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ABSTRACT: Motivated by the recent work on the fermion resonances on scalar-constructed
thick branes (arXiv:0901.3543 and arXiv:0904.1785), we extend the idea to multi-scalar
generated thick branes and complete previous work. The fermion localization and reso-
nances on the three-field and two-field thick branes are investigated. With the Numerov
method, our numerical results show that the resonance states also exist in the brane be-
sides the single-field thick branes and the two-field thick branes in the former cases. This
interesting phenomenon is related to the internal structure of the brane and the coupling
of fermions and scalars. We find that the Kaluza-Klein chiral decomposition of massive
fermion resonances is the parity-chiral decomposition. For the couplings nU¢*xp¥ and
nW@Fx W for three-field and two-field models with odd positive k, respectively, the number
of the resonant states decreases with k. This result is opposite to the one obtained in the
single-field de Sitter thick brane (arXiv:0904.1785).
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1 Introduction

A great deal of effort has been paid to the study of higher dimensional space-time with large
extra dimensions [1-13]. Phenomenologically, the idea that our observed four-dimensional
world is a brane embedded in a higher-dimensional space-time [2—4, 6, 8-10, 12, 13] opens
up a route towards resolving the mass hierarchy problem and the cosmological constant
problem. A first particle physics application of this idea was put forward in refs. [1, 3].
In the framework of (3+1)-dimensional brane scenarios, gravity is free to propagate in all
dimensions, while all matter fields are confined to a 3-brane. In ref. [8], Arkani-Hamed,
Dimopoulos, and Dvali proposed the large extra dimensions model, which lowers the energy
scale of quantum gravity to 1 TeV by localizing the standard model fields to a 4-brane in
a higher dimensional space-time. In this scenario, extra dimensions are compacted into
a large volume that effectively dilutes the strength of gravity from the fundamental scale
(the TeV scale) to the Planck scale. In ref. [9], Randall and Sundrum introduced a warped
branewolrd model, which provides a novel solution of the gauge hierarchy problem in
particle physics. Later developments suggested that the warped metric could even provide
an alternative to compactification for the extra dimensions [10, 11].

In recent years, an increasing interest has been focused on the study of thick brane
scenarios in higher dimensional space-time [14-24]. From a realistic point of view, a brane
should have thickness. Thick brane scenarios based on gravity coupled to scalars have been



constructed. It is known that the modulus is not stable in RS warped scenario. While it
can be stabilized by introducing scalar fields in the bulk [25]. These bulk scalar fields
also provide us with a way of generating the brane as a domain wall (thick brane) in five
dimensions. An important feature of these models is that we can obtain branes by a very
natural way rather than by introducing them artificially. One can refer to a recent review
article on the subject of the thick brane solutions [26].

In brane world scenarios, an important problem is localizing gravity and various bulk
fields on the branes by a natural mechanism. In particular, the localization of spin 1/2
fermions is very interesting and rich. For localizing fermions on the branes or domain
walls, one needs to introduce other interactions in addition to gravity. In the last few years,
localization mechanisms of fermions on a domain wall had been extensively studied [27-31].
Meanwhile, the same problem can also be discussed in other contexts such as gauge field [32,
33], supergravity [34], vortex background [35-38] and general spacetime background [39].

Usually, one examines the localization problem in the content of brane models con-
structed with one background scalar field. The finite discrete Kaluza-Klein (KK) modes

2 can be ob-

(bound states) and a continuous gapless spectrum starting at a positive m
tained for example in refs. [40-43]. In some brane models, the quasibound KK modes with
a certain lifetime will appear [17, 44-47]. Especially, in recent work of ref. [45], the authors
investigated fermions on the Bloch brane [49] constructed with two scalar fields ¢ and
x. With the simplest Yukawa coupling n¥¢x ¥, the localization problem of fermions was
studied. Resonances for both chiralities were found and their appearance is related to the
internal structure of the Bloch brane. In ref. [46], the localization and resonance spectrum
of fermions on a one-scalar generated dS thick brane were investigated. For a class of scalar-
fermion couplings n¥¢*¥ with positive odd integer k, some new nature about resonances
were obtained. On the other hand, thick branes with two or more scalar background fields
also have been constructed [48-50]. In this paper, our goal is to extend the idea of refs. [45,
46] to multi-field generated branes for refreshing the understanding of the localization and
resonances of fermions in these brane models. We will consider fermions in the three-field
constructed thick brane model as an explicit example. We also give a further analysis
about resonances on the Bloch brane and compare the results obtained in different models.

The structure of this paper is as follows. In section 2, we review the multi-field thick
brane models for spin 0 scalar fields and spin 1/2 fermion fields. In section 3 we provide
a complete investigation of the fermion localization and resonances on a three-scalar gen-
erated thick brane in detail. In section 4, we re-analysis the resonances in a Bloch brane

model. Finally, our comments and conclusion are presented in section 5.

2 The multi-field thick brane models

In order to maintain the continuity of the whole work and make the background of this
paper clear, in this section, we review the multi-field thick brane models. Followed the
similar procedure in refs. [45, 46, 48|, the field equations for scalars and fermions are
obtained, especially we get the first-order equations by the superpotential.



2.1 Spin 0 scalar fields

Let us consider the 441 dimensional multi-field thick brane models. Specifically, we intro-
duce n scalar background fields. The action for such a system is given by

1 1 1 1
S= /d4wdy\/—_g [ZR = 500" 6 — SOuXOVX = -+ = S0P p = V(h, X, )
(2.1)
and the line-element is assumed as

ds? = gyndzMdaN = 62A77Wdac“dac” — dy?, (2.2)

where g = det(gyn), M, N =0,1,2,3,4, 24 is the warp factor, and y stands for the extra
coordinate. The warp factor and the scalar fields are considered to be functions of y only,
ie, A=A(y), o= &(y), x =x(), -+, and p = p(y).

The field equations generated from the action (2.1) with the ansatz (2.2) reduce to the
following coupled nonlinear differential equations
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We suppose that the n-field models are defined by the potential

2 2 2
V(oo >[(g_;f) (g_W) (g_w) ]_gwa 2.

where W = W(¢, x,--,p) is the superpotential, which leads to the following first-order
equations that solve the second order equations (2.3):

1w , 1w , Low
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(b,
2.2 Spin 1/2 fermion fields

In this subsection, we are ready to investigate whether spin half fermions can be localized
on the brane. Let us consider n real scalars coupled to a massless bulk fermion by means
of a general Yukawa coupling in five dimension. The starting action reads

Sije = /d5:v\/—g [\I’FMDM‘I’ —nUF($,x, - ,p)¥, (2.6)



where the spin connection w]\]‘f[IN in the covariant derivative

DU = 8y + wpy) ¥ = <8M + %w%NPMFN> U (2.7)
is defined as
WwiN = %ENM(aMENN — ONEdy) — %ENN((?MEJA\? — OvE}])
5B BN B (0 Bgr — 90 Fpr). (28)

In five-dimensional space-time, fermions are four component spinors and their Dirac struc-
ture is determined by T™ = E%PM with the EJ\J‘—/”[ being the vielbein and {T'™ TN} =
2gMN  The indices of five-dimensional spacetime coordinates and the local lorentz indices
are labelled with capital Latin letters M, N,... and M, N, ..., respectively. T'™ are the
curved gamma matrices and 'yM are the flat ones.

Following, we will derive the Schrodinger equation for the KK modes of fermions.
In order to get the corresponding mass-independent potential, we perform the coordinate
transformation

dz = e Way (2.9)

to get a conformally flat metric
ds? = ?4() (nudatda” + dz?). (2.10)

With the metric (2.10), the nonvanishing components of the spin connection wy; are cal-
culated as

1
Wy = 5((92/1)7#75 . (2.11)

Then the five-dimensional Dirac equation is read as
[0, +7°(0: + 20.A) — ne F (¢, x,p)] ¥ =0, (2.12)

where v#0,, is the Dirac operator on the brane.

We are now ready to study the above Dirac equation for five-dimensional fluctuations,
and write the fermion field ¥ in terms of four-dimensional effective fields. Following [31],
we have the general chiral decomposition

U, 2) = oA (Z bin(@) fin(z) + Y ¢Rn<x)f3n<z>> , (2.13)

where ¥, (z) = =7, (z) and Vg, (x) = YR, (7) are the left-handed and right-handed
components of a four-dimensional Dirac fermion fields, respectively, and they satisfy the
four-dimensional massive Dirac equations v*0,4rn(x) = mp¥pry(x) and Y0, Ypn(x) =
mp¥rn(x). The KK modes fr,(z) and fgr,(z) of the chiral decomposition of the spinor
satisfy the following coupled equations

[0 +ne (6, X,0)] frn(2) = mnfra(2), (2.14)
(0= = ne F (6, X, p)] frn(2) = —mn frn(2). (2.15)



In order to obtain the standard four-dimensional action for the massive chiral fermions, we
need the following orthonormality conditions for fr,(z) and fr,(2):

+o00 +00 +o0o
/ Fomfrndz = / Fromfrnd = S / fomfradz=0.  (2.16)

—00 —00 —00

With egs. (2.14) and (2.15), we have

d d
— = e F(d,x,p) | | = +ne F(&,x,p) | fr. = —mi fr, (2.17)
dz dz
d d
-— + neAF(¢7 X7p) 5 77€AF(¢7X7P) fR - _mifR . (218)
dz dz
Hence, we get the Schrodinger-like equations for the left- and right-chiral fermions [45, 46]
Hrfi(z) = m*fr(2), (2.19)
HRfr(z) = m*fr(2), (2:20)
with the corresponding Hamiltonians
Hy = (40t Fo.x0) ) (o + 0 F(6.x.0) (221)
L — dZ ne y X P dZ ne y X P ’ .
Hi = (=L —0etP6,3,0)) (£ = ne F(d, %, 0) (2.22)
R — dz n y X P dz n y X P . .
The Schrodinger equations can be expressed as
(<02 + Vi(2)] fr = m*fr, (2.23a)
(=02 + Va(2)] fr = m*fr, (2.23b)

where the effective Schrodinger-like potentials for the KK modes fr g are

Vi(2) = ?e* F2(6, x, p) — ne?0.F (¢, x, p) — ne (0 A)F(¢,x,p),  (2.24a)
Vr(2) = 1°e* F2(¢,x, p) + e 0.F (6, x, p) + ne* (0:A)F($,x,p).  (2.24b)

3 Fermion localization and resonances on a three-field thick brane

Let us now investigate the three-field brane models. As a natural extension of the single-
field and two-field scenarios, the superpotential with three-fields could be

which was considered in refs. [48, 51]. Here a is a real parameter. In this case, the
corresponding potential (2.4) is

2
V= % 162> (0> + x°) + [1 — ¢* + a(p* + XQ)ﬂ - % [¢ - é¢3 — ap(x* + pQ)} . (32)



The first order equations are

d¢

a =1—-¢?’—a (X2 + ,02) , (3.3a)
dx
A 9 .3b
i agx, (3.3b)
d
d—’y) = 2a¢p, (3.3¢)
dA 2 1 4 5 o
e (7 iy . .3d
| (LRI (3.30)
The solutions are given by
#(y) = tanh(2ay), (3.4a)
1
i 2 cos 6 sech(2ay) , (3.4b)
/1 .
= +4/— — 2 sin# sech(2ay), (3.4c)
a
1
= 9 [(1 3a) tanh?(2ay) — 21In cosh(2ay) | , (3.4d)

where 0 < a < 1/2 and 0 € [0,27). The shapes of the solutions are plotted in figure 1.
It can be seen that the scalar ¢(y) is a kink while x(y) and p(y) are campanulate. The
warp factor has a normal shape and the brane thickness decreases with a. We note that
the warp factor here is the same with the one in two-field thick brane case in refs. [45, 49]
but different from the single-field one in refs. [19, 46]. In this paper, we take § = 7/6 and
consider the positive solutions of x(y) and p(y).

Now, we turn to the z-coordinate according to eq. (2.9). For general value of a, the
expression of A(y) (3.4d) cannot be integrated in a known explicit form. Even for the
particular case a = 1/3, for which we have an analytical expression of z(y), it is hard
to get an expression for the inverse y(z) in an explicit form in terms of some analytical
functions, so some numerical methods are needed. The numerical result for z(y) is depicted
in figure 2. The derivatives with respect to z, can be calculated as a function of y by using
the coordinate transformation (2.9)

dA(2) _ aaw dy _ 9A aq

F e T dye , (3.5)
dF(z) _ ar@)ay _ AFW)

i TRt e, (3.6)

With the above expressions, we can rewrite the potentials (2.24) as a function of y:

VL(2(y)) = ne** [nF2(, X, p) — 0y F(, X, p) — F (¢, X, p)Oy Ay) |, (3.7a)
VR(Z(y)) = VL(Z(y))‘n—Hn- (3-7b)

It can be seen that, for the left- or right-chiral fermion localization, there must be some kind
of scalar-fermion coupling. In addition, for the kink configuration of the scalar ¢(y) and the
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Figure 1. Warp factor e?4®) | scalar fields ¢(y), x(y) and p(y). The parameters are set to § = /6,
a = 0.05 (thin trace), 0.1, 0.2 (thick trace). The thickness of lines is increases with a.
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Figure 2. Plot of the function z(y) for a = 0.05, 0.1 and 0.2. The thickness of lines is increases
with a.

lump configurations of x(y) and p(y), F(¢, x, p) should be an odd function of ¢(y) when
one demands that V7,(z(y)) or Vr(z(y)) is Za-even with respect to y. Here, we would like to
consider two cases: the simplest Yukawa coupling F'(¢, x, p) = ¢xp and the general coupling
F(¢) = ¢"xp with odd positive k. Surely, other more complex cases can be investigated.



3.1 Case I: F(¢,x,p) = ¢Fxp with k=1

Firstly, we investigate the simplest Yukawa coupling F(¢, x, p) = ¢xp for the three-scalar
generated thick branes. For simplicity, we consider the brane solution (3.4) only. The
explicit forms of the potentials (3.7) are given by

VL(y)

= 53802 [77(261 —1)exp <W tanh2(2ay)> cosh64/(9a)(2ay)}

X [3(52\/§a2 + 91— 2a(2V3 + 9n)) — 4V/3(1 + 9a) cosh(8ay) (3.8a)

—|—(16\/§a + 24V/3a® — 271 + 54an) cosh(4ay)} ,

Vr(y) = VL(Y)lg——n- (3.8b)

Here, we note that y cannot be expressed in an explicit form in terms of z, so the potentials
are expressed with the variable y. From figure 2, we can easily obtain the asymptotic
behavior of the potentials (3.8). The values of the potentials at z = y = 0 and y or
z — do0 are given by

V3

V(0) = ==~ (1 = 2a)y = —VR(0), (3.9)

VL(iOO) =0= VR(iOO). (3.10)

It can be seen that both potentials have the same asymptotic behavior when z — 400, but
opposite behavior at the origin z = 0, which results in the well-known conclusion: only one
of the massless left- and right-chiral fermions could be localized on the brane.

As mentioned above, with the numerical methods, we can get the shape of potential
function graphics as shown in figure 3. Clearly, for any value of 0 < a < 1/2 and 1 > 0,
VL(2) is a volcano type of potential. Therefore, the potential of the left-handed fermions
does not provide mass gap between the zero-mode and KK excitation modes, and there is
a continuous gapless spectrum of KK excitation modes. The zero mode of the left-handed
fermions is turned out to be

fia(e) o oxp (= [ dzeA Do) )
= e (= [ dpoio(aoio) (3.11)

0

and the normalization condition

AR C N e
< [~ exn (<A -2 [ dwoa@om) ) o
= /Z exp <—A(y) — 277% tanh2(2ay)> dy <oco  (3.12)

cannot be satisfied because A(y) — —%y while tanh?(2ay) — 1 when 3y — oco. Hence, the
zero mode (3.12) is nonnormalizable. The reason is that the coupling F'(¢, x, p) contains the
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Figure 3. Potentials V. (z) and Vg(z) for left- and right-chiral fermions with F (&, x, p) = ¢xp-
The parameter a is set to 0.05 (thin trace), 0.1, 0.2 (thick trace).

lump configurations y and p. In order to get localized zero mode for left-handed fermions,
we can only consider the coupling of fermions and the kink ¢, i.e., F\(¢, x, p) = ¢, for which
the zero mode is normalizable provided n > 2/9. In this paper, we would not consider
the special case. On the other hand, the potential Vi(y) at the brane location is always
positive, and when far away from the brane it gradually becomes zero. We know that this
type of potential cannot trap any bound state fermions with right-chirality and there exists
no zero mode of right-handed fermions. As is well known this result is consistent with the
previous well-known conclusion that massless fermions must be single-handed chirality in
the brane world models [27, 46].

However, the structure of the potential Vg is determined by the coupling constant 7
and parameter a jointly. For a given a, as 7 increases, there will be a potential well and
the depth of the well will be deeper and deeper. On the other hand, for a given 7, the
smaller the parameter a is, the deeper the depth of the potential well. There is a fine-tuning
relationship between a and 7. This means that a competition between a and n exists. We
consider the situation of the extreme one. As a range from 0 to 1/2, for a value a which is
close to 1/2, in order to produce a potential well, we need very large 7, i.e., the scalar and
fermion have a strong coupling. All we can do is to find the essence of the phenomenon
behind. This is the most interesting things and phenomena.



3.1.1 Left-handed fermions

We will find the following fact that the emergence of the potential wells is closely related to
the resonance states, which are massive fermions with finite lifetime. A similar phenomenon
for left- and right-chiral fermions can be found in refs. [45, 46], the former is in the context
of two-scalar constructed thick brane with internal structure, the latter is in the background
of the single-scalar generated dS thick brane with a class of scalar-fermion coupling. Here,
we extend this point of view and method to a three-scalar generated thick brane obtained
in ref. [48]. We follow refs. [45, 46] through solving numerically the equations (2.23) with
numerical Schrodinger potentials in (3.8) to study the massive modes of fermions. In
particular, in order to obtain the probability of massive modes of the fermions on the
brane, we adopt the new method of calculating the probability in ref. [46]. In addition,
our results are consistent with the previous two models, and some new properties about
resonances are discovered.

In order to get the solutions of the KK modes fr, r(z) from the second order ordinary
differential equations (2.23), we need additional two types of initial conditions:

f(0)=c,  f(0)=0, (3.13)

and
f(0) =0, f(0)=ci. (3.14)

From figure 3, we can see that the potentials which we will consider have even-parity.
According to the knowledge of quantum mechanics, we can know that the wave functions
of a Schrodinger equation with a finite smooth potential are continuous at any position.
The above two types of initial conditions will lead to even-parity and odd-parity KK modes,
respectively. It is worth noting that, according to a specific numerical procedure, the form
of the initial conditions of equivalent deformation will be used in our followed numerical
calculations. The constants ¢y and ¢; for the nonbound massive KK modes are arbitrary,
and in accordance with specific conditions of numerical calculations.

From the point of view of quantum mechanics, as the general effects of the quantum
mechanics, there will be tunneling effect when the massive KK modes experience the po-
tential barrier near the brane. By means of Numerov method [52, 53], for a given potential
function combined with the Schrédinger equations, the numerical results show that the
corresponding KK modes with a series of masses and lifetimes will be obtained. The KK
modes with finite lifetime are also called resonances, i.e., quasibound states or metastable
states. Some even-parity massive KK modes of left-handed chiral fermions for the coupling
F(¢,x,p) = ¢xp with different m? are depicted in figure 4. These graphics indicate that
there are some resonance states when the mass accesses to certain specific values. The
results we get here are consistent with that given in ref. [45, 46]. However, there are some
new characteristics. With different models and coupling mechanisms, some new properties
of resonances and physical meaning may exist. In what follows, we will carefully discuss
the resonance problem in the background of the three-scalar constructed thick brane.

From figure 4, we see that, to obtain a very clear resonance, one need a very good

2

accuracy for the parameter m~®. If we want to search for a resonance directly through

,10,
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Figure 4. The shapes of the even parity massive KK modes f1,(z) of left-chiral fermions for the cou-
pling F (¢, x, p) = ¢xp with different m?. The parameters are set to zmax = 210, a = 0.05 and = 1.

the eigenfunction and energy eigenvalue, we will encounter great difficulties and workload.
According to the formal theory of resonance of quantum wave functions, we can study
the probability of finding the massive KK modes around the vicinity of the brane location
within a relatively large region [45, 46].

Because the formula (2.23) can be re-written in the form OLROL,RfL,R(Z) =
m? fr,r(2), s0 | fr,r(2)?

modes at the position z along extra dimension. In ref. [45], the authors suggested that

can be interpreted as the probability for finding the massive KK

large peaks in the distribution of fr, z(0) as a function of m would reveal the existence of
resonance states. Here, we follow the procedures of the extended idea in ref. [46] for the two
types of initial conditions (3.13) and (3.14). For a given eigenvalue m?, the corresponding
relative probability is defined as [46]:

2 | frr(z)?dz
P = b . 3.15
L7R(m) szi’;x ‘fL7R(Z)’2dZ ) ( )

where the relation of z, and zyax is selected as zmax/zp = 10, for which, the probability
2

for a plane wave mode with mass m is 0.1. For the KK modes with eigenvalue m* much
larger than the maximum of the corresponding potential function, they will have a very
good plane wave approximation, and the corresponding probability P(m) will tend to 0.1.
For the parameters £ = 1, a = 0.05, n = 1, the potential wells distribute in the range
[—2p, 2] (2, = 21) along extra dimension, so we choose zpax = 210, and the corresponding
graphics of the resonance spectra are depicted in figure 5. For left-handed fermions, we
find a total of five clear resonant peaks with approximate eigenvalues m? = 1.50234155,

2.884904, 4.12957, 5.2035, 6.032. The corresponding left-handed eigenfunctions are shown

— 11 —
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Figure 5. The probability P, (as a function of m) for finding the even parity (under three
resonant peaks) and odd parity (upper three resonant peaks) massive KK modes of left-chiral
fermions around the brane location for the coupling F(¢,x, p) = ¢xp. The parameters are set to
Zmax = 210, a = 0.05 and n = 1.

in figure 6. It can be seen that the configurations of figures 6(a), 6(c) and 6(e) are odd-
parity eigenfunctions, and the other two are even-parity ones. From figures 5 and 6, we
can see that odd-parity eigenfunctions and even-parity eigenfunctions are placed at the five
resonant peaks with irregular intervals of mass eigenvalues.

As mentioned above, it is usual to describe the resonance by its width I' = Am at
half-maximum of the corresponding resonant peak [45]. In this way, we can calculate the
lifetime 7 of a resonance state with the width I". This means that the massive fermions
disappeared along the direction of extra dimension after time 7 = 1/T" [54]. The eigenvalues
m?, mass m, width T and lifetime 7 for resonances of left-handed fermions corresponding
to the resonant peaks shown in figure 5 are listed in table 1. We can see that the resonance
states with relatively larger eigenvalues have a relatively smaller lifetimes.

In addition, it should be noted that the solutions we obtain with numerical methods
are some approximate solutions which meet a certain accuracy. For example, for the
even-parity resonance states shown in figure 5(d), when the step accuracy of the mass
m accesses to a certain value, the fluctuation of the probability likes a hedgehog would
emerge around the corresponding resonant peak (see figure 7). The overall profile of the
probability fluctuation still corresponds to the resonant peak.

3.1.2 Right-handed fermions

For right-handed fermions, as we mentioned earlier, there is no normalized zero-mode.
Repeating the analysis of the previous subsection, we can get the similar results about
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Figure 6. The shapes of the even parity and odd parity massive KK modes f1,(z) of left-chiral
fermions for the coupling F (¢, x, p) = ¢xp with different m2. The parameters are set to zmax = 210,
a=0.05and n = 1.

Even, k=1, Pz — 0.965288 Even, k=1, Py — 0.965288
P PL

0.965288 0.965288
0.965283 0.965283
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Figure 7. The fluctuation of the probability P, (as a function of m) for finding the even
parity massive KK modes of left-chiral fermions around the brane location for the coupling
F(¢,x,p) = ¢xp with different step accuracy msgiep in numerical method. The parameters are set
toa=0.050and n=1.

resonances. And the resonance states are closely related to the emergence of the potential
well shown in figure 3. For the parameters a = 0.05 and n = 1, the corresponding graphics
of the resonance spectra are depicted in figure 8. For right-handed fermions, we also
find a total of five clear resonant peaks with approximate eigenvalues m? = 1.502620398,
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k|C| P m2 My r T Prax
odd | 1.50234155 | 1.2257 | 7.92943x107° | 1.26112x10% | 0.999908

even | 2.884904 1.6985 | 2.14302x10~6 466631 0.999963

L | odd 4.12957 2.03213 0.00011232 8903.15 0.999896
even 5.2035 2.28112 0.00217082 460.655 0.965288

1 odd 6.03 2.45601 0.0296346 33.7443 0.424972
even | 1.502620398 | 1.22581 | 7.98459x 1077 | 1.25241x10% | 0.998721

odd 2.885601 1.69871 | 2.14401x1076 466416 0.999967

R | even 4.13079 2.03243 | 0.000112761 8868.28 0.999897
odd 5.2051 2.28147 | 0.00218277 458.134 0.964972

even 6.033 2.45622 0.0300386 33.2905 0.42376

odd | 0.136755 | 0.369804 | 0.0000263936 37888 0.999961

L | even 0.39192 0.626035 | 0.00123317 810.918 0.965227

3 odd 0.607 0.779102 0.0219376 45.5838 0.365007
even | 0.136763 | 0.369815 | 0.0000263447 37958.2 0.99861

R | odd 0.39195 0.626059 | 0.00123482 809.836 0.965131
even 0.607 0.779102 0.0221197 45.2086 0.364746

£ | odd 0.04936 0.222171 | 0.000811223 1232.71 0.965989
5 even 0.1419 0.376696 0.040258 24.8398 0.245507
R | even 0.04937 0.222194 | 0.000810324 1234.07 0.966584
odd 0.1421 0.376962 0.0439204 22.7684 0.241676

7| £ ] odd 0.02423 0.15566 0.00524879 190.52 0.565059
R | even 0.02425 0.155724 | 0.00516514 193.606 0.567736

g | £] odd 0.01331 0.115369 0.0193406 51.7047 0.313287
R | even 0.01325 0.115109 0.0171465 58.3209 0.322988

Table 1. The eigenvalues m?, mass, width and lifetime of left- and right-chiral fermions with odd-

parity and even-parity solutions for the coupling F(#,x,p) = #*xp. C and P stand for chirality
and parity, respectively. £ and R are short for left-handed and right-handed, respectively. The
parameters are k = {1, 3, 5, 7, 9}, a = 0.05 and = 1.

2.885601, 4.13079, 5.2051, 6.033. The corresponding right-handed eigenfunctions are shown
in figure 9. The configurations of figures 9(a), 9(c) and 9(e) are even-parity eigenfunctions,
and the other two are odd-parity ones. This situation is the reverse of that with left-handed
fermions. From the figures 8 and 9, we can also see that odd-parity eigenfunctions and
even-parity eigenfunctions are placed at the five resonant peaks with irregular intervals of
m. The difference is that the first resonance state is known as even-parity.

Comparing figures 5 and 6 with figures 8 and 9, respectively, we find that the nth
massive resonance with left-chirality and the nth one with right-chirality have the same
mass, i.e., the spectra of massive odd (even) left-handed and even (odd) right-handed
fermionic resonances are the same. At the same time, excluded from the error in the
numerical calculations, their lifetimes listed in table 1 are in general of the same order
of magnitude. This demonstrates that it is possible to compose a Dirac fermion from a
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Figure 8. The probability Pg (as a function of m) for finding the even parity (upper three resonant
peaks) and odd parity (under three resonant peaks) massive KK modes of the right-chiral fermions
around the brane location for the coupling F (&, x, p) = ¢xp. The parameters are set to zpmax = 210,
a=0.05and n=1.

left-handed fermion with odd-parity and a right-handed one with even-parity, and vice
versa. This means that the general chiral decomposition expression eq. (2.13) becomes two
explicit forms

U(z,2) = e 24 (Zzp B +Zzp 9 )), (3.16a)
U(z,z) = e A (Zzp O) +Zzp O )), (3.16b)

where the superscripts E and O stands for even-parity and odd-parity, respectively. We call
this kind of decomposition the parity-chiral decomposition instead of the general chiral de-
composition. In fact, this is not difficult to understand, because in mathematics, any func-
tion can be decomposed into an even function and an odd one. This implies that the parity
and the chirality of massive fermions are conserved in a sense. We can also see that the res-
onance states with relatively smaller mass have a relatively longer lifetime. This conclusion
is consistent with the results obtained in the single-scalar constructed dS thick brane [46].

It is worth noting that, the key point here is that we have considered two types of
initial conditions (3.13) and (3.14). These two types of initial conditions lead to odd- and
even-parity solutions. In fact, as mentioned in the earlier work, we found in refs. [30, 31]
that the spectra of the bound massive KK modes of left- and right-chiral fermions are
also the same, where the effective potentials for KK modes of fermions are modified
Poschl-Teller potentials.
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Figure 9. The shapes of the even parity (upper three) and odd parity (under three) resonance

states fr(z) of right-chiral fermions for the coupling F(¢,x,p) = ¢xp with different m?. The

parameters are set to zmax = 210, a = 0.05 and n = 1.

3.2 Case II: F(¢,x,p) = ¢"xp with odd k > 1

Next, we consider a natural generalization of the simplest Yukawa coupling: F(¢,x,p) =
®*xp, where k is a positive odd integer, and k > 1. The similar generalized couplings have
been studied in refs. [46, 55]. For this coupling, the potentials for the KK modes of left-
and right-handed fermions (3.7) become the form below

VeW) = 1412 1P "o

20 — 1 2(1 —
_ ¢ (M tanh2(2ay)> cosh ™4~ 5a (2ay) tanh*~1(2ay)

X {27(2@ — 1) tanh*1(2ay) — 16v/3a(1 4 9a)sinh?(2ay)
+8V/3a [Qak — (6a — 2) tanh2(2ay)] } , (3.17a)
Ve(y) = Vi(y)lp——n (3.17b)
It is easy to see that both the two potentials have a simple asymptotic behavior:
Vi, r(£00) =V g(0) =0. (3.18)

The potentials cannot be expressed as explicit functions with the variable z. But by means
of numerical methods, we can get the relationship between the potentials and the variable
z. The graphics of the numerical potentials are depicted in figures 10 and 11 for different
values of a, n and k. As mentioned in ref. [46], the potential well for left-handed fermions
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Vi Vi

Figure 10. Potentials V7, (z) and Vg (z) for left- and right-handed chiral fermions with F(¢, x, p) =
#>xp. The parameters are set to 7 = 1, and a = 0.05 (thin trace), 0.1, 0.2 (thick trace).

becomes a double-well, while, for any positive n, there is a potential well for right-handed
fermions. The lowest point of the potential well for right-handed fermions sits on the origin
of the extra coordinate z. For given 1 and k, as a increases, the depth of the potential wells
for left- and right-handed fermions will be shallower and shallower. On the other hand, for
given 7 and a, the smaller the parameter k is, the deeper the depth of the potential wells.
The third situation is that, for given a and k, the greater the absolute value of 7 is, the
deeper the depth of the potential wells. The graphics are not drawn here.

As we know, there is a continuous gapless spectrum of KK modes for both left- and
right-chiral fermions. The zero modes of left-handed fermions

fun() xoxw (= [ ek E ) (3.19)
can also not be normalized, while the following one for F = ¢* with 1 > 2/9 is normalizable:

fro(z) oc exp ( -1 /z dzeA(Z)(bk(Z)) : (3.20)

0

The emergence of potential wells shown in figures 10 and 11 are also related to resonances.
From figures 10 and 11, we see that some characteristics of these potentials are very
different from those in ref. [46]. Here, for given 7 and a, the larger the parameter k is,
the lower the depth of the potential wells. Therefore, we speculate that the number of
resonance states will be reduced with the increase of k, rather than the case in ref. [46].
Next, we will prove this conjecture.

In order to study the resonance states, we consider the massive KK modes now. Just
the same as the previous subsection, using the Numerov method, we will find the numerical
solutions of Schrodinger equations with the purely numerical potentials (3.17) under the two
types of the initial conditions (3.13) and (3.14). We first consider the case F(¢, x,p) = ¢>xp
to see what will happen. For a = 0.05 and p = 1, we choose zpax = 370. The eigenfunctions
of the massive KK modes of left-handed and right-handed fermions with the even parity
and odd parity are obtained with different m?. The results of the numerical calculations are
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Figure 11. Potentials V7, (z) and Vg(z) for left- and right-handed chiral fermions with F(¢, x, p) =
®"xp. The parameters are set to a = 0.05, n = 1, and k = 3(thin trace), 5, 7(thick trace).

plotted in figure 12. Comparing figures 6 and 9 with figure 12, we see that the number of
resonances of the case F(¢,x, p) = ¢>xp is less than that of F (¢, x, p) = ¢xp for the same
set of the parameters. This proves our previous conjecture about the number of resonances.
However, if we reduce the value of a, the number of resonance states will increase. For
a = 0.01 and n = 1, the probability for finding the massive KK modes of the left- and
right-chiral fermions around the brane location are shown in figure 13. Here, we mainly
discuss the number of resonance states. We can see that there have been a lot of increases
of the number of the resonance states. However, because of the step size of the eigenvalue
is not small enough, the probability of the resonant peaks we can see in figure 13 is not
true size, and the actual probability is generally larger than that shown in the graphics.

In addition, we can investigate the other cases when k takes the following values {3,
2

£, mass my, width I' and lifetime 7 of left- and right-chiral

5, 7, 9}. The eigenvalues m
fermions for the coupling F(¢, x, p) = ¢*xp are also listed in table 1, here, n represents the
nth-resonance state. The results show that, when k increases, the number of the resonance
states gradually reduces, and when & = 11, the number decreases to 0. This means that,
if kK > 11, there would be no resonance state at all. And at the same time, there exists
a finite number of resonance states for arbitrary k. These results are very different from
that obtained in ref. [46], where the number of resonance states increases with k, and it is
boundless for k — oco. The reason is that, for the coupling F(¢, x, p) = ¢*xp, the absolute
value of the scalar field at finite z in our current case is smaller than 1. Hence, for given n
and a, the larger the parameter k is, the weaker the kink-fermion coupling and so smaller
the depth of the potential wells. For large enough k, there will be no resonance states

because the potential wells are not deep enough.

It can be seen that, for a given k£ > 3, the resonances with lower mass would have
longer lifetime. This is consistent with the previous result with £ = 1. In addition,
it is worth noting that, for 3 < k& < 9, all of the resonance states satisfy the parity-
chiral decompositions (3.16) in a given range of error. In order to visualize the structure
of resonances, we give all the mass spectrum of resonances on the thick brane with the
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Figure 12. The shapes of massive KK modes of left-handed (upper) and right-handed (under)
fermions with the even parity and odd parity for the coupling F(¢, x, p) = ¢*xp with different m?2.
The parameters are set to k = 3, zmax = 370, a = 0.05, and n = 1.

PL Pr
0251

020

Figure 13. The probability P, r (as a function of m?) for finding massive KK modes of left-
and right-chiral fermions with mass m? around the brane location for the coupling F(¢,x, p) =
¢3xp. Solid lines and dashed lines are plotted for the odd-parity and even-parity massive fermions,

respectively. The parameters are a = 0.01 and n = 1.

coupling F(¢,x,p) = ¢Fxp for k = 1,3,5,7,9 in figure 14. It turns out that, for each
eigenvalue m2, we get a pair of resonance states. They always appear at the same time,
and have opposite parity and chiral. Remarkably, the first state of the resonance spectrum
with lower k£ would have a relatively larger mass mq. For a given k, as n increases, the

mass gap Am = m, — m,_1 of the resonances is getting smaller and smaller.
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Figure 14. Mass spectra of resonances for the coupling F (¢, x, p) = ¢*xp. The parameters are set
to k={1,3,5,7,9},a=0.05and n = 1.

4 Resonances on a Bloch brane model

In this section, we re-analysis the problems of resonances in a Bloch brane model [49] with
the coupling F(¢, x) = ¢x considered in [45] and clarify some small issues. By applying
the previous method, we further investigate the number and the lifetime of the resonances
in the two-scalar generated Bloch brane with the coupling F(¢,x) = ¢*x, k = 3,5,7,9.
Finally, we give all the mass spectrum of the models.
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Figure 15. The probability Pr r (as a function of m) for finding the even-parity and odd-parity
massive KK modes of the left- and right-chiral fermions around the Bloch brane [49] location for
the coupling F(¢, x) = ¢x. Part of the results have been given in ref. [45]. The parameters are set
t0 Zmax = 200, a = 0.05, n = 1.

4.1 Case I: F(¢,x) = ¢y with k=1

In ref. [45], the simplest Yukawa coupling oy V¥ between two scalar fields and a spinor
field was investigated for a two-scalar generated Bloch brane model [49]. The fermionic
resonance states for both chiralities were discussed, and their appearance is related to the
internal structure of the brane. Here, in order to facilitate the discussion, we recast the
kink-fermion coupling Wox ¥ into WF (¢, x)¥ with F(¢,x) = ¢*x and k = 1.

By using the Numerov method, we solve the Schrodinger equation for the massive KK
modes and obtain a series of resonances. For a = 0.05 and n = 1, we choose zy.x = 200.
The probability for finding the even parity and odd parity massive KK modes of the left-
and right-chiral fermions around the Bloch brane location are shown in figure 15. We found

2 are in the potential well below the

a total of three resonant peaks and their eigenvalues m
maximum. It is worth noting that the number of the resonance states we discussed here is
a physical quantity which has not been well defined. The number of the resonance states
we are talking about here are the sum of the resonance states whose energy eigenvalues are
lower than the highest point of the potential wells. The massive KK modes whose eigen-

2 are very close to or higher than the highest point of the potential wells may also

values m
have a a little resonance, but because the probability of these resonance states are generally
very small and they have quite a little lifetime, so we do not take into account them.

The shapes of the corresponding massive KK modes of left- and right-handed fermions

with the even parity and odd parity for Bloch brane with different m? are shown in figure 16.
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Figure 16. The shapes of resonances on the Bloch brane for the coupling F(¢,x) = ¢x. The
parameters are set to zmax = 200, a = 0.05, n = 1.

There are a total of three odd-parity solutions and three even-parity solutions, on the other
hand, three left-handed solutions and three right-handed solutions. This comply with the

parity-chiral decomposition expression (3.16).

4.2 Case II: F(¢,x) = ¢y with odd &k > 1

In this subsection, we extend the analysis to the situation £ > 1. Use the same method,

2

-, mass my, width I' and lifetime 7 for the resonances

for k=3, 5,7, 9, the eigenvalues m
are listed in table 2. For given a and 7, as k increases, the number of resonance states
reduces to zero quickly. The parity-chiral decomposition expression (3.16) holds good for
every k. The graphic of the mass spectrum of resonances for the coupling F(¢, x,p) = ¢*x

(1 <k <9) is depicted in figure 17.

5 Discussion and conclusion

In this paper, we first investigated the thick branes generated from multi-scalar (especially
three-scalar) fields. Then, we studied the localization and the resonances on the three-scalar
and two-scalar generated branes. Using the Numerov method, we solved the Schrédinger
equations for KK modes of fermions with the numerical potentials under two types of
initial value conditions, which lead to the odd- and even-parity solutions. We got the
wave functions of the resonance states and used them to calculate the probability and the
lifetime of resonance states.

For the three-field model, we considered the generalized Yukawa coupling nW¥¢Fyp¥
on the thick brane, where 7 is an arbitrary positive coupling constant and k is an odd
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kE{C| P m2 My, r T Prax

odd | 0.806136 | 0.897851 | 1.92489x1076 | 519510 | 0.999592
L | even | 1.51801 1.23208 0.000221484 4515 0.999164
1 odd 2.1024 1.44997 0.00512333 195.186 | 0.771056
even | 0.806523 | 0.898066 | 1.92954x107°% | 518260 | 0.999989
R | odd | 1.51891 1.23244 0.000223108 | 4482.13 | 0.999067
even | 2.1037 1.45041 0.00517988 193.055 | 0.768636
r odd | 0.096964 | 0.31139 | 0.0000873266 | 11451.3 | 0.999515
3 even | 0.26526 | 0.515034 0.0048577 205.859 | 0.646296

even | 0.096982 | 0.311419 | 0.0000884991 | 11299.5 | 0.999304

" odd | 0.2653 | 0.515073 0.00487788 205.007 | 0.646222
5| £ ] odd | 0.03794 | 0.194782 | 0.000837101 1194.6 | 0.929206
R | even | 0.03795 | 0.194808 | 0.000833316 | 1200.03 | 0.929414
7| £ ] odd | 0.01956 | 0.139857 | 0.00383873 260.502 | 0.477145
R | even | 0.01957 | 0.139893 0.00373923 267.435 | 0.479078
9| £ | odd | 0.0112 0.10583 0.015039 66.4936 | 0.265202
R | even | 0.0112 0.10583 0.0135679 73.7035 | 0.270337

Table 2. The eigenvalues m?, mass, width and lifetime for resonances of left- and right-chiral

fermions with odd-parity and even-parity solutions for the coupling F(¢,x) = ¢¥x. C and P
stand for chirality and parity, respectively. £ and R are short for left-handed and right-handed,
respectively. The parameters are a = 0.05, k = {1, 3,5, 7, 9} and n = 1.

positive integer. For the two-field model, we considered the coupling n¥¢*x ¥, where the
case of kK = 1 was considered in [45]. In these models, there is a real parameter a, whose
role is regulating the structure of the thick branes. The results show that the behavior of
the resonances completely decided by the structure of the branes and the coupling with
scalars. For a certain k, the coupling constant 7 and the parameter a decide the shape of
the potentials and wave functions.

For k = 1 in the three-field model, the potential of the KK modes of left chiral fermions
V1, is a modified volcano type potential. While the shape for the right one Vg is decided
by a and 7. For small a and large 7, the potential Vi will have a potential well. When the
depth of the potential well is deep enough, it will be able to trap the fermions in some sense.
We obtained a series of quasibound states or the metastable states with finite lifetimes.
The eigenvalues m? of the resonances were also given.

For k > 1 in the two-field and three-field models, the potential well for left-handed
fermions becomes a double-well, which is consistent with the result obtained in ref. [46].
However, for given a and 7, the number of the resonant states in these two models decreases
with k. This is opposite to the result given in ref. [46] for the single-scalar generated brane
case. The reason is that the absolute value of the kink ¢ in current models is less than 1,
and so, when k increases, the strength of the coupling decreases.

We find that the n-th resonance of left-handed fermions with odd parity and the n-th
resonance of right-handed fermions with even parity have the same mass and lifetime, and
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Figure 17. Mass spectrum of resonances for the coupling F(¢, x, p) = ¢*x. The parameters are
k=1{1,3,5,7,9},a=0.05and n=1.

vice versa. This demonstrates that it is possible to compose a Dirac fermion from the left
and right KK modes [46]. However, in both chiral fermions, the parity is opposite. We
call this phenomenon as the parity-chiral decomposition, and it is the explicit form of the
general KK chiral decomposition of the Dirac fermions.

In our numerical calculations, for those KK modes with m? much larger than the
maximum of the corresponding potential, they would be approximately plane waves and
the probabilities for them would trend to 0.1, where we chose zy.x = 102zp to calculate the
relative probabilities. For the KK modes with mq close to but larger than the maximum
of the potential, the probabilities for finding them around the brane P is quite small. For
the sake of clarity, we give the definition of the number of the resonant states: the number
of these resonant states with eigenvalue m? lower than the highest point of the potential.
We also took into account the impact of the numerical precision. Besides, the probabilities
P for the resonances are affected by z,. So z, cannot be too small. The resonances in
other thick brane models with different kink-fermion couplings could be considered, we

will propose the corresponding work on this subject in a near future.
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