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One of the most exciting objects of the string theory may be the brane, a topologically

stable extended object with its own charge. There are two kinds of branes in string theory.

The first one is D-brane [1, 2], which is known to carry R-R charge. The D-brane is

particularly interesting because it is conjectured that our universe may be a stack of D-

branes with standard model(SM) fields living on it [1, 3]. The next one is NS-brane [2,

4], which is known to carry NS-NS charge. The NS-brane is also interesting because it

sometimes acts as a background brane [5, 6] on which the D-branes (SM-brane) are to be

set, or in some cases it has its own SM-spectrum [7]. In particular, it plays an important

role in the theories like “Little String Theory” [6, 7].

As mentioned above, D-branes carry R-R charges, so they are sources of (or interact

with) R-R fields, and similarly NS-branes carry NS-NS charges, so they are sources of (or

interact with) NS-NS fields. These fields turn into one another by S-duality transformation,

but this does not implies that the D-brane can have NS-NS charge, or NS-brane can have

R-R charge because the branes as well as the fields also change into one another under the

S-duality transformation. However, (p+ 3)d string theory admits an exceptional solution.

Namely one can show that (p + 3)d string theory admits a solution describing Dp-brane

which, however, contains NS-NS component. To be precise, it is NS-NS component in

the sense that it couples with dilaton with a factor e−2Φ (we will call it simply NS-brane

throughout this paper), but the brane is Dp-brane because it carries an R-R charge.

In this report we will first show that (p + 3)d string theory really admits such an

exceptional solution, and using this solution we will argue that in (p+3)d string theory the

existence of the NS-brane with negative tension is essential to obtain background geometry

R2 or R2/Zn on the transverse dimensions, and the usual codimension-2 brane solutions

with these background geometries already contain the negative tension NS-brane implicity

in their ansatz. Such an argument leads us, in the context of brane world scenarios, to a

conjecture that true background brane immanent in our spacetime may perhaps be NS-

brane, rather than D-brane.

We begin with a (p+ 3)d action

Ip+3 =
1

2κ2

∫

dp+3X
√
−G

[

e−2Φ
[

R+ 4(∇Φ)2
]

− 1

2 · (p+ 2)!
F 2

p+2

]

, (1)

and a brane action

Ibrane = −
∫

dp+1X
√

−det|gµν |Tp(Φ) + µp

∫

Ap+1 , (2)

where Φ is the (p+3)d dilaton, and the R-R field strength Fp+2 is given by Fp+2 = dAp+1.

Also, gµν is a pullback of GAB to the (p + 1)d brane world, thus the first term of (2)

represents the σ-model term. Tp(Φ), on the other hand, represents the tension of the

p-brane which takes (at the tree level) the form

Tp(Φ) = T
(D)
0 e−Φ (3)

if the brane is a Dp-brane, while it takes

Tp(Φ) = T
(NS)
0 e−2Φ (4)
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if the brane is an NS-brane,1 where the constants T
(D)
0 and T

(NS)
0 are both of the order

∼ 1/α′(p+1)/2. The second term of (2) implies that the p-brane is electrically coupled

with R-R (p + 1)-form, and it carries an electric R-R charge µp. Also the action (1) only

includes the R-R (p+2)-form, it does not include NS-NS n-form. So (1) typically describes

a D-brane in the usual theories.

Let us introduce a (p + 3)d metric of the form

ds2p+3 = eA(r̂)ds23 + eB(r̂)d~x2
p , (5)

where d~x2
p ≡ dx2

1 + · · · + dx2
p, and ds23 is given by

ds23 = −N2(r̂)dt2 +
dr̂2

f2(r̂)
+R2(r̂)dθ2 ≡ ĝabdy

adyb . (6)

In the above metric eA(r̂) is an extra degree of freedom which could have been absorbed

into ds23, so it can be taken arbitrarily as we wish. Also the metric (6) includes one more

extra degree of freedom associated with the coordinate transformation r̂ → r̂′ = F (r̂). The

ansatz for the (p+ 1)-form field is given by

Ap+1(r̂) = ξ(r̂)dt ∧ dx1 ∧ · · · ∧ dxp → Ftr̂1···p = ∂r̂ξ . (7)

Since the fields do not depend on the coordinates along the p-brane, the above actions can

be reduced to the following 3d effective actions:

I3 =
1

2κ2

∫

d3y
√

−ĝ3
[

R̂3− 4(∂Φ)2+2p(∂Φ)(∂B)− p(p+1)

4
(∂B)2 − 1

2
e−2Φĝtt(∂ξ)2

]

, (8)

and

Ibrane = −
∫

d3y
√

−ĝ3 e2ΦTp(Φ)δ2(~̂r) + µp

∫

d3y
√

ĝ2 ξ(r̂)δ
2(~̂r) , (9)

where R̂3 is the 3d Ricci-scalar obtained from ĝab, and the 2d delta-function δ2(~̂r) has

been normalized by
∫

d2~̂r
√
ĝ2 δ

2(~̂r) = 1, where ~̂r ≡ (r̂, θ) and
√
ĝ2 =

√−ĝ3/
√−ĝtt. Also in

obtaining the above 3d action we have chosen

A = 4Φ − pB , (10)

so that 3d effective dilaton φ(= Φ− (A/4)− p(B/4)) vanishes, and the kinetic term for ĝab

becomes the standard Hilbert-Einstein action.

Let us consider the field equations. It is convenient to consider the equation for ξ(r̂)

first. It is given by

1√
ĝ2
∂a

[

√

ĝ2
ĝab

√
−ĝtt

e−2Φ∂bξ

]

= 2κ2µpδ
2(~̂r) , (11)

1In 10d string theories the tension of the S-dual of a Dp-brane is generally given by Tp(Φ) = T0e
−nΦ with

n = (p − 1)/2. So the NS-brane represented by (4) is not an S-dual of the Dp-brane under discussion unless

p = 5 (see also footnotes 2 and 3). Nevertheless, the existence of such an NS-brane is indispensable for all

p to obtain background geometry R2 or R2/Zn on the transverse dimensions as will be discussed later.
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which, upon integration, gives

∂r̂ξ =
κ2

π
µp e

2Φ

√

−ĝttĝr̂r̂

ĝθθ
, (12)

and consequently one finds (see (7))

1

2κ2

∫

∗Fp+2 = (−)p+1µp , (13)

which shows that the p-brane located at ~̂r = 0 carries an R-R charge µp. The remaining

field equations are

N(fR′)′ +NfRH +
1

4

fR

N
e−2Φξ′

2
= −κ2NR

f
e2ΦTp(Φ)δ2(~̂r) , (14)

N ′fR′ −NfRH +
1

4

fR

N
e−2Φξ′

2
= 0, (15)

(N ′f)′R+NfRH− 1

4

fR

N
e−2Φξ′

2
= 0 , (16)

(NfRΦ′)′ − (p + 1)

8

fR

N
e−2Φξ′

2
=

(p+ 1)

2
κ2NR

f
e2Φ

[

Tp(Φ) +
1

2

∂Tp(Φ)

∂Φ

]

δ2(~̂r) , (17)

(NfRB′)′ − 1

2

fR

N
e−2Φξ′

2
= 2κ2NR

f
e2Φ

[

Tp(Φ) +
1

2

∂Tp(Φ)

∂Φ

]

δ2(~̂r) , (18)

where H ≡ 2Φ′2 − pΦ′B′ + p(p+1)
8 B′2, and the “prime” denotes the derivative with respect

to r̂.

Among the above equations, the first three follow from the 3d Einstein equations, while

the last two are linear combinations of the equations for Φ and B. These five equations

constitute a complete set of linearly independent equations of motion. However, a linear

combination of (15) and (16) gives

(fRN ′)′ = 0 , (19)

while (17) and (18) imply

B =
4

(p+ 1)
Φ . (20)

So due to (19) and (20) the number of independent equations reduces only to three, and

from (10) and (20) the (p+ 3)d metric becomes

ds2p+3 = e4Φ/(p+1)

[(

dr̂2

f2
+R2dθ2

)

+
(

−N2dt2 + d~x2
p

)

]

. (21)

In (21), the usual black p-brane solution may be obtained by taking N(r̂) = f(r̂). For

N = f , (19) is written as

(f2)′ =
b1
R
, (b1 = const.) , (22)
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and if we introduce a new coordinate r defined by dr̂/R = dr/r, (22) is immediately

solved by

f2 = b0 + b1 ln r , (b0 = const.) . (23)

In the present paper we are interested in the extremal type solution which preserves the

(p + 1)d Poincaré invariance. So we take b0 = 1, b1 = 0; i.e., f = N = 1. In most cases

such an extremal solution possesses maximal unbroken supersymmetry and corresponds to

a BPS state.

In terms of the variable r, the metric takes the form

ds2p+3 = e4Φ/(p+1)

[

R2

r2
(

dr2 + r2dθ2
)

+
(

− dt2 + d~x2
p

)

]

, (24)

and omitting (16) and (18) one finds that the set of three linearly independent equations

can be written as

∇2 lnR+
q2

2
ψ = −1

2
C1δ

2(~r) , (25)

∇2Φ − (p+ 1)

8
q2ψ =

(p+ 1)

4
C2δ

2(~r) , (26)

(

dΦ

dr

)2

=
(p+ 1)

8
q2ψ , (27)

where q ≡ κ2µp/π, and ∇2 is the flat space Laplacian ∇2 ≡ (1/r)(d/dr)(rd/dr) (so δ2(~r)

is now normalized by
∫

rdrdθδ2(~r) = 1). Also ψ and Ci are defined, respectively, by

ψ =
e2Φ

r2
, (28)

and

C1 = 2κ2e2ΦTp(Φ)
∣

∣

∣

~r=0
, C2 = 2κ2e2Φ

∣

∣

∣

∣

[

Tp(Φ) +
1

2

∂Tp(Φ)

∂Φ

]
∣

∣

∣

∣

~r=0

. (29)

From (26) and (28) one finds that ψ must satisfy

∇2 lnψ − (p+ 1)

4
q2ψ = 4π(α − 1) δ2(~r) , (30)

with

α =
(p+ 1)

8π
C2 , (31)

and using (30) one can show that the solution to (25) and (26) (also see (20)) takes the form

R = iR(ψr2)kRR0 , eΦ = (ψr2)kΦ , eB = (ψr2)kB , (R0 = const.) , (32)

where kM (M ≡ R,Φ, B) are

kR = − 2

(p+ 1)
, kΦ =

1

2
, kB =

2

(p+ 1)
, (33)

while iR is defined by

∇2 ln iR = 2πβ δ2(~r) , (34)
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where

β = − 1

4π
C1 +

1

2π
C2 . (35)

The solution to (30) is [8]

ψ(r) =
a0

r2
[

(r/r0)α − (r/r0)−α
]2 ,

(

a0 ≡ 32

(p + 1)

α2

q2
, r0 = const.

)

, (36)

while from (34)

iR(r) =

(

r

r̃0

)β

. (37)

So the metric (24) now becomes

ds2p+3 = (r/r̃0)
2(β−1)(ψr2)−2/(p+1)

(

dr2 + r2dθ2
)

+ (ψr2)2/(p+1)
(

− dt2 + d~x2
p

)

, (38)

where without loss of generality we have identified the constant R0 in (32) with the con-

stant r̃0 in (37). The metric (38) is perfectly well-defined for β ≥ 0. Except the logarithmic

singularity arising from the conformal factor (ψr2)−2/(p+1) (see (40)), it has only a conical

singularity at r = 0 for β 6= 1 (see (43)).

Though the solution (32) (together with (36) and (37)) satisfies (25) and (26), we still

need for consistency to check whether it satisfies (27) either. Substituting (32) and (36)

into (27) gives a condition

α = 0 → e2Φ
[

Tp(Φ) +
1

2

∂Tp(Φ)

∂Φ

]
∣

∣

∣

∣

~r=0

= 0 , (39)

and due to this condition (36) reduces to

ψ(r) =
â0

r2
[

ln(r/r0)
]2 ,

(

â0 ≡ 8

(p + 1)

1

q2

)

, (40)

(one can also check, by directly substituting (40) into (30), that (40) is really the solution

to (30) for α = 0), or if we set r0 = exp[
√

8/(p + 1) (c0/q)] it can be rewritten as

ψr2 =

[

c0 −
√

(p+ 1)

8

κ2µp

π
ln r

]−2

, (c0 = const.) . (41)

(41) is a typical form of the 2d Green’s function and one finds that in a particular case

(i.e., for β = 1 and for the total dimensions p+3 = 10) (38) precisely reduces (upon taking

µp = T0 in (41)) to the well known codimension-2 brane solution in [9] (see (3.36) of ref. [9]).

The tension (3) satisfies (39) because α becomes ∼ κ2eΦ T
(D)
0 for (3), and eΦ goes

to zero as ~r → 0 as can be seen from (28) and (40). In fact, C1 and C2 vanish for (3)

because they are both proportional to eΦ, and consequently α and β also vanish for (3).

Since C1 and C2 vanish, the solution to the equations (25)-(27) becomes nonsingular and

“solitonic”. However, the 2d transverse space(≡ Σ2) defined by (r, θ) becomes a cylinder

R1 × S1 for β = 0 as can be observed from (38). The radius of the cylinder is r̃0 which,

– 6 –
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however, must be taken to be zero because only for this value of r̃0 the transverse space Σ2

admits a codimension-2 brane at r = 0. This is in contrast to the situation of the D7-brane

in F-theory, where the transverse space becomes cylindrical when the number of D7-brane

is 12. But in that case the tip of the cylinder is not sharp-pointed, and therefore the radius

of the cylinder takes a nonzero value there. So if we want to have a nonzero r̃0, we need

to blunt the tip of the cylinder just as in the D7-brane solution of the F-theory. Turning

back to the metric (38) the cylinder spreads out to become R2 or R2/Zn if we introduce a

negative tension NS-brane at r = 0 as we shall see in the followings.

Let us turn to the NS-brane. We observe that the tension (4) of the NS-brane also

satisfies (39). It strictly satisfies (39) for arbitrary T
(NS)
0 and eΦ due to its particular

functional dependence on Φ. But the coefficient C1 and consequently β do not vanish this

time. They are now independent of eΦ, and only determined by T
(NS)
0 ; namely

β = −κ
2

2π
T

(NS)
0 . (42)

The effect of the nonvanishing β manifests itself in the metric (38). In (38), β is related

with a deficit angle of Σ2. Introducing a new variable ρ defined by ρ/ρ0 ≡ (r/r̃0)
β (and

choosing ρ0 = r̃0/β) one finds

ds3p+3 = (ψr2)−2/(p+1)(dρ2 + β2ρ2dθ2) + (ψr2)2/(p+1)(−dt2 + d~x2
p) , (43)

so the deficit angle δ is given by δ = 2π(1 − β). If β = 1, Σ2 is simply (locally) R2. But if

β = 1/n, Σ2 becomes an orbifold R2/Zn with an orbifold singularity at ~ρ = 0. Also β must

be positive in order for δ not to exceed 2π (this condition coincides with that imposed on

the metric (38)). So in this case the NS-brane should be a negative-tension brane (i.e.,

T
(NS)
0 < 0) as one can see from (42). If β < 0, however, T

(NS)
0 is positive. But in this case

δ exceeds 2π, and Σ2 turns into compact space. We will briefly consider this case later.

The existence of the NS-brane with negative tension is essential to obtain the back-

ground geometry R2 or R2/Zn on the space Σ2. Recall that the geometry of Σ2 was a

cylinder R1 × S1 for β = 0. It spreads out to become R2 or R2/Zn when β takes a

nonzero positive value, or equivalently when the negative tension NS-brane is introduced

at ~ρ = 0. In the absence of the Dp-brane (µp = 0), (43) represents the vacuum with a flat

geometry R2 when T
(NS)
0 = −2π/κ2 (β = 1), while it represents an orbifold R2/Zn when

T
(NS)
0 = −2π/nκ2 (β = 1/n). So formally, R2 or R2/Zn is equivalent to a cylinder R1 ×S1

plus a negative tension NS-brane placed at ~ρ = 0, and it is conjectured that the usual

(p + 3)d solutions with background geometry R2 or R2/Zn already contain the negative

tension NS-brane implicity in their ansatz.

The above argument is supported by the fact that the metric (6) (together with (5)) is

the most general ansatz we can think of for the 3d subsector of the (p + 3)d metric. Note

that it admits an extra equation (i.e., the equation for R(r̂)), which does not exist in the

case of the usual (p + 3)d ansatz with a fixed geometry R2 or R2/Zn on the transverse

dimensions. This suggests that the solution obtained from the ansatz (6) would be the

one that is closer to the true extremum of the action than the others. Note that fixing an

ansatz generally leads to a limited class of geometries. According to our discussion fixing

– 7 –
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the geometry of the ansatz corresponds to fixing the value of β from the beginning. So for

instance the ansatz with a geometry R2 on Σ2 corresponds to an ansatz with a fixed value

β = 1 or C1 = −4π (recall that C2 vanishes for both D-brane and NS-brane), and with

this value of C1 (25) turns into a “solitonic” equation

▽2 ln R̂+
q2

2
ψ = 0 with R̂ ≡ R/r . (44)

Observe that the delta function term, being absorbed into R̂, does not appear in (44).

It is not clear what makes T
(NS)
0 to take those particular values, i.e., T

(NS)
0 = −2π/κ2

for R2 and T
(NS)
0 = −2π/nκ2 for R2/Zn. One of the answer to this question may be found

from the supersymmetry preserved by the spacetime. Obviously, the vacuum with a flat

geometry Pp+1 ×R2, where Pn represents n-dimensional Poincaré space, preserves full su-

persymmetry of the theory whose supercharges are given by the spinorial representation of

SO(p, 1) × SO(2), and it is also known that orbifolds generally preserve (a part of) super-

symmetry under certain conditions [4]. Since these spaces are stable by the supersymmetry,

it may be conjectured that T
(NS)
0 prefers those particular values above all others.

It is known that negative energy objects generally lead to instabilities or unusual grav-

itational effects [10]. However, some negative tension objects such as orientifolds [11] of

the string theory are very well-defined [12] and even find good applications [13]. Indeed,

negative tension brane fixed at orbifold fixed point is generally known to be free from such

instability problems, which is a similar configuration as our case where a negative tension

NS-brane is fixed at the orbifold fixed point ~ρ = 0. So the action does not include the

pathological negative-definite kinetic energy term which causes an instability of the neg-

ative tension objects [14]. The literatures supporting the stability of the negative tension

branes can be found in [15], and in particular the stability of the codimension-2 negative

tension brane has been discussed in [16].

Apart from this, our negative tension brane has a special feature. As mentioned previ-

ously the role of the negative tension NS-brane is just to spread out R1×S1 to convert it into

R2 or R2/Zn. Once Σ2 becomes R2 or R2/Zn, the negative tension NS-brane essentially dis-

appears in compensation for it. It is absorbed into the background space and does not show

up anymore (see (44)). So Σ2 simply appears as R2 whose ADM mass is just zero, or the

orbifold R2/Zn whose ADM mass is positive, implying that there is no negative energy ob-

ject in the space. The negative energy object only appears for β > 1. For β > 1, the deficit

angle and the ADM mass of Σ2 are both negative. Since no negative energy object appears

in the space (namely since they have been absorbed into R2 or R2/Zn), the stability prob-

lem of the negative tension NS-brane reduces to the stability problem of the background

space R2 or R2/Zn which, however, known to be both supersymmetric and stable.

Though the negative tension NS-brane does not manifest itself in the space R2 or

R2/Zn, its effect on the geometry of these spaces is crucial. In order to see this easily it

is convenient to assume that the D-brane and NS-brane are seperately well-defined. Now

consider a configuration that a D-brane is introduced at the orbifold singularity of R2/Zn,

or at the orgin of R2. This amounts to increasing C1 by δC1, and consequently β by δβ.

However, since NS-brane is much heavier than D-brane the increment δC1 (or δβ) will be

– 8 –
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very small as compared with C1, and the ratio δC1/C1 (or δβ/β) is in fact of an order ∼ eΦ

which goes to zero as eΦ → 0. If we consider, on the other hand, the change δC1(δβ) due

to quantum fluctuations of SM fields with support on the D-brane, the ratio δC1/C1 gets

even smaller; it is of an order ∼ e2Φ [5], which implies that the geometry of Σ2 is virtually

unaffected by the quantum fluctuations of SM fields living on the D-brane. In the brane

world models the intrinsic curvature of the brane is a priori zero. So the whole quantum

fluctuations of SM fields entirely contribute to changing the bulk geometry, and hence

the bulk geometry is generally disturbed severely by the quantum fluctuations. In our

case, however, the disturbance due to quantum fluctuations is highly suppressed as men-

tioned above. The bulk geometry, as well as the flat geometry of the brane, is practically

insensitive to the quantum fluctuations and such a feature is essential to addressing the

cosmological constant problem. Namely it provides a new type of self-tuning mechanism

with which to solve the cosmological constant problem [5].

The solution obtained in this paper has an unusual property. It contains both NS-brane

and D-brane components ; it couples to the gravity with a factor e−2Φ, while it carries an R-

R charge. The NS-brane component is essentially used to obtain the background geometries

like R2 or R2/Zn. So once these background geometries are obtained from R1×S1, the NS-

brane hides itself behind the background space and we are only left with a D-brane with an

R-R charge. This may not be distinguished from the usual configurations where a D-brane

is placed on the background space R2 or R2/Zn from the beginning. To find the relation of

our solution to the existing solutions let us dualize Fp+2 to the magnetic 1-form F1(≡ ∗Fp+2)

in (1). It was shown in [17] that the action (1) plus (2) is classically equivalent to the action

Ip+3 =
1

2κ2

∫

dp+3X
√
−G

[

e−2Φ
[

R+ 4(∇Φ)2
]

− 1

2
F 2

1

]

(45)

plus

Ibrane = −
∫

dp+1X
√

−det|gµν |Tp(Φ) . (46)

Thus field equations are basically the same as before except that (11) is replaced by the

equation for F1:

∂θ

(

√

−ĝ3 e2ΦĝθθFθ

)

= 0 . (47)

The solution satisfying both (47) and the Bianchi identity ∂[aFb] = 0 is Fθ = constant ≡
κ2µp/π. So F1 satisfies

1

2κ2

∫

S1

F1 = (−)p+1µp , (48)

where S1 is a circle around the origin where the p-brane is located. Observe that (48) is

consistent with (13), but µp is now a magnetic charge because the brane is a magnetic

source under F1. Since F1 = da, a representing the axion field, we get

a = (−)p+1 µp

2π
θ = (−)p+1 q θ , (49)
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where we have set 2κ2 = 1. Since field equations are essentially the same as before, so also

is the solution. In the Einstein frame it is given (see (38) and (41)) by

ds2p+3 = −dt2 + d~x2
p +

(

r

r̃0

)−δ/π

h(r)8/(p+1) [dr2 + r2dθ2
]

, (50)

eΦ = h(r)−1 , (51)

where

h(r) =

[

c0 −
√

(p+ 1)

8

µp

2π
ln r

]

. (52)

Let us now return to the case of p = 7 since in that case we have a full 10d string

theory2 and our solution may be relatively well understood in relation to the D7-brane

or (p, q) sevenbrane of the type IIB theory. For the 7-branes it is customary to use the

complex coordinate defined by z = reiθ. In the Einstein frame (45) can be rewritten as

I10 =

∫

d10X
√
−G

[

R− ∂τ ∂̄τ̄

2τ2
2

]

, (53)

where τ = a+ ie−Φ ≡ τ1 + iτ2. The equation for τ following from this action takes the form

∂∂̄τ + 2
∂τ ∂̄τ

τ̄ − τ
= 0 , (54)

which is trivially solved by any holomorphic or antiholomorphic function of z. Also for

such τ , and for an ansatz

ds2 = −dt2 + d~x2
7 +H(z, z̄)dzdz̄ , (55)

the Einstein equations take the form

∂∂̄ lnH = ∂∂̄ ln τ2 . (56)

Though (54) is trivially solved by any holomorphic or antiholomorphic function of z, τ

is not allowed to be any arbitrary complex number. Since (53) has an SL(2,Z) invariance

(at the quantum level), and the SL(2,Z) modular transformation of τ reproduces the same

torus, τ is restricted to lie in the fundamental domain. A well-known modular invariant

solution to (56) is the D7-brane solution of the F-theory given by

H(z, z̄) = τ2η
2η̄2
∣

∣

∣
z−

N
12

∣

∣

∣

2
, (57)

where η is Dedekind’s function and N is the number of D7-branes located at z = 0. Also

a suitable choice for τ(z) would be

τ(z) ∼ N

2πi
ln z (58)

2In the case of p < 7, the (p + 3)d action of this paper may be identified with the reduced action in [18]

(with the additional scalar truncated), which admits family of deformed Dp-brane solutions.
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near z = 0. Observe that (58) is consistent with (49) and (51) if we set µp = N . With

this choice for τ , encircling the point z = 0 induces the monodromy

(

1 1

0 1

)

∈ SL(2,Z) for

N = 1, which ensures that the brane at z = 0 is a (1, 0) sevenbrane, i.e., D7-brane. This

D7-brane solution is distinguished from (50) by the following facts. First, the scale factor

H(z, z̄) is so adjusted that it never vanishes at z = 0, and therefore it is regular at z = 0

while (50) has a conical singularity there. The conical singularity at z = 0 seems to be

unavoidable if one insists that the metric should be rotationally symmetric. It was argued

in [19] that in general the magnetic 7-brane solution preserving P8×SO(2) symmetry must

be of the form (50). Note that (57) is not rotationally symmetric.

Though these two solutions do not coincide near z = 0, they asymptotically compatible

with one another if we take δ properly. At infinity (57) becomes H(z, z̄) ∼ τ2 (zz̄)−N/12,

which accords with (50) if we take δ = π
6N . Also since (49) produces the same monodromy

as (58) for µp = 1, our solution described by (50) essentially corresponds to a D7-brane

solution. For these reasons we may say that (50) is a rotationally symmetric version of (57),

or conversely (57) is a regularized version of (50). This suggests that they are basically

of the same kind both describing D7-branes, which then leads us to a conjecture that the

background space of the D7-brane described by (55), and consequently the background

space of the (p, q) sevenbranes either, the SL(2,Z) family of the D7-brane, all contain the

negative tension NS-brane implicity in their ansatz just as in the case of the rotationally

symmetric solution (50). This conjecture can be immediately extended to the brane world

scenarios in the context of F-theory. Namely in F-theory, the D7-brane or the (p, q) seven-

brane wrapped on a 4-cycle corresponds to the 3d space where we live, and therefore the

conjecture is that true background p-brane immanent in our spacetime may perhaps be

NS-NS type brane, rather than D-brane.

Apart from this, it is interesting to observe that an individual D7-brane of the F-

theory also contains an NS-NS component in itself.3 Recall that the D-brane tension

(3) can not generate a deficit angle of Σ2. But we see that (57) exhibits a deficit angle

δ = π/6 at infinity, which suggests that the D7-brane described by (57) may carry an

NS-brane component with a tension given by (4). But in this case T
(NS)
0 associated with

an individual D7-brane is positive on the contrary to the case of the background space.

Such a feature of the D7-brane is entirely due to the factor |z−N/12|2 in (57), which has

been introduced to avoid the singularity at z = 0 [21], but gives a deficit angle at infinity

instead. Since the deficit angle due to N D7-branes is given by δ = π
6N (or β = 1− N

12), if

3This NS-NS component is different from the one that results from the SL(2, Z) transformation of the

D7-brane. Recall that the monodromy generated by the 7-brane under discussion is anyhow

 

1 1

0 1

!

, not

 

1 − pq p2

−q2 1 + pq

!

of the (p, q) sevenbrane. Also S-dual of the D7-brane (for instance the exotic NS7-

brane [20]) has a tension of the form T ∼ T
(NS)
0 e−3Φ instead of (4). See the next lines.

– 11 –
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we apply (42) to these D7-branes the corresponding T
(NS)
0 becomes

T
(NS)
0 = − 4π

2κ2

(

1 − N

12

)

. (59)

So if N < 12, T
(NS)
0 is negative, and this corresponds to the case where the deficit angle

is less than 2π and the 2d transverse space Σ2 is non-compact. Also if N = 12, T
(NS)
0

vanishes, and in this case the deficit angle is precisely 2π, so Σ2 is a cylinder R1 × S1.

Finally if N > 12, T
(NS)
0 becomes positive, and this corresponds to the case where δ

exceeds 2π. In this case the transverse space Σ2 is “eaten up” by the D7-branes and it

becomes compact. In particular, if N = 24, which corresponds to δ = 4π, Σ2 becomes S2.
4

In (59), N = 0 gives T
(NS)
0 = −4π/2κ2, which corresponds to β = 1, and therefore the

background space R2 without any D7-brane. In general case, in the absence of the p-branes

β must be of an order β ∼ 1 in order for Σ2 to have a (local) background geometry R2

or R2/Zn. Since κ2 ∼ 1/Mp+1
p+3 and |T (NS)

0 | ∼ Mp+1
s (where Mp+3 is the (p + 3)d Planck

scale), β ∼ 1 implies Ms/Mp+3 ∼ 1. This accords with the hierarchy assumption that

there exists only one fundamental short distance scale (i.e., the electroweak scale mEW ) in

nature, which again supports the conjecture that the a natural background p-brane of our

universe would be NS-NS type brane, rather than D-brane.
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