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Abstract: Motivated by the recent work on the fermion resonances on scalar-constructed

thick branes (arXiv:0901.3543 and arXiv:0904.1785), we extend the idea to multi-scalar

generated thick branes and complete previous work. The fermion localization and reso-

nances on the three-field and two-field thick branes are investigated. With the Numerov

method, our numerical results show that the resonance states also exist in the brane be-

sides the single-field thick branes and the two-field thick branes in the former cases. This

interesting phenomenon is related to the internal structure of the brane and the coupling

of fermions and scalars. We find that the Kaluza-Klein chiral decomposition of massive

fermion resonances is the parity-chiral decomposition. For the couplings ηΨφkχρΨ and

ηΨφkχΨ for three-field and two-field models with odd positive k, respectively, the number

of the resonant states decreases with k. This result is opposite to the one obtained in the

single-field de Sitter thick brane (arXiv:0904.1785).
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1 Introduction

A great deal of effort has been paid to the study of higher dimensional space-time with large

extra dimensions [1–13]. Phenomenologically, the idea that our observed four-dimensional

world is a brane embedded in a higher-dimensional space-time [2–4, 6, 8–10, 12, 13] opens

up a route towards resolving the mass hierarchy problem and the cosmological constant

problem. A first particle physics application of this idea was put forward in refs. [1, 3].

In the framework of (3+1)-dimensional brane scenarios, gravity is free to propagate in all

dimensions, while all matter fields are confined to a 3-brane. In ref. [8], Arkani-Hamed,

Dimopoulos, and Dvali proposed the large extra dimensions model, which lowers the energy

scale of quantum gravity to 1 TeV by localizing the standard model fields to a 4-brane in

a higher dimensional space-time. In this scenario, extra dimensions are compacted into

a large volume that effectively dilutes the strength of gravity from the fundamental scale

(the TeV scale) to the Planck scale. In ref. [9], Randall and Sundrum introduced a warped

branewolrd model, which provides a novel solution of the gauge hierarchy problem in

particle physics. Later developments suggested that the warped metric could even provide

an alternative to compactification for the extra dimensions [10, 11].

In recent years, an increasing interest has been focused on the study of thick brane

scenarios in higher dimensional space-time [14–24]. From a realistic point of view, a brane

should have thickness. Thick brane scenarios based on gravity coupled to scalars have been
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constructed. It is known that the modulus is not stable in RS warped scenario. While it

can be stabilized by introducing scalar fields in the bulk [25]. These bulk scalar fields

also provide us with a way of generating the brane as a domain wall (thick brane) in five

dimensions. An important feature of these models is that we can obtain branes by a very

natural way rather than by introducing them artificially. One can refer to a recent review

article on the subject of the thick brane solutions [26].

In brane world scenarios, an important problem is localizing gravity and various bulk

fields on the branes by a natural mechanism. In particular, the localization of spin 1/2

fermions is very interesting and rich. For localizing fermions on the branes or domain

walls, one needs to introduce other interactions in addition to gravity. In the last few years,

localization mechanisms of fermions on a domain wall had been extensively studied [27–31].

Meanwhile, the same problem can also be discussed in other contexts such as gauge field [32,

33], supergravity [34], vortex background [35–38] and general spacetime background [39].

Usually, one examines the localization problem in the content of brane models con-

structed with one background scalar field. The finite discrete Kaluza-Klein (KK) modes

(bound states) and a continuous gapless spectrum starting at a positive m2 can be ob-

tained for example in refs. [40–43]. In some brane models, the quasibound KK modes with

a certain lifetime will appear [17, 44–47]. Especially, in recent work of ref. [45], the authors

investigated fermions on the Bloch brane [49] constructed with two scalar fields φ and

χ. With the simplest Yukawa coupling ηΨφχΨ, the localization problem of fermions was

studied. Resonances for both chiralities were found and their appearance is related to the

internal structure of the Bloch brane. In ref. [46], the localization and resonance spectrum

of fermions on a one-scalar generated dS thick brane were investigated. For a class of scalar-

fermion couplings ηΨφkΨ with positive odd integer k, some new nature about resonances

were obtained. On the other hand, thick branes with two or more scalar background fields

also have been constructed [48–50]. In this paper, our goal is to extend the idea of refs. [45,

46] to multi-field generated branes for refreshing the understanding of the localization and

resonances of fermions in these brane models. We will consider fermions in the three-field

constructed thick brane model as an explicit example. We also give a further analysis

about resonances on the Bloch brane and compare the results obtained in different models.

The structure of this paper is as follows. In section 2, we review the multi-field thick

brane models for spin 0 scalar fields and spin 1/2 fermion fields. In section 3 we provide

a complete investigation of the fermion localization and resonances on a three-scalar gen-

erated thick brane in detail. In section 4, we re-analysis the resonances in a Bloch brane

model. Finally, our comments and conclusion are presented in section 5.

2 The multi-field thick brane models

In order to maintain the continuity of the whole work and make the background of this

paper clear, in this section, we review the multi-field thick brane models. Followed the

similar procedure in refs. [45, 46, 48], the field equations for scalars and fermions are

obtained, especially we get the first-order equations by the superpotential.
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2.1 Spin 0 scalar fields

Let us consider the 4+1 dimensional multi-field thick brane models. Specifically, we intro-

duce n scalar background fields. The action for such a system is given by

S =

∫

d4xdy
√−g

[

1

4
R− 1

2
∂Mφ∂Mφ− 1

2
∂Mχ∂

Mχ− · · · − 1

2
∂Mρ∂

Mρ− V (φ, χ, · · · , ρ)
]

(2.1)

and the line-element is assumed as

ds2 = gMNdx
MdxN = e2Aηµνdx

µdxν − dy2, (2.2)

where g = det(gMN ), M,N = 0, 1, 2, 3, 4, e2A is the warp factor, and y stands for the extra

coordinate. The warp factor and the scalar fields are considered to be functions of y only,

i.e., A = A(y), φ = φ(y), χ = χ(y), · · · , and ρ = ρ(y).

The field equations generated from the action (2.1) with the ansatz (2.2) reduce to the

following coupled nonlinear differential equations

φ′′ =
∂V (φ, χ, · · · , ρ)

∂φ
− 4A′φ′ ,

χ′′ =
∂V (φ, χ, · · · , ρ)

∂χ
− 4A′χ′ ,

... (2.3)

ρ′′ =
∂V (φ, χ, · · · , ρ)

∂ρ
− 4A′ρ′ ,

A′′ = −2

3
(φ′2 + χ′2 + · · · + ρ′2) ,

A′2 =
1

6
(φ′2 + χ′2 + · · · + ρ′2) − 1

3
V (φ, χ, · · · , ρ) .

We suppose that the n-field models are defined by the potential

V (φ, χ, · · · , ρ) =
1

8

[(

∂W

∂φ

)2

+

(

∂W

∂χ

)2

+ · · · +
(

∂W

∂ρ

)2]

−1

3
W 2 , (2.4)

where W = W (φ, χ, · · · , ρ) is the superpotential, which leads to the following first-order

equations that solve the second order equations (2.3):

φ′ =
1

2

∂W

∂φ
, χ′ =

1

2

∂W

∂χ
, · · · ,ρ′ =

1

2

∂W

∂ρ
,A′ = −1

3
W . (2.5)

2.2 Spin 1/2 fermion fields

In this subsection, we are ready to investigate whether spin half fermions can be localized

on the brane. Let us consider n real scalars coupled to a massless bulk fermion by means

of a general Yukawa coupling in five dimension. The starting action reads

S1/2 =

∫

d5x
√−g

[

Ψ̄ΓMDMΨ − ηΨ̄F (φ, χ, · · · , ρ)Ψ
]

, (2.6)
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where the spin connection ωM̄N̄
M in the covariant derivative

DMΨ = (∂M + ωM )Ψ =

(

∂M +
1

4
ωM̄N̄

M ΓM̄ΓN̄

)

Ψ (2.7)

is defined as

ωM̄N̄
M =

1

2
ENM̄ (∂MEN̄

N − ∂NE
N̄
M ) − 1

2
ENN̄ (∂ME

M̄
N − ∂NE

M̄
M )

−1

2
EPM̄EQN̄ER̄

M (∂PEQR̄ − ∂QEPR̄) . (2.8)

In five-dimensional space-time, fermions are four component spinors and their Dirac struc-

ture is determined by ΓM = EM
M̄

ΓM̄ with the EM
M̄

being the vielbein and {ΓM ,ΓN} =

2gMN . The indices of five-dimensional spacetime coordinates and the local lorentz indices

are labelled with capital Latin letters M,N, . . . and M̄, N̄ , . . ., respectively. ΓM are the

curved gamma matrices and γM̄ are the flat ones.

Following, we will derive the Schrödinger equation for the KK modes of fermions.

In order to get the corresponding mass-independent potential, we perform the coordinate

transformation

dz = e−A(y)dy (2.9)

to get a conformally flat metric

ds25 = e2A(z)(ηµνdx
µdxν + dz2) . (2.10)

With the metric (2.10), the nonvanishing components of the spin connection ωM are cal-

culated as

ωµ =
1

2
(∂zA)γµγ5 . (2.11)

Then the five-dimensional Dirac equation is read as

[

γµ∂µ + γ5(∂z + 2∂zA) − ηeAF (φ, χ, ρ)
]

Ψ = 0 , (2.12)

where γµ∂µ is the Dirac operator on the brane.

We are now ready to study the above Dirac equation for five-dimensional fluctuations,

and write the fermion field Ψ in terms of four-dimensional effective fields. Following [31],

we have the general chiral decomposition

Ψ(x, z) = e−2A

(

∑

n

ψLn(x)fLn(z) +
∑

n

ψRn(x)fRn(z)

)

, (2.13)

where ψLn(x) = −γ5ψLn(x) and ψRn(x) = γ5ψRn(x) are the left-handed and right-handed

components of a four-dimensional Dirac fermion fields, respectively, and they satisfy the

four-dimensional massive Dirac equations γµ∂µψLn(x) = mnψRn(x) and γµ∂µψRn(x) =

mnψLn(x). The KK modes fLn(z) and fRn(z) of the chiral decomposition of the spinor

satisfy the following coupled equations

[

∂z + ηeAF (φ, χ, ρ)
]

fLn(z) = mnfRn(z) , (2.14)
[

∂z − ηeAF (φ, χ, ρ)
]

fRn(z) = −mnfLn(z) . (2.15)
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In order to obtain the standard four-dimensional action for the massive chiral fermions, we

need the following orthonormality conditions for fLn(z) and fRn(z):

∫ +∞

−∞

fLmfLndz =

∫ +∞

−∞

fRmfRndz = δmn ,

∫ +∞

−∞

fLmfRndz = 0 . (2.16)

With eqs. (2.14) and (2.15), we have

(

d

dz
− ηeAF (φ, χ, ρ)

)(

d

dz
+ ηeAF (φ, χ, ρ)

)

fL = −m2
nfL , (2.17)

(

d

dz
+ ηeAF (φ, χ, ρ)

)(

d

dz
− ηeAF (φ, χ, ρ)

)

fR = −m2
nfR . (2.18)

Hence, we get the Schrödinger-like equations for the left- and right-chiral fermions [45, 46]

HLfL(z) = m2fL(z) , (2.19)

HRfR(z) = m2fR(z) , (2.20)

with the corresponding Hamiltonians

HL =

(

− d

dz
+ ηeAF (φ, χ, ρ)

)(

d

dz
+ ηeAF (φ, χ, ρ)

)

, (2.21)

HR =

(

− d

dz
− ηeAF (φ, χ, ρ)

)(

d

dz
− ηeAF (φ, χ, ρ)

)

. (2.22)

The Schrödinger equations can be expressed as

[

−∂2
z + VL(z)

]

fL = m2fL , (2.23a)
[

−∂2
z + VR(z)

]

fR = m2fR , (2.23b)

where the effective Schrödinger-like potentials for the KK modes fL,R are

VL(z) = η2e2AF 2(φ, χ, ρ) − ηeA∂zF (φ, χ, ρ) − ηeA(∂zA)F (φ, χ, ρ) , (2.24a)

VR(z) = η2e2AF 2(φ, χ, ρ) + ηeA∂zF (φ, χ, ρ) + ηeA(∂zA)F (φ, χ, ρ) . (2.24b)

3 Fermion localization and resonances on a three-field thick brane

Let us now investigate the three-field brane models. As a natural extension of the single-

field and two-field scenarios, the superpotential with three-fields could be

W (φ, χ, ρ) = 2

(

φ− 1

3
φ3 − aφ

(

χ2 + ρ2
)

)

, (3.1)

which was considered in refs. [48, 51]. Here a is a real parameter. In this case, the

corresponding potential (2.4) is

V =
1

2

[

4a2φ2(ρ2 + χ2) +
[

1 − φ2 + a(ρ2 + χ2)
]2
]

− 4

3

[

φ− 1

3
φ3 − aφ(χ2 + ρ2)

]2

. (3.2)
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The first order equations are

dφ

dy
= 1 − φ2 − a

(

χ2 + ρ2
)

, (3.3a)

dχ

dy
= −2aφχ , (3.3b)

dρ

dy
= −2aφρ , (3.3c)

dA

dy
= −2

3

(

φ− 1

3
φ3 − aφ

(

χ2 + ρ2
)

)

. (3.3d)

The solutions are given by

φ(y) = tanh(2ay), (3.4a)

χ(y) = ±
√

1

a
− 2 cos θ sech(2ay) , (3.4b)

ρ(y) = ±
√

1

a
− 2 sin θ sech(2ay) , (3.4c)

A(y) =
1

9a

[

(1 − 3a) tanh2(2ay) − 2 ln cosh(2ay)

]

, (3.4d)

where 0 < a < 1/2 and θ ∈ [0, 2π). The shapes of the solutions are plotted in figure 1.

It can be seen that the scalar φ(y) is a kink while χ(y) and ρ(y) are campanulate. The

warp factor has a normal shape and the brane thickness decreases with a. We note that

the warp factor here is the same with the one in two-field thick brane case in refs. [45, 49]

but different from the single-field one in refs. [19, 46]. In this paper, we take θ = π/6 and

consider the positive solutions of χ(y) and ρ(y).

Now, we turn to the z-coordinate according to eq. (2.9). For general value of a, the

expression of A(y) (3.4d) cannot be integrated in a known explicit form. Even for the

particular case a = 1/3, for which we have an analytical expression of z(y), it is hard

to get an expression for the inverse y(z) in an explicit form in terms of some analytical

functions, so some numerical methods are needed. The numerical result for z(y) is depicted

in figure 2. The derivatives with respect to z, can be calculated as a function of y by using

the coordinate transformation (2.9)

dA(z)

dz
= dA(y)

dy
dy
dz =

dA

dy
eA(y) , (3.5)

dF (z)

dz
= dF (y)

dy
dy
dz =

dF (y)

dy
eA(y) . (3.6)

With the above expressions, we can rewrite the potentials (2.24) as a function of y:

VL(z(y)) = ηe2A

[

ηF 2(φ, χ, ρ) − ∂yF (φ, χ, ρ) − F (φ, χ, ρ)∂yA(y)

]

, (3.7a)

VR(z(y)) = VL(z(y))|η→−η . (3.7b)

It can be seen that, for the left- or right-chiral fermion localization, there must be some kind

of scalar-fermion coupling. In addition, for the kink configuration of the scalar φ(y) and the

– 6 –
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Figure 1. Warp factor e2A(y), scalar fields φ(y), χ(y) and ρ(y). The parameters are set to θ = π/6,

a = 0.05 (thin trace), 0.1, 0.2 (thick trace). The thickness of lines is increases with a.
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-200

-100
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Figure 2. Plot of the function z(y) for a = 0.05, 0.1 and 0.2. The thickness of lines is increases

with a.

lump configurations of χ(y) and ρ(y), F (φ, χ, ρ) should be an odd function of φ(y) when

one demands that VL(z(y)) or VR(z(y)) is Z2-even with respect to y. Here, we would like to

consider two cases: the simplest Yukawa coupling F (φ, χ, ρ) = φχρ and the general coupling

F (φ) = φkχρ with odd positive k. Surely, other more complex cases can be investigated.
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3.1 Case I: F (φ, χ, ρ) = φkχρ with k = 1

Firstly, we investigate the simplest Yukawa coupling F (φ, χ, ρ) = φχρ for the three-scalar

generated thick branes. For simplicity, we consider the brane solution (3.4) only. The

explicit forms of the potentials (3.7) are given by

VL(y) =
1

288a2

[

η(2a− 1) exp

(

2(1 − 3a)

9a
tanh2(2ay)

)

cosh−6−4/(9a)(2ay)

]

×
[

3
(

52
√

3a2 + 9η − 2a(2
√

3 + 9η)
)

− 4
√

3(1 + 9a) cosh(8ay) (3.8a)

+
(

16
√

3a+ 24
√

3a2 − 27η + 54aη
)

cosh(4ay)

]

,

VR(y) = VL(y)|η→−η . (3.8b)

Here, we note that y cannot be expressed in an explicit form in terms of z, so the potentials

are expressed with the variable y. From figure 2, we can easily obtain the asymptotic

behavior of the potentials (3.8). The values of the potentials at z = y = 0 and y or

z → ±∞ are given by

VL(0) = −
√

3

2
(1 − 2a)η = −VR(0), (3.9)

VL(±∞) = 0 = VR(±∞). (3.10)

It can be seen that both potentials have the same asymptotic behavior when z → ±∞, but

opposite behavior at the origin z = 0, which results in the well-known conclusion: only one

of the massless left- and right-chiral fermions could be localized on the brane.

As mentioned above, with the numerical methods, we can get the shape of potential

function graphics as shown in figure 3. Clearly, for any value of 0 < a < 1/2 and η > 0,

VL(z) is a volcano type of potential. Therefore, the potential of the left-handed fermions

does not provide mass gap between the zero-mode and KK excitation modes, and there is

a continuous gapless spectrum of KK excitation modes. The zero mode of the left-handed

fermions is turned out to be

fL0(z) ∝ exp

(

−η
∫ z

0
dz̄eA(z̄)φ(z̄)χ(z̄)ρ(z̄)

)

= exp

(

−η
∫ y

0
dȳφ(ȳ)χ(ȳ)ρ(ȳ)

)

(3.11)

and the normalization condition
∫ ∞

−∞

f2
L0(z)dz =

∫ ∞

−∞

f2
L0(y)e

−A(y)dy

∝
∫ ∞

−∞

exp

(

−A(y) − 2η

∫ y

0
dȳφ(ȳ)χ(ȳ)ρ(ȳ)

)

dy

=

∫ ∞

−∞

exp

(

−A(y) − 2η
3(1 − 2a)

16a2
tanh2(2ay)

)

dy <∞ (3.12)

cannot be satisfied because A(y) → −4
9y while tanh2(2ay) → 1 when y → ∞. Hence, the

zero mode (3.12) is nonnormalizable. The reason is that the coupling F (φ, χ, ρ) contains the

– 8 –
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Figure 3. Potentials VL(z) and VR(z) for left- and right-chiral fermions with F (φ, χ, ρ) = φχρ.

The parameter a is set to 0.05 (thin trace), 0.1, 0.2 (thick trace).

lump configurations χ and ρ. In order to get localized zero mode for left-handed fermions,

we can only consider the coupling of fermions and the kink φ, i.e., F (φ, χ, ρ) = φ, for which

the zero mode is normalizable provided η > 2/9. In this paper, we would not consider

the special case. On the other hand, the potential VR(y) at the brane location is always

positive, and when far away from the brane it gradually becomes zero. We know that this

type of potential cannot trap any bound state fermions with right-chirality and there exists

no zero mode of right-handed fermions. As is well known this result is consistent with the

previous well-known conclusion that massless fermions must be single-handed chirality in

the brane world models [27, 46].

However, the structure of the potential VR is determined by the coupling constant η

and parameter a jointly. For a given a, as η increases, there will be a potential well and

the depth of the well will be deeper and deeper. On the other hand, for a given η, the

smaller the parameter a is, the deeper the depth of the potential well. There is a fine-tuning

relationship between a and η. This means that a competition between a and η exists. We

consider the situation of the extreme one. As a range from 0 to 1/2, for a value a which is

close to 1/2, in order to produce a potential well, we need very large η, i.e., the scalar and

fermion have a strong coupling. All we can do is to find the essence of the phenomenon

behind. This is the most interesting things and phenomena.
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3.1.1 Left-handed fermions

We will find the following fact that the emergence of the potential wells is closely related to

the resonance states, which are massive fermions with finite lifetime. A similar phenomenon

for left- and right-chiral fermions can be found in refs. [45, 46], the former is in the context

of two-scalar constructed thick brane with internal structure, the latter is in the background

of the single-scalar generated dS thick brane with a class of scalar-fermion coupling. Here,

we extend this point of view and method to a three-scalar generated thick brane obtained

in ref. [48]. We follow refs. [45, 46] through solving numerically the equations (2.23) with

numerical Schrödinger potentials in (3.8) to study the massive modes of fermions. In

particular, in order to obtain the probability of massive modes of the fermions on the

brane, we adopt the new method of calculating the probability in ref. [46]. In addition,

our results are consistent with the previous two models, and some new properties about

resonances are discovered.

In order to get the solutions of the KK modes fL,R(z) from the second order ordinary

differential equations (2.23), we need additional two types of initial conditions:

f(0) = c0, f ′(0) = 0 , (3.13)

and

f(0) = 0, f ′(0) = c1 . (3.14)

From figure 3, we can see that the potentials which we will consider have even-parity.

According to the knowledge of quantum mechanics, we can know that the wave functions

of a Schrödinger equation with a finite smooth potential are continuous at any position.

The above two types of initial conditions will lead to even-parity and odd-parity KK modes,

respectively. It is worth noting that, according to a specific numerical procedure, the form

of the initial conditions of equivalent deformation will be used in our followed numerical

calculations. The constants c0 and c1 for the nonbound massive KK modes are arbitrary,

and in accordance with specific conditions of numerical calculations.

From the point of view of quantum mechanics, as the general effects of the quantum

mechanics, there will be tunneling effect when the massive KK modes experience the po-

tential barrier near the brane. By means of Numerov method [52, 53], for a given potential

function combined with the Schrödinger equations, the numerical results show that the

corresponding KK modes with a series of masses and lifetimes will be obtained. The KK

modes with finite lifetime are also called resonances, i.e., quasibound states or metastable

states. Some even-parity massive KK modes of left-handed chiral fermions for the coupling

F (φ, χ, ρ) = φχρ with different m2 are depicted in figure 4. These graphics indicate that

there are some resonance states when the mass accesses to certain specific values. The

results we get here are consistent with that given in ref. [45, 46]. However, there are some

new characteristics. With different models and coupling mechanisms, some new properties

of resonances and physical meaning may exist. In what follows, we will carefully discuss

the resonance problem in the background of the three-scalar constructed thick brane.

From figure 4, we see that, to obtain a very clear resonance, one need a very good

accuracy for the parameter m2. If we want to search for a resonance directly through
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Figure 4. The shapes of the even parity massive KK modes fL(z) of left-chiral fermions for the cou-

pling F (φ, χ, ρ) = φχρ with different m2. The parameters are set to zmax = 210, a = 0.05 and η = 1.

the eigenfunction and energy eigenvalue, we will encounter great difficulties and workload.

According to the formal theory of resonance of quantum wave functions, we can study

the probability of finding the massive KK modes around the vicinity of the brane location

within a relatively large region [45, 46].

Because the formula (2.23) can be re-written in the form O†
L,ROL,RfL,R(z) =

m2fL,R(z), so |fL,R(z)|2 can be interpreted as the probability for finding the massive KK

modes at the position z along extra dimension. In ref. [45], the authors suggested that

large peaks in the distribution of fL,R(0) as a function of m would reveal the existence of

resonance states. Here, we follow the procedures of the extended idea in ref. [46] for the two

types of initial conditions (3.13) and (3.14). For a given eigenvalue m2, the corresponding

relative probability is defined as [46]:

PL,R(m) =

∫ zb

−zb
|fL,R(z)|2dz

∫ zmax

−zmax
|fL,R(z)|2dz , (3.15)

where the relation of zb and zmax is selected as zmax/zb = 10, for which, the probability

for a plane wave mode with mass m is 0.1. For the KK modes with eigenvalue m2 much

larger than the maximum of the corresponding potential function, they will have a very

good plane wave approximation, and the corresponding probability P (m) will tend to 0.1.

For the parameters k = 1, a = 0.05, η = 1, the potential wells distribute in the range

[−zb, zb](zb = 21) along extra dimension, so we choose zmax = 210, and the corresponding

graphics of the resonance spectra are depicted in figure 5. For left-handed fermions, we

find a total of five clear resonant peaks with approximate eigenvalues m2 = 1.50234155,

2.884904, 4.12957, 5.2035, 6.032. The corresponding left-handed eigenfunctions are shown
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Figure 5. The probability PL (as a function of m) for finding the even parity (under three

resonant peaks) and odd parity (upper three resonant peaks) massive KK modes of left-chiral

fermions around the brane location for the coupling F (φ, χ, ρ) = φχρ. The parameters are set to

zmax = 210, a = 0.05 and η = 1.

in figure 6. It can be seen that the configurations of figures 6(a), 6(c) and 6(e) are odd-

parity eigenfunctions, and the other two are even-parity ones. From figures 5 and 6, we

can see that odd-parity eigenfunctions and even-parity eigenfunctions are placed at the five

resonant peaks with irregular intervals of mass eigenvalues.

As mentioned above, it is usual to describe the resonance by its width Γ = ∆m at

half-maximum of the corresponding resonant peak [45]. In this way, we can calculate the

lifetime τ of a resonance state with the width Γ. This means that the massive fermions

disappeared along the direction of extra dimension after time τ = 1/Γ [54]. The eigenvalues

m2, mass m, width Γ and lifetime τ for resonances of left-handed fermions corresponding

to the resonant peaks shown in figure 5 are listed in table 1. We can see that the resonance

states with relatively larger eigenvalues have a relatively smaller lifetimes.

In addition, it should be noted that the solutions we obtain with numerical methods

are some approximate solutions which meet a certain accuracy. For example, for the

even-parity resonance states shown in figure 5(d), when the step accuracy of the mass

m accesses to a certain value, the fluctuation of the probability likes a hedgehog would

emerge around the corresponding resonant peak (see figure 7). The overall profile of the

probability fluctuation still corresponds to the resonant peak.

3.1.2 Right-handed fermions

For right-handed fermions, as we mentioned earlier, there is no normalized zero-mode.

Repeating the analysis of the previous subsection, we can get the similar results about
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Figure 6. The shapes of the even parity and odd parity massive KK modes fL(z) of left-chiral

fermions for the coupling F (φ, χ, ρ) = φχρ with different m2. The parameters are set to zmax = 210,

a = 0.05 and η = 1.
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(b) mStep = 10−12

Figure 7. The fluctuation of the probability PL (as a function of m) for finding the even

parity massive KK modes of left-chiral fermions around the brane location for the coupling

F (φ, χ, ρ) = φχρ with different step accuracy mStep in numerical method. The parameters are set

to a = 0.05 and η = 1.

resonances. And the resonance states are closely related to the emergence of the potential

well shown in figure 3. For the parameters a = 0.05 and η = 1, the corresponding graphics

of the resonance spectra are depicted in figure 8. For right-handed fermions, we also

find a total of five clear resonant peaks with approximate eigenvalues m2 = 1.502620398,
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k C P m2
n mn Γ τ Pmax

odd 1.50234155 1.2257 7.92943×10−9 1.26112×108 0.999908

even 2.884904 1.6985 2.14302×10−6 466631 0.999963

L odd 4.12957 2.03213 0.00011232 8903.15 0.999896

even 5.2035 2.28112 0.00217082 460.655 0.965288

odd 6.03 2.45601 0.0296346 33.7443 0.4249721
even 1.502620398 1.22581 7.98459×10−9 1.25241×108 0.998721

odd 2.885601 1.69871 2.14401×10−6 466416 0.999967

R even 4.13079 2.03243 0.000112761 8868.28 0.999897

odd 5.2051 2.28147 0.00218277 458.134 0.964972

even 6.033 2.45622 0.0300386 33.2905 0.42376

odd 0.136755 0.369804 0.0000263936 37888 0.999961

L even 0.39192 0.626035 0.00123317 810.918 0.965227

odd 0.607 0.779102 0.0219376 45.5838 0.3650073
even 0.136763 0.369815 0.0000263447 37958.2 0.99861

R odd 0.39195 0.626059 0.00123482 809.836 0.965131

even 0.607 0.779102 0.0221197 45.2086 0.364746

odd 0.04936 0.222171 0.000811223 1232.71 0.965989L
even 0.1419 0.376696 0.040258 24.8398 0.2455075
even 0.04937 0.222194 0.000810324 1234.07 0.966584R
odd 0.1421 0.376962 0.0439204 22.7684 0.241676

L odd 0.02423 0.15566 0.00524879 190.52 0.5650597
R even 0.02425 0.155724 0.00516514 193.606 0.567736

L odd 0.01331 0.115369 0.0193406 51.7047 0.3132879
R even 0.01325 0.115109 0.0171465 58.3209 0.322988

Table 1. The eigenvalues m2, mass, width and lifetime of left- and right-chiral fermions with odd-

parity and even-parity solutions for the coupling F (φ, χ, ρ) = φkχρ. C and P stand for chirality

and parity, respectively. L and R are short for left-handed and right-handed, respectively. The

parameters are k = {1, 3, 5, 7, 9}, a = 0.05 and η = 1.

2.885601, 4.13079, 5.2051, 6.033. The corresponding right-handed eigenfunctions are shown

in figure 9. The configurations of figures 9(a), 9(c) and 9(e) are even-parity eigenfunctions,

and the other two are odd-parity ones. This situation is the reverse of that with left-handed

fermions. From the figures 8 and 9, we can also see that odd-parity eigenfunctions and

even-parity eigenfunctions are placed at the five resonant peaks with irregular intervals of

m. The difference is that the first resonance state is known as even-parity.

Comparing figures 5 and 6 with figures 8 and 9, respectively, we find that the nth

massive resonance with left-chirality and the nth one with right-chirality have the same

mass, i.e., the spectra of massive odd (even) left-handed and even (odd) right-handed

fermionic resonances are the same. At the same time, excluded from the error in the

numerical calculations, their lifetimes listed in table 1 are in general of the same order

of magnitude. This demonstrates that it is possible to compose a Dirac fermion from a
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Figure 8. The probability PR (as a function of m) for finding the even parity (upper three resonant

peaks) and odd parity (under three resonant peaks) massive KK modes of the right-chiral fermions

around the brane location for the coupling F (φ, χ, ρ) = φχρ. The parameters are set to zmax = 210,

a = 0.05 and η = 1.

left-handed fermion with odd-parity and a right-handed one with even-parity, and vice

versa. This means that the general chiral decomposition expression eq. (2.13) becomes two

explicit forms

Ψ(x, z) = e−2A

(

∑

n

ψLn(x)f
(E)
Ln (z) +

∑

n

ψRn(x)f
(O)
Rn (z)

)

, (3.16a)

Ψ(x, z) = e−2A

(

∑

n

ψLn(x)f
(O)
Ln (z) +

∑

n

ψRn(x)f
(E)
Rn (z)

)

, (3.16b)

where the superscripts E and O stands for even-parity and odd-parity, respectively. We call

this kind of decomposition the parity-chiral decomposition instead of the general chiral de-

composition. In fact, this is not difficult to understand, because in mathematics, any func-

tion can be decomposed into an even function and an odd one. This implies that the parity

and the chirality of massive fermions are conserved in a sense. We can also see that the res-

onance states with relatively smaller mass have a relatively longer lifetime. This conclusion

is consistent with the results obtained in the single-scalar constructed dS thick brane [46].

It is worth noting that, the key point here is that we have considered two types of

initial conditions (3.13) and (3.14). These two types of initial conditions lead to odd- and

even-parity solutions. In fact, as mentioned in the earlier work, we found in refs. [30, 31]

that the spectra of the bound massive KK modes of left- and right-chiral fermions are

also the same, where the effective potentials for KK modes of fermions are modified

Pöschl-Teller potentials.
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Figure 9. The shapes of the even parity (upper three) and odd parity (under three) resonance

states fR(z) of right-chiral fermions for the coupling F (φ, χ, ρ) = φχρ with different m2. The

parameters are set to zmax = 210, a = 0.05 and η = 1.

3.2 Case II: F (φ, χ, ρ) = φkχρ with odd k > 1

Next, we consider a natural generalization of the simplest Yukawa coupling: F (φ, χ, ρ) =

φkχρ, where k is a positive odd integer, and k > 1. The similar generalized couplings have

been studied in refs. [46, 55]. For this coupling, the potentials for the KK modes of left-

and right-handed fermions (3.7) become the form below

VL(y) =
2a− 1

144a2
η exp

(

2(1 − 3a)

9a
tanh2(2ay)

)

cosh−4− 4
9a (2ay) tanhk−1(2ay)

×
{

27(2a − 1)η tanhk+1(2ay) − 16
√

3a(1 + 9a)sinh2(2ay)

+8
√

3a

[

9ak − (6a− 2) tanh2(2ay)

]}

, (3.17a)

VR(y) = VL(y)|η→−η , (3.17b)

It is easy to see that both the two potentials have a simple asymptotic behavior:

VL,R(±∞) = VL,R(0) = 0 . (3.18)

The potentials cannot be expressed as explicit functions with the variable z. But by means

of numerical methods, we can get the relationship between the potentials and the variable

z. The graphics of the numerical potentials are depicted in figures 10 and 11 for different

values of a, η and k. As mentioned in ref. [46], the potential well for left-handed fermions
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Figure 10. Potentials VL(z) and VR(z) for left- and right-handed chiral fermions with F (φ, χ, ρ) =

φ3χρ. The parameters are set to η = 1, and a = 0.05 (thin trace), 0.1, 0.2 (thick trace).

becomes a double-well, while, for any positive η, there is a potential well for right-handed

fermions. The lowest point of the potential well for right-handed fermions sits on the origin

of the extra coordinate z. For given η and k, as a increases, the depth of the potential wells

for left- and right-handed fermions will be shallower and shallower. On the other hand, for

given η and a, the smaller the parameter k is, the deeper the depth of the potential wells.

The third situation is that, for given a and k, the greater the absolute value of η is, the

deeper the depth of the potential wells. The graphics are not drawn here.

As we know, there is a continuous gapless spectrum of KK modes for both left- and

right-chiral fermions. The zero modes of left-handed fermions

fL0(z) ∝ exp

(

− η

∫ z

0
dz̄eA(z̄)φk(z̄)χ(z̄)ρ(z̄)

)

(3.19)

can also not be normalized, while the following one for F = φk with η > 2/9 is normalizable:

fL0(z) ∝ exp

(

− η

∫ z

0
dz̄eA(z̄)φk(z̄)

)

. (3.20)

The emergence of potential wells shown in figures 10 and 11 are also related to resonances.

From figures 10 and 11, we see that some characteristics of these potentials are very

different from those in ref. [46]. Here, for given η and a, the larger the parameter k is,

the lower the depth of the potential wells. Therefore, we speculate that the number of

resonance states will be reduced with the increase of k, rather than the case in ref. [46].

Next, we will prove this conjecture.

In order to study the resonance states, we consider the massive KK modes now. Just

the same as the previous subsection, using the Numerov method, we will find the numerical

solutions of Schrödinger equations with the purely numerical potentials (3.17) under the two

types of the initial conditions (3.13) and (3.14). We first consider the case F (φ, χ, ρ) = φ3χρ

to see what will happen. For a = 0.05 and η = 1, we choose zmax = 370. The eigenfunctions

of the massive KK modes of left-handed and right-handed fermions with the even parity

and odd parity are obtained with differentm2. The results of the numerical calculations are
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Figure 11. Potentials VL(z) and VR(z) for left- and right-handed chiral fermions with F (φ, χ, ρ) =

φkχρ. The parameters are set to a = 0.05, η = 1, and k = 3(thin trace), 5, 7(thick trace).

plotted in figure 12. Comparing figures 6 and 9 with figure 12, we see that the number of

resonances of the case F (φ, χ, ρ) = φ3χρ is less than that of F (φ, χ, ρ) = φχρ for the same

set of the parameters. This proves our previous conjecture about the number of resonances.

However, if we reduce the value of a, the number of resonance states will increase. For

a = 0.01 and η = 1, the probability for finding the massive KK modes of the left- and

right-chiral fermions around the brane location are shown in figure 13. Here, we mainly

discuss the number of resonance states. We can see that there have been a lot of increases

of the number of the resonance states. However, because of the step size of the eigenvalue

is not small enough, the probability of the resonant peaks we can see in figure 13 is not

true size, and the actual probability is generally larger than that shown in the graphics.

In addition, we can investigate the other cases when k takes the following values {3,
5, 7, 9}. The eigenvalues m2

n, mass mn, width Γ and lifetime τ of left- and right-chiral

fermions for the coupling F (φ, χ, ρ) = φkχρ are also listed in table 1, here, n represents the

nth-resonance state. The results show that, when k increases, the number of the resonance

states gradually reduces, and when k = 11, the number decreases to 0. This means that,

if k ≥ 11, there would be no resonance state at all. And at the same time, there exists

a finite number of resonance states for arbitrary k. These results are very different from

that obtained in ref. [46], where the number of resonance states increases with k, and it is

boundless for k → ∞. The reason is that, for the coupling F (φ, χ, ρ) = φkχρ, the absolute

value of the scalar field at finite z in our current case is smaller than 1. Hence, for given η

and a, the larger the parameter k is, the weaker the kink-fermion coupling and so smaller

the depth of the potential wells. For large enough k, there will be no resonance states

because the potential wells are not deep enough.

It can be seen that, for a given k ≥ 3, the resonances with lower mass would have

longer lifetime. This is consistent with the previous result with k = 1. In addition,

it is worth noting that, for 3 ≤ k ≤ 9, all of the resonance states satisfy the parity-

chiral decompositions (3.16) in a given range of error. In order to visualize the structure

of resonances, we give all the mass spectrum of resonances on the thick brane with the
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Figure 12. The shapes of massive KK modes of left-handed (upper) and right-handed (under)

fermions with the even parity and odd parity for the coupling F (φ, χ, ρ) = φkχρ with different m2.

The parameters are set to k = 3, zmax = 370, a = 0.05, and η = 1.
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Figure 13. The probability PL,R (as a function of m2) for finding massive KK modes of left-

and right-chiral fermions with mass m2 around the brane location for the coupling F (φ, χ, ρ) =

φ3χρ. Solid lines and dashed lines are plotted for the odd-parity and even-parity massive fermions,

respectively. The parameters are a = 0.01 and η = 1.

coupling F (φ, χ, ρ) = φkχρ for k = 1, 3, 5, 7, 9 in figure 14. It turns out that, for each

eigenvalue m2
n, we get a pair of resonance states. They always appear at the same time,

and have opposite parity and chiral. Remarkably, the first state of the resonance spectrum

with lower k would have a relatively larger mass m1. For a given k, as n increases, the

mass gap ∆m = mn −mn−1 of the resonances is getting smaller and smaller.
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Figure 14. Mass spectra of resonances for the coupling F (φ, χ, ρ) = φkχρ. The parameters are set

to k = {1, 3, 5, 7, 9}, a = 0.05 and η = 1.

4 Resonances on a Bloch brane model

In this section, we re-analysis the problems of resonances in a Bloch brane model [49] with

the coupling F (φ, χ) = φχ considered in [45] and clarify some small issues. By applying

the previous method, we further investigate the number and the lifetime of the resonances

in the two-scalar generated Bloch brane with the coupling F (φ, χ) = φkχ, k = 3, 5, 7, 9.

Finally, we give all the mass spectrum of the models.
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Figure 15. The probability PL,R (as a function of m) for finding the even-parity and odd-parity

massive KK modes of the left- and right-chiral fermions around the Bloch brane [49] location for

the coupling F (φ, χ) = φχ. Part of the results have been given in ref. [45]. The parameters are set

to zmax = 200, a = 0.05, η = 1.

4.1 Case I: F (φ, χ) = φkχ with k = 1

In ref. [45], the simplest Yukawa coupling ΨφχΨ between two scalar fields and a spinor

field was investigated for a two-scalar generated Bloch brane model [49]. The fermionic

resonance states for both chiralities were discussed, and their appearance is related to the

internal structure of the brane. Here, in order to facilitate the discussion, we recast the

kink-fermion coupling ΨφχΨ into ΨF (φ, χ)Ψ with F (φ, χ) = φkχ and k = 1.

By using the Numerov method, we solve the Schrödinger equation for the massive KK

modes and obtain a series of resonances. For a = 0.05 and η = 1, we choose zmax = 200.

The probability for finding the even parity and odd parity massive KK modes of the left-

and right-chiral fermions around the Bloch brane location are shown in figure 15. We found

a total of three resonant peaks and their eigenvalues m2 are in the potential well below the

maximum. It is worth noting that the number of the resonance states we discussed here is

a physical quantity which has not been well defined. The number of the resonance states

we are talking about here are the sum of the resonance states whose energy eigenvalues are

lower than the highest point of the potential wells. The massive KK modes whose eigen-

values m2 are very close to or higher than the highest point of the potential wells may also

have a a little resonance, but because the probability of these resonance states are generally

very small and they have quite a little lifetime, so we do not take into account them.

The shapes of the corresponding massive KK modes of left- and right-handed fermions

with the even parity and odd parity for Bloch brane with differentm2 are shown in figure 16.
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Figure 16. The shapes of resonances on the Bloch brane for the coupling F (φ, χ) = φχ. The

parameters are set to zmax = 200, a = 0.05, η = 1.

There are a total of three odd-parity solutions and three even-parity solutions, on the other

hand, three left-handed solutions and three right-handed solutions. This comply with the

parity-chiral decomposition expression (3.16).

4.2 Case II: F (φ, χ) = φkχ with odd k > 1

In this subsection, we extend the analysis to the situation k > 1. Use the same method,

for k = 3, 5, 7, 9, the eigenvalues m2
n, mass mn, width Γ and lifetime τ for the resonances

are listed in table 2. For given a and η, as k increases, the number of resonance states

reduces to zero quickly. The parity-chiral decomposition expression (3.16) holds good for

every k. The graphic of the mass spectrum of resonances for the coupling F (φ, χ, ρ) = φkχ

(1 ≤ k ≤ 9) is depicted in figure 17.

5 Discussion and conclusion

In this paper, we first investigated the thick branes generated from multi-scalar (especially

three-scalar) fields. Then, we studied the localization and the resonances on the three-scalar

and two-scalar generated branes. Using the Numerov method, we solved the Schrödinger

equations for KK modes of fermions with the numerical potentials under two types of

initial value conditions, which lead to the odd- and even-parity solutions. We got the

wave functions of the resonance states and used them to calculate the probability and the

lifetime of resonance states.

For the three-field model, we considered the generalized Yukawa coupling ηΨφkχρΨ

on the thick brane, where η is an arbitrary positive coupling constant and k is an odd
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k C P m2
n mn Γ τ Pmax

odd 0.806136 0.897851 1.92489×10−6 519510 0.999592

L even 1.51801 1.23208 0.000221484 4515 0.999164

odd 2.1024 1.44997 0.00512333 195.186 0.7710561
even 0.806523 0.898066 1.92954×10−6 518260 0.999989

R odd 1.51891 1.23244 0.000223108 4482.13 0.999067

even 2.1037 1.45041 0.00517988 193.055 0.768636

odd 0.096964 0.31139 0.0000873266 11451.3 0.999515L
even 0.26526 0.515034 0.0048577 205.859 0.6462963
even 0.096982 0.311419 0.0000884991 11299.5 0.999304R
odd 0.2653 0.515073 0.00487788 205.007 0.646222

L odd 0.03794 0.194782 0.000837101 1194.6 0.9292065
R even 0.03795 0.194808 0.000833316 1200.03 0.929414

L odd 0.01956 0.139857 0.00383873 260.502 0.4771457
R even 0.01957 0.139893 0.00373923 267.435 0.479078

L odd 0.0112 0.10583 0.015039 66.4936 0.2652029
R even 0.0112 0.10583 0.0135679 73.7035 0.270337

Table 2. The eigenvalues m2, mass, width and lifetime for resonances of left- and right-chiral

fermions with odd-parity and even-parity solutions for the coupling F (φ, χ) = φkχ. C and P
stand for chirality and parity, respectively. L and R are short for left-handed and right-handed,

respectively. The parameters are a = 0.05, k = {1, 3, 5, 7, 9} and η = 1.

positive integer. For the two-field model, we considered the coupling ηΨφkχΨ, where the

case of k = 1 was considered in [45]. In these models, there is a real parameter a, whose

role is regulating the structure of the thick branes. The results show that the behavior of

the resonances completely decided by the structure of the branes and the coupling with

scalars. For a certain k, the coupling constant η and the parameter a decide the shape of

the potentials and wave functions.

For k = 1 in the three-field model, the potential of the KK modes of left chiral fermions

VL is a modified volcano type potential. While the shape for the right one VR is decided

by a and η. For small a and large η, the potential VR will have a potential well. When the

depth of the potential well is deep enough, it will be able to trap the fermions in some sense.

We obtained a series of quasibound states or the metastable states with finite lifetimes.

The eigenvalues m2
n of the resonances were also given.

For k > 1 in the two-field and three-field models, the potential well for left-handed

fermions becomes a double-well, which is consistent with the result obtained in ref. [46].

However, for given a and η, the number of the resonant states in these two models decreases

with k. This is opposite to the result given in ref. [46] for the single-scalar generated brane

case. The reason is that the absolute value of the kink φ in current models is less than 1,

and so, when k increases, the strength of the coupling decreases.

We find that the n-th resonance of left-handed fermions with odd parity and the n-th

resonance of right-handed fermions with even parity have the same mass and lifetime, and
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Figure 17. Mass spectrum of resonances for the coupling F (φ, χ, ρ) = φkχ. The parameters are

k = {1, 3, 5, 7, 9}, a = 0.05 and η = 1.

vice versa. This demonstrates that it is possible to compose a Dirac fermion from the left

and right KK modes [46]. However, in both chiral fermions, the parity is opposite. We

call this phenomenon as the parity-chiral decomposition, and it is the explicit form of the

general KK chiral decomposition of the Dirac fermions.

In our numerical calculations, for those KK modes with m2 much larger than the

maximum of the corresponding potential, they would be approximately plane waves and

the probabilities for them would trend to 0.1, where we chose zmax = 10zb to calculate the

relative probabilities. For the KK modes with m2 close to but larger than the maximum

of the potential, the probabilities for finding them around the brane P is quite small. For

the sake of clarity, we give the definition of the number of the resonant states: the number

of these resonant states with eigenvalue m2 lower than the highest point of the potential.

We also took into account the impact of the numerical precision. Besides, the probabilities

P for the resonances are affected by zb. So zb cannot be too small. The resonances in

other thick brane models with different kink-fermion couplings could be considered, we

will propose the corresponding work on this subject in a near future.
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