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One of the most exciting objects of the string theory may be the brane, a topologically
stable extended object with its own charge. There are two kinds of branes in string theory.
The first one is D-brane [1, 2], which is known to carry R-R charge. The D-brane is
particularly interesting because it is conjectured that our universe may be a stack of D-
branes with standard model(SM) fields living on it [1, 3]. The next one is NS-brane |2,
4], which is known to carry NS-NS charge. The NS-brane is also interesting because it
sometimes acts as a background brane [5, 6] on which the D-branes (SM-brane) are to be
set, or in some cases it has its own SM-spectrum [7]. In particular, it plays an important
role in the theories like “Little String Theory” [6, 7].

As mentioned above, D-branes carry R-R charges, so they are sources of (or interact
with) R-R fields, and similarly NS-branes carry NS-NS charges, so they are sources of (or
interact with) NS-NS fields. These fields turn into one another by S-duality transformation,
but this does not implies that the D-brane can have NS-NS charge, or NS-brane can have
R-R charge because the branes as well as the fields also change into one another under the
S-duality transformation. However, (p + 3)d string theory admits an exceptional solution.
Namely one can show that (p + 3)d string theory admits a solution describing Dp-brane
which, however, contains NS-NS component. To be precise, it is NS-NS component in

the sense that it couples with dilaton with a factor e=2®

(we will call it simply NS-brane
throughout this paper), but the brane is Dp-brane because it carries an R-R charge.

In this report we will first show that (p + 3)d string theory really admits such an
exceptional solution, and using this solution we will argue that in (p+ 3)d string theory the
existence of the NS-brane with negative tension is essential to obtain background geometry
Ry or Ry/Z, on the transverse dimensions, and the usual codimension-2 brane solutions
with these background geometries already contain the negative tension NS-brane implicity
in their ansatz. Such an argument leads us, in the context of brane world scenarios, to a
conjecture that true background brane immanent in our spacetime may perhaps be NS-
brane, rather than D-brane.

We begin with a (p + 3)d action
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and a brane action

Ibrane = _/dp+1X\/ _det|gul/| Tp((I)) + Mp/Aerl ; (2)

where @ is the (p+ 3)d dilaton, and the R-R field strength F), 2 is given by Fj, o0 = dA, 1.
Also, g, is a pullback of Gap to the (p 4 1)d brane world, thus the first term of (2)
represents the o-model term. 7,(®), on the other hand, represents the tension of the
p-brane which takes (at the tree level) the form

D) _
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if the brane is a Dp-brane, while it takes

Tp(@) = TP e (4)



if the brane is an NS-brane,! where the constants TO(D) and TO(NS) are both of the order
~ 1/d/ @+D/2 " The second term of (2) implies that the p-brane is electrically coupled
with R-R (p + 1)-form, and it carries an electric R-R charge p,. Also the action (1) only
includes the R-R (p+2)-form, it does not include NS-NS n-form. So (1) typically describes
a D-brane in the usual theories.

Let us introduce a (p + 3)d metric of the form

dsp+3 =AM ds? 4 eB(T)d , (5)

where di = daf + - - + dz7, and ds3 is given by

dA2
ds3 = —N?(#)dt* + 720 + RY(#)dB? = japdydy® . (6)
In the above metric eA(™) is an extra degree of freedom which could have been absorbed

into ds3, so it can be taken arbitrarily as we wish. Also the metric (6) includes one more
extra degree of freedom associated with the coordinate transformation # — #/ = F(#). The
ansatz for the (p + 1)-form field is given by

Api1(F) = E(@)dt Adzt A~ NdaP — Fypy.py = € . (7)

Since the fields do not depend on the coordinates along the p-brane, the above actions can
be reduced to the following 3d effective actions:
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and

Trane = /d3y\/ 2T, (@)% (7) +up/d y\/ G E(F)2(F) (9)

where ]:23 is the 3d Ricci-scalar obtained from g,,, and the 2d delta-function 52(7?) has

been normalized by fdQFJQ_g&Q(F) = 1, where 7 = (7,0) and /32 = /—§3/v/—gu. Also in

obtaining the above 3d action we have chosen
A=49 —pB , (10)

so that 3d effective dilaton ¢(= ® — (A/4) — p(B/4)) vanishes, and the kinetic term for g,
becomes the standard Hilbert-Einstein action.

Let us consider the field equations. It is convenient to consider the equation for &(7)
first. It is given by

~ab
— 9 —2® 2, 2.7
v —e T hE| = 26 ppdc (7) 11

'Tn 10d string theories the tension of the S-dual of a Dp-brane is generally given by T),(®) = Toe™™® with
n = (p—1)/2. So the NS-brane represented by (4) is not an S-dual of the Dp-brane under discussion unless
p =5 (see also footnotes 2 and 3). Nevertheless, the existence of such an NS-brane is indispensable for all
p to obtain background geometry Rz or R2/Z, on the transverse dimensions as will be discussed later.



which, upon integration, gives
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and consequently one finds (see (7))
Ly pt
92 Fpio = () Hp (13)

which shows that the p-brane located at f = 0 carries an R-R charge p,. The remaining
field equations are

1 fR

N(fRY + NFRH + s =e 20" = —ﬂ2¥eQ¢Tp(¢)52(ﬁ) , (14)
N'fR — NfRH + %fWRe—Q‘Dg’Q =0, (15)
(N'fYR+ NfRH — %fWRe—Q‘Pg’Q =0, (16)
(NfRO'Y — @%6—2%’2 _ ;r U#%ﬁ [Tp@) + %81(;”7?] S (ry, (17)
(NfRB'Y — %%6*2‘1’5’2 = 2ﬁ2¥e2¢ [Tp@) + %ag”i?] 8%(7) (18)

where H = 20'* — pd'B’ + %B' 2 and the “prime” denotes the derivative with respect
to 7.

Among the above equations, the first three follow from the 3d Einstein equations, while
the last two are linear combinations of the equations for ® and B. These five equations
constitute a complete set of linearly independent equations of motion. However, a linear
combination of (15) and (16) gives

(fRN') =0, (19)
while (17) and (18) imply
4
BECESY ? (20)

So due to (19) and (20) the number of independent equations reduces only to three, and
from (10) and (20) the (p + 3)d metric becomes

dAQ
ds2, s = AP/ (0+) Kf—’; + R2d62> + (=N +di2)| (21)

In (21), the usual black p-brane solution may be obtained by taking N(7) = f(#). For
N = f, (19) is written as

(f2)' =% (by = const.) , (22)



and if we introduce a new coordinate r defined by drf/R = dr/r, (22) is immediately
solved by
f2=bg+bInr, (bo = const.) . (23)

In the present paper we are interested in the extremal type solution which preserves the
(p 4+ 1)d Poincaré invariance. So we take by = 1, by = 0; i.e., f = N = 1. In most cases
such an extremal solution possesses maximal unbroken supersymmetry and corresponds to
a BPS state.

In terms of the variable r, the metric takes the form

2
ds?, 5 = e*®/th) f_z(dﬁ +r2d0%) + (—dt* +di2) | (24)

and omitting (16) and (18) one finds that the set of three linearly independent equations
can be written as

V2In R + Q—sz = —10152(7?), (25)
(‘fl—q’> @ED oy, (27)

where ¢ = k%p, /7, and V2 is the flat space Laplacian V2 = (1/r)(d/dr)(rd/dr) (so 6*(F)
is now normalized by [ rdrdfé*(r) = 1). Also 1 and C; are defined, respectively, by

020
Y= P (28)
and 10T, (d)
Oy = 2r2e*PT, (D) o Cy = 2k%*® [TP(Q)) + 557} . (29)
From (26) and (28) one finds that 1) must satisfy
VZney — % > = 4 (a — 1) 6%(7) , (30)
with .
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and using (30) one can show that the solution to (25) and (26) (also see (20)) takes the form
R =ip(yr?)*R Ry, e® = (yr2)ke eB = (yr?)ks | (Ro = const.), (32)

where ks (M = R, ®, B) are

while ig is defined by
V2Inig = 21p6%(7) , (34)



where

B=——C+—Cs. (35)
T 7T
The solution to (30) is [§]

32 o
W(r) = ag , <a0 = a_2 , To= const.) ) (36)

r2[(r/r0) = (r/ro) =]

in(r) = (ﬁ)ﬁ . (37)

while from (34)

So the metric (24) now becomes
ds} iz = (r/o)? P~V (r?) "2/ PH (dr? 4 v2d6%) + (pr®)Y P (= dt® + d73) . (38)

where without loss of generality we have identified the constant Ry in (32) with the con-
stant 7 in (37). The metric (38) is perfectly well-defined for 3 > 0. Except the logarithmic
singularity arising from the conformal factor (1r2)~%/®+1) (see (40)), it has only a conical
singularity at r = 0 for 5 # 1 (see (43)).

Though the solution (32) (together with (36) and (37)) satisfies (25) and (26), we still
need for consistency to check whether it satisfies (27) either. Substituting (32) and (36)
into (27) gives a condition

=0 — 2 {TP(Q)HEM}

2 0P

=0, (39)

and due to this condition (36) reduces to

I =8 1
vin = TZ[ln(r/ro)]Z , < 0 (p+1) q2> ’ 40)

(one can also check, by directly substituting (40) into (30), that (40) is really the solution
o (30) for o = 0), or if we set 79 = exp[/8/(p + 1) (co/q)] it can be rewritten as

-2

, (co = const.) . (41)

2
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(41) is a typical form of the 2d Green’s function and one finds that in a particular case
(i.e., for B =1 and for the total dimensions p+ 3 = 10) (38) precisely reduces (upon taking
pp = Tp in (41)) to the well known codimension-2 brane solution in [9] (see (3.36) of ref. [9]).

The tension (3) satisfies (39) because a becomes ~ r2e® TéD) for (3), and e® goes
to zero as ¥ — 0 as can be seen from (28) and (40). In fact, C; and Cy vanish for (3)
because they are both proportional to e®, and consequently o and 3 also vanish for (3).
Since C; and C9 vanish, the solution to the equations (25)-(27) becomes nonsingular and
“solitonic”. However, the 2d transverse space(= X5) defined by (r, 8) becomes a cylinder
Ry x S; for = 0 as can be observed from (38). The radius of the cylinder is 7y which,



however, must be taken to be zero because only for this value of 7y the transverse space Yo
admits a codimension-2 brane at » = 0. This is in contrast to the situation of the D7-brane
in F-theory, where the transverse space becomes cylindrical when the number of D7-brane
is 12. But in that case the tip of the cylinder is not sharp-pointed, and therefore the radius
of the cylinder takes a nonzero value there. So if we want to have a nonzero 7y, we need
to blunt the tip of the cylinder just as in the D7-brane solution of the F-theory. Turning
back to the metric (38) the cylinder spreads out to become Ry or Rs/Z, if we introduce a
negative tension NS-brane at » = 0 as we shall see in the followings.

Let us turn to the NS-brane. We observe that the tension (4) of the NS-brane also
satisfies (39). It strictly satisfies (39) for arbitrary TéNS) and e® due to its particular
functional dependence on ®. But the coefficient C; and consequently 5 do not vanish this

TO(NS)‘

time. They are now independent of €®, and only determined by ; namely

Tvs)
B=—5 . (42)

The effect of the nonvanishing § manifests itself in the metric (38). In (38), 5 is related
with a deficit angle of 5. Introducing a new variable p defined by p/py = (r/7)? (and
choosing pg = 7/3) one finds

ds3 5 = (pr?) " (dp? + 52p2d6?) + (vr?) ¥ P (—dt® 4 di?) (43)

so the deficit angle ¢ is given by § = 27(1 — ). If § =1, 39 is simply (locally) Ry. But if
B =1/n, ¥5 becomes an orbifold Ry/Z, with an orbifold singularity at = 0. Also (§ must
be positive in order for ¢ not to exceed 27 (this condition coincides with that imposed on
th((]ev ;I)letI‘iC (38)). So in this case the NS-brane should be a negative-tension brane (i.e.,
Ty

0 exceeds 27, and X5 turns into compact space. We will briefly consider this case later.

< 0) as one can see from (42). If § < 0, however, T( 9 is positive. But in this case

The existence of the NS-brane with negative tension is essential to obtain the back-
ground geometry Ry or Rg/Z, on the space ¥y. Recall that the geometry of Yo was a
cylinder Ry x S; for § = 0. It spreads out to become Ry or Rg/Z, when [ takes a
nonzero positive value, or equivalently when the negative tension NS-brane is introduced
at = 0. In the absence of the Dp-brane (u, = 0), (43) represents the vacuum with a flat
geometry Ry when T(NS) —2m/k? (B = 1), while it represents an orbifold Ry/Z, when

(NS) —27/nk? (B = 1/n). So formally, Ry or Ry/Z, is equivalent to a cylinder Ry x S;
plus a negative tension NS-brane placed at g = 0, and it is conjectured that the usual
(p + 3)d solutions with background geometry Ry or Ry/Z, already contain the negative
tension NS-brane implicity in their ansatz.

The above argument is supported by the fact that the metric (6) (together with (5)) is
the most general ansatz we can think of for the 3d subsector of the (p 4+ 3)d metric. Note
that it admits an extra equation (i.e., the equation for R(7)), which does not exist in the
case of the usual (p + 3)d ansatz with a fixed geometry Ry or Ry/Z, on the transverse
dimensions. This suggests that the solution obtained from the ansatz (6) would be the
one that is closer to the true extremum of the action than the others. Note that fixing an

ansatz generally leads to a limited class of geometries. According to our discussion fixing



the geometry of the ansatz corresponds to fixing the value of § from the beginning. So for
instance the ansatz with a geometry Ry on 35 corresponds to an ansatz with a fixed value
B =1or Cy = —4rn (recall that Cy vanishes for both D-brane and NS-brane), and with

this value of C7 (25) turns into a “solitonic” equation

2

\Va ln]%—i-%l/}:() with R=R/r . (44)
Observe that the delta function term, being absorbed into R, does not appear in (44).
It is not clear what makes TéNS) to take those particular values, i.e., TO(NS) = —27/K?

for Ry and TO(NS) = —271'/11,%2 for Ry/Z,,. One of the answer to this question may be found
from the supersymmetry preserved by the spacetime. Obviously, the vacuum with a flat
geometry P,i1 X Ra, where P, represents n-dimensional Poincaré space, preserves full su-
persymmetry of the theory whose supercharges are given by the spinorial representation of
SO(p,1) x SO(2), and it is also known that orbifolds generally preserve (a part of) super-
symmetry under certain conditions [4]. Since these spaces are stable by the supersymmetry,
it may be conjectured that TO(NS) prefers those particular values above all others.

It is known that negative energy objects generally lead to instabilities or unusual grav-
itational effects [10]. However, some negative tension objects such as orientifolds [11] of
the string theory are very well-defined [12] and even find good applications [13]. Indeed,
negative tension brane fixed at orbifold fixed point is generally known to be free from such
instability problems, which is a similar configuration as our case where a negative tension
NS-brane is fixed at the orbifold fixed point g = 0. So the action does not include the
pathological negative-definite kinetic energy term which causes an instability of the neg-
ative tension objects [14]. The literatures supporting the stability of the negative tension
branes can be found in [15], and in particular the stability of the codimension-2 negative
tension brane has been discussed in [16].

Apart from this, our negative tension brane has a special feature. As mentioned previ-
ously the role of the negative tension NS-brane is just to spread out Ry xS to convert it into
Ry or Ry/Z,,. Once X9 becomes Ry or Ry/Z,, the negative tension NS-brane essentially dis-
appears in compensation for it. It is absorbed into the background space and does not show
up anymore (see (44)). So X9 simply appears as Ry whose ADM mass is just zero, or the
orbifold Rs/Z,, whose ADM mass is positive, implying that there is no negative energy ob-
ject in the space. The negative energy object only appears for § > 1. For # > 1, the deficit
angle and the ADM mass of Y5 are both negative. Since no negative energy object appears
in the space (namely since they have been absorbed into Ry or Ry/Z,,), the stability prob-
lem of the negative tension NS-brane reduces to the stability problem of the background
space Ry or Rg/Z, which, however, known to be both supersymmetric and stable.

Though the negative tension NS-brane does not manifest itself in the space Ry or
Rs/Z,, its effect on the geometry of these spaces is crucial. In order to see this easily it
is convenient to assume that the D-brane and NS-brane are seperately well-defined. Now
consider a configuration that a D-brane is introduced at the orbifold singularity of Ry/Z,,
or at the orgin of Ry. This amounts to increasing C by 6C, and consequently 3 by 4.
However, since NS-brane is much heavier than D-brane the increment dC; (or 63) will be



very small as compared with Cy, and the ratio §C1 /C; (or 63/43) is in fact of an order ~ e®

which goes to zero as e® — 0. If we consider, on the other hand, the change 6C;(63) due
to quantum fluctuations of SM fields with support on the D-brane, the ratio 6C/C; gets
even smaller; it is of an order ~ €2® [5], which implies that the geometry of ¥ is virtually
unaffected by the quantum fluctuations of SM fields living on the D-brane. In the brane
world models the intrinsic curvature of the brane is a priori zero. So the whole quantum
fluctuations of SM fields entirely contribute to changing the bulk geometry, and hence
the bulk geometry is generally disturbed severely by the quantum fluctuations. In our
case, however, the disturbance due to quantum fluctuations is highly suppressed as men-
tioned above. The bulk geometry, as well as the flat geometry of the brane, is practically
insensitive to the quantum fluctuations and such a feature is essential to addressing the
cosmological constant problem. Namely it provides a new type of self-tuning mechanism
with which to solve the cosmological constant problem [5].

The solution obtained in this paper has an unusual property. It contains both NS-brane
and D-brane components ; it couples to the gravity with a factor e =%, while it carries an R-
R charge. The NS-brane component is essentially used to obtain the background geometries
like Ry or Ry/Z,,. So once these background geometries are obtained from Ry x Sp, the NS-
brane hides itself behind the background space and we are only left with a D-brane with an
R-R charge. This may not be distinguished from the usual configurations where a D-brane
is placed on the background space Ry or Rs/Z,, from the beginning. To find the relation of
our solution to the existing solutions let us dualize F},; 2 to the magnetic 1-form F (= *Fj,12)
in (1). It was shown in [17] that the action (1) plus (2) is classically equivalent to the action

1 1
Ipt3= 55 /dp+3X«/——G [e—” [R+4(V®)?] — §FE] (45)

plus

Ibrane - - /dp+1X\/ _det’guu‘ Tp((b) . (46)

Thus field equations are basically the same as before except that (11) is replaced by the

equation for Fy:
89 <\/ —93 62¢g69F9> =0. (47)

The solution satisfying both (47) and the Bianchi identity J,Fy = 0 is Fyp = constant =
k2 up/m. So Fy satisfies
1

5 [, 1= P (48)
1

where S; is a circle around the origin where the p-brane is located. Observe that (48) is
consistent with (13), but fp, is now a magnetic charge because the brane is a magnetic
source under Fi. Since F} = da, a representing the axion field, we get

a= (= ELG = (=) g8 (49)



where we have set 2x? = 1. Since field equations are essentially the same as before, so also
is the solution. In the Einstein frame it is given (see (38) and (41)) by

L
d8§+3 = —dt2 + df]% + <7:_0> h(r)8/(p+1) |:d7,,2 + 7’2d92:| ’ (50)
e® = h(r)t, (51)
where
_ (p+1) Hp
h(r) = [CQ - 8 or Inr| . (52)

Let us now return to the case of p = 7 since in that case we have a full 10d string
theory? and our solution may be relatively well understood in relation to the D7-brane
or (p,q) sevenbrane of the type IIB theory. For the 7-branes it is customary to use the
complex coordinate defined by z = re?. In the Einstein frame (45) can be rewritten as

o = / dXv=G [R— 3787} , (53)

27'22
where 7 = a+ie~® = 7, +im. The equation for 7 following from this action takes the form
~ ot0
90r +29C — ¢, (54)
T—T

which is trivially solved by any holomorphic or antiholomorphic function of z. Also for
such 7, and for an ansatz

ds® = —dt* + di% + H(z,2)dzdz (55)
the Einstein equations take the form
00InH = 00InTy . (56)

Though (54) is trivially solved by any holomorphic or antiholomorphic function of z, 7
is not allowed to be any arbitrary complex number. Since (53) has an SL(2,Z) invariance
(at the quantum level), and the SL(2,Z) modular transformation of 7 reproduces the same
torus, 7 is restricted to lie in the fundamental domain. A well-known modular invariant
solution to (56) is the D7-brane solution of the F-theory given by

2
, (57)

_N
2z 12

H(Za 2) = 7—2772772

where 7 is Dedekind’s function and NV is the number of D7-branes located at z = 0. Also
a suitable choice for 7(z) would be

T(2) ~ — Inz (58)

?In the case of p < 7, the (p + 3)d action of this paper may be identified with the reduced action in [18]
(with the additional scalar truncated), which admits family of deformed Dp-brane solutions.

,10,



near z = 0. Observe that (58) is consistent with (49) and (51) if we set p, = N. With
1
this choice for 7, encircling the point z = 0 induces the monodromy 01 € SL(2,7) for

N =1, which ensures that the brane at z = 0 is a (1,0) sevenbrane, i.e., D7-brane. This
D7-brane solution is distinguished from (50) by the following facts. First, the scale factor
H(z,z) is so adjusted that it never vanishes at z = 0, and therefore it is regular at z = 0
while (50) has a conical singularity there. The conical singularity at z = 0 seems to be
unavoidable if one insists that the metric should be rotationally symmetric. It was argued
in [19] that in general the magnetic 7-brane solution preserving Pg x SO(2) symmetry must
be of the form (50). Note that (57) is not rotationally symmetric.

Though these two solutions do not coincide near z = 0, they asymptotically compatible
with one another if we take § properly. At infinity (57) becomes H(z,2) ~ 7 (22)"N/12,
which accords with (50) if we take 6 = §N. Also since (49) produces the same monodromy
as (h8) for u, = 1, our solution described by (50) essentially corresponds to a D7-brane
solution. For these reasons we may say that (50) is a rotationally symmetric version of (57),
or conversely (57) is a regularized version of (50). This suggests that they are basically
of the same kind both describing D7-branes, which then leads us to a conjecture that the
background space of the D7-brane described by (55), and consequently the background
space of the (p, q) sevenbranes either, the SL(2,Z) family of the D7-brane, all contain the
negative tension NS-brane implicity in their ansatz just as in the case of the rotationally
symmetric solution (50). This conjecture can be immediately extended to the brane world
scenarios in the context of F-theory. Namely in F-theory, the D7-brane or the (p, q) seven-
brane wrapped on a 4-cycle corresponds to the 3d space where we live, and therefore the
conjecture is that true background p-brane immanent in our spacetime may perhaps be
NS-NS type brane, rather than D-brane.

Apart from this, it is interesting to observe that an individual D7-brane of the F-
theory also contains an NS-NS component in itself.> Recall that the D-brane tension
(3) can not generate a deficit angle of 3. But we see that (57) exhibits a deficit angle
d = w/6 at infinity, which suggests that the D7-brane described by (57) may carry an
NS-brane component with a tension given by (4). But in this case TO(NS) associated with
an individual D7-brane is positive on the contrary to the case of the background space.
Such a feature of the D7-brane is entirely due to the factor [z~N/'2|? in (57), which has
been introduced to avoid the singularity at z = 0 [21], but gives a deficit angle at infinity
instead. Since the deficit angle due to N D7-branes is given by § = N (or f =1~ %), if

3This NS-NS component is different from the one that results from the SL(2,Z) transformation of the

11
D7-brane. Recall that the monodromy generated by the 7-brane under discussion is anyhow (0 1>7 not

—¢* 1+pq

brane [20]) has a tension of the form T ~ TO(NS) e~3® instead of (4). See the next lines.

1— 2
< ba b > of the (p,q) sevenbrane. Also S-dual of the D7-brane (for instance the exotic NST7-

— 11 —



(NS)
0

we apply (42) to these D7-branes the corresponding 7| becomes

(NS) 4 N
o =50 (1 12> ' (59)
(NS)

So if N < 12, T is negative, and this corresponds to the case where the deficit angle
)

vanishes, and in this case the deficit angle is precisely 2w, so s is a cylinder Ry x Sj.

is less than 27 and the 2d transverse space s is non-compact. Also if N = 12, TO(NS

Finally if N > 12, TéNS) becomes positive, and this corresponds to the case where §
exceeds 27. In this case the transverse space Y is “eaten up” by the D7-branes and it
becomes compact. In particular, if N = 24, which corresponds to § = 4w, X5 becomes Sy.*

In (59), N = 0 gives TO(NS) = —47/2r%, which corresponds to 3 = 1, and therefore the
background space Ry without any D7-brane. In general case, in the absence of the p-branes
£ must be of an order 5 ~ 1 in order for ¥y to have a (local) background geometry Rp
or Ry/Z,. Since k? ~ 1/M£_t§ and \TO(NS)\ ~ MP*! (where M, 3 is the (p + 3)d Planck
scale), 8 ~ 1 implies Mg/My,3 ~ 1. This accords with the hierarchy assumption that
there exists only one fundamental short distance scale (i.e., the electroweak scale mgy) in
nature, which again supports the conjecture that the a natural background p-brane of our

universe would be NS-NS type brane, rather than D-brane.
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