADS(K) (right), with the same statistics on data
and the fraction of B → D0

DCS
K floating in [−1, 1] range in the fit, fitted with a gaussian. “p1”

is the mean and “p2” is the sigma of the gaussian.

11.3 Correlation matrix

In Fig. 32 we can see the correlation matrix as returned by the fit, where the parameters
correspond to:
p1 fraction of CF+ background
p2 fraction of DCS+ background
p3 fraction of CF- background
p4 fraction of DCS- background
p5 fraction of B → Dπ CF+
p6 fraction of B → DK DCS+
p7 fraction of B → Dπ CF-
p8 fraction of B → DK DCS-
p9 constant (B → D∗π)/(B → Dπ) pos
p10 constant (B → D∗π)/(B → Dπ) neg
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Figure 31: Likelihood profiles for the B → DK DCS pos vs neg fractions at the level of one (red),
two (green) and three (blue) sigmas.

p11 fraction of B → [X]DK pos background
p12 fraction of B → [X]DK neg background
p13 fraction of B → [X]Dπ pos background
p14 fraction of B → [X]Dπ neg background
p15 fraction of B → Kππ pos background
p16 fraction of B → Kππ neg background
p17 fraction of B0 → D∗−eν pos background
p18 fraction of B0 → D∗−eν neg background
p21 slope of the combinatorial background
p23 fraction of π in the combinatorial background
p27 total number of CF+ events
p28 total number of CF- events
p29 total number of DCS+ events
p30 total number of DCS- events
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Figure 32: Correlation matrix of the fitted parameters.
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12 Fit projections

In order to visualize the agreement between the fit and the data we report the plots of fit
projections. A projection of the generic probability density function pdf(x,−→y |−→m) on the
observable x is the plot of the function

∫

−→y pdf(x,−→y |−→m)d−→y , which can be overlaid to the

experimental data with the appropriate normalization.
Figs. 33, 34, 35 and 36 show the fit projections on mass and ID variable respectively

for CF sample, positive and negative charges, and DCS sample. The points are data and
the solid line are the fit projections. For each projection the plot of the difference between
projection and data is shown. The agreement between data and fit function appears
satisfactory.
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Figure 33: Fit projection in mass range [5.17,5.6] for CF mode positive (left) and negative charges
(right).
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Figure 34: Fit projection in ID range [-3,3] for CF mode positive (left) and negative charges
(right).
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Figure 35: Fit projection in mass range [5.17,5.6] for DCS mode positive (left) and negative
charges (right).
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Figure 36: Fit projection in ID range [-3,3] for DCS mode positive (left) and negative
charges(right).
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13 Efficiency corrections

In order to traslate the raw result of the fit into measurement of relative BRs’ and CP
asymmetries we need to apply corrections for the different relative efficiencies between the
various decay modes.

In the measurement of the direct CP asymmetry the effect of the different hadronic
interaction between K+ and K− can fake the asymmetry measurement. K− has a larger
hadronic cross section than K+, and this effect is reproduced rather well by GEANT. We
use the results quoted in Tab. 14 of [16] where the following asymmetry is estimated with
a careful study on a large Monte Carlo sample. We find:

ǫ(K+)

ǫ(K−)
= 1.0178 ± 0.0023(stat.) ± 0.0045(syst.). (10)

For the pion the efficiency is:

ǫ(π+)

ǫ(π−)
= 0.997 ± 0.003(stat.), (11)

that is fully in agreement with one.
The efficiency of kaon and pion from D0 is evaluated on our favored B → Dπ sample

and is equal to:
ǫ(K−π+)

ǫ(K+π−)
= 0.998 ± 0.015(stat) ± 0.016(syst).

More details on how we extract this value can be found in the appendix B.
We apply the corrections according to these formulas:

R(h) =
N−

s ǫ(K
−π+

K+π−
)ǫ(h

+

h−
) +N+

s

N−
f ǫ(K

+π−

K−π+ )ǫ(
h+

h−
) +N+

f

A(h) =
N−

s ǫ(K
−π+

K+π−
)ǫ(h

+

h−
)−N+

s

N−
s ǫ(K

−π+

K+π−
)ǫ(h

+

h−
) +N+

s

R±(h) =
N±

s

N±
f

ǫ(
K±π∓

K∓π±
)

where N±
s are the number of positive and negative suppressed events, N±

f are the number
of positive and negative favored events and h is pion or kaon.

Corrected results are:

R(π) = (2.8± 0.7) · 10−3

R(K) = (22.0 ± 8.6) · 10−3

A(π) = 0.13± 0.25

A(K) = −0.82± 0.44

R+(π) = (2.4± 1.0) · 10−3
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R−(π) = (3.1± 1.1) · 10−3

R+(K) = (42.6 ± 13.7) · 10−3

R−(K) = (3.8± 10.3) · 10−3

14 Systematics

In the following sub-sections we will describe the main sources of systematic uncertainties.

14.1 dE/dx

dE/dx information comes in the κ variable, whose distribution is shown in Fig. 22. The
distribution is taken from data and fitted with the sum of three gaussian. The nine
parameters of the function are correlated according to a certain correlation matrix.

To evaluate the dE/dx systematic we generated several sets of nine random gaussian
variables, correlated with the same correlation matrix obtained on data. The numerical
algorithm to generate multivariate variables can be found in several books, see for example
the Cap. 33 of [17].

For each set of variables we have a different κ curve. In Fig. 37 we superimposed one
thousand of these systematic κ curves to data. The curves completely cover the region of
data errors.
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Figure 37: κ variable, on the left for the K, on the right for the π. Points with error bars come
from data, while in red are one thousand systematic curves.

In the limit of small errors select a region of one sigma in the parameters of the κ
correspond to select a region of one sigma in the observables. For this reason we don’t
select one sigma in the parameters space, but we will select a one sigma region in the
observables space.
To do this we used each systematic curve to fit the data, so that we have a distribution of
the observables, as can be seen in Figs. 38 and 39. Fitting them with gaussian functions,
we take the sigma of the gaussian as the dE/dx systematic error.
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Figure 38: Distributions of RADS(π) (left) and AADS(π) (right) obtained with the systematic
curves of dE/dx. They are fitted with a gaussian and the sigma (“p2” ) is taken as systematic
error.
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Figure 39: Distributions of RADS(K) (left) and AADS(K) (right) obtained with the systematic
curves of dE/dx. They are fitted with a gaussian and the sigma (“p2” ) is taken as systematic
error.

14.2 Mass model of the combinatorial background

Our central fit assumes a mass-shape of the combinatorial background events distribuited
as an exponential function. We verified that the shape is exponential also under the B
peaks, using:

• B events in the D0 sidebands (3σ) (Fig. 40);

• B events selected with the same cuts of the analysis, but χ2
3D ≥ 30.

To evaluate the systematics we redid the fit using different shapes:

• exponential plus constant

• exponential plus first degree polynomial

• exponential plus second degree polynomial
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Figure 40: Invariant B mass distribution in the D0 sidebands (left) and with the χ2
3D ≥ 30 (right).

We then take the worse of the three cases, the exponential plus constant. In the other
two cases the value of the slope remain constant, while, adding a constant, that value goes
from −2.71± 0.15 of the central fit to −2.86 ± 0.15.

We used as systematic error the difference between the observables results obtained
using the exponential plus constant and the central fit.

14.3 Physics background mass model

To evaluate this systematic, we varied the shape of the physics background.

• B− → D0π with D0 → X
The mass shape is parametrized with a Pearson function of the IV type, we varied
the parameters corresponding to the mean and the width of ±1σ.

• B− → D0K with D0 → X
Since we parametrized the mass shape with a gaussian, we varied the mean and the
width of the gaussian of ±1σ.

• B− → K−π+π−

We parametrized the mass shape with two gaussians. To evaluate the systematics
we varied the mean and the width of the second gaussian, that is the one goes under
the B signal peaks, of ±1σ.

• B0 → D∗−
0 e+νe

We parametrized the mass shape with two gaussians. To evaluate the systematics
we varied the mean and the width of the second gaussian, that is the one goes under
the B signal peaks, of ±1σ.

• B− → D∗0π−

We parametrized the mass shape with three gaussians plus an exponential. To
evaluate the systematics we varied the slope of the exponential of ±1σ.
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Source R
+
ADS

(π) R
−

ADS
(π) R

+
ADS

(K) R
−

ADS
(K) RADS(π) RADS(K) AADS(π) AADS(K)

dE/dx 0.00001 0.00001 0.0003 0.0001 0.00001 0.0001 0.003 0.004
combinatorial background 0.00001 0.00001 0.0001 0.0002 0.00001 0.0001 0.001 0.010

B−
→ [X]Dπ− shape 0.00040 0.00040 0.0026 0.0026 0.00038 0.0025 0.013 0.089

B−
→ [X]DK− shape 0.00001 0.00001 0.0001 0.0001 0.00001 0.0001 0.000 0.003

B−
→ K−π+π− shape 0.00002 0.00002 0.0001 0.0001 0.00002 0.0001 0.001 0.003

B0
→ D

∗−

0
e+νe shape 0.00004 0.00004 0.0003 0.0002 0.00004 0.0002 0.003 0.007

B−
→ D∗0π− shape 0.00004 0.00005 0.0005 0.0004 0.00005 0.0005 0.001 0.014

efficiency of KB - - - - - 0.0001 - 0.002
efficiency of πB - - - - - - 0.003 -

efficiency of KDπD 0.00005 0.00007 0.0009 0.0001 0.00006 0.0003 0.011 0.004

Total 0.00041 0.00041 0.0028 0.0027 0.00039 0.0026 0.018 0.091

Table 4: Systematic uncertainties for all observables.

14.4 Total systematic uncertainties

A summary of all systematics is reported in Table 4.
The total systematic uncertainty on each measurement is determined as the sum in

quadrature of all systematic uncertainties.

15 Significance evaluation

To evaluate the significance of the B → D0
DCSK signal we need first of all to repeat the fit

fixing to zero the fractions of B+ → D
0
DCSK

+ and B− → D0
DCSK

− and to calculate the
difference of −2 logL between the central fit and the latter fit. We obtain a −2∆ logL,
which we will call DLL, of 14.1.

Now we want to include also the systematic variations. To do this we need to find the
worse systematic configuration, the one in which the DLL value is closest to zero. The
procedure we use is to repeat the fit on data, using each time a different systematic shape
and see which of them lowers the DLL. We found that the only three which have an effect
are: the dE/dx, the B → [X]Dπ and the B0 → D∗−

0 e+νe shape.
We combined the three, obtaining the distribution in Fig. 41 and we select the configuration
giving the lower DLL.

We generated 48000 toys with zero B → D0
DCSK events as input value and we use for

dE/dx and physics background the configuration previously chosen.
We then fit these toys with the central fit, obtaining the distribution of −2∆ logL

shown in Fig. 42.
The number of cases with DLL greater than 14.1 is 69, which divided by the total,

46664, corresponds to a p-value of about 1.48 · 10−3. The resulting significance (including
systematics) is 3.2 σ, so we find evidence of B → D0

DCSK signal.
For the B → D0

DCSπ we only evaluate the statistical significance, repeating the fit on
data fixing the fraction of B → D0

DCSπ equal to zero. The DLL is 16.3, corresponding to
a statistical significance of 3.6 σ 4.

4To convert a p-value (α) in number of sigma (n), we applied the formula: n =
√

2 · Erf−1(1− α).
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Figure 41: −2∆ logL distribution on data, obtained with various systematic configurations on
dE/dx and physics background pdfs.
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Figure 42: −2∆ logL distribution on toys with zero signal input.

16 Asymmetry of K

Since our value of the kaon asymmetry is close to -1 and about 2σ far from zero, we want
to evaluate exactly how much is far from zero and see if it can be significantly different
from zero.
For this reason we generate 2000 toys with zero input value of the asymmetry and the other
values as found on data. Fitting these toys with our central fit, we obtain the distribution
of the asymmetry as in Fig. 43.

The sigma of this distribution is 0.37 and our central value of the asymmetry is 2.2σ
far from zero.
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Figure 43: Distribution of the kaon asymmetry, fitted from a toy with zero input value of the
asymmetry.
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17 Final results

We measure on 7 fb−1 of data:

RADS(π) =
BR(B− → D0

DCSπ
−) +BR(B+ → D0

DCSπ
+)

BR(B− → D0
CFπ

−) +BR(B+ → D0
CFπ

+)
=

= (2.8 ± 0.7 (stat.)± 0.4 (syst.)) · 10−3

RADS(K) =
BR(B− → D0

DCSK
−) +BR(B+ → D0

DCSK
+)

BR(B− → D0
CFK

−) +BR(B+ → D0
CFK

+)
=

= (22.0 ± 8.6 (stat.)± 2.6 (syst.)) · 10−3

AADS(π) =
BR(B− → D0

DCSπ
−)−BR(B+ → D0

DCSπ
+)

BR(B− → D0
DCSπ

−) +BR(B+ → D0
DCSπ

+)
=

= 0.13± 0.25 (stat.)± 0.02 (syst.)

AADS(K) =
BR(B− → D0

DCSK
−)−BR(B+ → D0

DCSK
+)

BR(B− → D0
DCSK

−) +BR(B+ → D0
DCSK

+)
=

= −0.82 ± 0.44 (stat.)± 0.09 (syst.)

R+(π) =
BR(B+ → D0

DCSπ
+)

BR(B+ → D0
CFπ

+)
=

= (2.4± 1.0 (stat.)± 0.4 (syst.)) · 10−3

R−(π) =
BR(B− → D0

DCSπ
−)

BR(B− → D0
CFπ

−)
=

= (3.1± 1.1 (stat.)± 0.4 (syst.)) · 10−3

R+(K) =
BR(B+ → D0

DCSK
+)

BR(B+ → D0
CFK

+)
=

= (42.6 ± 13.7 (stat.)± 2.8 (syst.)) · 10−3
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R−(K) =
BR(B− → D0

DCSK
−)

BR(B− → D0
CFK

−)
=

= (3.8 ± 10.3 (stat.)± 2.7 (syst.)) · 10−3

We find evidence of the signals B → D0K and B → D0π DCS, respectively with a
significance of 3.2σ (including systematics) and 3.6σ (only statistical).
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A Observables for the ADS method

A.1 Definitions

Figure 44: Diagram of the two interfering processes: B− → D0K− (color allowed) followed by

D0 → K+π− (doubly Cabibbo suppressed) and B− → D
0
K− (color suppressed) followed by

D
0 → K+π− (Cabibbo allowed).

Using the notation introduced in [1, 2], we can define the following branching ratios:

a = B(B− → D0K−) a = B(B+ → D
0
K+)

b = B(B− → D
0
K−) b = B(B+ → D0K+)

c(f) = B(D0 → f) c(f) = B(D0 → f)

c(f) = B(D0 → f) c(f) = B(D0 → f)

d(f) = B(B− → [f ]K−) d(f) = B(B+ → [f ]K+)

where f = K+π−. In the SM we assume that: a = a, b = b, c(f) = c(f) and c(f) = c(f).
Since the two decay channels of Fig. 44 are indistinguishable, we measure the interfer-

ence (which is sensible to γ):

d(f) = B(B− → [f ]K−) = B(B− → D0K−)B(D0 → f) + B(B− → D
0
K−)B(D0 → f) +

2

√

B(B− → D0K−)B(D0 → f)B(B− → D
0
K−)B(D0 → f)

cos(δ + γ)

= ac(f) + bc(f) + 2
√

ac(f) + bc(f) cos(δ + γ) (12)

where δ = δB + δD is the sum of the strong phases.
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In the same way we can write:

d(f) = B(B+ → [f ]K+) = B(B+ → D
0
K+)B(D0 → f) + B(B+ → D0K+)B(D0 → f) +

2

√

B(B+ → D
0
K+)B(D0 → f)B(B+ → D0K+)B(D0 → f)

cos(δ − γ)

= ac(f) + bc(f) + 2
√

ac(f) + bc(f) cos(δ − γ) (13)

which differs from d(f) only for the sign of γ.
In the articles written by Atwood, Dunietz and Soni [1, 2], there is only the definition

of CP violating partial rate asymmetry:

A(f) =
d(f)− d(f)

d(f) + d(f)
(14)

which exactly corresponds to what we called:

AADS =
B(B− → [f ]K−)− B(B+ → [f ]K+)

B(B− → [f ]K−) + B(B+ → [f ]K+)

There are no definitions of RADS . How can we get there?. In [1] authors say:

... a can be determined via Cabibbo allowed modes of D0 decay (g), e.g. D0 →
K−π+,K−ρ+. The decay chain B− → D0[→ g]K− determines a ≈ d(g)/c(g)

to an accuracy of about 1% since the interfering process B− → D
0
[→ g]K− is

both color and doubly Cabibbo suppressed.

Using g = K−π+ = f , we can write

a ≈ d(g)/c(g) = d(g)/c(f )

We can easily replace a = d(g)/c(f ) and c(f) = d(g)/a in (12) and (13). Calling
r2B = b/a and r2D = c(f)/c(f), we obtain the formulas:

d(f) ≈ d(g) · [r2B + r2D + 2rBrD cos(δ + γ)] (15)

d(f) ≈ d(g) · [r2B + r2D + 2rBrD cos(δ − γ)] (16)

from which we can define:

R− ≡ d(f)

d(g)
=

B(B− → [f ]K−)

B(B− → [g]K−)
=

B(B− → [K+π−]K−)

B(B− → [K−π+]K−)
(17)

R+ ≡ d(f)

d(g)
=

B(B+ → [f ]K+)

B(B+ → [g]K+)
=

B(B+ → [K−π+]K+)

B(B+ → [K+π−]K+)
. (18)

They are the ratios between B of suppressed over favored decay modes for negative and
positive charges respectively.
R+/R− are not defined in [1, 2], but can easily be extracted using the B.
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In the same way we can define also:

RADS ≡ d(f) + d(f)

d(g) + d(g)
=

B(B− → [K+π−]K−) + B(B+ → [K−π+]K+)

B(B− → [K−π+]K−) + B(B+ → [K+π−]K+)
(19)

All these definitions with B look clear and consistent, there is only an approximation
coming in the formulas with rB and rD.

In [6] or in [18] there are two more definitions, relating R+, R−, RADS and AADS :

RADS =
R+ +R−

2
(20)

AADS =
R− −R+

R− +R+

Considering the Bs they are wrong.
The only way they can be correct is considering the approximate relations with rD and

rB .

R− = r2B + r2D + 2rBrD cos(δ + γ)

R+ = r2B + r2D + 2rBrD cos(δ − γ)

RADS = r2B + r2D + 2rBrD cos(δ) cos(γ)

AADS = 2rBrD sin(δ) sin(γ)/RADS

In this way the equivalences (20) are satisfied.
Also the trivial case, when R+ = R− verifies the equations (20).

A.2 Experimental results

Using the same fit technique described in the note, we find these results:

R+
ADS(π) = (2.4 ± 1.0) · 10−3

R−
ADS(π) = (3.1 ± 1.1) · 10−3

R+
ADS(K) = (42.6 ± 13.7) · 10−3

R−
ADS(K) = (3.8 ± 10.3) · 10−3

where the statistical error is obtained propagating the errors on events numbers and frac-
tions.

The systematics associated to the observables are reported in Table 4 and they are
evaluated in the same way as described in the note for the other observables.

Final results are:

R+
ADS(π) = (2.4 ± 1.0 ± 0.4) · 10−3

R−
ADS(π) = (3.1 ± 1.1 ± 0.4) · 10−3

R+
ADS(K) = (42.6 ± 13.7 ± 2.8) · 10−3

R−
ADS(K) = (3.8 ± 10.3 ± 2.7) · 10−3
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R+
ADS(π) R−

ADS(π) RADS(π) fitted RADS(π) calculated

0.0024 0.0031 0.0028 0.0028

AADS(π) fitted AADS(π) calculated

0.13 0.13

Table 5: Results comparison between the fitted RADS(π) and AADS(π) and the values calculated
from R+(π) and R−(π).

R+
ADS(K) R−

ADS(K) RADS(K) fitted (uncorrected) RADS(K) calculated

0.0426 0.0038 0.0222 0.0232

AADS(K) fitted AADS(K) calculated

-0.82 -0.83

Table 6: Results comparison between the fitted RADS(K) and AADS(K) and the values calculated
from R+(K) and R−(K).

In Tables 5 and 6 we reported the results comparison between the fitted RADS and
AADS and the values calculated from R+/R− using the equations (20), for the pion and
kaon modes respectively.

We find agreement in the pion’s values, but disagreement in the kaon case.
As a comparison, we checked the BaBar results for the B− → DK−, B− → Dπ− [18]

and B− → [Kππ0]DK
− [19] (Tables 7, 8 and 9 respectively), finding a disagreement also

in their results in the kaon modes.

R+
ADS(π) R−

ADS(π) RADS(π) fitted RADS(π) calculated

0.0032 0.0034 0.0033 0.0033

AADS(π) fitted AADS(π) calculated

0.03 0.03

Table 7: BaBar results comparison between the fitted RADS(π) and AADS(π) and the values
calculated from R+(π) and R−(π).
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R+
ADS(K) R−

ADS(K) RADS(K) fitted (uncorrected) RADS(K) calculated

0.022 0.002 0.011 0.012

AADS(K) fitted AADS(K) calculated

-0.86 -0.91

Table 8: BaBar results comparison between the fitted RADS(K) and AADS(K) and the values
calculated from R+(K) and R−(K).

R+
ADS(K) R−

ADS(K) RADS(K) fitted (uncorrected) RADS(K) calculated

0.005 0.012 0.0091 0.0085

Table 9: BaBar results comparison between the fitted RADS(K) and AADS(K) and the values
calculated from R+(K) and R−(K) in the B− → [Kππ0]DK− mode.
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B K−π+

K+π− efficiency

We can evaluate the K−π+/K+π− efficiency using our favored sample of B− → D0π−

decay, for which we expect zero asymmetry. The pdg value, which accounts only for a
Belle result of 2006, is −0.008± 0.008 [17], compatible with zero.
On our data we found N(B+) = 9881± 103 and N(B−) = 9893± 103, so the asymmetry
of the favored pion mode5 is equal to Am

fav(π) = (0.6 ± 7.3) · 10−3.
To evaluate the efficiency we can in this way.

B.1 Strategy

• The central value of the efficiency is evaluated considering a true value of the asym-
metry equal to zero.

• The statistical error is obtained propagating the error on the efficiency of the pion
from B and the error on the measured asymmetry.

• The systematic error is obtained propagating the error on the pdg measurement of
the asymmetry.

In the following the calculation.

B.2 Calculation

B.2.1 How compare the measured asymmetry with the true asymmetry and

the efficiency

The number of measured events (Nm) can be written as N t · ǫ, where N t is the true
number of events and ǫ is the efficiency of reconstruction.

The true value of the asymmetry is:

At
fav(π) =

N([K−π+]π−)−N([K+π−]π+)

N([K−π+]π−) +N([K+π−]π+)
=

N t−
f −N t+

f

N t−
f +N t+

f

=
N t−

f /N t+
f − 1

N t−
f /N t+

f + 1

from which N t−
f /N t+

f =
1 +At

fav

1−At
fav

.

The total efficiency (ǫ) we are considering is:

ǫ− = ǫ(K−π+) · ǫ(π−) = ǫ−D · ǫ−π

ǫ+ = ǫ(K+π−) · ǫ(π+) = ǫ+D · ǫ+π .
5the asymmetry is calculated using all digits of the numbers of events
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so we can write the measured asymmetry:

Am
fav(π) =

Nm−
f −Nm+

f

Nm−
f +Nm+

f

=
N t−

f · ǫ− −N t+
f · ǫ+

N t−
f · ǫ− +N t+

f · ǫ+

=
N t−

f /N t+
f · ǫ−/ǫ+ − 1

N t−
f /N t+

f · ǫ−/ǫ+ + 1

from which ǫ−/ǫ+ =
1

N t−
f /N t+

f

· 1 +Am

1−Am
,

ǫ−D
ǫ+D

· ǫ
−
π

ǫ+π
=

(

1−At

1 +At

)

(

1 +Am

1−Am

)

↓
ǫ−D
ǫ+D

=
ǫ+π
ǫ−π

·
(

1−At

1 +At

)

(

1 +Am

1−Am

)

(21)

B.2.2 Efficiency central value

To evaluate the central value we use At = 0,

ǫ−D
ǫ+D

=
ǫ+π
ǫ−π

·
(

1 +Am

1−Am

)

(22)

and ǫ+π /ǫ
−
π = 0.997 ± 0.003 [16]. In this way:

ǫ−D
ǫ+D

=
ǫ(K−π+)

ǫ(K+π−)
= 0.998.

B.2.3 Efficiency statistical error

Propagating the error on the pion efficiency and on the measured asymmetry in (22) we
obtain this expression:

∆
ǫ−D
ǫ+D

(stat) =

√

√

√

√

(

1 +Am

1−Am

)2 (

∆ǫ−π /ǫ
+
π

)2
+

(

2ǫ−π /ǫ
+
π

(1−Am)2

)2

(∆Am)2.

The statistical error is equal to 0.015.

B.2.4 Efficiency systematic error

To evaluate the systematic error we can use the complete formula (21) and propagate the
error on the pdg measurement. The formula is:

∆
ǫ−D
ǫ+D

(syst) =

(

1 +Am

1−Am

)

· 2ǫ−π /ǫ
+
π

(1 +At)2
· (∆At)
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The final result is:

ǫ−D
ǫ+D

=
ǫ(K−π+)

ǫ(K+π−)
= 0.998 ± 0.015(stat) ± 0.016(syst).
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C D0 BR used in the B → [X]Dπ and B → [X]DK MC sam-
ples.

Decay D0

# updated according to suggestions by P. Roudeau,

# using PDG2004 measurements and imposing the equality

# of sl partial widths for D+ and D0.

# Include additional decay anti-K0 pi- e+ nu_e , K- pi0 e+ nu_e.

#

0.0225 K*- e+ nu_e PHOTOS ISGW2;

0.0350 K- e+ nu_e PHOTOS ISGW2;

0.0014 K_1- e+ nu_e PHOTOS ISGW2;

0.0015 K_2*- e+ nu_e PHOTOS ISGW2;

0.0034 pi- e+ nu_e PHOTOS ISGW2;

0.0022 rho- e+ nu_e PHOTOS ISGW2;

0.0011 anti-K0 pi- e+ nu_e PHOTOS PHSP;

0.0006 K- pi0 e+ nu_e PHOTOS PHSP;

#

0.0214 K*- mu+ nu_mu PHOTOS ISGW2;

0.0340 K- mu+ nu_mu PHOTOS ISGW2;

0.0014 K_1- mu+ nu_mu PHOTOS ISGW2;

0.0015 K_2*- mu+ nu_mu PHOTOS ISGW2;

0.0034 pi- mu+ nu_mu PHOTOS ISGW2;

0.0022 rho- mu+ nu_mu PHOTOS ISGW2;

0.0011 anti-K0 pi- mu+ nu_mu PHOTOS PHSP;

0.0006 K- pi0 mu+ nu_mu PHOTOS PHSP;

#

0.0383 K- pi+ PHSP;

0.0212 anti-K0 pi0 PHSP;

0.0071 anti-K0 eta PHSP;

0.0172 anti-K0 eta’ PHSP;

0.0210 omega anti-K0 SVS;

0.0190 anti-K*0 eta SVS;

0.0020 anti-K*0 eta’ SVS;

0.0730 a_1+ K- SVS;

0.0610 K*- rho+ SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;

0.0146 anti-K*0 rho0 SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;

0.0110 anti-K*0 omega SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;

# the Dalitz mode below includes K*bar(892)0 pi0,

# K*(892)- pi+, and K- rho(770)+ resonances

0.1390 K- pi+ pi0 D_DALITZ;

0.0085 K*BR pi0 SVS;

0.0107 K_1- pi+ SVS;
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0.0071 anti-K_10 pi0 SVS;

#

# the Dalitz mode below includes K*(892)- pi+ and Kbar0 rho(770)0 resonances

0.0540 anti-K0 pi+ pi- D_DALITZ;

0.0078 anti-K0 pi0 pi0 PHSP;

0.0225 anti-K*0 pi+ pi- PHSP;

0.0116 anti-K*0 pi0 pi0 PHSP;

0.0100 K*- pi+ pi0 PHSP;

0.0068 K- rho+ pi0 PHSP;

0.0060 K- pi+ rho0 PHSP;

0.0303 K- pi+ omega PHSP;

0.0100 K- pi+ eta PHSP;

0.0075 K- pi+ eta’ PHSP;

0.0074 K- pi+ pi+ pi- PHSP;

0.0085 anti-K0 pi+ pi- pi0 PHSP;

#

# K- pi+ pi0 pi0 is (15 +/- 5)\% in the PDG, but we decrease it to

# have everything add to 1 and get enough neutral kaons:

0.02575 K- pi+ pi0 pi0 PHSP;

#

0.0143 anti-K0 pi0 pi0 pi0 PHSP;

0.0038 K- pi+ pi+ pi- pi0 PHSP;

0.0038 K- pi+ pi0 pi0 pi0 PHSP;

0.0058 anti-K0 pi+ pi- pi+ pi- PHSP;

#

0.0638 anti-K0 pi+ pi- pi0 pi0 PHSP;

0.0192 anti-K0 pi+ pi- pi0 pi0 pi0 PHSP;

#

0.0086 phi anti-K0 SVS;

0.0051 anti-K0 K+ K- PHSP;

0.0008 K_S0 K_S0 K_S0 PHSP;

0.0043 K+ K- PHSP;

0.0006 K_S0 K_S0 PHSP;

0.0006 K_L0 K_L0 PHSP;

0.0004 K*0 anti-K0 SVS;

0.0008 anti-K*0 K0 SVS;

0.0018 K*- K+ SVS;

0.0035 K*+ K- SVS;

0.0014 anti-K*0 K*0 SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;

0.0007 phi pi0 SVS;

0.0011 phi pi+ pi- PHSP;

0.0025 K+ K- pi+ pi- PHSP;

0.0030 K+ K- pi0 pi0 PHSP;

0.0015 anti-K0 K0 pi+ pi- PHSP;
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0.0015 anti-K0 K0 pi0 pi0 PHSP;

#

0.0015 pi+ pi- PHSP;

0.0008 pi0 pi0 PHSP;

0.0010 eta pi0 PHSP;

0.0010 eta’ pi0 PHSP;

0.0010 eta eta PHSP;

0.0040 rho+ pi- SVS;

0.0040 rho- pi+ SVS;

0.0020 rho0 pi0 SVS;

0.0060 pi+ pi- pi0 PHSP;

0.0010 pi0 pi0 pi0 PHSP;

0.0073 pi+ pi+ pi- pi- PHSP;

0.0050 pi+ pi- pi0 pi0 PHSP;

0.0177 pi+ pi- pi+ pi- pi0 PHSP;

0.0060 pi+ pi- pi0 pi0 pi0 PHSP;

#

# Doubly Cabibbo suppressed decays:

0.00015 pi- K+ PHSP;

0.0005 pi- K+ pi0 PHSP;

Enddecay

#

#
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