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Abstract

The branching fractions and CP asymmetries of B~ — DYK~ modes allow a
theoretically-clean way of measuring the CKM angle 4. The “ADS method”[1][2]
makes use of modes where the D° decays in a Doubly Cabibbo Suppressed (DCS):
D — K*r~. This is a powerful method, but the corresponding decay has not yet
been observed due to its rarity and the presence of large backgrounds.

Using a sample of about 7 fb~! of data, we obtain evidence for the B — D% 4K
signal, at a level of 3.20, and we perform a measurement of the direct CP asymmetry
for the DCS modes B* — D%7* and B* — DOK*.

We obtain, for the ADS parameters (definitions in the text):

Raps(m) = (2.8+0.7 (stat.) £0.4 (syst.)) - 1073
Raps(K) = (22.048.6 (stat.) 2.6 (syst.)) 1073
Aaps(m) = 0.13+0.25 (stat.) £ 0.02 (syst.)
Aaps(K) = —0.8240.44 (stat.) =0.09 (syst.)
RY(r) = (2.441.0 (stat.) £0.4 (syst.))- 1073
R™(m) = (3.1+1.1 (stat.) £0.4 (syst.))-107
RY(K) = (42.6413.7 (stat.) +2.8 (syst.))- 1073
R (K) = (3.8410.3 (stat.)+2.7 (syst.))-1073
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1 Introduction

Several methods have been devised, based on the partial widths of B — D°K modes, to
obtain a measurement of angle v = arg(—VuaV,,/VeaVi}):

e The GLW (Gronau-London-Wyler) method [3][4] uses D?lav — K~ 7%, D2p —
KTK~,ntr™ and DYp_ — K79 K2®, Kw.

e The ADS (Atwood-Dunietz,-Soni) method [1][2] uses D?‘lav — K~ 7" and the doubly
cabibbo suppressed D%CS — KT,

e The Dalitz method [2][5] uses DY}, — K{mF7~.

All these methods require no tagging of the flavor or time-dependent measurements.

In this note we apply the ADS method. The ADS method exploits the interference
between the B~ — DK~ — [KTn~]K~ amplitude (color allowed b — ¢ transition
followed by the DCS D° decay) and the B~ — D'K- — [K+t7~]K~ amplitude (color
suppressed b — u transition followed by a Cabibbo allowed D’ decay). The observables
needed for the v measurement are:

p. _ BR(B- = [K*n|pK) + BR(BY — [K-n*]pK™)
® ADS T BR(B- = [K-ntpK-) + BR(B* — [K+r-|pK™)
. BR(B~ < [K*n]pK~) - BR(BY - [K_n*]pk™)
* CADS T BR(B- — [Ktr |pK )+ BR(BY — |[K m|pK")’

where D can be both D% or D°.

Aaps and Rapg are related to the angle ~, rp, dp, the magnitude rp of the ratio of the
suppressed process D = K—nt over the favored D° — K ~m, and the relative strong
phase dp between these two amplitudes, through the relations:

Raps = T%+T%+2T‘DT‘BCOS’YCOS6B+6D (1)
Aaps = 2rprpsinysindp + dp/Raps (2)

The current status of experimental knowledge is [6]:

e Babar (N(BB) = 467 M): Raps(K) = 0.011 £ 0.006 + 0.002, Aaps(K) = —0.86 £
0471518
e Belle (N(BB) =772 M): Raps(K) = 0.0162+0.0042700018 Axps(K) = —0.39+0.267395
We measured also Raps and Aapg also for the B — D% decay mode [6]. As can
be seen from the expression (1), the maximum achievable value of the asymmetry is

Aaps(max) = 2rgrp/(r%+1%), where rg can be rg(DK) or (D). While 7p is known
with a good precision (r%, = (3.80 £ 0.18) - 1073) [17] and measurements on r5(DK) are



improving its resolution (rp(DK) = 0.1037003%) [7], there are no precise measurements

for rp(D7). Looking at the Feynman diagrams, we expect that rp(Dm) is suppressed

by a factor |V.gVus/VudVes| ~ tan? 0o with respect to rg(DK): we consider the same

color suppression factor for both DK and Dm modes and 6¢ the Cabibbo angle. For

rg(DK) = 0.10 and rg(Dn) = 0.005 we expect Aaps(maz) ~ 0.90 for the kaon and

Aaps(mazx) =~ 0.16 for the pion, both different from zero.

In [6] they estimate the order of magnitude rp(mw) ~ 0.01, for which Asps(mazx) ~ 0.30.
For the B — D% mode the current experimental status is:

e Babar (N(BB) = 467 M): Rapg(m) = 0.0033 = 0.0006 & 0.0004, A4pg(m) = 0.03 +
0.17 + 0.04

e Belle (N(BB) = 772 M): Raps(r) = 0.0032840.000379:90022 " A4 pg(m) = —0.04 +
011730}

In this note we present the analysis of these modes using 5 fb~!. We performed a
simultaneous unbinned Maximum Likelihood fit of all modes mentioned above, combining
mass and particle identification information. This is similar to the method used in the
DCP analysis [8][9] and uses most of the same tools.

2 Data sample

To perform the analysis we need to reconstruct the following decays:
e CF: B~ = D2ph™ = [K 7t h™ +cc.
e DCS: B~ = D, sh™ = [KTn~]ph™ +cc
e CS: Brg — D’ — [Ktn~|ph™ + cec.

where CF is the Cabibbo Favored mode, h can be m or K, DCS means Doubly Cabibbo
Suppressed and CS is Color Suppressed.

Experimentally there is no distinction between DCS and CS decays, as they decay exactly
in the same final state. They make up a single sample that in the following we will call
“DCS” for brevity.

Our data sample was collected by the B.CHARM trigger until July 2010, Period 0 to
Period 31. We used the standard good run list following the prescription of the B-Group
(Good Run list V37, goodrun_b_bs nocal nomu.list). The integrated luminosity of the
sample is about 7 fb~!. The offline version used is the 6.1.4 and the datasets used are:
xbhdid, xbhdih, xbhdii, xbhdij, xbhdik, xbhdfm, xbhdfn and xbhdfp.

The candidates B — D% and B — DK are reconstructed from the B-DPi-KPi block
of BStntuple.

The relevant cuts applied in this block are:

- minimum B mass = 4.40 GeV/c?



- maximum B mass = 6.60 GeV/c?

- minimum D° mass = 1.770 GeV/c?
- maximum D mass = 1.970 GeV/c?
- maximum x? = 25

- set Mass Constraint

- Include Wrong Sign.

Each D° candidate is reconstructed with both possible K7 mass assignments. Only
one candidate is kept in each case, based on the reconstructed masses (see next section),
leading to two mutually exclusive samples “CF” and “DCS”.

3 Cuts Optimization

Due to the smallness of the DCS Branching Ratio (~ 3.5 - 1072 times the CF Branching
Ratio), the main issue for this analysis is the suppression of the backgrounds.

3.1 Basic requirements

The cuts optimization has been performed on 5 fb~!. In Fig. 1 we can see the distribution
of the B candidate masses for the two samples, after the preliminary cuts listed below.
A B — D%t CF signal is visible, while the DCS signal appears to be buried in the
combinatorial background.

Lay(B)
T Lay(B)

> 8;

?

e B decay length significance:

B decay length error: o, (p) < 0.01;

B impact parameter: |do(B)| < 0.008 cm;

B transverse momentum: p;(B) > 5 GeV/c?;

e D decay length measured with respect to the B decay vertex: L., (D)p > —0.015
cm;
e AR = /A®2 + An? between the track from B and the D°: AR < 2;

Eta of the track from B: |n| < 1.;

Eta of the tracks from D: |n| < 1,

transverse momentum of the track from B: p; > 1 GeV/c?;
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Figure 1: Invariant mass distribution of B~ — D%~ CF on the left and DCS on the right after
preliminary cuts.

We also apply three cuts (one of selection + two vetos) to the DY mass. We apply cuts
symmetrically to both CF and DCS samples to ensure equal selection efficiency. Indeed,
the strict similarity between CF and DCS signals is a strong point of this analysis.

e the final cut value for the D° mass is obtained in the optimization procedure 3.2

e veto cut of 40 on Wrong Sign (WS) D mass assignment:
M(DYyg) <1.8245, M(DY,¢) > 1.9045.
If the correct mass assumption (RS) to the tracks forming a D is K7, we calculated,
for each event, also the invariant mass in the assumption of 7K (WS). In Fig. 2 is
shown the distribution of the correct mass assignment (y-axis) vs the wrong sign
(x-axis) for DCS. The veto cuts a slice in the x-axis removing the events that can
have both right sign and wrong sign assignment.

e veto cut of 40 on the DY invariant mass constructed with one track from D° and
the track from B:
M(DY,..) <1.8245, M(D%, ) > 1.9045.
This cut insure that CF events passing the DCS selection, in which the invariant
mass constructed with a track from B and the kaon from DY is peaked on D° mass,
are removed. The vice versa is also applied.

To have a good agreement between MC and data we applied offline trigger cuts, re-
quiring the confirmation of “Scenario A” for one of the two tracks from D° and the track
from B. These cuts have the only aim to remove “volunteers” tracks from data, that are
not simulated in MC.



RIGHT mass vs WRONG mass o

2 Meany 1851
RMS x 01769
RI

DO DCS Mass
©
o

-
© =
@ ©

N[TTT T[T T T T[T I T[T T[T TTTT

e
®

=
o
a

1

. N I M T I
1.4 1.6 1.8 2 2.2 2.4
DO WS Mass

Figure 2: Invariant mass distribution of D° candidate in the K7 hypothesis vs 7K hypothesis
(wrong-sign).

3.2 Details on cuts optimization

The cuts optimization is focused on finding an evidence for B — DY .7 mode. Since
the sample B — DgFﬂ' has the same topology of the DC'S one, we performed the cuts
optimization on CF mode.
We chose the B — D% signal region between 420 around B mass (5.243 GeV/c? <
M(B) < 5.315 GeV/c?), sideband subtracted, and, as background region, the mass window
5.4 GeV/c? < M(B) < 5.8 GeV/c?, where only combinatorial background and no physics
background appears.

We maximized the figure of merit 5 [10], where S is the signal and B the

1.5+ VB

background number of events.
The variables used for the optimization are:

e DY Mass: M(D);

L., (B
B decay length significance: zy );

O Ly (B)

e B impact parameter: |dy(B)]

B tridimensional vertex quality: x3,,(B)

AR between the track from B and the DY

B Isolation (Cone of Radius 1): Isols;

B Isolation (Cone of Radius 0.4): Isoly4;

B pointing angle: PA(B);

D angular distribution: cos 67;

Difference k(Kp) — k(mp).



All these variables have a different distribution for signal and background, so they can
distinguish signal from background. Figs. 3 and 4 show the distributions for all variables:
in black for signal events (sideband subtracted) and in red for the background.
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Figure 3: From left to right we have the distribution of variables D° Mass, Zzx(B) |do(B)| and

;
OLay(B)

X3p(B) in the signal region (in black) and in the background region (in red).
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The two Isolations at radius 1. and 0.4 have a small correlation and together can

remove better the background than using only one of them.
The Pointing Angle is defined as the angle between the 3-dimensional momentum of B
and the 3-dimensional decay lenght. Signal events will have small pointing angles, while
background events will have bigger angles.
The angular distribution of D is defined as the cosine of the angle between the D? in the
Center of Mass (CM) of the B, and the flight direction of B.
_ dE/dxmeqs (i) — dE/dx ey ()

dE/dzeyp,(K) — dE /A2 eqp(T)
i = K,m from D°. The kaoness is centered in 0 if the track is a pion and in 1 if it is a
kaon. We verified that the difference has a greater power separation than using single .

The variable (i), called kaoness, is defined as k(1) , where

The cuts selection that maximize the figure of merit is the following:
e DY mass: M(D) < 1.8645 + 1.5 x 0.01 and M (D) < 1.8645 — 1.5 x 0.01;

OLoy(B)

B decay length significance:

e B impact parameter: |do(B)| < 0.005 cm;

B tridimensional vertex quality: x3p < 13;

AR = /A®? + An? between the track from B and the D°: AR < 1.5;

B Isolation (Cone 1): Isol > 0.4;

B Isolation (Cone 0.4): Isol > 0.7,

B pointing angle: PA(B) < 0.15;

D angular distribution: |cos(67,)| < 0.6;
e Difference x(Kp) — k(mp) > —1.

We added also a cut on the DY decay length measured with respect to the B decay
vertex (Lzxy(D)p).
This cut is not included in the optimization procedure, since it is chosen to suppress the
physics background B to three body decay. As can be seen in Fig. 5, three body decays
(red curve) have a smaller Lxy(D)p than charm B decays (black curve).

Adding the cut:
e Lzy(D)p > 0.01

we verified from MC that 3-body backgrounds are removed of about 75% and signal of
about 20%.
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Figure 5: Distribution of Lxy(D)p of a three body decay (red curve) and a charm B decay (black
curve).

The resulting invariant mass distributions, with pion mass assignment to the track from
B, were reported in Fig. 6, the invariant mass distribution of B~ — D7~ — [K 7 t|pm~
(CF) and B~ — D~ — [KTn~|pm~ (DCS).

We can see that the combinatorial background is almost reduced to zero, as was our
aim.
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Figure 6: Invariant mass distribution of B~ — D%~ CF on the left and DCS on the right after
optimized cuts.
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4 MC simulation

Monte Carlo sample of B~ — D°h~ has been generated with final state radiation (loss
of energy from soft photon emission from the charged final state particles) modeled with
PHOTOS as implemented in EvtGen. We used the standard B-Monte Carlo release, patch
r, good run list named 6.1.4

We observed a discrepancy between the p;(B) distributions of the simulated B candidates
and of B candidates reconstructed on real data (Fig. 7). We selected the signal region
in a window of plus/minos 20 around the B peak, sideband subtracted. For the side-
band subtraction, after defining the background region in the window [5.4,5.8] GeV/c?,
we normalized the background to the signal region and we subtracted the events. We
reweighted the MC p;(B) distribution in order to obtain a better agreement between data
and simulation. We fit with an Erfc function plus a first degree polynomial (shown in Fig.
8) the distribution of the data/MC ratio and we reweigthed the p;(B) distribution of the
simulated events accordingly. The agreement between MC and data after the reweighting
is satisfactory (Figs. 9-14). In all the Figs. we show data as points with error bars and
MC as lines.
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Figure 7: Data (points) - simulation (line) comparison of the p;(B) distribution. Left plot: p:(B)
distributions before the reweighting. Right plot: p:(B) distributions after the reweighting.
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Figure 8: Distribution of the data(points)/MC(line) ratio fitted with an Erfc function plus a first
degree polynomial.
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Figure 9: Top: D decay lenght measured with respect to the B deacy vertex. Middle: B decay
lenght. Bottom: D decay lenght.
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5 Fit range

We are performing a fit using the information of mass shapes and particle identification
(PID). For the mass we chose the range between 5.17 and 6.5 GeV/c?. As in the DCP
analysis [8][9], we chose the lower limit 5.17 since the only other mode significantly con-
tributing to the B — DK mass region is the BT — D" r+. We extend the fit up to
6.5 because the combinatorial background with the optimized cuts is very low and we
need to have a major lever to take into the right way the slope and the fraction of the
combinatorial background.

For what concern particle identification we fit PID variable (see Sec. 9) in the region
[-3,+3].

6 Background study for the DCS mode

There are several physics backgrounds that appear in the DCS reconstruction. We will
consider each category.

6.1 B — D% with D° —» X

The CF mode itself is a source of background for the DCS. We checked from MC that
CF events in which the D° radiate a photon in the final state, if reconstructed as DCS,
can skip the WS veto cut. We estimate a fraction of these events, with respect to the
B — D% (CF) to be about 1.4 - 1073. Since the B — D%t DCS branching fraction with
respect to CF is about 3.5 - 1073 this background is significant.

We found many other decays that behave as background for the DCS, such as B —
DOr, with D° — 7= p*y,, D - K—atn% D — p=nt, DO — ptr—.

We decided to consider all decays together as a single background, generating a MC
sample of B — D% with DY — X, with official relative BRs, that we report also in
Appendix A. After removing B~ — D%~ — [KTn~]pn~ in the reconstruction we
evaluated the remaining background fraction, with respect to B — D%t CF, of about
5.1-1073, which corresponds to about 100 events in the mass fit window.

Considering all backgrounds together will produce a better resolution in the final fit, since
we will fit only the normalization, while all contributions are each other fixed to the relative

BRs.

6.2 B — D°K with D - X

As for the previous case we generated a MC sample of B — D°K with D° — X with
relative D° BRs as in Appendix A. After removing B~ — DK~ — [K "7~ |pK~ in the
reconstruction, we evaluated a fraction of background, over the B — D°K CF, of about
2.3 - 1073, which corresponds to about 5 events in the mass fit window.

16



6.3 B — DXh with D° — KTK~ 7t~

We verified using MC samples that none of B — Dg(;)h modes, where D°*) can be D°
or D%, reconstructed as DCS, appear as background. The only “dangerous” could be
B — DK with D — nt7~, but, after all the cuts and normalizing for the BR, its
contribution is negligible.

6.4 B~ to three-body decays

The only two 3-body decays that can affect our measurement are B~ — KTn K,
peaking in the B — DK mass region, and B~ — KTn~ 7, peaking in the B — D7
mass region.

The first one is negligible after the cut on Lz, (D)p. The second one has a fraction of
events with respect to B — D% CF of about 5.5 - 1074, which corresponds to about 11
events in the mass fit window. It has been added to the fit.

6.5 B’ — Dj etv,

We generated MC samples of B — D§~ et v, and we evaluated a fraction with respect to
B — D%t CF of about 2.4 - 1074, corresponding to about 5 events in the mass window.

6.6 Other decays

We generated MC samples of By, — D7+, with D; — X, B = D~nt, with D~ — X,
B~ — D%~ with D° - K—n*, B~ — D% v, with D - K~n*, B~ — D% v, with
DY - K—nt, B~ — D*K~ with D° - K—n*, B~ — D*u~v, with D’ - K~n*,
B~ — KTn~ K~ and we found that all of them does not appear in the DCS reconstruc-
tion or give a negligible effect.

In conclusion the four backgrounds that we are going to consider for the DCS are:
B — D% with D° — X, B — D°K with D’ - X, B~ — K- nt7~ and B® — D} e*v..
We applied a Gaussian constraint to the fit Likelihood to bind the fractions of these
backgrounds. We chose as sigma of the constraint the sum in quadrature of the error
propagated from the PDG BRs and the relative error coming from the MC statistics. In
this way we include in the statistical error the error due to MC statistics.

® Neypectea(B — DO, D — X/B — D) = 100
Sigma in the constraint = 3% (PDG) + 5.9% (coming from 290 reconstructed events
in the final state) = 6.5%.

® Negpectea(B = D°K, D° — X) =5
Sigma in the constraint = 9% (PDG) + 22% (coming from 20 reconstructed events
in the final state) = 24%.

® Negpected(B — K ntr ) =11
Sigma in the constraint = 6.6% (PDG) 4 5.5% (coming from 333 reconstructed
events in the final state) = 8.6%.
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® Negpectea(BY — D§"etve) =5
Sigma in the constraint = 40% (PDG) + 14% (coming from 54 reconstructed events
in the final state) = 42%.

7 Simultaneous Fit of B — D7 and DK modes

We implemented an extended maximum Likelihood fit that combines the invariant mass
(Mknrr) and the particle identification information.

We perform a simultaneous fit on CF mode and DCS modes. The expression of the
non extended Likelihood is:

Lype =Lcpt Lop- - Lpesy - Lpos— (3)

We multiply each factor for a Poisson distribution, with each expected mean values equal
to the number of events on each sub-samples.

L="Pcpy Lory Por—-Lor- - Ppes+ - Lpos+ - Ppos— - Lpos—. (4)

The product of the four independent Poisson distributions is equivalent to take the
product of a Poisson distribution, with expected mean values equal to the total number of
events, multiplied by a multinomial distribution, which take into account the subdivision
into the four sub-samples (cap 6.9 and 6.10 of [14]). Using an extended fit we ensure
that errors take into account all correlations between fitted numbers of events and fitted
fractions.

The single components are defined as:

N;
_ K
Pi=ge"
Niot
£CF+ = H |:(1_bCF+)'(f$F+'pdf7T(M7"£)+c+'ngJr'pde*(Ma"i)—i_

i

+ (1= FEFF =& FEFH) pdfic (M, 5)) + ber - faoms (M, )]

CF—
NTOT

Lop = T [ =bor)- (FE7 pdf(M, k) + e - JE7 - pdfp.(M, 5)+

i

+ (1= FE7 = e - fE7) - pdfic (M, 1)) + ber— - pdfeomy (M, k)]

DCS+
NTOT

Loose = [1 [ =bpese)- (FPO5F - pdfa(M. k) + " - fPO5F - pdfp. (M, r)+

i
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4 (1 _ fi)CSJr _ct. f7zr)cs+) - pdfi (M, ﬂ)) +
+bpcesy - (f[—;qﬂ ’ pdf[X}ﬂ(M’ K) + fﬁ)—qK ’ pdf[X]K + f;mr : pdemr(M’ K)_{_
Fin - pfso(M, 8) + (1= i, = Fiqie = Fewn — Fh0) - Dfeomp(M, %))

DCS—
NTOT

Loes- = [ |0 =bpes-) - (FPO5 - pdfa(M,w) + ™ - PO - pdfp. (M, k)+

+ (1= fPO5 — e fPOS7) pdfi (M, k) +
+bpes— - (f[;qﬂ - pdfix) (M, k) + fxk  Pfixix + frnn pdf krn (M, K)+
Fao - pAfeo(M,5) + (1= fi = Fxie = Ficnn — F0) - Pfeomp(M, 1)) |

The parameters bopy, bor—, bpos+ and bpog— are the fractions of the background
for each mode and charge. In the CF likelihood the only background considered is the
combinatorial, for which we use a single pdf.,mp for both positive and negative charges.
For the DCS we are considering the combinatorial (with the same pdf of CF mode) and the
physical background, as B — K in three-body decay (of which the fraction is f;m and
pdfir), B — D% with D° — X (of which the fraction is f[f(]w and pdfix)r), B — DK
with D® — X (of which the fraction is f[f(] 5 and pdfixx), and BY — D{"e*v, (of which
the fraction is f;) and pdfgo).

For the signals, ffF’Dcs’i is the fraction of B — D% CF, DCS, positive and negative
charges, c* is the common parameter for CF and DCS likelihood and corresponds to the
ratio of the B — D*r over B — D%r. We verified from MC that for CF and Dcp modes
this fraction remains constant and we are using it also for the DCS. The simultaneous
fit allows us to take advantage of the CF channel with more statistics to constrain the
common parameter ¢ in a consistent way.

The fraction of B — DK is written as (1 — fr — ¢ fr), so it is not explicitly fitted,
but is calculated from the fraction of B — D%t and B — D*Oz. In this way, when we
had to fix that fraction to zero, to evaluate the B — D°K DCS significance, the fit found
problems of convergence to realistic values. For this reason we decided to apply this change
of variables in the DCS part of the likelihood:

1 _fDC’S —c- fDC’S
™ ™

DCS DCS DCS

f7r = 1- K _C'f7r )

DCS
IK

where the second expression can be simplified in: fP¢S = (1 — f2¢%) /(1 + c).
In this way the formal expressions of the DCS likelihood are:

DCS+
NTOT

Loose = [ [(L=bpess)- (1= FROS)/(L+ ) - pdfa(M, r)+

i
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+ct FPOSY pdfp. (M, ) + FRET - pdfic (M, k) ) +
+bpesy - (f[—;qﬂ : pdf[X}ﬂ(M’ K) + fﬁ)—qK : pdf[X]K + f;mr : pdemr(M’ K)_{_
Fi - pfso(M, 8) + (1= k= Fiqie = Fewn — F0) - Dfeomp(M, %))

DCS—
NTOT

Loos— = [ [(1=bpos)- (1= FRES)/(1+¢7) - pdfx(M, k)+

+e fPOS  pdfpu(M, k) + [RES - pdfic (M, ) +
+bpes— - (f[;qﬂ - pdfix) (M, k) + fxk Pfixix + frnn pdf krn (M, K)+
Fao - pAfeo(M,5) + (1= fi = Fixie = Ficnn — F0) - Pfeomp(M, 1)) |

The likelihood is the same as before, as a cross-check we verified that all yields and
observables results remain the same, but the fraction of B — DK can be now directly
fixed to zero allowing an easier evaluation of the significance. This is chosen as the final
fit configuration.

pdf functions are functions of the Mass (M) in [K 7|7 hypothesis and of Particle Iden-
tification (the s kaoness variable applied to the track from B, defined in 3.2). They are
different for each decay, but equal for CF and DCS Likelihoods.

In the next sections we will consider piece by piece all pdfs, and describe the parame-
terizations used for mass and Particle Identification variables.

8 Mass templates

8.1 Signal mass template

Monte Carlo samples of B~ — D7~ and of B~ — DK~ have been generated with final
state radiation modeled with PHOTOS as implemented in EvtGen.
The mass line shape is parameterized using the following asymmetric pdf:

Cl) U ()
—(mu 2
—l—fgﬁe_%(%) ) (5)

where fy,, is the contribution of the radiative tail fraction. fi, f2, f3 and o1,092,03 are
respectively the fractions and the widths of the three gaussians (fi + fo+ f3 =1). Aisa
mass scale parameter that is left free to be determined by the fit. We also introduced a free
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scale parameter (s) in the likelihood fit, multiplying the width of the three gaussians, to
account for differences between data and MC. Fig. 15 show the invariant mass distribution
of the simulated B~ — D%~ events, while Fig. 16 show the invariant mass distribution
of the simulated B~ — DK~ events, both with the superimposition of the fit function 5.

B Mass X2 / ndf 175.1/82
Prob 1.035e-08

Norm 658.1+1.8

10 Frac Tail 0.03236 £0.00121
Frac G1 0.5024 £0.0657

Frac G2 0.02248 +0.00349

Mass 5.277 £0.000

10° sgl 0.0131+ 0.0004
sg2 0.04919 + 0.00265

sg3 0.01958 + 0.00060

102 b 9.108 +0.421
c 40.98 + 14.24

un
10 ‘wﬂmﬂﬂiﬂ} Imiiii H
1 |
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

48 4.9 5 51 52 53 54 55 56 57 58

Figure 15: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
Bt = D't events on logarithmic scale. We overlaided the fit function 5.

8.2 Physics background
8.2.1 Bt 5 D'nt

As defined in section 5, the fit window is [5.17, 6.5] GeV/c? to have as physics background
only the BT — D7+ contribution in CF sample. In Fig. 17 the invariant mass distribu-
tion of D% (log-scale), of MC events, is shown. The distribution has been fitted in the
window [5.14,5.6] GeV/c? with three gaussians plus an exponential.

8.2.2 Three-body decay

Fig. 18 show the invariant mass distribution of B~ — K77~ from MC simulation.
The decay is reconstructed as B~ — Dpcgn~. The distribution has been fitted with two
gaussians.
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B Mass X2 / ndf 60.97 / 32
Prob 0.001506

- Norm 1267 +3.6

B Frac Tail 0.02054 +£0.00307

10* - Frac G1 0.6178+0.1591
= Frac G2 0.07148+0.11166

B Mass 5.23+0.00
sl Mass3 5.202 + 0.006
10 E sgl 0.01925 + 0.00078
E sg2 0.02552 + 0.00537

- sg3 0.02386 + 0.00182

102 b 10.64 + 1.45
g C 13.47 + 1.09

F iy, 4
byt
10 J[ﬁh[ o

1

48 4.9 5 51 52 53 54 55 56 57 58

Figure 16: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B+ — DK™ events on logarithmic scale. We overlaided the fit function (5).

8.2.3 B—DrwithD — X

The B~ — D1~ decay with D° — X is reconstructed as B~ — Dpcogn—. Fig. 19 shows
the invariant mass distribution of this background with superimposed the fit function (a
Pearson function of IV type).

8.24 B — DK with D - X

The B~ — DYK~ decay with D° — X is reconstructed as B~ — Dpcsm~. Fig. 20 shows
the invariant mass distribution of this background with superimposed the fit function (one
gaussian).

8.2.5 BY— Dj et

The B® — D{ eTv,, with Df~ — DO7~, with D® — K*+r~ is reconstructed as B~ —
Dpcsm™. Fig. 21 shows the invariant mass distribution of this background with super-
imposed the fit function (one gaussian).

8.3 Combinatorial background

We described the combinatorial background mass shape with an exponential. The slope
and the normalization of the exponential are left free in the main fit. We considered
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B Mass X2 I ndf 33.45/21
Prob 0.04147
3 po 27.27+4.45
E - pl 659.4 + 144.5
B DS - p2 128.4 + 179.3
. - p3 -15.54 + 4.94
10° e . p4 5.212 + 0.002
- o p5 5.177+0.003
B Ky p6 5.062+ 0.010
, N p7 0.008973 + 0.001624
100 ps8 0.02435 + 0.00137
E m}’“ p9 0.04047 + 0.00506
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Figure 17: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated

—=0* . . . . .
BT — D 7T events on logarithmic scale. We overlaided the fit function (three gaussians plus an
exponential).

DCS B Mass X?/ ndf 19.32/19

Prob 0.4366

C Norm 6.299 +0.357

= Frac G1 0.9186 +0.0204

S0~ Mass1 5.286 + 0.004

N Mass2 5.084 £0.011

L sgl 0.06426 + 0.00364

40— S92 0.03409 + 0.00884
30[—
20—
10

7\#\#\%\%”\\\HH\HH\HH\H RTINS BRSNS
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Figure 18: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B~ — K~n"r~ events. We overlaided the fit function (two gaussians).
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DCS B Mass X2 I ndf 11.42/12
Prob 0.4933
o po 5.317 + 0.022
80 pl 0.07202 + 0.02407
- p2 0.7594 + 0.3054
70— p3 2.232+0.804
= p4 17.65+ 9.19
60—
50—
40
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Figure 19: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B~ — D%~ with D° — X events. We overlaided the fit function (a Pearson function of IV type).

B Mass X2 I ndf 2.255/5

Prob 0.8129

- Norm 3.223 £0.435

25— Mass 5.131+0.012

C sgl 0.07041 + 0.01219
201~
151

10

2]
\\\\‘\\\\

o b by by By
2.8 4.9 5 51 52 53 54 55 56 57 658

Figure 20: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B~ — DK~ with D° — X events. We overlaided the fit function (one gaussian).

different shapes for each decay mode, but same slope for positive and negative of the same
mode.
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B Mass X*/ ndf 9.707/8
Prob 0.2862
24 Norm 5.401+0.791
Py = Frac G1 0.2047 +0.0831
= Mass1 5.238+0.009
20— Mass2 5.001+0.026
18 sgl 0.02929 + 0.00820
Sg2 0.129 + 0.036
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Figure 21: MC simulation, PHOTOS turned on: invariant mass distribution of the simulated
B — D§"eTv,, with Dy~ — DOr~, with D® — K7~ events. We overlaided the fit function
(one gaussian).

25



9 PID parameterization (signal and background)

To distinguish between B — DK and B — Dw modes, particle identification is applied to
the track from the B. Since that track has pr > 2 GeV/c?, we can use dE/dx information,
obtained from dE/dx calibrations and Universal Curve (UC).

We use official calibrations, blessed by the B-Group [15], while the UC are extrapolated
in a pure sample of D* — D%, with D® — K, using data collected up to p28 (about 6
fb~! of integrated luminosity). Those UC are not yet blessed, but there are plans to be
blessed soon.

The motivation to have new UC is that we need to have consistent UC for each sample

of data, since we know that dE/dx performances degraded over time. For this reason,
blessed UC are not valid up to p31, since they have been performed up to pl7 and ex-
tended up to p25.
Superimposing new and old UC we can see a shift one respect to the other, which disap-
pears when the two UC are compared in the sub-sample up to pl7. Because of this, we
think the new UC are correct to be used. Also we verified that these distributions remain
unchanged and valid also up to p31.

The PID information can be represented by the single observable x, defined in sec-
tion 3.2:

dE dE
K = %meas - %61’])(7{) (6)
— dE dE :
%e:}:p(K) B %emp(ﬂ—)
where fl—fmeas is the measured energy lost by the charged particle in the drift chamber

volume and ‘fl—femp(w, K) is the corresponding expected value in a given particle hypothesis.
The average k, respectively in pion and kaon hypothesis is < k >;= 0 and < Kk >g= 1.
This variable take advantage of the fact that is, at the first order, momentum independent.

We determined the pdfs of the s variable directly from our data-sample. We selected

kaons and pions from the D° of the BT decay, requiring both the pion and the kaon from
DY to be trigger tracks. We didn’t use the residual parameterization blessed by the B-
Group because, again, that parameterization was done up to period 17 and we are using
data up to period 31.
Parameterizing this variable in our sample it allows us to take into account any systematic
effect due to the fact that the UC are not extracted in our sample and to avoid sample
dependence effects. This is because the PID templates are constructed in the same data
that we fit.

Then we reweighted the transverse momentum distribution (p;) of kaons and pions
from D with the p; of kaons and pions from BT. The p; distributions of kaons and pions
from D° are taken from data, while the p; distributions of kaons and pions from BY are
taken from MC (in the section 4 Fig. 12 show the good agreement between data and
MC for the p; distribution of the track from B). This reweighting is necessary due to the
fact that the kaon-pion separation is momentum dependent so we can parameterize the k
distribution using kaons and pions from D but only after the p; reweighting.

Fig. 22 shows the k distribution, for pions on the left and for kaons on the right after
the reweighting. The two distribution have been fitted using three gaussians. We are
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going to use this parameterization in the maximum likelihood fit.

NN
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S o
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Figure 22: Left: ID distribution for the pion from D° from B¥. Right: ID distribution for the
kaon from D° from B*. The fit functions are superimposed.

Assuming that the combinatorial background is composed only of pions and kaons, the
corresponding PID pdf has the form:

a - pdfz(r) + (1 —a) - pdf (k) (7)

where a is the fraction of pions in the combinatorial background. This fraction is left free
to float in the maximum likelihood fit.

10 Uncorrected fit results

The fit is performed on the sample selected with the optimized cuts (Fig. 6), with the
invariant mass distribution of the B-candidate in the range 5.17 < mpo, < 6.5 GeV/c?.
The results of the fit are:

Raps(M)raw = (2.8+0.7 (stat.))-1073

Raps(K)raw = (22.2+8.6 (stat.))-1073 (8)
Aaps(T)raw = 0.13+0.25 (stat.)

Aaps(K)raw = —0.82+0.44 (stat.)

(2.4 +1.0 (stat.)) - 1073
(3.1£1.1 (stat.)) - 1073
(42.6 £13.7 (stat.)) - 1073
(3.8 4 10.3 (stat.)) - 1073

T o
Py T
—~~
3 3
Q =}
IS IS
I I

We label with the subscript “raw” the fit output which has not yet been corrected for
the relative efficiencies.
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In table 1 we quote the yields for each decay. The error on the yield is obtained
propagating the errors on the fractions and on the numbers of fitted events, according to

Var(y) = 2.2 5 gy, 1= (Vor@i; (9)

The same formula is applied also to calculate the errors on the observables (Raps(7, K)
K)), that are expressed as functions of the fractions and total numbers of

the formula:

and Aaps(m,
events in each subsample.

Parameter fraction yield
Bt — D'rt (fCF+)  0.904 +£0.004 9882 + 103
B~ — DO - (fCF ) 0.893 £0.004 9892 + 103
B+ - DK+ (f¢ +) 0.063 & 0.004 694 + 39
B~ — DK~ (f$¥7)  0.0694+0.004 767 +41
Bt - D'nt (fDCS+) 0.44 £ 0.12 2449
)

B~ — DO~ (fPCsS- 0.88 & 0.20 31£10
B+ 5 DK+ (fR°5*+)  055+0.13 29+ 9
B~ — DK~ (fR97)  0.0840.20 3+8

Table 1: Raw results from the maximum likelihood fit.

Decay Yield
BT — D%zt CF 355 + 27
B~ = D"r CF 415 4 29
BT — D%zt DCS 1+1
B~ — D”r DCS 141

BT - D%t with D° - X 5047
B- - D% with DY - X 507
BT - DKt with D° - X 141
B™ -5 DK~ with D - X 242

BT - Ktr—nt 5+ 2
B™ - K o rnt 6+2
B — D{ " etu, 2+2
BY — Dite 1, 3+2

Table 2: Other parameters resulting from the fit.

28



Parameter Value

ct 0.034 £ 0.003

c” 0.041 + 0.003

background fraction (CF pos) (bepy)  0.026 £ 0.002

background fraction (CF neg) (bcrp—)  0.025 £ 0.002
background fraction (DCS pos) (bpcs+) — 0.86 £+ 0.03
background fraction (DCS neg) (bDCS ) 0.90 £0.03
BT — DT with D° — X (f ) 0.16 + 0.01
B~ — D7~ with D° — X (f[ ) 0.15 4+ 0.01

Bt — DK™ with D° — X (fX]K) 0.005 4 0.001

B~ — DK~ with D° — X (fX]K) 0.005 £ 0.001

BY = K*nn" (fi,) 0.017 = 0.001

B~ K-t (fr,.) 0.016 £ 0.001

BY = D{ etv, ( fBO) 0.007 #+ 0.003

B — Dite v (fp0) 0.007 £ 0.003
f= in the comb. back (CF & DCS) 0.69 £ 0.03
slope (CF & DCS) —2.6+0.1

A (34+1)-107%

Scale (s) 1.107 + 0.008

Table 3: Other parameters resulting from the fit.
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11 Fit checks

11.1 Toys for the fit consistency

In order to test the fit consistency we used Toy MC. We generated 1000 toys with the
fractions and number of events obtained from data (see Table 8). We evaluated the
residuals (fitted value — input value) for all four observable and we fitted them with a
gaussian function.

The results are shown in Figs. 23, 24.

X2/ ndf 35.32/39 X2/ ndf 119.5/94

_ Prob 0.6385 Prob 0.03896
b pO 32717 30~ po 12.79+0.79
5 = pl 8.122e-05 + 3.241e-05 C pl 0.01794 + 0.00799
a0f- P2 0.0007834 + 0.0000285 Py 0.1767 + 0.0088
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Figure 23: Residuals of Raps(w) (left) and Aapg(w) (right) fitted with a gaussian. “p1” is the
mean and“p2” is the sigma of the gaussian.

X2 7 ndf 97.51/82 X?/ ndf=87.41/102
25— P[f)Ob 1‘;-1133;3 Prob 0.8478
L p! +0.
r Pl 0.003416+ 0.000338 14l P© G 048
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Figure 24: Residuals of Raps(K) (left) and Asps(K) (right) fitted with a gaussian.“pl” is the
mean and“p2” is the sigma of the gaussian.

Looking at the mean and sigma of the residuals, we can evaluate the bias (the “pl”
value) and express it as fraction of sigma (the“p2” value). For R4pg(n) the bias is 8-1077,
which corresponds to 1/100. For Rapg(K) the bias is 0.007, which corresponds to 1/20.
For Aaps(m) the bias is 0.018, which corresponds to 1/100. For Aapg(K) the bias is 0.12,
which corresponds to 1/30.
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We can easily see that the residual of the asymmetry of the kaon is cut at the value
—0.2. This limit point comes from the boundaries in the asymmetry, that has to lie in
the range [—1,1]. Also, the toys are generated with fractions found on data, with the
asymmetry very close to —1 and the low statistics spread the distribution making more
visible the limit point.

This boundary exist also in the other residual distributions, R for example has to be in
the range [0, 1], but it is less visible.

We generated more events in the toys, in particular 10 and 20 times the statistic on
data. The residuals for the first case are in Figs. 25 and 26, while for the second are in
Figs. 27 and 28. We found a reduction in the width of the residuals and also a reduction
in the bias for the kaon observables, while for the pion the bias looks to remain constant.
Since the latter is still negligible for our data statistics, we are not going to correct for it.

X2/ ndf 108.4/111 X2 I ndf 27.96 /32
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Figure 25: Residuals of Raps(w) (left) and Aaps(w) (right), with a statistics 10 times greater
than in data, fitted with a gaussian.“pl” is the mean and “p2” is the sigma of the gaussian.
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Figure 26: Residuals of Raps(K) (left) and Aapg(K) (right), with a statistics 10 times greater
than in data, fitted with a gaussian. “pl” is the mean and “p2” is the sigma of the gaussian.

We found that the reason of the bias is due to the boundary in the B — D%CSK
fraction, which, up to now, has to be in the range [0,1]. This cause the limited residual
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Figure 27: Residuals of Raps(w) (left) and Aaps(w) (right), with a statistics 20 times greater
than in data, fitted with a gaussian. “pl” is the mean and “p2” is the sigma of the gaussian.

X2/ ndf 73.4/88 X2 / ndf 28.04 /39
0.868 Prob 0.9039
C 8.495 + 0.559 C po 21.42+1.26
14 | 0.0002279 + 0.0001110 25 o pl 0.01048 + 0.00447
rC 0.002049 + 0.000111 r p2 0.08889 + 0.00369
12 C
C 20—
101~ r
b 15—
°F 101
4 C
C s
2f- C
:H‘\H f H\H‘\‘HMH\‘HMH O:\\‘\\\‘\\\‘ M R Lo o L 1
8.0 0:008 -0.006 -0.0040.002 0 0.002 0.004 0.006 0.008 0.0 I 08 -06 -04 -02 0 02 04 06 08 1

Figure 28: Residuals of Raps(K) (left) and Aapg(K) (right), with a statistics 20 times greater
than in data, fitted with a gaussian. “pl” is the mean and “p2” is the sigma of the gaussian.

distributions and also the bias. We generated toys with the fraction of B — D%CSK
floating in the range [—1,1]. The residuals are shown in Figs. 29 and 30 and we can now
clearly see that there is no bias nor boundaries in the distributions. We checked that the
fit with the fraction of B — D% ,¢K in [—1,1] return on data the same results as in the
case of [0,1].

We can conclude that our fit has a bias due to the physical boundary in the fraction
of B — D%CSK signal to be greater than 0. But since, after removing this boundary, the
fit results remain unchanged and the bias disappear, we do not correct for any bias.

11.2 Likelihood profile

We performed the likelihood profile of the two fractions of B — DpcgK positive and
negative, minimizing the other parameters at each point. In the Fig. 31 we can see the
Likelihood profile at one (red), two (green) and three (blue) sigmas. No suspicious behavior
appear from the profile.
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Figure 29: Residuals of Raps(m) (left) and Aapg(m) (right), with the same statistics on data
and the fraction of B — DY, ¢K floating in [—1, 1] range in the fit, fitted with a gaussian. “p1”
is the mean and “p2” is the sigma of the gaussian.

X2 1 ndf 48,08/ 58
0.8203

W oW AN
S o o o

BN
o o u
AN AR AR AN AR AR AR

N
o o

23.93+1.37
0.0004595 + 0.0004187
0.009353 + 0.000379

X2/ ndf = 67.29 / 63

S
OTTTT
o

10 T PRI IR ITIN AAVATI A P BT
. -0.04 -0.03 -0.02 -001 0 0.01 0.02 0.03 0.04 0.05

Prob 0.3324
0 PO 20.64 + 1.26
£ pl  0.06048 + 0.01786
£ p2 0.3904 + 0.0169
25
20—
15
10
5
(N L
07 >

Figure 30: Residuals of Raps(K) (left) and Asps(K) (right), with the same statistics on data
and the fraction of B — DY, ¢K floating in [—1, 1] range in the fit, fitted with a gaussian. “pl”
is the mean and “p2” is the sigma of the gaussian.

11.3 Correlation matrix

In Fig. 32 we can see the correlation matrix as returned by the fit, where the parameters
correspond to:

pl fraction
p2 fraction
p3 fraction
p4 fraction
p5 fraction
p6 fraction
p7 fraction
p8 fraction

of CF+ background
of DCS+ background
of CF- background
of DCS- background
of B— Dm CF+

of B— DK DCS+
of B— Dr CF-

of B— DK DCS-

p9 constant (B — D*r)/(B — D) pos
p10 constant (B — D*r)/(B — D) neg
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Likelihood contour
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Figure 31: Likelihood profiles for the B — DK DCS pos vs neg fractions at the level of one (red),
two (green) and three (blue) sigmas.

pl1 fraction of B — [X]pK pos background
p12 fraction of B — [X]pK neg background
p13 fraction of B — [X]p7 pos background
pl4 fraction of B — [X]p7 neg background
pl5 fraction of B — K7m pos background
p16 fraction of B — K&m neg background
pl7 fraction of B® — D*~ev pos background
p18 fraction of B — D*~er neg background
p21 slope of the combinatorial background
p23 fraction of 7 in the combinatorial background
p27 total number of CF+ events

p28 total number of CF- events

p29 total number of DCS+ events

p30 total number of DCS- events
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PARAMETER CORRELATION COEFFICIENTS
NO.GLOBAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21

23

27

28

29

30

0.33343 1.000 0.070 0.090 0.079 0.095 0.009 0.019-0.051-0.084-0.018-0.036-0.022-0.081-0.062-0.068-0.051
0.91347 0.070 1.000 0.070 0.064 0.028 0.135 0.009-0.044-0.036 0.000-0.141-0.019-0.514-0.050-0.439-0.041
0.32417 0.090 0.070 1.000 0.075 0.019 0.008 0.089-0.045-0.019-0.079-0.019-0.037-0.057-0.083-0.048-0.069
0.91040 0.079 0.064 0.075 1.000 0.012 0.000 0.033-0.480 0.001-0.044-0.019-0.146-0.050-0.503-0.042-0.426
0.50132 0.095 0.028 0.019 0.012 1.000 0.014 0.004-0.015-0.404-0.003-0.201-0.004 0.039-0.011 0.033-0.009
0.17462 0.009 0.135 0.008 0.000 0.014 1.000-0.007 0.012-0.026 0.012-0.029-0.001-0.058-0.004-0.048-0.003
0.51051 0.019 0.009 0.089 0.033 0.004-0.007 1.000-0.008-0.003-0.418-0.003-0.198-0.009 0.039-0.008 0.033
0.50915 -0.051-0.044-0.045-0.490-0.015 0.012-0.008 1.000 0.010 0.003 0.012 0.055 0.031 0.246 0.026 0.211
0.43929 -0.084-0.036-0.019 0.001-0.404-0.026-0.003 0.010 1.000 0.002-0.065 0.002 0.001 0.005 0.000 0.004
0.45289 -0.018 0.000-0.079-0.044-0.003 0.012-0.418 0.003 0.002 1.000 0.002-0.065 0.005 0.002 0.005 0.001
0.37500 -0.036-0.141-0.019-0.019-0.201-0.029-0.003 0.012-0.065 0.002 1.000 0.005 0.248 0.014 0.211 0.012
0.38710 -0.022-0.019-0.037-0.146-0.004-0.001-0.198 0.055 0.002-0.065 0.005 1.000 0.014 0.263 0.012 0.221
0.95391 -0.081-0.514-0.057-0.050 0.039-0.058-0.009 0.031 0.001 0.005 0.248 0.014 1.000 0.039 0.772 0.033
0.95092 -0.062-0.050-0.083-0.503-0.011-0.004 0.038 0.246 0.005 0.002 0.014 0.263 0.039 1.000 0.033 0.760
0.80898 -0.068-0.439-0.048-0.042 0.033-0.048-0.008 0.026 0.000 0.005 0.211 0.012 0.772 0.033 1.000 0.027
0.79931 -0.051-0.041-0.069-0.426-0.009-0.003 0.033 0.211 0.004 0.001 0.012 0.221 0.033 0.760 0.027 1.000
0.13371 -0.016-0.048-0.012-0.010 0.006-0.008-0.002 0.005 0.000 0.002 0.033 0.003 0.122 0.008 0.104 0.007
1.000 0.002 0.040-0.011 0.021 0.000-0.114-0.002
0.12978 -0.013-0.010-0.016-0.045-0.003-0.002 0.006 0.015 0.002 0.000 0.003 0.034 0.008 0.118 0.007 0.100
0.002 1.000 0.042-0.007 0.000 0.020-0.002-0.111
0.51431 -0.303-0.241-0.296-0.267-0.066-0.022-0.063 0.175 0.060 0.059 0.066 0.074 0.191 0.206 0.160 0.171
0.040 0.042 1.000-0.020 0.007 0.007-0.039-0.041
0.19892 0.021-0.005 0.032-0.047-0.014 0.104-0.013 0.147-0.027-0.026 0.004 0.013-0.022 0.005-0.017 0.006
-0.011-0.007-0.020 1.000-0.005-0.004 0.025 0.023
0.47222 -0.002 0.022-0.002-0.002 0.000 0.005-0.001 0.001 0.000 0.001 0.039 0.000 0.131 0.001 0.111 0.001
0.021 0.000 0.007-0.005 1.000 0.000 0.003 0.000
0.45740 -0.002-0.002-0.002 0.021-0.001-0.001 0.000-0.010 0.001 0.000 0.000 0.041 0.001 0.131 0.001 0.109
0.000 0.020 0.007-0.004 0.000 1.000 0.000 0.003
0.94517 0.011-0.118 0.012 0.009 0.002-0.027 0.003-0.003 0.000-0.006-0.212-0.002-0.721-0.008-0.609-0.006
-0.114-0.002-0.039 0.025 0.003 0.000 1.000 0.002
0.94253 0.013 0.010 0.012-0.114 0.003 0.003 0.002 0.058-0.006 0.001-0.002-0.228-0.008-0.728-0.007-0.610
-0.002-0.111-0.041 0.023 0.000 0.003 0.002 1.000

Figure 32: Correlation matrix of the fitted parameters.
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12 Fit projections

In order to visualize the agreement between the fit and the data we report the plots of fit
projections. A projection of the generic probability density function pdf(z, 7/ |7) on the
observable x is the plot of the function f7 pdf (z, %/ |mt)d 7, which can be overlaid to the
experimental data with the appropriate normalization.

Figs. 33, 34, 35 and 36 show the fit projections on mass and ID variable respectively
for CF sample, positive and negative charges, and DCS sample. The points are data and
the solid line are the fit projections. For each projection the plot of the difference between
projection and data is shown. The agreement between data and fit function appears
satisfactory.
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Figure 33: Fit projection in mass range [5.17,5.6] for CF mode positive (left) and negative charges
(right).
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13 Efficiency corrections

In order to traslate the raw result of the fit into measurement of relative BRs’ and CP
asymmetries we need to apply corrections for the different relative efficiencies between the
various decay modes.

In the measurement of the direct CP asymmetry the effect of the different hadronic
interaction between K and K~ can fake the asymmetry measurement. K~ has a larger
hadronic cross section than K, and this effect is reproduced rather well by GEANT. We
use the results quoted in Tab. 14 of [16] where the following asymmetry is estimated with
a careful study on a large Monte Carlo sample. We find:

e(KT)
e(K™)

= 1.0178 £ 0.0023(stat.) £ 0.0045(syst.). (10)

For the pion the efficiency is:

= 0.997 4+ 0.003(stat.), (11)
that is fully in agreement with one.
The efficiency of kaon and pion from D is evaluated on our favored B — Dm sample
and is equal to:
e(K—7t)
e(K+tm™)
More details on how we extract this value can be found in the appendix B.
We apply the corrections according to these formulas:

= 0.998 + 0.015(stat) £+ 0.016(syst).

Ny e(5omh)e(i2) + N
R(h) = N K+tn ht N+
fE(K—WJr)f(h_—)"‘ f
o NoeEE ) - Ny
A() - — (K—7mt\_(ht +
Ns e(gra=)e(3=) + Ns

N* K*pF

RED) = reloes)

where NI are the number of positive and negative suppressed events, Nfi are the number
of positive and negative favored events and h is pion or kaon.
Corrected results are:

R(r) = (28+0.7)-107°
R(K) = (22.0+8.6)-1073
A(r) = 0134025
AK) = —0.8240.44

Rt (r) = (244+1.0)-1073
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R () = (3.1+1.1)-1073
RY(K) = (426+13.7)-1073
R (K) = (3.8410.3)-107°

14 Systematics

In the following sub-sections we will describe the main sources of systematic uncertainties.

14.1 dE/dx

dE/dx information comes in the s variable, whose distribution is shown in Fig. 22. The
distribution is taken from data and fitted with the sum of three gaussian. The nine
parameters of the function are correlated according to a certain correlation matrix.

To evaluate the dE/dx systematic we generated several sets of nine random gaussian
variables, correlated with the same correlation matrix obtained on data. The numerical
algorithm to generate multivariate variables can be found in several books, see for example
the Cap. 33 of [17].

For each set of variables we have a different x curve. In Fig. 37 we superimposed one
thousand of these systematic x curves to data. The curves completely cover the region of
data errors.
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Figure 37: k variable, on the left for the K, on the right for the w. Points with error bars come
from data, while in red are one thousand systematic curves.

In the limit of small errors select a region of one sigma in the parameters of the x
correspond to select a region of one sigma in the observables. For this reason we don’t
select one sigma in the parameters space, but we will select a one sigma region in the
observables space.

To do this we used each systematic curve to fit the data, so that we have a distribution of
the observables, as can be seen in Figs. 38 and 39. Fitting them with gaussian functions,
we take the sigma of the gaussian as the dE/dx systematic error.
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Figure 38: Distributions of Raps(w) (left) and Aspg(m) (right) obtained with the systematic
curves of dE/dx. They are fitted with a gaussian and the sigma (“p2” ) is taken as systematic
error.

X2/ ndf 34.13/31 X? / ndf = 45.97/ 36
FIED e Prob 0.1234
r PO 111.3+49 100 0
120— p1 0.02238 + 0.00000 r pl i
F P2 0.0001385 * 0.0000041 r p D QU
100 so— P2 0.004226+ 0.000119
80— F
C s0—
60— r
L 40—
40 [
L 20—
20— L
A I I N Ly I B I Y Lol DY I
002 00205 0021 0.0215 0.022 0.0225 0.023 0.0235 0024 887086 08 084 -085 082 08 08 079 078

Figure 39: Distributions of Raps(K) (left) and Aaps(K) (right) obtained with the systematic
curves of dE/dx. They are fitted with a gaussian and the sigma (“p2” ) is taken as systematic
error.

14.2 Mass model of the combinatorial background

Our central fit assumes a mass-shape of the combinatorial background events distribuited
as an exponential function. We verified that the shape is exponential also under the B
peaks, using:

e B events in the D sidebands (30) (Fig. 40);

e B events selected with the same cuts of the analysis, but X% p = 30.
To evaluate the systematics we redid the fit using different shapes:

e exponential plus constant

e exponential plus first degree polynomial

e exponential plus second degree polynomial
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Figure 40: Invariant B mass distribution in the D° sidebands (left) and with the x3,, > 30 (right).

We then take the worse of the three cases, the exponential plus constant. In the other
two cases the value of the slope remain constant, while, adding a constant, that value goes

from

—2.71 4 0.15 of the central fit to —2.86 £ 0.15.

We used as systematic error the difference between the observables results obtained
using the exponential plus constant and the central fit.

14.3 Physics background mass model

To evaluate this systematic, we varied the shape of the physics background.

B~ — D with DY — X
The mass shape is parametrized with a Pearson function of the IV type, we varied
the parameters corresponding to the mean and the width of +1o.

B~ — DK with D° — X
Since we parametrized the mass shape with a gaussian, we varied the mean and the
width of the gaussian of +1o.

B - K ntn~

We parametrized the mass shape with two gaussians. To evaluate the systematics
we varied the mean and the width of the second gaussian, that is the one goes under
the B signal peaks, of +1o.

BY — D§ et

We parametrized the mass shape with two gaussians. To evaluate the systematics
we varied the mean and the width of the second gaussian, that is the one goes under
the B signal peaks, of +10.

B~ — D*0n—
We parametrized the mass shape with three gaussians plus an exponential. To
evaluate the systematics we varied the slope of the exponential of +1o.
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Source Ripe(m | Rupe(m | RO | Ryp(6) | Raps(m) | Raps(K) | Aaps(r) | Aaps(K)

dE/dx 0.00001 0.00001 0.0003 0.0001 0.00001 0.0001 0.003 0.004
combinatorial background 0.00001 0.00001 0.0001 0.0002 0.00001 0.0001 0.001 0.010
B~ — [X]pw~ shape 0.00040 0.00040 0.0026 0.0026 0.00038 0.0025 0.013 0.089
B~ — [X]|pK~ shape 0.00001 0.00001 0.0001 0.0001 0.00001 0.0001 0.000 0.003
B~ — K 717 shape 0.00002 0.00002 0.0001 0.0001 0.00002 0.0001 0.001 0.003
BO D;feJrz/e shape 0.00004 0.00004 0.0003 0.0002 0.00004 0.0002 0.003 0.007
B~ — D*Y7~ shape 0.00004 0.00005 0.0005 0.0004 0.00005 0.0005 0.001 0.014
efficiency of Kp - - - - - 0.0001 - 0.002

efficiency of mp - - - - - - 0.003 -
efficiency of Kpmp 0.00005 0.00007 0.0009 0.0001 0.00006 0.0003 0.011 0.004
Total [ 0.00041 | 0.00041 [ ©0.0028 [ 0.0027 [ 0.00039 [ 0.0026 | 0.018 [ 0.091

Table 4: Systematic uncertainties for all observables.

14.4 Total systematic uncertainties

A summary of all systematics is reported in Table 4.
The total systematic uncertainty on each measurement is determined as the sum in
quadrature of all systematic uncertainties.

15 Significance evaluation

To evaluate the significance of the B — D% ¢K signal we need first of all to repeat the fit

fixing to zero the fractions of BT — E%CSK+ and B~ — D%,¢K~ and to calculate the
difference of —2log £ between the central fit and the latter fit. We obtain a —2Alog L,
which we will call DLL, of 14.1.

Now we want to include also the systematic variations. To do this we need to find the
worse systematic configuration, the one in which the DLL value is closest to zero. The
procedure we use is to repeat the fit on data, using each time a different systematic shape
and see which of them lowers the DLL. We found that the only three which have an effect
are: the dE/dx, the B — [X|p7 and the B — D}~ e*v, shape.

We combined the three, obtaining the distribution in Fig. 41 and we select the configuration
giving the lower DLL.

We generated 48000 toys with zero B — DODCSK events as input value and we use for
dE/dx and physics background the configuration previously chosen.

We then fit these toys with the central fit, obtaining the distribution of —2Alog L
shown in Fig. 42.

The number of cases with DLL greater than 14.1 is 69, which divided by the total,
46664, corresponds to a p-value of about 1.48 - 1073, The resulting significance (including
systematics) is 3.2 o, so we find evidence of B — DY, (K signal.

For the B — D%C g™ we only evaluate the statistical significance, repeating the fit on
data fixing the fraction of B — D%CSTF equal to zero. The DLL is 16.3, corresponding to
a statistical significance of 3.6 ¢ .

4To convert a p-value () in number of sigma (n), we applied the formula: n = /2 Erf~'(1 — a).
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Figure 41: —2Alog £ distribution on data, obtained with various systematic configurations on
dE/dx and physics background pdfs.

DLL distribution

Figure 42: —2Alog L distribution on toys with zero signal input.

16 Asymmetry of K

Since our value of the kaon asymmetry is close to -1 and about 20 far from zero, we want
to evaluate exactly how much is far from zero and see if it can be significantly different
from zero.
For this reason we generate 2000 toys with zero input value of the asymmetry and the other
values as found on data. Fitting these toys with our central fit, we obtain the distribution
of the asymmetry as in Fig. 43.

The sigma of this distribution is 0.37 and our central value of the asymmetry is 2.20
far from zero.
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Figure 43: Distribution of the kaon asymmetry, fitted from a toy with zero input value of the
asymmetry.
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17 Final results

We measure on 7 fb~1 of data:

Raps(n) = BR(B™ — D},gm™) + BR(B" — D), ogm™)
APSSY = "BR(B~ — DY) + BR(BY — D% rt)

= (2.840.7 (stat.) £ 0.4 (syst.)) - 1073

BR(B~ = D%, 4K~)+ BR(B" — D%,sK") _
BR(B~ = DY.K~)+ BR(Bt — D}, K*)

Raps(K)

= (22.0 £ 8.6 (stat.) £2.6 (syst.)) - 1073

BR(B~ — DY,og7) — BR(B" — D}ogm")
BR(B~ — D% s7~) + BR(Bt — D}, omt)

Aaps(m) =

= 0.13£0.25 (stat.) £0.02 (syst.)

BR(B~ — DY%,sK~) — BR(B* — DY, oK*)

Aups(K) = B
Aps(K) BR(B— — D%CSK_) + BR(B*T — D%CSK+)

= —0.82+£0.44 (stat.) £0.09 (syst.)

BR(BT — D,gm™)

+
B (m) BR(BT — D0prt)

= (2.4+1.0 (stat.) £ 0.4 (syst.)) - 1073

R(n) = BR(B~ = D)cgm™)
~ BR(B~ —DYpm)

= (3.1+1.1 (stat.) £ 0.4 (syst.)) - 1073

BR(B* = D%, 4K*")
BR(Bt — DY.K*t)

= (42.6 £13.7 (stat.) + 2.8 (syst.)) - 1073

46



BR(B™ = D%gK™)
BR(B~ — DY.K~)

= (3.8410.3 (stat.) £ 2.7 (syst.))- 1073

We find evidence of the signals B — D°K and B — D% DCS, respectively with a
significance of 3.20 (including systematics) and 3.60 (only statistical).
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A Observables for the ADS method

A.1 Definitions

u S \/s®

W CKM phase= —y W

b

=l

Figure 44: Diagram of the two interfering processes: B~ — DYK~ (color allowed) followed by
DY — K*7~ (doubly Cabibbo suppressed) and B~ — D'K- (color suppressed) followed by
D’ — K+r~ (Cabibbo allowed).

Using the notation introduced in [1, 2], we can define the following branching ratios:

a=B(B~ — D°K~) a=B(Bt*— D K™)
b=B(B~ - D'K") b=B(B+* — D°K™)
o(f) = BD° = f) o(f)=BD" —7T)

o(f) = B(D" —J) &(f) = B(D’ — f)
d(f)=B(B~ = [fIK")  d(f) =B(B* - [f]K")

where f = KTn~. In the SM we assume that: a =@, b = b, ¢(f) =¢(f) and &(f) = &(f).
Since the two decay channels of Fig. 44 are indistinguishable, we measure the interfer-
ence (which is sensible to v):

d(f)=B(B~ — [f]K~) = BB~ — D'’K)B(D’ - f)+B(B~ — D 'K )BD" — f)+
2\/B(B- = DVK-)B(D® — f)B(B- — D'K-)B(D°  f)
cos(d + )

= ac(f)+be(f) + 2v/ac(f) + be(f) cos(d + ) (12)

where § = dp + dp is the sum of the strong phases.
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In the same way we can write:

d(f)=B{B*t - [fIKT) = BB =D 'KNHBD’ = F)+ BB - D'KHBD® - F) +

2\/B(B+ = D K+)B(D° - F)B(B+ — DOK+)B(DO — J)
cos(d — )

= ac(f) +e(f) + 2y ac(f) + be(f) cos(d — ) (13)

which differs from d(f) only for the sign of ~.
In the articles written by Atwood, Dunietz and Soni [1, 2], there is only the definition
of CP wiolating partial rate asymmetry:

_d(f)—d(f)

(f)
which exactly corresponds to what we called:

Ao BB~ = [fIKT) ~B(B* — [fIK™)
DS BB = (1K) + BB — [JIK+)

There are no definitions of Raps. How can we get there?. In [1] authors say:

.. a can be determined via Cabibbo allowed modes of D° decay (g), e.g. D —
K—nt,K=p*. The decay chain B~ — D°[— g]K~ determines a ~ d(g)/c(g)
to an accuracy of about 1% since the interfering process B~ — EO[—> gl K~ is
both color and doubly Cabibbo suppressed.

Using g = K~ 7t = f, we can write

a=d(g)/c(g) = d(g)/c(f)

We can easily replace a = d(g)/c(f) and c(f) = d(g)/a in (12) and (13). Calling
r% =b/a and 1% = c(f)/c(f), we obtain the formulas:

d(f) ~ d(g)-[rg+rD+ 2rprpcos(d +7)] (15)
d(f) = d(g)-[rg +rD + 2rprp cos(d — )] (16)

from which we can define:

n = d(f) BB~ = [fl[K") BB = [K'n]K) (17)
~ dlg) BB~ —=[glKT) BB — [K-wt]K~)

e~ A0) _ B(BT 5 [[IKY) _ B(BY = [K-xt]KT) a8
~ d(g) B(Bt—=[gKt) B(Bt— [Ktr]Kt)

They are the ratios between B of suppressed over favored decay modes for negative and
positive charges respectively.
R /R~ are not defined in [1, 2], but can easily be extracted using the B.
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In the same way we can define also:

d(f)+d(f) BB~ = [K'n ]K")+B(B" = [K nT]K")
d(g) +d(@ B(B~ = [K-nt]K~)+ B(B* = [K+n~]K™)

RADS = (19)
All these definitions with B look clear and consistent, there is only an approximation
coming in the formulas with rp and rp.
In [6] or in [18] there are two more definitions, relating R™, R™, Raps and A4ps:

R"+ R

Raps = —5— (20)
R —R*

S oy 2

Considering the Bs they are wrong.
The only way they can be correct is considering the approzimate relations with rp and
rB.

R™ = 7154715+ 2rprpcos(d +7)
RY = 154714+ 2rprpcos(d — )
Raps = 15 +7h+ 2rprpcos(d) cos(y)

Aaps = 2rprpsin(d)sin(y)/Raps

In this way the equivalences (20) are satisfied.
Also the trivial case, when RT = R~ verifies the equations (20).

A.2 Experimental results

Using the same fit technique described in the note, we find these results:

Rips(m) = (24£1.0)-107°
Raps(m) = (31£11)-107°
Rhips(K) = (42.6+13.7)-107°
Raps(K) = (3.8+10.3)-107°

where the statistical error is obtained propagating the errors on events numbers and frac-
tions.

The systematics associated to the observables are reported in Table 4 and they are
evaluated in the same way as described in the note for the other observables.

Final results are:

Rips(m) = (24+1.0+04) 1073
Raps(m) = (31£1.14£04)-1073
Ripg(K) = (426+13.7428)-107°
Raps(K) = (3.8+£103+£2.7)-1073
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Rips(m) | Ripg(m) | Raps(w) fitted | Raps(m) calculated
0.0024 0.0031 0.0028 0.0028
Aaps(m) fitted | Aaps(m) calculated
0.13 0.13

Table 5: Results comparison between the fitted Raps(w) and Agps(w) and the values calculated
from RT(7) and R~ (7).

Rlips(K) | Ryps(K) | Raps(K) fitted (uncorrected) | Raps(K) calculated
0.0426 0.0038 0.0222 0.0232
Aaps(K) fitted Aaps(K) calculated
-0.82 -0.83

Table 6: Results comparison between the fitted Raps(K) and A4ps(K) and the values calculated
from RT(K) and R~ (K).

In Tables 5 and 6 we reported the results comparison between the fitted Raps and
Aaps and the values calculated from RT/R™ using the equations (20), for the pion and
kaon modes respectively.

We find agreement in the pion’s values, but disagreement in the kaon case.

As a comparison, we checked the BaBar results for the B~ — DK, B~ — Dn~ [18§]
and B~ — [Knn®]p K~ [19] (Tables 7, 8 and 9 respectively), finding a disagreement also
in their results in the kaon modes.

Rips(m) | Ripg(n) | Raps(w) fitted | Raps(m) calculated
0.0032 0.0034 0.0033 0.0033
Aaps(m) fitted | Aaps(m) calculated
0.03 0.03

Table 7: BaBar results comparison between the fitted Raps(m) and Aaps(w) and the values
calculated from R*(7) and R~ ().
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Rl ps(K) | Ryps(K) | Raps(K) fitted (uncorrected) | Raps(K) calculated
0.022 0.002 0.011 0.012
Aaps(K) fitted Aaps(K) calculated
-0.86 -0.91

Table 8: BaBar results comparison between the fitted Raps(K) and Asps(K) and the values

calculated from RT(K) and R~ (K

).

Rips(K)

Ryps(K)

Raps(K) fitted (uncorrected)

Raps(K) calculated

0.005

0.012

0.0091

0.0085

Table 9: BaBar results comparison between the fitted Raps(K) and Aaps(K) and the values
calculated from RT(K) and R~ (K) in the B~ — [K77°]p K~ mode.
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B K—rnt

— efficiency

We can evaluate the K ~nt/KTn~ efficiency using our favored sample of B~ — D07~
decay, for which we expect zero asymmetry. The pdg value, which accounts only for a
Belle result of 2006, is —0.008 £ 0.008 [17], compatible with zero.
On our data we found N(B™) = 9881 + 103 and N(B~) = 9893 4+ 103, so the asymmetry
of the favored pion mode® is equal to AT, (m) = (0.6 £7.3) - 1073,

To evaluate the efficiency we can in this way.

B.1 Strategy

e The central value of the efficiency is evaluated considering a true value of the asym-
metry equal to zero.

e The statistical error is obtained propagating the error on the efficiency of the pion
from B and the error on the measured asymmetry.

e The systematic error is obtained propagating the error on the pdg measurement of
the asymmetry.

In the following the calculation.

B.2 Calculation

B.2.1 How compare the measured asymmetry with the true asymmetry and
the efficiency

The number of measured events (N™) can be written as N - ¢, where N! is the true
number of events and € is the efficiency of reconstruction.
The true value of the asymmetry is:

= NUEZxn0) - N(K n ) Ny = Nj
e = = _—
aw N([K—nt|m=) + N([K+m=]|n+) Ni™ + Ng*
_ NN L
N{ /N§t 41
1+ A
from which Nt~ /Nit = S L
N L
av

The total efficiency (€) we are considering is:

e =K nh) e(n”)=¢p €5

3

e =e(KTn ) e(nt) =€}, €.

Sthe asymmetry is calculated using all digits of the numbers of events
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so we can write the measured asymmetry:

N;”*-N;”* fo-e‘—N}*-ﬁ
?Zw(w): m— m+ -  _ +
N{ /NG e fet =1
B ]\7;27/]\7}’2Jr e et +1

1 1+ A™

from which e /et = N;_/N;+ T A

& & (1A <1+Am)
eB ew_ 1+ At 1—Am
i)

- + t m
€p € 1-A <1—|—A )
) _ T, 21
5 ™ <1+At> 1-A @)

™M

)

B.2.2 Efficiency central value

To evaluate the central value we use A! =0,

ep & [(1+A )
— . 22
EB €r (1—Am (22)

and € /e- = 0.997 4+ 0.003 [16]. In this way:

e, (Kt
= = ———F< = 0.998.
e, e(Ktr)

B.2.3 Efficiency statistical error

Propagating the error on the pion efficiency and on the measured asymmetry in (22) we
obtain this expression:

_ 2
(stat) = \l Girjm>2 (AE;/E#)Q + (%) (AAM)2,

The statistical error is equal to 0.015.

A

[} [}
SIS

B.2.4 Efficiency systematic error

To evaluate the systematic error we can use the complete formula (21) and propagate the
error on the pdg measurement. The formula is:

1 —|—Am> 2e [et

A (syst) = (1 — Am (1 —I—At)Q

(a4

(@) (@)
®+|® I
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The final result is:

e, (Kt
= = ———= = 0.998 £ 0.015(stat) £ 0.016 t).
e, e(Ktm) (stat) (syst)
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C D" BR used in the B — [X]|pm and B — [X]pK MC sam-

ples.
Decay DO
# updated according to suggestions by P. Roudeau,
# using PDG2004 measurements and imposing the equality
# of sl partial widths for D+ and DO.
# Include additional decay anti-KO pi- e+ nu_e , K- piO e+ nu_e.
#
0.0225 Kx- e+ nu_e PHOTOS  ISGW2;
0.0350 K- e+ nu_e PHOTOS  ISGW2;
0.0014 K_1- e+ nu_e PHOTOS  ISGW2;
0.0015 K_2%- e+ nu_e PHOTOS  ISGW2;
0.0034 pi- e+ nu_e PHOTOS  ISGW2;
0.0022 rho- e+ nu_e PHOTOS ISGW2;
0.0011 anti-KO pi- e+ nu_e PHOTOS  PHSP;
0.0006 K- pi0 e+ nu_e PHOTOS  PHSP;
#
0.0214 K*¥- mu+ nu_mu PHOTOS ISGW2;
0.0340 K- mu+ nu_mu PHOTOS ISGW2;
0.0014 K_1- mu+ nu_mu PHOTOS ISGW2;
0.0015 K_2%- mu+ nu_mu PHOTOS ISGW2;
0.0034 pi- mut+ nu_mu PHOTOS ISGW2;
0.0022 rho- mu+ nu_mu PHOTOS ISGW2;
0.0011 anti-KO pi- mu+ nu_mu PHOTOS  PHSP;
0.0006 K- pi0 mu+ nu_mu PHOTOS  PHSP;
#
0.0383 K- pi+ PHSP;
0.0212 anti-KO piO PHSP;
0.0071 anti-KO eta PHSP;
0.0172 anti-KO eta’ PHSP;
0.0210 omega anti-KO SVS;
0.0190 anti-K*0 eta SVS;
0.0020 anti-Kx0 eta’ SVS;
0.0730 a_1+ K- SVS;
0.0610  K*- rho+ SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;
0.0146  anti-K*0 rhoO SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;
0.0110 anti-K*0 omega SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;
# the Dalitz mode below includes Kxbar(892)0 piO,
# K*(892)- pi+, and K- rho(770)+ resonances
0.1390 K- pit+ piO D_DALITZ;
0.0085 K+*BR pi0 SVS;
0.0107 K_1- pi+ SVS;
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O O O O OO OO OO0 OOOO0OOHFOOHOOOOHOHHFHFH OO OOOOOOOOOO H HOo

.0071

anti-K_10 piO

SVS;

the Dalitz mode below includes K*(892)- pi+ and KbarO rho(770)0 resonances

.05640 anti-KO pi+
.0078 anti-KO pi0
.0225  anti-Kx0 pi+
.0116  anti-K*0 piO
.0100  K*- pi+ pi0
.0068 K- rho+ pi0
.0060 K- pi+ rhoO
.0303 K- pit+ omega
.0100 K- pit+ eta
.0075 K- pit+ eta’
.0074 K- pi+ pi+
.0085 anti-KO pi+

K- pi+ piO piO

pi-

pioO
pi-
pi0

pi-

pi- piO

D_DALITZ;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;

is (15 +/- 5)\% in the PDG, but we decrease it to

have everything add to 1 and get enough neutral kaons:

.025675 K- pi+ pi0
.0143 anti-KO piO
.0038 K- pit+ pi+
.0038 K- pi+ pi0
.0058 anti-KO pi+
.0638 anti-KO pi+
.0192  anti-KO  pi+
.0086 phi anti-KO
.0061 anti-KO K+
.0008 K_S0 K_SO0 K_S
.0043 K+ K-

.0006 K_S0 K_SO
.0006 K_LO K_LO
.0004 K*0 anti-KO
.0008 anti-K*0 KO
.0018  Kx- K+

.0035  Kx*+ K-

.0014  anti-K*0 Kx0
.0007  phi pi0

.0011 phi pi+ pi-
.0025 K+ K- pi+
.0030 K+ K- pi0
.0015 anti-KO KO

pioO

pi0  pi0

pi- piO

pi0 pi0

pi- pit+ pi-
pi- pi0O piO
pi- pi0 pi0
K_

0

pi-

pio

pi+ pi-

o7

PHSP;

PHSP;
PHSP;
PHSP;

PHSP;

PHSP;
piO PHSP;
SVS;
PHSP;
PHSP;
PHSP;
PHSP;
PHSP;
SVS;
SVS;
SVS;
SVS;
SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0;
SVS;
PHSP;
PHSP;
PHSP;
PHSP;



O O H ##+ O O OO OO O O OO OO OO H* O

#
#

.0015

.0015
.0008
.0010
.0010
.0010
.0040
.0040
.0020
.0060
.0010
.0073
.0050
L0177
.0060

Doubly

.00015
.0005
Enddecay

anti-

KO

pi+ pi-
piO piO
eta pi0

eta’

pio0

eta eta

rho+
rho-
rhoO0
pi+
pioO
pi+
pi+
pi+
pi+

Cabibbo suppressed decays:

pi-
pi-

pi-
pit
pio
pi-
pio
pit
pi-
pi-
pi-

K+
K+

KO

pi0
pioO
pi-
pioO
pi+
pioO

pioO

pioO

pi-
pioO
pi-
pioO

pio

pi0
pio
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PHSP;
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PHSP;
SVS;
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