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The beam density in storage rings like SPEAR (or PEP) at SLAC is high enough that a significant amount of
synchrotron radiation can be emitted coherently if the beam density is appropriately modulated. Modulation can
occur, for example, by passing the beam through laser light of frequency w along a phase-matched orbit (as in an
undulator). The device will enhance radiation by several decades even at frequencies greater than w, (unlike a single-
particle undulator), and would greatly improve the performance of an earlier proposed X-ray laser to be pumped by

synchrotron radiation.

I INTRODUCTION

When a relativistic electron passes through a
magnetic field, it can emit electromagnetic radiation
which is often called synchrotron radiation. In
most cases of interest, the intensity spectrum of this
radiation can be calculated classically;! the agree-
ment between the so calculated spectrum and
experimental observation is excellent.}

When not one, but N relativistic electrons pass
through the magnetic field, then all N of them can
emit electromagnetic radiation. In most cases of
interest, the intensity spectrum of the total radiation
produced by all N electrons is simply N times the
intensity spectrum of the radiation emitted by a
single electron. This demonstrates that in such a
calculation of intensity it is usually sufficient to
add the radiation emitted by the several electrons
incoherently. All intensity spectra of synchrotron
radiation emitted by the various storage rings have
been calculated in this mannert and are in agree-
ment with observation.

The purpose of this note is to show that it is now
possible to arrange things so that the synchrotron
radiation emitted by many electrons in a rela-
tivistic beam will add coherently. If that is done,
then calculations based on the usual simple in-
coherent addition formula will give incorrect

+ For example, H. Winick, SLAC-PUB-1439, June 1974.
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results, and for wavelengths in the optical and X-
ray region the true radiation intensity will be several
decades higher than the result calculated under the
usual assumption that intensities can be added
incoherently. This higher intensity would be helpful
in all experiments in which higher counting rates
are desirable, but it is crucial for those experiments
in which a certain threshold photon intensity is
required. For these the higher intensity can make
the difference between an impossible and a feasible
experiment. An experiment of the latter type
is the suggested method of coherent X-ray pro-
duction by pumping a suitable target with synchro-
tron radiation?: When synchrotron radiation is
produced incoherently (between electrons) in the
SPEAR storage ring at Stanford, then the photon
intensity is close to the required critical value. But
with the enhancement due to coherent (by several
electrons)} production, the photon intensity can be
much more than that critical value.?

This intensity enhancement will occur if two
conditions are fulfilled. First, the density of the
circulating relativistic particles has to be high
enough for coherence effects to be significant.

1 We do not mean here that all emitted photons are coherent
(i.e., in phase) with each other as in a laser. We mean that
several electrons emit essentially in phase with each other
thereby mutually enhancing the radiation emitted; this radi-
ation may have a wide frequency spectrum.
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Second, the density variation along the particle
beam must have short-wavelength components.
We will show that in storage rings like SPEAR, the
beam density in the interaction region is high
enough to meet the first condition. The second
condition can also be fulfilled by letting the beam
move along an oscillating path while interacting
with a suitable laser beam of frequency w, as in an
undulator. The device is not a single-particle un-
dulator, however, because it will radiate at several
frequencies, and enhance the synchrotron radiation
spectrum even at frequencies higher than .

In Section II of this paper we discuss coherent
radiation and in Section III we discuss realization
of coherent radiation in a modulated beam.

II' COHERENT RADIATION BY DENSE
ELECTRON BEAMS

To avoid unessential complications, we assume
that only one beam is circulating in the ring. We
assume that the beam circulates in the (x, z) plane.
The z axis is chosen to be tangential to the beam
velocity at the point of interest, and the x axis is
radial at that point. The x, y, z form a right-
handed coordinate frame. We assume that the
beam consists of bunches which, in the laboratory
rest frame K , have a length [, width q, and height b.
At first we assume that the electron density within
the bunch is uniform, and that it abruptly falls to
zero at the edges of the bunches. Although this
last assumption is unrealistic, it will not seriously
affect our results, and later we will modify it. Let
the number of electrons in the bunch be N.

As measured in the laboratory frame K;, the
electron density inside the bunch is

_N
T abl

If the bunch is moving with a velocity v along z in
the laboratory, then the electron density in the
bunch, as measured in the average restframe of the
bunch, K’, will be

p 1

p=py Y, 2

where y = [1 — (v?/c*)]”"/? and quantities mea-
sured in K’ are denoted by a prime.

Imagine an electron gas of density p’ located
inside a sphere of radius r’ and moving with average
velocity v = 0 as measured in K'. If the electrons

A

in this gas undergo acceleration along the X

direction, the electrons will radiate. Consider that
part of the radiation which has wavelength A’
in K'. If ¥ < A/8, then at all points in space the
electric and magnetic fields emitted by any one
electron will increase (not decrease) the absolute
value of the electric and magnetic fields produced
by the other electrons located within the sphere,
because the largest distance between any two
electrons inside the sphere is < 1'/4. In other words,
all electrons within the sphere will radiate essen-
tially coherently. When r = A'/8, then the number
of these electrons is

T

17113
=382 "7 A)°. 3

’ 47[ N3
n=p'—=)

As an example, let us assume that N = 7- 10!,
I=3cm,a=3-10"%cm, b = 10”3 cm. These are
parameters similar to those which are expected for
a single beam in the interaction region of SPEAR
at Stanford. Then p = 7.78-10'° cm ™3 and n =
6.36- 103y~ ! (1'{cm})3, where A'{cm]} is the wave-
length measured in centimeters. At y = 10* and
A =210"2cm, n = 1.5-10* Thus an electron gas
of n = 5-10* electrons confined inside a sphere of
radius ' = 1'/8 would emit radiation of wave-
length in the laboratory down to A~ Ay~ ! =
2-107° cm coherently, with an intensity which is
n? times as high as that emitted by one single
electron, and n times higher than if all electrons-
radiated incoherently. Therefore, under these cir-
cumstances the intensity will be enhanced due to
coherence by at least a factor of about 1.5 - 10*, for
wavelengths down to A ~ 2- 107 ¢ cm as measured
in the laboratory.

Assume for a moment that as seen from K’ the
beam in the interaction region of the storage ring
consists of a series of spheres of radius r < 1'/8,
filled with an electron gas of density p’. If the
position of these spheres along the orbit is random,
then the radiation emitted by all the spheres can
be added incoherently. On the other hand, if the
position of the various spheres follows some regular
pattern, then there will be directions in which the
radiation emitted by several spheres will add co-
herently, resulting in a “coherence maximum,” i.e.
an intensity peak in that direction. For example,
suppose that the spheres are located at points 0, d’,
+2d, +£3d,..., along an infinite straight line.
Assume also, that ' < A, that d > r/, that each
sphere oscillates harmonically with a frequency
o' = 2nc/A’ along x and that in K’ their velocity
component along x satisfies v, < 1. Then each
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sphere will emit predominantly an electromagnetic
wave of wavelength A'. If all the spheres oscillate
in phase in K, all the waves emitted by them
will add coherently in the direction perpen-
dicular to the straight line. In addition, the total
radiated intensity will have coherence maxima
of integer order M > 1 in directions which make
an angle 0, (measured in K') with the straight line,
when cos 0y, = MA'/d’ < 1. If the straight string of
harmonically oscillating spheres oscillates in such
a manner that viewed from K’ the phase of oscil-
lation is not the same for all spheres at any one
moment, but the phase travels along the string with
a constant velocity v’, then waves emitted by each
sphere will add coherently at those angles 6}, for
which cos 0y = c/v' + MA'/d" < 1. In fact, the
radiation pattern produced by such a string as a
function of 6’ will be just that which would be pro-
duced by a grating of slit spacing d’ illuminated by
a plane wave incident at an angle 8y = arc sin ¢/v'
from the normal.

At present, it is not possible to produce an elec-
tron beam in which the electrons are bunched in a
series of spheres-as just described. But it is possible
to approximate that situation. To see how, let us
restate the above simple results in another language:

Consider a bunch of electrons, each of which is on
the average at rest in K'. The electrons are all
located inside a rectangular volume with length
I', width @', and height b". As a function of x" and y/,
the density of electrons is constant inside this
volume, and a’, b’ < 2. As a function of z/, the
density of electrons inside the volume is seen from
K’ to be

P() = 3 piges. 4
K

Reality requires pi, = p'*,. A plane electro-
magnetic wave is incident on the electrons. The
phase velocity of the wave is v’ along the axis of the
electron bunch. The electric field E, is polarized
along %, and

E.=A cos[w’(t’ - g)] )

Assume that in K’ the electrons are nonrelativistic
at all times. Then only electric forces act on them,
and they will oscillate harmonically with frequency
o'. Each electron will then radiate according to the
usual nonrelativistic expression, emitting a wave of
frequency w’ with an angular distribution given by
the well known non-relativistic form factor (¢, ¢"),

when the radiation is emitted in a direction which
makes an angle 0" and ¢’ with the z' and x’ axis
respectively. The total radiated field will then also
oscillate with frequency «'. Its amplitude at some
point that is at a distance R’ > I’ from the electron
bunch in the direction (', ¢’), is obtained by inte-
grating over the contributions emitted by all
electrons:

1
4,0.0) = . [ 21020 @)
,

X cos[w’(t’ - Z—,)]é[t’ - écos 0’]
v c

1 e
= R [0, 9" Z P fdz'e’kfz
K; I

X cosI:ca’(COS v _ L)z']. (6)
c v

The delta function in the first integral insures that
the contribution from the individual electrons is
added with the correct phase. An overall multi-
plicative constant is of no interest, and is absorbed
into (6, ¢’). When [' is large, then due to the
oscillating integrand, the value of the integral will
be small, unless

+ =k, — K, o)
where
Ky = Zcosd, (7a)
k=2 (7b)
v

The physical interpretation of Eq. (7) is transparent:
an interaction of the initial wave of wave number
k! (measured along the z axis) with a periodic
structure of wavenumber +k; along z, induces a
change in wave number by +k;, stepping up (or
down) the wavenumber k; by that amount. The
k’; occur with both signs as required by the reality
of p'.

Corresponding to each Fourier component in
Eq. (4) there is one ¢ for which the intensity is a
maximum. For an infinitely long periodic p'(z’), the
position of these maxima is fixed if the periodicity
is left unchanged. The shape of the p'(z") merely
changes the amplitude of the various Fourier
components and thus of the corresponding intensity
maximum. In the special case when p’(z) has the
shape of a series of delta function-like barriers
located at z’ = 0, +d’, +2d/, ..., then the Fourier
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components in Eq. (6) have precisely the amplitudes
proportional to the various intensity maxima
produced by a slit grating. The constant term gives
the zeroth-order maximum, the next Fourier
component the first order maximum, etc. When /' is
not infinite and is decreased, then the value of the
integral is small and increasing in the neighborhood
of the maxima: the maxima get broader. An in-
crease in the width of the barriers clearly cannot
change the position of the maxima unless the
periodicity is changed. Thus the string of oscillating
spheres discussed earlier is a simple special case
of the present one. When |k;| > w'/c, the wave
is virtual, and cannot propagate. No Fourier com-
ponent with {k}| > 2(w’/c) can ever contribute
to the radiation pattern for large R, since by
Eqgs. (7) |kil, |k} < o'fc.

Consider now the case when the electron bunch,
as seen from the laboratory frame K, , is moving
along z with velocity v in a magnetic field which
points along the y axis. Transforming to K’, the
magnetic field appears as a (virtual) electromag-
netic field moving with velocity —uv, the electric
and magnetic fields being polarized along £’ and
respectively. This field forces the electrons to under-
go a complicated motion* in K’ and radiate. We
focus our attention on the motion of one electron
parallel to the x axis and Fourier analyze it. Con-
sider that Fourier component which has frequency
' and whose wave number along z is ki. We
evaluate the radiation due to this Fourier com-
ponent of the electron motion, then evaluate it for
all electrons, and sum over all electrons. The re-
sultant radiation will also have frequency ' and its
amplitude as a function of & and ¢’ can be cal-
culated as in Egs. (6) and (7). We find that the
amplitude will have maxima at those values of ¢
which satisfy Eq. (7). The oscillation velocity v,
of the electrons may also have a Fourier com-
ponent with @' and k!. Adding the two, one gets
the total radiation due to the Fourier components
with @’ and k;. Summation over all i gives the total
radiation.t ’

Consider again the radiation due to the Fourier
component with o’ and k; only. If the electron bunch
is infinitely long, then the intensity maxima will be
infinitely sharp. In general, the fwhm angular
width of the intensity maxima will be of order

+ A Lorentz transformation of this spectrum into K, in
the special case when p(z) is a constant in z, and when the
magnetic field is uniform in K, gives the usual synchrotron
radiation spectrum.

A#' = X'/l The amplitude at the maximum will be
N times the amplitude produced by one electron
only. Therefore, the intensity at the maximum will
be

I=N, ®)

where I, is the intensity due to one electron only.
If this radiation were spread out over the com-
plete 4z solid angle, then it would have everywhere
a value (setting sin &' = 1 for purposes of this esti-
mate)

> gy 2msing 1A N
I=N?I, p A0—4N11l,—n/1,11, )
where n = 7NA'/l', is the number of electrons per
half wavelength A'/2 in the bunch. This shows that
the total intensity can be obtained approximately
by adding coherently the amplitudes due to all the
electrons within sections of length 1'/2, and then
summing over every second such section.

We have thus obtained in more precise terms the
result expected on the basis of our earlier simple-
minded argument related to slit gratings. If the
0'(z) has a piece in which high- and low-density
regions of dimension & A'/2 alternate, then all the
electrons within any one of the dense regions radiate
approximately coherently.

Note that coherence between electrons within
one dense region increases the total radiated in-
tensity, and is of central interest in this paper. On
the other hand, coherence between the several
regularly placed dense regions does not increase
the total radiated intensity, it merely confines the
radiation to the vicinity of the intensity maxima.
This may become important if one wishes to con-
fine the radiation within narrow angles or suppress
certain frequencies in K, but is of less interest to
us here.

III MODULATION OF THE BEAM
DENSITY

We will describe the electron motion in K;. The
electron moves along the z axis on the average, and
describes oscillations around it in the (x, z) plane,
as shown in Figure 1. If y > 1, then the electron
speed is close to ¢, and the velocity components are

v, and v, ~c(l — vZ/c*)!2 (10)

We assume that |v, | < |v,| at all times and that the
amplitude A, and wavelength A, of the wavy path
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FIGURE 1 An electron travels (on the average) along the
z axis, and oscillates in the (x, z) plane. Its path resembles a
sine wave curve of amplitude 4, and wavelength 1, as shown
in the figure by the solid wavy line. The slope of the path at z
is tg a(z). The direction of the electric field E and magnetic
field B are shown at three positions of the electron. The longi-
tudinal and transverse components of the electromagnetic
force F acting on the electron are F|; and F,. The electric and
magnetic forces Fy and Fy are shown only for one position.

satisfy 4, € 1,. We may then approximate one
half wavelength of the path x(z) by a power series,
dropping third and higher order terms in z. In
this approximation there is no difference between a
section of a parabola, a circle, or one half wave-
length of a sine wave. Therefore, in this approxi-
mation, we may produce such a path by producing
a path of successive circular segments, for example,
by placing a series of dipole magnets along the z
axis, each Ae/2 long, and each producing a mag-
netic field alternately in the +y or —y direction.
For a sinusoidal path, the slope of the x(z) path is

2 2
A, ;cosl—fz (11)

d
a(z) = - x(2)
whose maximum value is o, = 21A4,/4,.

An electromagnetic wave travels along the z
axis. The electric vector E has amplitude E,, and
is polarized along the x axis (see Figure 1). Its
frequency is w, and its wavelength in vacuum
A = 2xc/w. The electric force is always along %,
while the magnetic force can have both an x and a
z component. Parametrize the position of the elec-
tron with the z coordinate, and assume that

z & Bt — to) + Zo (12)

is a good approximation, where #, is the average
(over t) of v,. The total electromagnetic force

acting on an electron at z, is

F(z) = eEo[ (1 - z) + z%]cos[ (vl - %)
+ (U(to - v—) + (po] (13)

Its longitudinal and transverse components (with
respect to the instantaneous electron velocity) are:

F, oldz| + F,|dz|

Fy= |dz]|
) 2
= eEo[(l - %)a + %]cos[(ﬁ9 — TTE)Z
Zo
+ w(to - ﬁ_) + <Po] (14a)
Fo- F,|dz| — F,a|dz|
L 1dz|
o, Uy o 2n
-eal(1-2) el 7)
+ a)(to — U—") + (po] (14b)

We neglect F, because for small a it is proportional
to 2. Due to the action of F |» the energy gain of
the electron is

zg+ L zo+ L 275

zZ9 e

et el
ofe3) o]

ol el -2)
cofn=5) o] a3

If A, satisfies

A, —217:[ (l—l)]ﬂ:,l(é—l)—l, (16)
b, ¢ B,



230 P. L. CSONKA

then the first cosine in the curly bracket of Eq. (15)
will be independent of z, and its integral mono-
tonically increases with z. The second cosine in
the curly bracket will oscillate, so that its average
contribution will be small compared with that of
the first, and we therefore neglect it. For small ,
U, ~ v, at all times, so we set approximately
1 —1#,,+ v, = 1, and obtain

W = eEy Loy, cos @, 17)
where
s = 27A,
M = A
and

z
®, = w(to - 5_0) + @
is the phase of the electric field at the time t, when
the electron is injected into the wave at position
zo. When Eq. (12) holds and oy, > y~ ', Eq. (16)
can be rewritten as

A, &Aooy (16a)

If the wavy path of the electron is produced by a
section-wise stationary magnetic field B whose
direction is the same in every second section, as
described above, then the radius of orbit curvature
for relativistic electrons is R = pc/eB in each
section, where e and p are the electron charge and
momentum. When a,,(z) < 1, simple geometrical
considerations give

4, A
Lo Le 1
=, (18)

and together with Eq. (16)
oy = (nB{kilogauss}i,{cm}/3p)!/3, (19)

where each quantity is to be measured in the units
which follow it in curly brackets.

Equation (17) shows that the energy gained by
an electron varies linearly with L, and, therefore
is a monotonic function of the time ¢. The energy
gain W does not oscillate as it would if the plane
wave were incident on an electron moving along
a straight line instead of an oscillating path. The
value of W(L) depends on ®@,. The electron con-
tinuously gains energy if cos ®, > 0; otherwise its
energy keeps decreasing, except when cos @, = 0,
in which case its energy is unchanged. As a result,
electrons lying within every second short section

A/2 long will start moving parallel to z with respect
to the center of mass of the electron bunch, while
the rest of the electrons will start moving in the
opposite direction. This suggests the possibility of
bunching,

To estimate the capabilities of this method, let us
consider-an example. The electron energy is 5 GeV,
corresponding to y = 10*. The laser delivers light
of wavelength A = 10™% cm in 100-J bursts lasting
1.6 - 10~ 19 sec each. The light focuses on an ellip-
tical spot with horizontal and vertical diameters
respectivelya, = 6-10"'cm,and b, = 3-10" ' cm.
Then due to diffraction, the beam cross section of
the laser beam will start changing appreciably at
about 107 cm from the focus in either direction.
The maximum electric force exerted on an electron
by the laser light near the focus will be eE, =
1.41-107 eV/em. Choose ay = 5-1073, which
requires A, = 3.8 cm, 4, = 3-10"% cm, and B =
12.4 kG. The bore in the magnet must have
horizontal and vertical diameter az > a,, by > b,.
Equation (17) now becomes

W{MeV} = 5- L{m}cos . (20)

When the magnet length is L = 3 m, then electrons
with cos @, = 1 will gain 33.3 MeV energy from
the laser beam during one passage through the
device. We call this device the “energy modulator.”

As a result, these electrons will tend to move
ahead of the rest of the electrons. The increase in
their velocity is Av ~ cAy/y® = 2 cm/sec, so that
in order to move ahead a distance of /2, they would
have to travel about 2.5- 1073 sec, or cover a dis-
tance of 7.5 km, an unreasonable distance. On the
other hand, if the electrons were to be led along a
curved path instead of a straight one after they
emerge from the interaction region with the laser
beam, then bunching would soon result. Indeed, in
a uniform magnetic field the electrons travels along
a circle of radius R ~ y, those with higher y would
move with velocity v & ¢ along a circle with larger
radius, so they would tend to fall behind, while
those with smaller y would move ahead. In this
manner, bunches of dimension A/2 would result
almost instantly for even small Ay/y and originally
monoenergetic electrons. In practice the energy
spread A&, of the original electrons will wash out
any bunching unless

W > Aé&,. @1

Assume that at time ¢ = 0 all electrons are rela-
tivistic, are located at the same point A, have
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velocities which are all parallel to each other, and
perpendicular to the uniform, constant magnetic
field in which the electrons are moving. During a
time interval At, all electrons will travel along
circular arcs of length [ =~ cAt. The radii of the
various arcs are R; ~ y; '. For the ith electron
y; = 7 + Ay;, where 7 is the average electron
energy. It is shown in Appendix 2 that when
Ay;/y <1, and R; > cAt, then during the time
At, the electron will fall behind an electron with
average energy by a distance.

i 2 1 A 2
Alizll<—lAy') =l—<q)7y), Q1)

4\R y 4
where [ and R refer to average-energy electrons.

When the parameters are chosen as before
Eq. (20), then R = 1.21-10° c¢m, and while travel-
ling a distance | = 4,, ¢ ~ 2a,, = 1073 rad. After
passing through the laser field Ay,/y < 6.66-107>.
Assume Ay;/y = 6.7-1073 for some electron, and
let that electron travel a distance | = 4, in this
magnetic field. Equation (21) shows that for this
electron Al; ~ 1.16 - 10~ '° ¢cm. Since there are 79
sections of length A, in the energy modylator,
during one passage through all of them the electron
would fall behind by Al,~92-107° cm, a
negligible distance on the scale of 4,. Actually, the
Al is lower, since in reality the electrons enter the
energy modulator with Ay; = 0, and can acquire
the here-assumed Ay; only the instant before
exiting. Clearly, no significant bunching will be
caused by the energy modulator.

To induce bunching, the beam is led through a
section referred to in the following as the “buncher.”
Our aim here is to demonstrate feasibility, as
opposed to selecting the parameters best suited for
any particular ring (such as SPEAR or PEP).
Therefore, we discuss a particularly simple buncher:
constant and section-wise uniform magnetic field
whose direction is perpendicular to the velocity
of the entering electrons. The magnitude B of the
magnetic field is the same in all sections, but its
direction is reversed between adjacent sections.
To simplify our discussion, we assume that there
are only two sections each 6.9 m long, and that B
is relatively low; 1.24 kG, implying R = 1.24 - 10*
cm. Now I[/R =~ 5.7-1072, so that substitution in
Eq. (21) gives Al ~ 210™% cm = A,/4. As we will
see, this is more than sufficient for our purposes.

In practice, one would like to reduce R. That can
be done by increasing B, but at higher B values,
synchrotron radiation is more intense and may
interfere with the bunching process (see below).

For such large B values this effect has to be taken
into account, requiring a somewhat more sophisti-
cated calculation which we do not intend to carry
out here.

Next, we calculate the beam density distribution
after bunching. From Egs. (17) and (21), when
t, is so chosen that wt, + ¢, = 0, one finds

A~ LY ~2(eEq Lity)* cos? = z
~a\R b o L20%Mm 5, 0

= Al, cos? 09 Zo. 22)
Define the point zy, = (c/w)(n/4), and write
Zo = Zgo + Azy. For zy <€ 4,

w 1 low
—zox - —==—A
5ZZO 2 2172 Zo+ (23)

cos?

While passing through the buncher, all electrons
in the vicinity of z,, are deplaced by 3Al,, and in
addition, by an amount which is proportional, but
has opposite sign, to Az,. Therefore, apart from
an overall “background shift” of $Al,, all electrons
in the vicinity of z,, are moved towards zy,. In
fact, if

Alg=—=1, 24
2D,

then all electrons in the vicinity of z,, will be con-
centrated at z,,, within the accuracy of our
approximation, i.e., up to a term

2w A 3 4 Azo\?

30,570 55e\3 A, )
Thus, all electrons for which Azy/A, < 2.7-1072
will be concentrated within a distance 10~ 34, of
Zoo, resulting in a 27-fold increase in density there.
Similarly, all electrons with Azy/iy < 5.5-1072,
will congregate to within a distance 10~ %4, of z¢,,
implying a 5.5-fold density increase.

One consequence of the nonlinear density in-
crease near z,, is that even if the initial beam
density is low, after bunching it may become high
enough for significant coherent effects to appear.
The achievable densities depend on the properties
of the buncher. A full study of those properties
cannot be carried out in this paper. Nevertheless, it
should be recognized that Eq. (21) is not universally
true; different bunchers would lead to different
equations. Adjustment of the buncher will change
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the emitted spectrum, a great convenience in
actual applications..

A second consequence of the nonlinear density
increase near z,, is that the beam density will
include Fourier components with wavelength
A <€ Aq. Therefore, as the beam passes through a
magnetic field, significant coherent synchrotron
radiation will be emitted with wavelength 4 < A,
even for Ay/A of the order of 10? or 10°.

So far we have neglected the reaction of the emit-
ted synchrotron radiation photons on the electron
beam. This reaction will tend to counteract the
development of bunches. The question arises: Will
it noticeably reduce the effectiveness of the bunch-
ing mechanism here proposed? First of all, note
that it cannot have any effect on the electrons in the
energy modulator, since we have shown that no
significant bunching occurs in that device, so that
coherent emission of synchrotron radiation cannot
take place there. One can suppress such radiation
from the buncher, by bunching a low-density (as
in a high-beta section) beam. Furthermore, syn-
chrotron radiation is proportional to R™2 so
that it can be further reduced by increasing R.
After the buncher, the beam cross section is re-
duced (as in a low-beta section) and the particles
enter the radiator section where coherent syn-
chrotron radiation is emitted. Here the reaction
force due to coherently emitted photons will be
unavoidably high. Nevertheless, debunching can,
in principle, be made arbitrarily small, since by
Eq. (21), Al will be arbitrarily small for any Ay if
/R is small enough.

As an example, let the magnetic field in the radia-
tor section be constant and sectionwise homo-
geneous, with magnitude B, its direction being
reversed between neighboring sections.f Let each
section be 1 cm long, and choose y = 104, B =
10 kG, so that R =15 m and I/R = 6.7-10"%
Assume that the horizontal and vertical beam
diameters are a = 3-1072 cm, and b = 1073 cm,
respectively, and p = 7.8-10'> cm™>. Consider
radiation with 1 = 10”®cm, i.e. with A’ = 10~ 2 cm.
The number of electrons within a sphere of radius
A'/8 around zy,, after bunching will be

n = an(/8)%py~'-58 = 2.8-10°;(A = 10~ °cm),
(2%)

where 5.8 is the increase in density due to bunching,
as discussed after Eq. (24). Calculating in the same

T At the present time, there is no magnet in the low beta
section of SPEAR but one could be placed there.

way,n & 5.9-10*for A = 107° cm,and n =~ 5 - 10°
for A = 10™* cm. The beam density has no Fourier
components with A > 10”* cm and no coherence
effects can occur for such wave lengths. Clearly, the
main contribution to the reactive force (due to
the emission of photons) will come from photons
with 4 ~ 10™* eV. In Appendix 1, an expression is
given for an upper limit on this force: 5 - 10° times
the force caused by photons with wavelengths
107% cm < A < 10™% cm, radiated noncoherently.
The spectrum of noncoherent synchrotron radia-
tion emitted by 5 GeV photons in a 10 kG magnetic
field shows thatt force to be about 1073 times the
total reactive force acting on the electrons. The
total reactive force in SPEAR causes approxi-
mately 1 MeV energy loss per turn. Thus, due to
coherent emission, the reactive force will be less
than about 5-10°- 1072 = 5-10* times the usual
force; the electrons will lose less than 0.5 MeV/em
in the radiator. Even if the electrons travel a total
of 30 cm in the radiator, their final change in energy
due to the reaction force will cause A, y/y < 3- 1073,
and from Eq. (21) Al <2.7-107% cm, a negligible
amount. The point to remember is that Al depends
sensitively on the geometry of the path and for
suitably chosen orbits it can be very small.

In practice, the electrons in a storage ring have a
non-zero energy spread Aé,. In SPEAR, at 5 GeV,
the (rms) A&, < 6 MeV, considerably less than
W given by Eq. (20). Thus, we expect a background
density term of less than 50 %, (of the total density)
caused by this spread. It would be desirable to
calculate more carefully the collective effects
exerted by the electrons on the beam, but here we
will not do so.

The mechanism by which an electron gains (or
loses) energy in the energy modulator is precisely
that which is employed in the so-called “undula-
tor” devices. These play an important role in elec-
tronics® and could in principle be used to generate
coherent (between photons) radiation, or to build
accelerators.®” They have so far not been found
useful in connection with high-energy electrons,
because at this time only relatively small energy
gain (or loss) Ay/y can be imparted in this manner
to high-energy electrons. The device suggested in
this paper does not require high |Ay/y|; or very
high power lasers.} It makes use of the short-

T See Winick, SLAC-1439, June, 1974

T Large lasers today are able to produce bursts whose energy
is at least two orders of magnitude higher than the value used
here.
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wavelength coherent waves available in lasers to
induce the small-scale beam-density variations
necessary for coherent enhancement of the radia-
tion emitted by high-energy electrons. The in-
creased radiation emitted is caused by these short
scale beam density variations. By contrast, in
single-particle undulators, for fixed 4,, the wave
length A of the enhanced radiation is always equal
to the wave length A, of the electromagnetic
wave in the undulatort (except when the electron
orbit is not sinusoidal). The device described

in this paper is capable of enhancing the radiation
intensity by several decades, even for 1 <€ 4,. At
the end of Ref (8), this device was already alluded
to.f
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Appendix 1

The following simple argument gives an upper
limit on the force exerted by the emitted synchro-
tron-radiation photons on the emitting electron
beam.

First consider a single particle of charge e
accelerating in K'. By energy conservation, the
energy AW, of all photons emitted by it is equal to
AW, the kinetic energy lost by the emitting particle.
Since AW, ~ €2,

AW, ~ 2. (A1-1)

Next, consider N particles each with charge e,
all located within a sphere of radius ' < 4. The
kinetic energy lost by the 1st particle, A; W,, is the
sum of N terms: A, ; W, is due to the field of photons
emitted by the 1st particle itself, A,, W, is caused
by the field emitted by the 2nd particle, ..., Ay W,
caused by the Nth particle. Similarly, the kinetic
energy lost by the kth particle as a result of emitting
synchrotron radiation will be (in analogous no-
tation)

N
AkW; = ZAkiVVr’

i=1

(A1-2)
and the total energy loss of all the particles

N
AtotVVr = Z Akiw/;--

k,i=1

(A1-3)

T It is possible to imagine a device with a short, almost delta-
function like magnetic field, which would then necessarily have
short wavelength components, but its very shortness would make
it inefficient from many points of view.

In the limit when r’ — 0, the field due to any particle
at the position of any other particle will obviously
be equal: A W, = A;; W, = AW, for all k, i, l and j,
so that

AW, > N?AW, ~ (Ne)?, (Al-4)

AW, > NAW, ~ Neé2. (A1-5)

Equation (A1-4) was expected, since when
r' — 0, all particles are located at the same point,
the collection of N particles can be considered to be
a single particle of charge Ne.

Equation (A1-5) gives an upper limit on the
kinetic energy lost by the kth particle, caused by
the emission of synchrotron radiation photons by
the whole collection of particles. The limit is reached
when ' — 0, and all fields are in phase. In practice,
r'" # 0, the fields are not all in phase, and

AW, < NAW,. (A1-6)
The energy AW, is known. An accurate calculation
of A, W, for all k would be a tedious task, but in this
paper we do not need it; a knowledge of the upper
limit stated by Eq. (A1-6) will suffice.

} After submission of this paper for publication, I learned
that Skrinsky and Vinokurov made calculations along similar
lines, but seemed to have obtained different results. I did not
yet have the opportunity to read their work: Skrinsky and
Vinokurov, “The Optical Klystron Using Ultra Relativistic
Electrons,” Novosibirsk, 1977.
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Appendix 2

One should resist the temptation of claiming that
after one of the electrons travelled a distance [, the
relative displacement between electrons, Al, will
satisfy Al/l = AR/R = Ay/y. Actually, Al can
be calculated as follows: Let the first and second
electron have y, > 1, and y, > 1, respectively. In a
uniform magnetic field, both electrons will travel
along circles with radius R; and R, respectively.
Clearly, R,/R, = y,/y,. Let both electrons start
out from the same point A4 at time ¢t = 0, moving
parallel to each other with velocities v, and v,
respectively. After a time At, the first electron will
have travelled to point B, along a circular arc of
length [;. The arc spans an angle ¢, = I,/R,, as
seen from the center of the circle. During the same
time, the second electron will travel to point C
along a circular arc of essentially the same length
(since v; = v, = c), spanning an angle ¢, =~ [;/R,
as seen from the center of that circle. Now ¢, /¢, =
Y2/71- At time At, the angle between the momenta
of the two electrons will be Ap = ¢, — @,. The
angle between the vectors AB and AC is Ag,.
Denote by h, the length of AB, and by h, that of AC.
When ¢, <1 and ¢, < 1, one may write up to
second order in ¢ inclusive:

h = (1 — 30?);
and, since l; = [,

Ah=h, —

i=12  (A2-1)

hy = LizA@(¢ + 3A@). (A2-2)

Denote the perpendicular projection of point B
onto the arc AC by D. Let D’ be the intersection
point of the straight line going through B and D,
with the straight line AC. We want to calculate the
distance CD. For small ¢,, this distance is equal
to the distance CD’, up to terms of order ¢3. Thus,

for small ¢@,, it suffices to evaluate CD'. Let E be
the perpendicular projection of B onto the straight
line AC. The distance CD’ is the sum of two terms.
The first is the distance D'E, the second is the dis-
tance EC. To third order in angles.
D'E ~ hy30,Ap,
EC ~ hi(Ap)? — Ah,
so that with Eq. (A2-2), to lowest order

(A2-3)
(A2-4)

A 2
D'C ~ |, XAp)? = qu),%((pl %) : (A2-5)
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