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Abstract

Recent proposals aiming to confront Local Realistic theories with Quantum Me-
chanics by performing Bell tests with entangled neutral kaons, such as those
produced by ¢ decays at Daphne, are reviewed. Some difficulties appear be-
cause of the reduced number of useful, non—commuting kaonic observables and
the low efficiency of the strangeness measurements. The possibilities to over-
come this and other loopholes are analyzed.

1 Introduction

A classical book by R. H. Dalitz 1) offers an accurate description of the de-
velopment of the ‘strange’ particle physics since its origin in the 1950s. The
‘strangeness’ of their behavior was associated with the fact that these particles
were copiously produced in ordinary, non—strange particle reactions always in
pairs. Present day examples of such ‘associated productions’ are the electron—
positron and the s—wave proton—antiproton annihilations into the state
1
V2

consisting of two strange, neutral kaons which, after collimation, form a left—

(1B 0By = KO K0 ] (1)

and a right—-moving beam as indicated by the subindexes. Independently, an-
other classical book by D. Bohm, ‘Quantum Theory’, appeared in 1951 2). The
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nowadays famous gedanken experiment by Einstein, Podolsky and Rosen 3) was
discussed there in its simplest form, i e., in terms of the singlet state formed
by two spin—1/2 objects which is quite similar to the two—kaon state (1). In
the Bohm singlet state, each spin—1/2 points both into any given spatial di-
rection and its opposite one; similarly, each particle in (1) is both a kaon and
an antikaon at the very same time. According to quantum mechanics, each
separate spin—1/2 particle or kaon in the two—particle states just considered
cannot be represented by a wave function or state vector; only the global sys-
tem, such as that in Eq. (1), has a definite state vector and is thus the single,
indivisible quantum. In both considered cases, apparently one has to deal with
a rather simple two—particle (bipartite) quantum state, but the entanglement
or quantum correlations between its two partners adds to the ‘strangeness’ of
kaon physics the weirdness of quantum mechanics.

Indeed, one of the most counterintuitive and subtle aspects of quantum
mechanics refers to the correlations shown by the distant parts of composite
systems like the above mentioned two. This became evident in 1935, when
Einstein, Podolsky and Rosen (EPR) 3)7 discussing a gedanken experiment
with entangled states, arrived at the conclusion that the description of physical
reality given by the quantum wave function cannot be complete. Bohr, in his
famous response 4)7 noted that EPR’s criterion of physical reality contained an
ambiguity if applied to quantum phenomena and gave rise to one of the most
important and long standing debates in physics. According to Bohr, EPR’s
assumption that a quantum system has real and well defined properties also
when does not interact with other systems (including measuring apparata) is
contradicted by the basic axioms of quantum mechanics.

For about 30 years the debate triggered by EPR and Bohr remained
basically a matter of philosophical belief. Then, in 1964, Bell 5) interpreted
EPR’s argument as the need for the introduction of additional, unobservable
variables aiming to restore completeness, relativistic causality (or locality) and
realism in quantum theory. He established a theorem which proved that any
local hidden—variable (i. e., local realistic 6)) theory is incompatible with some
statistical predictions of quantum mechanics. Since then, various forms of

Bell inequalities 7). 11)

have been the tool for an experimental discrimination
between local realism (LR) and quantum mechanics (QM).

Such a discrimination is possible only if the predictions coming from QM
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cannot be reproduced with LR models. These models allow the derivation of
Bell inequalities which necessarily relate the statistical results one has to expect
from a given entangled system when its two members are potentially subjected
to alternative joint measurements chosen by the experimenters. If such a choice
among experiments exists, we refer to them as active measurements. Each one
of these experiments projects then each measured kaon into one of the two states
of the chosen measurement basis. This is a common feature in Refs. 7)- 11) but
care has to be taken when extrapolating these considerations to unstable sys-
tems such as neutral kaons 12). Admittedly, this instability allows for different
decay modes, which effectively correspond to different quantum measurements.
But the inequalities involving these passive measurements, with no choice on
the experimenter part, are not Bell inequalities since they cannot discriminate
LR from QM, as we will discuss later on.

Many experiments confronting QM versus LR have been performed, mainly

10, 13, 14, 15, 16)

with entangled optical photons and, more recently, with

17) " All these tests obtained results in good agreement with

entangled ions
QM but, according to several authors, they do not represent a conclusive proof
against LR. The tests are affected by another type of criticisms, which are
certainly less severe than that mentioned in the preceding paragraph but have

18)  These tests only seem to show the violation

been discussed for many years
of the so called non—genuine Bell inequalities. Indeed, because of non—idealities
of the apparata and other technical problems, supplementary assumptions not
implicit in LR were needed in the interpretation of the experiments. Conse-

quently, no one of these tests has been strictly loophole free 10, 18, 19)

, 4. e,
able to test a genuine Bell inequality, which has to be a necessary consequence
of LR alone.

One of these criticisms, frequently referred to as the detection or efficiency
loophole, is particularly relevant for kaons. It has been proven 9,10, 20) ¢pat
for any bipartite and entangled state one can derive Bell inequalities without
the introduction of (plausible but not testable) supplementary assumptions
concerning undetected events. In particular, the most appropriate inequality
for confronting LR vs QM has been derived long ago by Clauser and Horne 9).
For maximally entangled (non—maximally entangled) states, if one assumes that
all detectors have the same overall detection efficiency 7, these genuine Clauser—

Horne inequalities are violated by QM only if n > 0.83 21) (n > 0.67 22)). Since
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such detection thresholds cannot be presently achieved in photon experiments,
only non—genuine inequalities have been tested experimentally.

Several of these photonic tests violated non—genuine inequalities by the
amount predicted by QM but they could not overcome the detection loophole.
Indeed, local realistic models exploiting the detector inefficiencies and repro-
ducing the experimental results can be contrived 9, 23) for these tests. Only
the recent test with entangled beryllium ions of Ref. 17)7 for which n ~ 0.97,
did close the detection loophole. On the other hand, an experiment with entan-

gled photons 14)

closed the other main existing loophole, the locality loophole.
In this test, the measurements on the two photons were carried out under strict
space—like separation conditions, thus avoiding any possible exchange of sublu-
minal signals between the two measurement event regions. But this is not the
case for the high efficiency experiment 17) with two beryllium ions separated
only by a few microns. In other words, no experiment closing simultaneously
both the detection and locality loopholes has been performed till now.
Extensions to other kind of entangled systems are thus important. Over
the past ten years or so there has been an increased interest on the possibility to

test LR vs QM in particle physics,e. ¢., by using entangled neutral kaons 24)

A1) This is also a manifestation of the desire to go beyond the usually con-
sidered spin—singlet case and to have new entangled systems made of massive
particles with peculiar quantum—mechanical properties (apart from the classi-
cal book by Dalitz 1)7 other detailed reviews of neutral kaons are 29> 42, 43)).
Entangled K"K states (1) are copiously produced in the decay of the ¢(1020)
resonance 44) and in proton—antiproton annihilation processes at rest 45, 46).
For kaons, the strong nature of hadronic interactions should contribute to close
the detection loophole, since it enhances the efficiencies to detect the prod-
ucts of kaon decays and kaon interactions with ordinary matter (pions, kaons,
nucleons, hyperons,...). Moreover, the two kaons produced in ¢ decays or pp
annihilations at rest fly apart from each other at relativistic velocities and can
fulfill the condition of space-like separation. Therefore, contrary to the experi-

ment with ion pairs of Ref. 17)

, the locality loophole could be closed with kaon
pairs by using equipments able to prepare, very rapidly, the alternative kaon
measurement settings.

In this contribution, our purpose is to review the Bell inequalities pro-

posed to test LR vs QM using K°K® entangled pairs. The proposals are
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discussed in the light of the basic requirements —specified in Section 2— nec-
essary to establish genuine Bell inequalities. Each measurement is associated
to a specific basis and the bases relevant for our discussion are studied in Sec-
tion 3. The alternative measurements one can perform on each neutral kaon at
a given time are rather reduced, as we show in Section 4. The preparation of
the two—kaon entangled state is discussed in Section 5 and can be performed
in many different ways; a given, fixed state, however, has to be used for all the
alternative measurements contemplated in a given Bell inequality. The various
forms of inequalities are derived and related in Section 6. In Section 7 the
different proposals with neutral kaons are discussed.

2 Requirements for a genuine Bell inequality

The requirements for deriving a Bell inequality from LR can be summarized as
follows:

(1) A non—factorisable or entangled state must be used. Here, as in most
cases, a two—particle (bipartite) state is considered. The simplest example
is the state (1);

(2) Alternative and mutually exclusive measurements, corresponding to non—
commuting observables, must be chosen at will and performed on both
members of that state;

(3) Each one of the different single measurements has to have dichotomic
outcomes. However, if the possibility of undetected events is considered,
they can count as a third outcome;

(4) The measurement process on each member of the two—particle state must
be space—like separated from the measurement on the other member.

At a ¢—factory, or in proton—antiproton annihilations at rest, the first re-
quirement poses no serious problems. Indeed, entanglement has been confirmed
experimentally, over macroscopic distances, for K°K° pairs at CPLEAR 45)
using active strangeness measurements and can be demonstrated at the Da®ne
¢—factory as well A7), However, care has to be taken to define the state at a
specific (proper) time 7, or specific times 7; and 7, if these are different for
the left— and right—-moving members of the entangled state. Indeed, contrary
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to what happens in photonic experiments, neutral kaons decay and oscillate in
time. Only when these times are fixed we have a well defined state to perform
Bell-tests.

Difficulties appear with requirement number (2). Indeed, among the dif-
ferences between the spin-singlet state of entangled photons and the K°K?°
entangled state (1), the most important one is that while for photons one can
measure the linear polarization along any space direction chosen at will, mea-
surements on neutral kaons essentially reduce to only two kinds: one can chose
to detect either the strangeness or the lifetime of each kaon. These are then
two useful and direct measurement choices which can be somehow enlarged by
kaon regeneration effects before the final detection (see Section 3.3). But the
problem essentially remains and complicates considerably the possibilities of
Bell-tests with neutral kaons.

Another property of neutral kaons, not shared by photons, is that the
former are unstable and decay via different modes. Each one of these modes is
associated with a specific kaon basis and the observation of a kaon decay into
a given mode represents a passive measurement 12), Indeed, the experimenter
has no control on when the kaon decays nor into which of the various channels it
decays. In general, the information thus obtained does not refer to the specific
state under consideration (because of kaon time evolution), nor to a desired
basis actively chosen by the experimenter. As a result, the inequalities that
some authors have proposed, which make use uniquely of decay—mode observa-
tions, cannot discriminate between LR and QM and, in this sense, are not Bell
inequalities. The reason is quite obvious: since the experimenter is not allowed
to exert his/her free will, a LR model can immediately be constructed which
always gives the same predictions as QM and violates the proposed inequality.
But this is an absurdity since, by definition, a Bell inequality has to contra-
dict some QM prediction. Since there are no active changes of measurements,
the LR model is constructed by just adopting the set of decay distributions
predicted by QM as the complete set of hidden—variables. This point was first

discussed in a related context by Kasday time ago 48)

but has been ignored by
many authors when deriving Bell inequalities in the domain of particle physics.
In the case of entangled B® B pairs, for which only decay mode measurements
can be performed, the situation is then more unfortunate than with kaon pairs.

Neutral kaons are then unique among pseudo—scalar mesons: the lack of active
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measurement procedures for B—mesons makes impossible the derivation of rel-

evant Bell inequalities 12, 49)

. In this review, centered in discriminating QM
from LR, we do not discuss these Bell-tests based on passive measurements,
although most of them are of clear interest showing, among other things, the
entanglement between pairs of separated particles.

The requirement (4) on locality deserve also some comments. Kaons move
at relativistic velocities and can travel macroscopic distances away from the
production point before decaying. These distances are certainly much shorter
than those involved in photonic experiments (a recent one has shown two—
photon entanglement over 144 km 50)) but much larger than those for ions
(separated only some microns in Ref. 17) ). During these survival distances each
kaon has to be submitted to either one or another measurement and this implies
changing the experimental setup, typically, by placing or removing material
pieces (kaon regenerators). Actively changing from one setup to another in
such a way that the two (left and right) distant measurement events are space—
like separated could imply serious technical difficulties. For this reason, some

authors 51)

prefer to consider static measurements setups (fixed pieces acting
as different absorbers) which, even if they will not be able to close the locality
loophole, look more feasible and still of interest.

Finally, in order to establish the feasibility of the real test, one has to
derive the detection efficiencies necessary for a meaningful quantum mechanical
violation of the considered Bell inequality. With all this in mind and in the light
of the basic requirements (1)—(4), in Section 7 we proceed to analyse various
proposals of Bell-tests with entangled kaon—antikaon pairs. Before, we present
a general discussion on measurement bases, quantum states and genuine and

non—genuine Bell inequalities for neutral kaons.

3 Bases in ‘quasi—spin’ space

Thanks to the analogy with spin—1/2 particles, neutral kaon states can be
conveniently described with the formalism of ‘quasi—spin’. The strangeness
eigenstates K and K (specified in subsection 3.1) are considered as members
of a quasi-spin doublet, with |K%) = (é) having ‘spin up’ and |K°) = (?)
having ‘spin down’. A particular superposition, with unitary norm, of these
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strangeness eigenstates together with the corresponding orthogonal state:

|Ko) = ol K°) + alK"), (2)
|Ko) = —a"|K°) + of|K°),

with (K, |K,) = (KH|KL) = |a)?> + |a]?> = 1 and (K,|K}) = 0, define the
generic basis {K,, K} along the quasi-spin axis a. Any operator acting on
the quasi-spin space can be expressed in terms of the Pauli matrices, o, oy
and o,. The formalism is appropriate for all two—level quantum systems or
‘qubits’ in the novel language of quantum information.

3.1 Strangeness basis: {K° K°}

Neutral kaons are spinless and s—wave quark—antiquark bound meson states,
K% ~ ds and K9 ~ sd. They define the ‘strangeness’ or ‘strong-interaction’
basis which consists of the two eigenstates | K°) and |K9) with strangeness S =
+1 and S = —1, respectively. This is the suitable basis to analyze S—conserving
electromagnetic and strong interaction processes, such as the creation of K°K0°
systems from non-strange initial states (e. g.., efe” — ¢(1020) — K°K0,
pp — K°K 03, and the detection of neutral kaons via strong kaon—nucleon
interactions. This ‘strangeness’ basis is orthonormal, (K°|K% = 0. In the

quasi—spin picture, the strangeness operator evidently corresponds to o :
oK% = +|K?), 0.]K") = —|K").

Weak interaction phenomena —such as K°-K9 mixing, K°~K?° oscilla-
tions and neutral kaon evolution in time—, as well as kaon propagation in a
medium —with the associated regeneration effects— introduce other relevant
bases.

3.2 Free—space basis: {Kg, K1}

The so called K—short and K-long states, |Ks) and |K), are the normalized
eigenvectors of the effective weak Hamiltonian Hpe. governing neutral kaon
time evolution in free—space:

. d A A
| Ks,0(7) = Hiseel K5, 0(7)), - Hiee = (J V ) 7 3)
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42, 52) and 7 is the

where r = (1 —¢)/(1+¢), € is the C P—violation parameter
kaon proper time.
The (complex) eigenvalues of the previous (non—hermitian) Hamiltonian

are

7
As — )\+ + A =mg — §FS7 (4)
)\L:)\+—)\, :mL—%F[”
where mg 1, are the Kg; masses and I'g ;, = 1/75 1, their decay widths, with
lifetimes 75 = (0.8953+£0.0005) x 10~ s and 77, = (5.1840.04) x 1078 s 52).
We also introduce Am = my —mg ~ 04751 and A' =1';, —I'g = —I'g, to
be used later on.
The corresponding K—short and K—long eigenstates are:

1 _

|Ks) = m [(1+ K + (1= ¢|K”], (5)
1 _

|Kp) = m [(1 + K% —(1- €)|KO>] )

or, ignoring an irrelevant global phase:
1
K =
|Ks,L) EarE

The proper time propagation of the short— and long—lived states, having

(1K) £r|K")]. (6)

well-defined masses and decay widths, shows no oscillation between these two
states and, according to Egs. (3), is simply given by

K 1(7)) = e msi7e 3Tt g | (1 = 0)) = e 507 | Kg ). (7)

The 7 = 0 states |Kg ) define a quasi-orthonormal basis with (Kg|Kg) =
<KL|KL> — 1 and

1—1|r? €+ et
KqlKp) = (K |Kg) = = ~
(Ks|Kp) = (KL|Ks) e TrE S

!

due to the smallness of the C'P—violation parameter ¢ with modulus |e¢] =~
(2.284 4 0.014) x 1072 and phase ¢ ~ 43.5° 52),
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In the quasi—spin space, the weak interaction eigenstates are indeed very
‘similar’ to the C'P eigenstates |K;) (CP = +1) and |Ky) (CP = —1):

1

|Ks) = T|6|2 [|[K1) + e|K2)], (8)
1

|K1) = TMZ [[K2) + e|K1)] .

But, while the Kg  basis is useful to discuss free-space propagation, the CP—
basis describes weak kaon decays either into two or three final pions from the
K and K> states, respectively. These two CP = & states are the eigenstates of
Ox, 0 |K1) = +]K1) and 0,|K3) = —|K>s). Thus, the limit of C P—conservation
corresponds to the invariance under quasi—spin rotations around the x axis. In
this limit one has

Ks) — |Ky) = % K% + K9], (9)
K1) — [Ka) = —— [|IK°) — |K9],

V2

and strict orthogonality between the K¢ and K, states is recovered.

3.3 Inside—matter basis: {K[, K} }

The dynamics of neutral kaons propagating inside a homogeneous medium of
nucleonic matter, which we can consider as a ‘regenerator’ and/or an ‘absorber’,
is governed by the Hamiltonian

2
Hmedium - Hfree - ﬂ fO Q b (10)
mr \ 0 fo

showing an additional, strong interaction term where myg is the mean Kg
mass, fo and fo are the forward scattering amplitudes for K° and K9 on
nucleons and v is the nucleonic density of the homogeneous medium.

The eigenvalues of Hedium are

v —
/s:)\+——mK(fo+fo)+>\7V1+4P27 (11)
Y -
AL =A = m—K(fO + fo) = AV 14407,
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and the corresponding eigenstates

AN 1 rol K
| S> — W [|KO> + p|KO>] ’ (12)
K7} = e [IK) = (0} 1K)
L+ Ir(p) |

where we have introduced the dimensionless regenerator parameter p, as well

as the auxiliary parameter p and its inverse (p) !

v fo—fo

mg As — Ap’

o= V14402420, (p) P =1+4p2 = 2p. (14)

The proper time propagation of these K ; states inside matter is given

?

p = (13)

by
|K§ (7)) = e a7 |KG 1), (15)

and shows no K§—K oscillations but a decreasing intensity in time given by
the imaginary part of XL7 s- The latter comes from weak decays, essentially as
in free—space propagation, plus absorption via strong kaon interactions with
the medium driven by the imaginary part of fo + fo. In this sense, the medium
acts as an ‘absorber’. The difference between fy and fo appearing in p is
responsible for ‘rotations’ in the quasi—spin space and transitions between Kg
and K, states. For surviving kaons, the medium acts as a ‘regenerator’, giving
rise to the well known p-dependent regeneration effects.
Again, the 7 = 0 states form a quasi—orthonormal basis,

_ 7”2 —k [ =
(K1) — (KK ¢1+1|rp||2|¢(p1 L pfr = (16)

due to the smallness of ¢ (r =~ 1), as before, and to the low efficiency of usual
7" 26, 42))

regenerators (p ~ Rep ~ 1072 and p ~ , in spite of the strong
character of the induced kaon—nucleon interactions.

Two limiting cases illustrate the relationships among the three bases we
have considered: i) for a very low density medium: v, p — 0 and p — 1 imply
|K/SL> — |Kg 1), thus recovering the states in Eq. (6) and ii) for extremely
high density media (absorbers): v, |p|, || — oo implies |K%) — |K°) and
|K7) — |K°).
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4 Dichotomic measurements on neutral kaon states

4.1 Strangeness measurements

When a kaon—nucleon reaction occurs at a given place of a medium, the dis-
tinct strong interactions of the § = +1 and S = —1 neutral kaons on the
bound nucleons inside the medium project the arbitrary state of an incom-
ing kaon into one of the two orthogonal members of the strangeness basis
{K° K% 1,29, 42)  7pe quantum number S of the incoming kaon state is
determined by identifying the products (usually pions, kaons, nucleons and
hyperons) of the strangeness conserving kaon—nucleon strong interaction. Sim-
ple examples of KO identifying reactions at low energies are K — An™,
K% — Y7 and K% — Ax®, while the lowest threshold reaction K% — K*n
identifies incoming states as K*’s. This strangeness measurement is then analo-
gous to the projective von Neumann measurements with two—channel analyzers
for polarized photons or Stern—Gerlach setups for spin—1/2 particles.
Unfortunately, the efficiency for such strangeness measurements at mod-
erate kaon energies as in ¢ — K°K” and pp — KK is certainly less than
what people have been naively expecting from the strong nature of these inter-

actions 45)

. The reason, rather than being the difficulty in detecting the final
state particles (for which one can have rather high efficiencies), stems from the
low probability in initiating the strong reaction. Indeed, the efficiency to induce
either a K9-nucleon or a K% nucleon interaction at a given time 7 turns out to
be close to 1 only for infinitely dense absorber materials or for ultrarelativistic
kaons, where, by Lorentz contraction, the absorber is seen by the incoming
kaon as extremely thin and dense (¥ — 00). In this case, kaon—nucleon strong
interactions occur and the incident kaons are immediately projected into one
member of the inside—matter or the strangeness basis which are coincident in
the present limit; ¢. e., the incident kaon is projected into either |K%) — |K0)
or |[K}) — |K®). But in ordinary cases, when a thin absorber is placed to
measure strangeness, the incident kaon likely fails to interact with a nucleon
and, although the kaon can be efficiently detected beyond the absorber, the
desired strangeness measurement has not been performed. Ordinary matter is
too transparent for kaons. This contrasts with the polarization measurements
where the low efficiency corresponds to the final detection of photons having
passed through the efficient analyzers. It would be highly desirable to identify
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very efficient kaon absorbers. Since this does not seem to be viable at present,
one has to play with small strangeness detection efficiencies, which originate
both conceptual and practical difficulties when discussing Bell-type tests for

entangled kaons 37, 38, 39, 41)

4.2 Lifetime measurements

To measure if a kaon is propagating in free—space as a Kg or K, at a given time
7, one has to allow for further propagation in free—space and then detect at
which time it subsequently decays. Kaons which show a decay vertex between
times 7 and 7+ A7 have to be identified as K g’s, while those decaying later than
7 4+ A7 have to be identified as K ,’s. Since there are no Kg—K, oscillations,
such subsequent decays do really identify the state at the desired previous time
7. The probabilities for wrong Kgs and K7, identification are then given by
exp(—T's A7) and 1 — exp(—I'y, A7), respectively. By choosing A7 = 4.8 75,
both Kg and K, misidentification probabilities reduce to ~ 0.8%, which can be
further reduced if the decay mode is also identified (see appendix of Ref. 41)).

Recall that the K g and K, states are not strictly orthogonal to each other,
(Ks|Kp) = 2Ree/(14 |e|?) # 0; thus their identification cannot be exact even
in principle. However, ¢ is so small [|e| ~ (2.284 +0.014) x 10— 52)] and the
decay probabilities of the two components so different (I's ~ 579T";,) that the
Kg vs Kj, identification can effectively work 37). Note also that, contrary to
strangeness measurements, K¢ vs K identifications are not affected by the
previous low inefficiencies: by using detectors with very large solid angles, one
can play with rather high efficiencies for the detection and proper identification

of the kaon decay products.

4.3 Active vs passive measurements

The methods described in the last two subsections to discriminate K° vs K°
and Kg vs K are fully appropriate to establish Bell inequalities and tests.
On the one hand, the two measurements correspond to complementary and
non—commuting observables with dichotomic outcomes in both cases (essen-
tially, o, and o, in quasi—spin space). On the other hand, they are clearly
active measurement procedures since they are performed by exerting the free
will of the experimenter, another crucial ingredient to establish genuine Bell
inequalities. Indeed, at the chosen measurement time 7, either one places a
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dense slab of matter or allows for free—space propagation. Needless to say, one
measurement excludes the other. In the former case, strangeness is measured
and no information is obtained on the lifetime of the observed kaon. Con-
versely, if free propagation is allowed, one identifies Kg vs Ky but nothing is
learned on the strangeness quantum number. As previously discussed, the ac-
tive strangeness measurement is monitored by strangeness conservation, while
the active lifetime measurement is possible thanks to the smallness of 'y, /T's.

Contrary to what happens with other two—level quantum systems such as
spin—1/2 particles or photons, passive measurements of lifetime and strangeness
for neutral kaons are also possible 12)7 by randomly exploiting the quantum—
mechanical dynamics of kaon decays. To this aim, one has to allow for complete
free—space propagation and observe the various kaon decay modes. By neglect-
ing the (small) C'P—violation effects (¢ — 0), non—leptonic kaon decays into
two and three pions permit the identification of Kg’s and K ’s, respectively.
Alternatively, the strangeness of a given neutral kaon state is measured by ob-
serving their semileptonic decays. These decays obey the well tested AQ = AS
rule, which allows the modes K° — 717y, and K0 — 711 1, with | = e, p,
but forbids decays into the respective charge—conjugate final states. These
procedures for the passive Kg vs K7, and K° vs K° discriminations are unam-
biguous in the approximations given by C'P—conservation and the AQ = AS
rule, respectively.

However, in passive measurement procedures the experimenter has no
control on the time when the lifetime or the strangeness measurement occurs,
nor on the basis in which the measurement is performed, in contrast with the
previous active, von Neumann projection measurements requiring the interven-
tion of the experimenter, who is free to chose between the two complementary
measurements. As discussed in sect.2, for experiments performed with passive

48, 49)

measurements only, Kasday construction is therefore possible, thus

preventing the derivation of Bell inequalities.

5 Entangled states of neutral kaon pairs

5.1 Maximally entangled states

The simplest and most often discussed two—party or bipartite states are the
spin—singlet states consisting of two spin—1/2 particles, as first proposed by
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D. Bohm 2). Let us then first consider the two kaon entangled state which

is the analogous 32, 34, 40, 53) {4 this standard Bohm state. From both ¢

resonance decays 44) or s—wave proton—antiproton annihilation 45)7 one starts
at time 7 = 0 with an initial state |¢(0)} with global spin, charge conjugation

and parity JF¢ =17:

60y = —

7
2
B \}_|11+ le] g KLy Ks)r — [Ks)i|KrL)r],

where [ and r denote the ‘left’ and ‘right’ directions of motion of the two

[ KO0 Ky — K| K°),] (17)

separating kaons. The weak, C P—violating effects enter only in the last equality.
Note that this state is antisymmetric and maximally entangled in the two
observable bases. The corresponding measurements will always lead to left—
right anticorrelated results.

After production, the left and right moving kaons evolve according to
Eq. (7) up to (proper) times 7; and 7,, respectively. Formally, this leads to the
‘two—times’ state
e~ TLm+Ts7r)/2

V2
X {|KL>l|KS>r - emm(n*m@AF(n*m/z|KS>l|KL>r}

|p(71, 7)) (18)

in the lifetime basis, with ¢ — 0. Equivalently,

1 - T T
(6, 7)) = g TenTeT (19)

> {(1 _eiAm(nfn) AT (11—7r /2) [|KO> |KO> |[’(O>l|f(0>r]
¥+ (1 +€1Am(n Tr) AF(n Tr /2) [|KO> |KO> |RO>1|KO>T]}

in the strangeness basis.
Most usually, one considers two—kaon states at a unique time 7, = 7. = 7.
One then has
1 _ _
6(r, 7)) = —me TR K ), — [KTK"), ] (20)

V2

1 — T
= —e (M +Ts)7/2 [|KL>l|KS>'r’ - |KS>l|KL>T’]7

V2

showing the same maximal entanglement and anticorreations at any time 7.
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5.2 Non—maximally entangled states

Apart from the previous maximally entangled state of kaons, other non—maxi-
mally entangled states are of interest for testing LR vs QM. To prepare these
states we start with the initial state (17). A thin, homogeneous regenerator
is fixed on the right beam (say), as close as possible to the point where the
two—kaon state originates. If the regenerator is very close to this origin and
the proper time A7 required by the right moving neutral kaon to cross the
regenerator is short enough, A7 << 75, weak decays can be ignored and the
state leaving the thin regenerator is

1
|p(At)) = 7

where the indexes [ and r referring to the kaon propagation directions are

(1K) Kp) — [Kp)|[Ks) +nlKs)|Ks) —n|Kp)|[Kr)],  (21)

omitted from now on. The complex parameter 7 characterizes the regeneration
effects and is defined by 42).

n=ip(As — AL)AT = (fo —fo)AT:i]%(fo—fo)Ch (22)

where mpg is the average neutral kaon mass, px the kaon momentum and d

.V
j—
mK

the total length of the regenerator.

The states (20) at 7 = 0 and (21) only differ in the terms linear in the
small parameter 7. Indeed, for typical regenerators and at Da®ne energies one
has || = O(1073) when d = 1 mm 26, 42)7 thus allowing to neglect higher
order terms in the state (21). To enhance that difference, we now allow the
state (21) to propagate in free space up to a proper time 7' in the wide range
T7g << T << 71, 2 57975. One thus obtains the state:

e~ TLm+Ts7)/2

lo(1)) = i ([Ks)[Kp) — [Kp) | Ks) (23)

_nefiAmTe%(stFL)T|KL>|KL>JrneiAmTeé(FLst)T|KS>|KS> 7

where the Kj K component has survived against weak decays much better
than the accompanying terms KK, and Ky Kg and has thus been enhanced.
On the contrary, the KgKg component has been strongly suppressed and can
be neglected if 1'/7¢ >> 1.

The normalization of state (23) to the surviving pairs leads then to:

1
oy = 24
[®) \/2+|RL|2+|RS|2 &)
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[Ks)|Kp) — |Kp)|Ks) + Rp|Kp)|Kr) + Rs|Ks)|Ks)],
where:

Ry = _re[fiAme%(stFL)]T? Ry = re[iAmf%(stFL)]T (25)

Note that the quantity |Rp| =~ |rle2"s7 is not necessarily small with an expo-
nential factor compensating the smallness of |r|, but we take Rg — 0 from now
on. The non—maximally entangled state & describes all kaon pairs with both
left and right partners surviving up to the common proper time 7'. Because
of the particular normalization of ®, kaon pairs showing the decay of one (or
both) member(s) before time T have to be detected and excluded. Since this
occurs prior to any measurement eventually used for a Bell-type test, ours
is a ‘pre—selection’ (as opposed to ‘post—selection’) procedure which poses no
problem when confronting LR with QM.

Once the state is prepared as in Eq. (24), alternative joint measurements
on each one of the corresponding kaon pairs have to be considered for a Bell-
type test. In Section 7 we will see how one can utilize this state for such
tests.

6 Bell inequalities with neutral kaon pairs

In the present Section, our first aim is to show how the Clauser—-Horne inequal-
ity can be derived from LR and adapted for a generic entangled state of kaon
pairs. The obtained CH inequality, equivalent to an inequality which Eberhard
proved in a different way, is a genwine Bell inequality in the sense that it follows
from LR with no need of extra assumptions. When supplementary assumptions,
not implicit in LR, are introduced, other, non—genuine Bell inequalities can be
derived which allow to design more feasible experimental tests of LR vs QM.
The potentialities of a Bell inequality derived by Clauser—Horne—Shimony—Holt
and of another simple one, due by Wigner, are thus illustrated.

6.1 Clauser—Horne inequalities

In the interpretation with hidden—variables, a generic two—kaon entangled state
corresponds to a statistical ensemble of kaon pairs specified by different values
of these additional, unobservable, deterministic or stochastic variables, which
are here globally denoted by the symbol A. In principle, A can contain the
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same information of the quantum mechanical two—kaon state or wave—function
but can be further completed, for instance to restore classical determinism
in measurement processes. Moreover, in A one could also include apparatus
random hidden—variables, which can influence, locally, the outcomes of mea-
surements. In a general hidden—variable (i. e., realistic) theory, the joint prob-
ability to observe particular kaon quasi-spin states |K,) = o|K°) + a|K") and
|Kg) = B|K°) + B|K") along the ‘left’ and ‘right’ beams, respectively —when
measurements along the o and 38 quasi—spin axes are performed— is given by:

P(Ko, K5) = / X p(N) (K oy K5I, (26)

where p()) is the hidden—variable probability distribution (normalized to unity,
Jdxp(A) = 1) and p(K,, Kg|A) the conditional probability that a joint mea-
surement produces the outcome (K,, K3) when the kaon pair (and eventually
the measuring devices) is in the state specified by A. Note that, since each kaon
pair is assumed to be emitted by the source in a way which is independent of
the ‘adjustable parameters’ a and (§ characterizing the chosen measurement
axes, the hidden—variable distribution function p(\) is independent of o and S3.

By enforcing the locality condition, the previous conditional probability
p(Ka, Kg|A) can be written in the following factorized form:

p(Ka, KglA) = p(Ka, #|A) p(x, Kg|A), (27)
where, for instance:
p(KOu *|)\) = p(Kou K’Y|)\) +p(KOz7 K#P\) +p(KOz7 U’Y|)\)7 (28)

taking values between 0 and 1, is independent of the choice of the states |K.,)
and |K7L> forming an orthogonal basis in the quasi—spin space, (K7|K7L> =0.
Note that, in particular p(x, x| A) = 1 for any A. Note also that the last term of
the previous equation takes into account eventual undetected events or events
for which the proposed measurement failed, denoted by the U, argument, due
to the various non—perfect efficiencies in measurements along the ‘axis’ -y in the
quasi—spin space. It is important to remark that in the present scheme, the
measurement fails or not depending on the values of the hidden—variables. In
other words, the possibility of performing or not the desired measurement is
correlated with the values of A. It is also important to emphasize that for fixed
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A, the single-side probabilities p(K,, *|A) and p(*, K g|\) entering equation (27)
are independent of the measurement that one chooses to perform on the other
member of the pair: the kaon quasi-spin outcome K, (Kz) observed along the
left (right) beam when measuring along the quasi—spin axis « () is independent
of the quasi—spin axis 3 () employed to detect the right (left) going kaon.
To derive the Clauser—Horne (CH) inequality, the mathematical lemma
of Ref. 9 can be used. Tt asserts that for any value between 0 and 1 of the real
numbers x1, z9, 3 and x4, the inequality x1z0 — 124 + xoxs + 2324 < 23+ 29
holds. By assigning 1 = p(Ka, *|A), 22 = p(*, Kz|A\), 23 = p(K, x|A) and
x4 = p(*, Ka/|\), using the factorisable (locality) condition (27) and integrating
over the hidden—variable A as in Eq. (26), one easily obtains the CH inequality:

-1<85 = P(K., Kpg)—P(Ka,Kp)+P(Ko,Kg)+ P(Ko, Kg) (29)
—P(Ka/7 *) —P(*7Kﬂ) < O7

with single—side probabilities given by:

P(Ko,#) = PKo,Ky)+ P(Ko, K5)+ P(Kar, Uy), (30)
P(x,Kpg) = P(Ks,Kp)+ P(K;y,Kp)+ P(Us,Kp),

for an arbitrary choice of the quasi—spin axes v and 6. As noted by Clauser
and Horne in Ref. 9)7 the right—hand side of the CH inequality, S < 0, has the
advantage of being independent of the hidden—variable normalization condition,
J dAp(X) = 1, thus canceling the influence of the size of the ensemble of detected
events.

6.2 Eberhard inequalities

If we chose v = 8 and § = a in Egs. (29), (30), the right-hand side of the CH
inequality (29) can be rewritten in the form of the following Bell-like inequality
first derived by Eberhard 22),

P(Ko,Kg) < P(Ko,Kg)+P(Ky, Kpg) (31)
+P(Ka, Kﬂ/) + P(Ko, Uﬂ) + P(Ua, Kﬂ)'
The right—hand side CH and Eberhard inequalities just introduced are

both genuine Bell inequalities in the sense discussed in Section 2. Unfortu-
nately, due to their specific form, they hardly provide feasible experimental
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21, 22)

?

tests able to discriminate between LR and QM. As explained in Refs.
the main shortcoming is originated by the existence of thresholds for the rel-
evant measurement efficiencies which have to be overcome in order to attain
violations of the considered inequalities by QM. Since in both performed (pho-
ton) and proposed (kaon) experiments such thresholds turn out to be hardly
reachable within the current experimental capabilities, additional hypotheses
beyond realism and locality must be made in order to obtain testable, but
non—genuine, inequalities.

6.3 Clauser—Horne—Shimony—Holt inequalities

We then come to an important example of experimentally testable but non—
genuine inequality which has been widely adopted in photon experiments, thus
allowing the refutation of a restricted class of LR models. Here we will not re-
peat its derivation, which is due to Clauser, Horne, Shimony and Holt (CHSH)

8, 10). Our interest is to illustrate the differences

and can be found in Refs.
with respect to the previously discussed CH inequality, especially concerning
the role played by the supplementary assumptions when testing LR.

First, the CHSH inequality refers to expectation values instead of prob-
abilities. In a local hidden—variable theory, the expectation value for a joint

kaon measurement along the quasi—spin axes « and  is defined as:

B(o, ) = / DN AN B(BIN), (32)

where the locality requirement is evident in the factorized form of the left and
right beam outcomes A(a|A) and B(8|A), for a given state A, which do not
depend on the other—side measurement axis 3 and o, respectively.

The result of each single—side measurement can take one of the three
possible outcomes, 0 or +1. For deterministic hidden—variables, we assume
that A(a|)\) takes the following values: +1 when the measurement outcome
is K., —1 when the outcome is the state K orthogonal to K, and 0 when
the particle is not projected into the {|K,),|K1)} measurement basis. This
third outcome 0 presupposes the ability of the experimenter to know when a
particular kaon fails to be measured in the chosen basis. In photon experiments
the outcome 0 correspond to undetected photons. Since in this case their
number is unknown, in 1971 Bell proposed (see Ref. 10)) to use what he called
‘event—ready’ detectors in order to enumerate the photon pairs emitted by the
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source which really reach the regions where they are then subject to Bell—
measurements. Only if these undetected or ‘unmeasured’ pairs are included in
the ensemble which defines the hidden—variable distribution p(}), one is sure
that p(A) does not depend on the measurement parameters « and 3 10, 20)
In practical cases with photons, any conceivable ‘event—ready’ detector fatally
disturb if not destroy the particles. For kaons, good ‘event-ready’ detectors
seems to be at our disposal: one has to detect kaon decays occurring along the
beams prior to the measurement times used in the Bell-test and all the initial
two—kaon pairs showing (at least one of) such decays have to be excluded from
the sample. This amounts to the previously discussed renormalization of the
states. Also, kaons which fail to initiate a kaon—nucleon interaction in a thin
absorber when trying to measure their strangeness —this is the low efficiency
measurement at our energies— can be further detected to decay as a Kg or
K7, state and be properly included in the analysis as ‘unmeasured’, outcome 0
events.

In the lack of ‘event—ready’ detectors, as in photon experiments, to be sure
that p(A) does not depend on a and /3, one can follow another approach and in-
troduce an additional assumption 8)7 not inferable in the hypothesis of realism
and locality, which is plausible but untestable. For photons, this hypothesis
amounts to require that ‘if a particle passes through a spin analyser, its prob-
ability of detection is independent of the analyser’s orientation’ 8). For kaons,
with essentially only two possible ‘orientations’ (strangeness or lifetime), the
situation is quite different: it is the low probability of inducing the initial kaon—
nucleon interaction in strangeness measurements, rather than the detection of
the final state products, what contrasts with highly efficient lifetime measure-
ments. Rather than adapting the previous CHSH additional assumption to the
kaon case, one can resort to the so—called ‘fair sampling’ hypothesis 10) 14
amounts to assume that the set of effectively measured events represent a fair
or undistorted sample of the whole set of states emitted from the source; in
other words, the kaon hidden—variables are not correlated with the efficiencies
of the measuring apparata. Under this assumption, the efficiency factors in the
Bell inequalities are assumed to be 1 and thus no undetected or unmeasured
event appears.

Coming back to Eq. (32), in the most general case of stochastic hidden—
variables, for the functions A(a|\) and B(3|\) we have the obvious constraints:
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|A(e|A)] < 1 and |B(B|A)| < 1. These last expectation values can be seen as
averages of the previous deterministic expectation values. One can thus obtain
the CHSH inequality in the form:

|E(e, B) = E(e, B) + E(d/, B) + E(o/, B')] £ 2, (33)

where, unlike the case of the right—hand side CH inequality, the hidden—variable
normalization condition, [ dAp(A) = 1, has been employed in the derivation.
In terms of joint probabilities, each expectation values can be expressed
as:
Ela,8) = P(Ya,Y3)+ P(No,Ng) — P(Y,,Ng) — P(Na, Ya), (34)

both in QM and LR, where Y,y (Yes) and N,z (No) answer to the question
whether the incoming kaon projects into the state K, (K3) or otherwise when
measuring along the quasi—spin axis a (3). To establish a complete link with the
joint probabilities entering the CH inequality (29), or the Eberhard inequality
(31), we have to specify the following relations:

P(Yo,Ys) = P(Ka, Kp), (35)
P(No, Ng) = P(K,,Kj)+ P(K,,Us)+ P(Ua, Kj) + P(Ua, Up),
P(Yo,Ng) = P(Ko, Kz)+ P(Ko,Up),

(Nmyﬂ) — P(Ky,Kg)+ P(Us, Kp),

which hold when undetected or unmeasured events, denoted by U, g, can re-
ally be identified by efficient ‘event—ready’ detectors. In such cases, the CHSH
inequality (33) is a genuine Bell inequality and is equivalent to the CH in-
equality (29). In the most common case in which ‘event-ready’ detectors are
not available, and one has to resort to the fair sampling hypothesis, all the
detection efficiencies are assumed to be 1, the right—hand sides of relations
(35) do not contain probabilities for undetected or unmeasured events and the
corresponding CHSH inequality (33) is of the non—genuine type.

6.4 Wigner inequalities

Let us now see how introducing supplementary hypotheses one can obtain
testable inequalities from the right—hand side CH inequality (29), or equiv-
alently the Eberhard inequality (31). The first is the fair sampling hypothesis,
for which the efficiency factors in the inequalities are assumed to be 1. The
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corresponding inequality takes the form of what we may call a Wigner—like
inequality, but with four instead of three terms and measurement settings:

P(Ko,Kg) < P(Ko, Kz )+ P(Ky, Kp) + P(Ka, Kgr). (36)

This Bell inequality is equivalent to the CHSH inequality (33) when the latter
is also considered together with the assumption of fair sampling.

If in addition one demands P(K7, K3) = 0, a standard (4. e., with three
terms and three different measurement settings) Wigner inequality 7) is ob-
tained. Note that this requirement restricts the derivability of the standard
Wigner inequality to deterministic local realistic theories only. On the con-
trary, the four—term Wigner inequality (36) is valid for both deterministic and
stochastic hidden—variable theories. For maximally entangled and perfectly—
anticorrelated states, P(K 57 Kjz) = 01is achieved when K, = K ﬂ{ which corre-
sponds to require perfect anticorrelation for joint measurements along the same

generic quasi—spin axis «, thus obtaining the standard Wigner inequality:

P(Ko, Kg) < P(Kor, Ko) + P(Ko, Kg). (37)

7 A review of the proposals

7.1 Assuming fair sampling and perfect anticorrelation

We start by reviewing those proposals of Bell-type tests using maximally en-
tangled two—kaon states and based on the Wigner inequality (37), which needs
three different quasi—spin measurement axes. These are non—genuine inequali-
ties since to be derived they require, in addition to the hypotheses of realism
and locality, the assumption of fair sampling and the condition of perfect anti-
correlation, as explained in Section 6.4.

7.1.1 A first proposal 27, 31)

For the maximally entangled kaon state (17), Uchiyama 27) derived the in-
equality:
P(Ks,K") < P(Ks, K1) + P(Ky, K"), (38)

which has been rediscussed in detail by Bertlmann and Hiesmayr 31). Here, the
joint probabilities are assumed to be measured at a proper time 7 = 7, = 7,
very close to the instant of the pair creation, 7 — 0. For this reason, the
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above inequality would eventually test noncontextuality rather than locality.
Inserting the quantum—mechanical probabilities into Eq. (38), one obtains the
constraint Re e < |¢|?, which is violated by the presently accepted value of the
C P—violation parameter e.

Note that the proposed inequality involves passive measurements along
the basis consisting of the two unphysical C'P eigenstates. Moreover, the small-
ness of the parameter ¢ and Eq. (8) preclude any realistic attempt of discrim-
inating between lifetime (Kg vs K1) and CP (K1 vs K3) eigenstates. In this
sense, the interest of inequality (38) reduces to that of a clear and well defined
gedanken experiment.

7.1.2 Improved proposal with strangeness detection and thin regenerators 32, 3

The authors of Refs. 32 33) based their study on the K° vs K° identification
and exploited the phenomenon of kaon regeneration to obtain the three different
quasi—spin measurement axes needed to establish a Wigner inequality. The
weak interaction eigenstates which emerge after crossing a thin, homogeneous

regenerator during a time interval A7 turn out to be 32, 33),
|Ks) = |Ks) +nlKL), |KL)=|KL)+n|Ks), (39)
where
1
n=i(As — AL) pAT = — (iAm + §AF> PAT, (40)

and p, given by Eq. (13), accounts for the (small) regeneration effects. Egs. (39)
are valid at lowest order in the regeneration parameter p.

The maximally entangled two—kaon state adopted in Refs. 32, 33) is the
one of Eq. (20), where a single time 7 is considered for simultaneous left and
right measurements. At this time 7, one kaon enters a regenerator placed on
the left hand side and the other kaon enters a right hand side regenerator. The
proper time spent by each kaon to cross the corresponding regenerator is Ar.
The regenerator parameters are chosen at will by the experimenters: in order
to derive a Wigner inequality such as (37), a regenerator is chosen between two
available options, both along the left and right beams. The Wigner inequalities
thus derived are the following ones:

P(K®,0;K" p) < P(K",0;K",2p) + P(K",2p; K, p), (41)
P(K®,0,K" p) < P(K",0,K",2p) + P(K",2p; K°, p), (42)



A. Bramon, R. Escribano and G. Garbarino 241

where, e. g., P(K" p; K", 2p) is the probability to detect, at time 7 + A7, a
KY on the left after a thin regenerator with parameter p and a K° on the
right after a double density (2p) regenerator. The absence of a regenerator is
denoted with a 0. Note that in the present case, each regenerator is considered
as part of the corresponding measurement process.

Quantum mechanics predicts a violation of one of the two previous in-
equalities. In fact, Eq. (41) and (42) imply:

Re lip(Ar, = As)| 20 <= Ren <0, (43)
Re lip(AL — As)] €0 <= Ren >0. (44)

Therefore, inequality (41) [(42)] has to be used for an actual test if the experi-
mental value of Ren is positive (negative).

The problem using thin regenerators is that the parameter 5 is small,
typically |n| ~ 1073 1072 26) . This lowers the level of violation, by quantum
mechanics, of the inequalities to some %. Thick regenerators (say larger than a
few millimeters) worsen the detector performances and the event reconstruction
becomes more difficult because of multiple scatterings. Moreover, one is forced
to use thin regenerators since otherwise saturation effects in the regeneration
process occurs, due to inevitable Kg—decays (note that the Kg lifetime 7g
corresponds to a distance covered by a Kg coming from the decay ¢ — K°K°
of about 0.6 cm).

7.2 Assuming fair sampling

We now proceed to analyse those proposals based on the fair sampling hypoth-
esis, that is the CHSH inequality (33) or the Wigner inequality (36). Even
if these inequalities are non—genuine Bell inequalities, their use opens up the
possibility to test the family of both deterministic and stochastic local realistic
theories based on the fair sampling.

7.2.1 Proposal with strangeness detection 24)

The analogy between strangeness and linear polarization measurements has
been exploited by many authors. In the analysis by Ghirardi et al. 24) one
considers the state (19) and performs joint strangeness measurements at two
different times on the left beam (71 and 79) and at other two different times
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on the right beam (73 and 74). The detection times can be chosen at will and,
at least ideally, in accordance with the locality requirement. The proposed
inequality, incorporating the fair sampling hypothesis, is in the CHSH form:

|E(71,73) — E(71,74) + E(72,73) + E(72,74)| £ 2, (45)

where the expectation value E(7,,7,) takes the value +1 when either two K%’s
or no K%s are found in the left (7;) and right (7,) measurements, and —1
otherwise:

E(Tl77—'r’) = P(KTUKTT) +P(N7Tl§N77—r) _P(KTHNﬂ—r) _P(N7Tl;§/77—'r’)'
(46)
The probabilities entering this correlation function, where Y (Yes) and N (No)
answer the question whether a K° is detected at the considered time, can be
easily obtained in QM and one gets:

EQM(Tlﬂ}) = —eXp{—(FL +FS)(7—l + Tr)/2}COS[Am (Tl — TT)L (47)

where, having assumed fair sampling, the inefficiencies in strangeness detection
can be ignored.

Because of strangeness oscillations in free—space along both kaon paths,
choosing among four different times corresponds to four different choices of
measurement directions in the photon case. Unfortunately, the above CHSH
inequality is never violated by QM because strangeness oscillations proceed too
slowly and cannot compete with the more rapid kaon weak decays.

7.2.2 Proposals with lifetime detection and regenerators 25, 51)

An alternative option is based on Kg vs K, identification and has been first
proposed by Eberhard in Ref. 25). Here, the two—kaon state of Eq. (20) is
considered. To observe if a neutral kaon in a beam is Kg or K at a given
point (4. e., instant), a kaon detector is located far enough downstream from
this point so that the number of undecayed Kg’s reaching the detector is neg-
ligible. Since I'f, << I'g, almost all K} ’s can reach the detector, where they
manifest by strong nuclear interactions. In a complementary way, Kg’s are
identified by their decays (mainly into two—pions) not far from that point of
interest. Misidentifications and ambiguous events will certainly appear, but at
an acceptably low level, as explained in Ref. 25).
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Measurements of Kg vs K are thus performed for each one of four ex-
perimental setups. In a first setup, the two—kaon state is allowed to propagate
in free—space; its normalization is lost because of weak decays, but its perfect
antisymmetry is maintained. In the other three setups, regenerators —one thin
(4 mm), the other thick (5 cm)— are asymmetrically and alternatively located
along one beam, or along the other, or along both. The following interesting
inequality relating the number of K ’s and Kg's detected in each experimental
setup is then derived from LR:

P(Kp,p;Kr,p') < P(Kp, p; K1,,0)+ P(Ks,0; Ks,0)+ P(Kp, 0, K, p'). (48)

Again, p and p’ denote the regenerator parameters and 0 stands for the absence
of regenerators. Note that the above Bell inequality is a particular case of the
Wigner inequality (36). Due to a constructive interference effect between the
two regeneration processes, this Bell inequality turns out to be significantly
violated by QM predictions even if the above mentioned misidentifications and
ambiguous detection events are taken into account. These successful predic-
tions have some limitations, as already discussed by the author. In particular,
they are valid for asymmetric ¢—factories (where the two neutral kaon beams
form a small angle and have a velocity larger than for kaons pairs from sym-
metric ¢—factories), whose construction is not foreseen.

Fortunately, it has been recently shown that a measurable QM violation
of the previous Wigner inequality can also be achieved when the experiment
is performed at a symmetric eTe™ machine. A proposal for such a test at the
Frascati ¢—factory has been indeed put forward 51).

7.2.3 Proposal with both lifetime and strangeness detection 37)

We now discuss a way to use the non—maximally entangled state of Eqgs. (24)
and (25), which is prepared with the help of a kaon regenerator and corresponds
to a proper time T along both kaon beams. Following the approach of Ref. 37)7
for each kaon on each beam at time T we consider either a strangeness or a
lifetime measurement.

With the strategy illustrated in Section 4.2 for lifetime measurements,
requiring an extra interval time AT = 4.87g after T, care has to be taken
to choose T large enough to guarantee the space—like separation between left

and right measurements. Locality then excludes any influence from the exper-
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imental setup encountered by one member of the kaon pair at time T on the
behaviour of its other—side partner between T and T+ AT'. For kaon pairs from
¢ decays, moving with velocity  ~ 0.22, this implies T' > (1/8 — 1)AT/2 =
1.77 AT, with a considerable reduction of the total kaon sample. Indeed, for
AT = 4.875 one can choose T' = 2AT ~ 9.6 75, and only 1 in 15000 initial
events can be used, having both kaons surviving up to time T'. For faster kaons,
as in CPLEAR, the situation improves considerably.

In Ref. 37) the following CH inequalities have been derived under the
assumption of perfectly efficient experimental apparata:

—1 < P(KY% Kp)— P(K° K% + P(Kg, K°) (49)
+P(KS7KL) _P(KS7*) _P(*7KL) <0,

—1 < P(KY% Kg) — P(K° K% + P(Kp, K%
+P(Kp, Ks) — P(x,Ks) — P(Kp,*) <0,

where, for instance:
P(Kg,*) = P(Kg,K") + P(Kg,K°). (50)

In this and the other one—side probabilities, the joint probabilities for the two
possible outcomes on the other side are added to guarantee that both kaons
have survived up to time T'. This respects the particular normalization of the
state (24). Note that each one of the two previous inequalities follows from the
other by just inverting left and right measurements on the left—right asymmetric
state (24). The right—hand side CH inequalities can be rewritten as:

P(KY K1) — P(K° K% 4 P(Kg, K°) + P(Kg, K1)
P(Kg,x)+ P(x, K1)

P(KY Kg)— P(K° K% + P(Kp, K° + P(K, Ks)
P(x, Ks) — P(Ky,, *)

<1, (51)

< 1.

The CH-like inequalities (49) and (51), actually incorporating the fair
sampling hypothesis, can be easily and equivalently rewritten as four—term
Wigner inequalities. By properly writing the single—side probabilities in (51),
the result can be put in the following form:

P(Kgs,K") < P(Ks,Ks)+ P(K°, K1)+ P(K° K"), (52)
P(KY Kg) < P(K°, K°) + P(Kp, K°) + P(Ks, Ks).
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By choosing T > 9.67g, as required by locality, the complex parameter

Rg of Eq. (25) turns out to be negligible, while |Ry| = O(1). By substituting
the QM predictions in the left—hand side CH inequalities (51), one easily finds:
2—R€RL+%|RL|2 <1 2+R€RL+%|RL|2 <1

24 |Re|? - 24 |Re|? 7

whose only difference is the sign affecting the linear term in Re Ry. According

(53)

to the sign of Re Ry, one of these two inequalities is violated if |Re Ry| >
3|Rr|?/4. The greatest violation occurs for a purely real value of Ry, |Rp| ~
0.56, for which one of the two ratios in Eq. (53) reaches the value 1.14. This
14 % violating effect predicted by QM opens up the possibility for a meaningful
Bell-type test with neutral kaons which could refute those LR models based
on the fair sampling hypothesis.

Values for the parameter Rj, satisfying Zm Rj;, = 0 and |Re Rp| = 0.56,
as required, are not difficult to obtain. Indeed, for kaon pairs from ¢ decays
and according to the values of the regeneration parameters 26)7 onhe can use
a thin beryllium regenerator 1.55 mm thick to prepare the state (21), which
then converts into the state (24) with the desired value of Rj, by propagating
in free—space up to 7'~ 11.1 75.

7.3 An attempt of genuine test 38, 41)

We conclude our review by discussing a proposal which does not assume hy-
potheses which go beyond the reality and locality requirements. In our opinion,
it represent an interesting attempt for a loophole—free test of LR vs QM with
neutral kaons.

Hardy’s proof without inequalities of Bell’s theorem 55) has been applied
in Ref. 38) to the non—maximally entangled state of Eqs. (24) and (25). This
considerably improved the analysis of Ref. 37) . In such an approach, alternative
measurements of strangeness or lifetime are considered, at time T, on each one
of the kaon pairs, according to the strategies for active measurement procedures
illustrated in Section 4. Hardy’s proof is then translated into an Eberhard

inequality A1)

, Which could discriminate between LR and QM conditionally on
the detection efficiencies for strangeness and lifetime measurements at disposal
in the actual test.

Let us first concentrate on the ‘non—locality without inequalities’ proof of

Ref. 38). Neglecting C P—violation and K;—Kg misidentification effects, from
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state (24) with Rg = 0 and R;, = —1 (called Hardy’s state) one obtains the
following QM predictions:

Pou(K°, K%)= ni/12, (54)
Pou(K°, Ki) = 0, (55)
Pou(Kr, K% = o, (56)
Pou(Ks, Ks) = 0, (57)

where 1 (7) is the overall efficiency for K° (K°) detection. We note that the
values Rg = 0 and Ry = —1 can be obtained by using, for instance, a beryllium
(carbon) regenerator with thickness d = 2.83 mm (d = 0.78 mm), a detection
time T' = 11.17s (T'= 11.375) and kaon pairs created at a ¢—factory (proton—
antiproton machine). It is found that the necessity to reproduce, under LR,
equalities (54)—(56) requires:

Pir(Ks,Ks) > Pur(K° K°) = nn/12 > 0, (58)

which contradicts Eq. (57). In principle, this allows for an ‘all-or—nothing’,
Hardy-like test of LR vs QM. In Ref. 38) it was concluded that, by requiring
a perfect discrimination between Kg and K, states, an experiment measuring
the joint probabilities of Eqgs. (54)—(57) closes the efficiency loophole even for
infinitesimal values of the strangeness detection efficiencies n and 7. However,
since K, and K g misidentifications (due to the finite value of I's/T'y, = 579) do
not permit an ideal lifetime measurement even when the detection efficiency 7,
for the kaon decay products is 100%, the original proposal must be reanalysed
paying attention to the inefficiencies involved in the real test A1),

Retaining the effects due to Ks—K7, misidentifications, for Hardy’s state
one obtains (see the Appendix of Ref. A1) for details):

Pou(K", K%)= /12, (59)
Pom(K° K) = 6.77x 10 "y, (60)
Pou(Kp,K°) = 6.77x10 *qn;, (61)
Pom(Ks, Ks) = 1.19x 107292, (62)

which replace the results of Eqgs. (54)—(57). In the standard Hardy’s proof of
non—locality 55)7 the probabilities corresponding to our (60), (61) and (62) are
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perfectly vanishing. In our case they are very small but not zero. Nevertheless,
this does not prevent us from deriving a contradiction between LR and QM.
Indeed, as proved in Ref. 56)7 the well known criterion of physical reality of
Einstein, Podolsky and Rosen 3) can be generalized to include predictions
made with almost certainty, as it is required in the present case due to the
nonvanishing values of probabilities (60)—(62).

According to this generalization, the following Eberhard inequality must

be used to demonstrate the incompatibility between LR and QM:

H= P(K?, K°) <1
" P(K°, Kp)+ P(Ks,Kg)+ P(Kp, K% + P(K°, Upis) + P(ULi, K°) —
(63)
Essentially, it is a different writing of the CH inequality:
P(Ks,K%) — P(Kg, K, P(K° K+ P(K" K
QE ( S ) ( S S)+ ( ; )+ ( ; S)<1 (64)

P(K, %) + P(x, K°) —

and the argument Ut;s refers to failures in lifetime detection. The QM expres-
sion for the probabilities containing lifetime undetection are:

1 _ 1
Pou(K®, ULie) = 577(1 — ). Pou(Uis, K°) = 577(1 — 7). (65)

Note that the use of an inequality 57) allows for deviations, existing in real
experiments, in the values of Rg and Ry, required to prepare Hardy’s state and,
in addition, takes care of the difficulties associated to ‘almost null’ measure-
ments, as is the case of probabilities (60)—(62). Both previous inequalities are
actually derivable from LR for any value of Rg and Rj. However, Hardy’s proof
leads to inequality (63) only for Hardy’s state (Rs = 0 and R, = —1). It is
important to stress that the previous Eberhard and CH inequalities have been
obtained without invoking supplementary assumptions on undetected events.
They are both genuine Bell inequalities and provide the same restrictions on
the efficiencies 7, 7 and 7, required for a detection loophole free experiment.
In order to discuss the feasibility of such an experiment, let us start
considering a few ideal cases. Assume first that perfect discrimination between
Kg and K, were always possible (5, = 1 and p;, = ps = 1; see appendix of
Ref. 41)); one could then make a conclusive test of LR for any nonvanishing
values of  and 7: Hg’M:pL:pszl — 00, V1,7 # 0. In a second ideal case with
no undetected events, i. e. with 7 =7 = n, = 1, the inequalities are strongly
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Figure 1: The four curves (corresponding to n, = 1, n, = 0.99, n, = 0.98 and
1 = 0.97) provide the values of n and 7 for which Hom = Qqm = 1 using
Hardy’s state. QM wviolates inequalities (63) and (64) for values of 1 and 7
situated above the corresponding curve.

violated by QM, Hgi/[ﬁ:"*zl ~ 60.0 and Qg}ﬁ:"’zl ~ 1.25, even if one allows
for unavoidable K¢ and K misidentifications. Finally, assuming that only
the detection efficiency of kaon decay products is ideal (n, = 1), for n = 7
(n = 71/2) Eberhard and CH inequalities are contradicted by QM whenever
n > 0.023 (n > 0.017).

Let us now consider more realistic situations with small and possibly
achievable values of  and 7. This implies that we have to consider large
decay—product detection efficiencies such as n, = 0.97, 0.98, 0.99 and, ideally,
1. For each 7., the values of n and 7 that permit a detection loophole free
test (Houm, Qqm > 1) lie above the corresponding curve plotted in Fig. 1. As
expected, when 7, decreases, the region of n and 5 values which permits a
conclusive test diminishes and larger values of i and 7 are required.
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Note, however, that the strangeness detection efficiencies required for a
conclusive test of LR vs QM with neutral kaons are considerably smaller than
the limit (7o = 0.67) deduced by Eberhard 22) for non—maximally entangled
photon states.

8 Conclusions

A series of proposals aiming to perform Bell inequality tests with entangled
neutral kaon pairs has been reviewed. The relativistic velocities of these kaons
and their strong interactions seem to offer the possibility of simultaneously
closing the so—called locality and detection loopholes which affect analogous
experiments performed with photons and ions. The real situation, however, is
not a simple one.

All the proposal we discussed suffer from difficulties coming from the fact
that the number of different complementary measurements on neutral kaons
one can use for a Bell-test is reduced. Essentially, only strangeness and life-
time measurements are possible. The situation can be improved if the well
known effects of kaon regeneration are taken into account. On the one hand,
this amounts to an effective increase in the number of non—compatible mea-
surements one can perform. On the other hand, by changing or removing the
regenerators, the active presence of the experimenter is guaranteed. A final
difficulty could still remain: the rather low efficiency of some of these neutral
kaon measurements. A detailed analysis suggests that a Bell-test with neutral
kaons free from the detection loophole would require a few % strangeness de-
tection efficiencies and very high efficiencies for the detection of the kaon decay
products.
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