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Abstract: Quantum neurobiology is concerned with potential quantum effects operating in the
brain and the application of quantum information science to neuroscience problems, the latter of
which is the main focus of the current paper. The human brain is fundamentally a multiscalar
problem, with complex behavior spanning nine orders of magnitude-scale tiers from the atomic and
cellular level to brain networks and the central nervous system. In this review, we discuss a new
generation of bio-inspired quantum technologies in the emerging field of quantum neurobiology
and present a novel physics-inspired theory of neural signaling (AdS/Brain (anti-de Sitter space)).
Three tiers of quantum information science-directed neurobiology applications can be identified.
First are those that interpret empirical data from neural imaging modalities (EEG, MRI, CT, PET
scans), protein folding, and genomics with wavefunctions and quantum machine learning. Second
are those that develop neural dynamics as a broad approach to quantum neurobiology, consisting of
superpositioned data modeling evaluated with quantum probability, neural field theories, filamentary
signaling, and quantum nanoscience. Third is neuroscience physics interpretations of foundational
physics findings in the context of neurobiology. The benefit of this work is the possibility of an
improved understanding of the resolution of neuropathologies such as Alzheimer’s disease.

Keywords: quantum biology; quantum neurobiology; quantum neuroscience; biological physics;
neuroscience physics; quantum information science; neuropathology; theoretical neuroscience

1. Introduction

Quantum neurobiology is a topic within the broader field of quantum biology. The
traditional concerns of quantum biology are studying quantum effects in biological systems
such as magneto-navigation, photosynthesis, and energy transfer [1]. With the advent of
quantum information science, the quantum biology research agenda is now being expanded
to include also quantum information science approaches to biological questions [2], arguing
that quantum models are needed to address the complexity of biology [3]. Representa-
tive projects include investigating excitation transport in photosynthetic light-harvesting
complexes that indicate speedups analogous to those found in quantum algorithms [4]
and explaining vibrational and environmental-assisted energy transport with quantum
walks [5]. The word “quantum” refers to the scale of atoms and molecules (10−9 to 10−15),
namely atoms at the nanometer scale (10−9), ions and photons at the picometer scale (10−12),
and sub-atomic particles at the femtometer scale (10−15).

Quantum neurobiology has a parallel definition, with the first emphasis being the
investigation of potential quantum effects in the brain [6], also including quantum informa-
tion science methods being applied to neurobiological problems. This paper is principally
concerned with the latter. Regarding potential quantum effects in the brain, on the one
hand, there are proposals in favor of what might be termed the “quantum consciousness
hypothesis” [7–9]. On the other hand, many scientists are careful to distinguish that they
do not endorse this idea, instead supporting the possibility that the mathematical structure
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of quantum mechanics may help to explain neural behavior, but not the conjecture that
there is something quantum-like taking place in the brain [10–12].

Other research programs use quantum information science methods to model cogni-
tive processes such as perception, memory, and decision-making, without taking a view
regarding whether quantum effects operate in the brain [13]. Research programs also
target less-contentious topics of quantum-related activity in the brain through quantum
events [14] and superdeterminism [15]. Superdeterminism interprets quantum mechanics
as an effective statistical theory of hidden variables as opposed to one of fundamental
indeterminism. Evolutionary reasons might explain why biological systems of sufficient
complexity display quantum-like behavior, independent of the physical origin of quantum
phenomena in physics. In this vein, quantum biology might crosspollinate back to founda-
tional physics with hidden variables formulations as a practical method for operating in
quantum domains (e.g., hidden-variable models of Bell correlations [16] and Kolmogorov-
related probability formulations [17]). In any case, the first-principles step would seem to
be the enumeration of the underlying physiological processes as the building blocks that
might then be examined in relation to higher-order cognitive behavior [18].

Quantum neurobiology extends classical neurobiology as a multidisciplinary field
relating biology to the fundamental and clinical neurosciences, investigating the form and
function of neurons, glia, axons, and dendrites in the nervous system, individually and in
ensemble, in health and disease. Various approaches are used to study multiscalar behavior
in the areas of neural signaling transduction and transmission, neural circuits and systems
neurobiology, nervous system development and aging, and the neurobiology of disease and
intervention, including by examining how quantum properties enhance cellular function,
with medical implications for neuropathology diagnosis and treatment [19].

1.1. The Human Brain

The brain is among the most complex systems known [20], with a behavior spanning
nine orders of magnitude-scale tiers in ways that have yet to be fully elucidated (Table 1).
However, in the “big data” era, the requirements associated with modeling the brain (which
has an estimated 86 billion neurons and 242 trillion synapses [21]) are coming within reach.
Biology became an information science with the advent of genomics, and neuroscience is
one of the fastest-growing areas in information biology, with data acquisition outpacing that
of most other biomedical fields [22]. Whole-brain scanning is revealing the simultaneous
activity of hundreds and thousands of neurons [23] with large-scale cortical recordings [24]
and whole-brain activity logging in behaving organisms [25]. Microscopy advances obtain
a single-molecule resolution that captures synaptic proteins at dendritic spines, myelination
along axons, and presynaptic densities at dopaminergic neurons with expansion light sheet
microscopy [26]. Neuropathologies may be treated at the synaptic scale with novel stem cell
therapies and pharmacological compounds to reverse the effect of dysfunctional genes [27].

Table 1. Levels of organization in the brain (redrawn from [28,29]).

No. Level Size (Decimal) Size (m) Size (m)

1 Nervous system 1 >1 m 100

2 Subsystem 0.1 10 cm 10−1

3 Neural network 0.01 1 cm 10−2

4 Microcircuit 0.001 1 nm 10−3

5 Neuron 0.000 1 100 µm 10−4

6 Dendritic arbor 0.000 01 10 µm 10−5

7 Synapse 0.000 001 1 µm 10−6

8 Signaling pathway 0.000 000 001 1 nm 10−9

9 Ion channel 0.000 000 000 001 1 pm 10−12

In high-throughput connectomics, ongoing work from the Allen Institute demonstrates
terabyte-scale processing for contemporary neuron reconstruction [30] and petabyte-scale
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next-generation dataset acquisition methods [31]. To complete the human connectome
(and even the mouse connectome [32]), a qualitatively different form of computation
may be required, similar to the technology-driven inflection point in the sequencing of
the human genome, enabling its completion in 2001 [33]. Human connectomes are not
an immediate prospect, as the whole-brain fruit fly connectome was only completed in
2018 [34]. The imaging, data processing, and storage requirements may be 1 zettabyte per
human connectome [35], which compares to the 59 zettabytes of data generated worldwide
in 2020 [36]. Neurobiological informatics data include not only genomics and connectomics,
but also synaptomics (mapping of synapses across the brain) and synaptosomics (the
synapse proteome, 1000 proteins implicated in 130 brain diseases) [37].

1.2. Quantum Neurobiology

These state-of-the-art advances in neurobiology pave the way for quantum neuro-
biology and facilitate the research aim of whole-brain neuroscience: full-volume, three-
dimensional analysis of the entire brain at multiple spatial and temporal scales. An im-
mediate practical task is integrating data obtained simultaneously from EEG, MEG, fMRI,
and diffusion tractography (nerve tract data) [38]. Quantum approaches are needed as
supercomputing (only able to model one third of the human brain in a recent project [39])
and other classically based methods make it clear that new platforms are needed for the
next phases of neuroscience data analysis. Simultaneously, quantum information science is
emerging as a vastly more scalable platform with three-dimensional modeling capabilities
appropriate to the representation of real-life brain phenomena such as neurons, glia, and
dendritic arbors. Quantum approaches allow new classes of neurobiological problems
to be addressed more fully, such as the investigation of neural signaling with synaptic
integration (aggregating thousands of incoming spikes from dendrites and other neurons)
and electrical–chemical signal transduction (incorporating neuron–glia interactions at the
molecular scale). This work describes the three areas of activity developing in quantum
neurobiology (Table 2) and proposes a novel theory of neural signaling (AdS/Brain, based
on the AdS/CFT correspondence (anti-de Sitter space/conformal field theory)).

Table 2. Quantum neurobiology: three areas of quantum information science study.

1. Waves, Protein Folding, Genomics 2. Neural Dynamics 3. Neuroscience Physics

Waves Superpositioned Data AdS/Neuroscience
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related to astrocyte calcium signaling, neurotransmitter activity, and dendritic spikes [41]. 
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In high-throughput connectomics, ongoing work from the Allen Institute demon-
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In high-throughput connectomics, ongoing work from the Allen Institute demon-
strates terabyte-scale processing for contemporary neuron reconstruction [30] and 
petabyte-scale next-generation dataset acquisition methods [31]. To complete the human 
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lems to be addressed more fully, such as the investigation of neural signaling with synap-
tic integration (aggregating thousands of incoming spikes from dendrites and other neu-
rons) and electrical–chemical signal transduction (incorporating neuron–glia interactions 
at the molecular scale). This work describes the three areas of activity developing in quan-
tum neurobiology (Table 2) and proposes a novel theory of neural signaling (AdS/Brain, 
based on the AdS/CFT correspondence (anti-de Sitter space/conformal field theory)). 
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In high-throughput connectomics, ongoing work from the Allen Institute demon-
strates terabyte-scale processing for contemporary neuron reconstruction [30] and 
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and dendritic arbors. Quantum approaches allow new classes of neurobiological prob-
lems to be addressed more fully, such as the investigation of neural signaling with synap-
tic integration (aggregating thousands of incoming spikes from dendrites and other neu-
rons) and electrical–chemical signal transduction (incorporating neuron–glia interactions 
at the molecular scale). This work describes the three areas of activity developing in quan-
tum neurobiology (Table 2) and proposes a novel theory of neural signaling (AdS/Brain, 
based on the AdS/CFT correspondence (anti-de Sitter space/conformal field theory)). 

Table 2. Quantum neurobiology: three areas of quantum information science study. 

1. Waves, Protein Folding, Genomics 2. Neural Dynamics 3. Neuroscience Physics 
Waves Superpositioned Data AdS/Neuroscience 

▪Quantum EEG Quantum Probability ▪AdS/Brain 
▪Quantum MRI  ▪Updating (QBism) ▪AdS/Memory 

Quantum Protein Folding Neural Field Theories ▪AdS/Superconducting 
Quantum Genomics ▪Synchrony ▪AdS/Energy 

▪Sequencing Filamentary Dynamics  Neuronal Gauge Theories 
▪Gene Expression Quantum Nanoscience Network Neuroscience 

▪Secure Transmission ▪Nanoparticle Fab  Random Tensors 
Quantum SNNs ▪Molecular Codes ▪Melonic Diagrams 

2. Waves, Protein Folding, and Genomics 

2.1. Wavefunctions: EEG, fMRI, CT, PET Integration 
The first widespread class of quantum neurobiology applications is the interpretation 

of empirical data from various neural scanning modalities with wavefunctions and quan-
tum machine learning. The EEG-detectable potentials given off by the scalp have been 
analyzed since 1875 [40], but a fuller picture of neural signaling also includes waveforms 
related to astrocyte calcium signaling, neurotransmitter activity, and dendritic spikes [41]. 

) means the sub-levels.

2. Waves, Protein Folding, and Genomics
2.1. Wavefunctions: EEG, fMRI, CT, PET Integration

The first widespread class of quantum neurobiology applications is the interpretation
of empirical data from various neural scanning modalities with wavefunctions and quan-
tum machine learning. The EEG-detectable potentials given off by the scalp have been
analyzed since 1875 [40], but a fuller picture of neural signaling also includes waveforms
related to astrocyte calcium signaling, neurotransmitter activity, and dendritic spikes [41].
Although quantum mechanical wavefunctions are naturally suggested, the intractability
of the Schrödinger wave equation has traditionally meant that EEG data are interpreted
with effective nonlinear wave models [42]. Quantum algorithms are now supplanting this
effort and being used to reconstruct medical images from MRI, CT, and PET scanners [43].
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Near-term applications could be in the area of quantum BCIs (brain–computer interfaces),
interpreting EEG waveform data in a brain–machine communications network [44,45].

2.2. Quantum EEG

Quantum machine learning is emerging as an indispensable technique for finding the
best wavefunction to fit the copious amounts of EEG data generated. A typical problem is
classifying EEG data for Parkinson’s disease patients as potential candidates for Deep Brain
Stimulation, analyzing 794 features from each of 21 EEG channels [46]. Quantum machine
learning is the application of machine learning techniques in a quantum environment,
formulating classical data with quantum methods, and also studying quantum problems
with machine learning methods [47]. Quantum formulations are available for the three
main machine learning architectures: neural networks [48], tensor networks [49], and kernel
learning [50]. A quantum perceptron (core machine learning unit) has been developed
for available quantum processors (the IBM Q-5 Tenerife) [51]. Quantum neural networks
have been proposed for EEG wavefunction modeling, in a standard gate-model quantum
circuit layout using quantum convolutional neural networks (CNN) [52], and also in a
more sequentially oriented quantum recurrent neural network (RNN) [53].

An alternative to quantum machine learning is quantum spike-activated neural net-
works (SNNs)—a bio-inspired neuromorphic computation model with threshold-triggered
activation similar to the natural neural firing of the brain [54]. Exemplar quantum SNN
projects use Josephson junctions to study emergent behavior [55] and accelerated matrix
processing via synaptic weighting [56] and superposition modeling [57].

Framed as a signal processing problem, EEG data interpretation is an exercise of
noise filtering followed by feature extraction and classification. EEG data used in BCIs,
for example, have a low signal-to-noise ratio due to noise. A quantum approach applies
filtering algorithms based on advances in processing techniques (Kullback–Leibler spatial
patterns and Bayesian learning) [44] in a quantum recurrent neural network (QRNN) format.
The QRNN characterizes a nonstationary stochastic signal as time-varying wave packets,
interpreted with the Schrödinger wave equation and a Hamiltonian (energy operator). The
QRNN outperforms traditional Kalman filtering methods and is tested on real-time EEG
data and BCI competition test data. The feature extraction and classification portion of EEG
data analysis is likewise performed with various quantum machine learning methods such
as entropy-based quantum support vector machines [58], quantum-inspired evolutionary
algorithms [59], and independent component analysis, wavelet transforms, and Fourier
transforms [60]. Finally, quantum methods are facilitating a new level of data resolution in
the examination of EEG data. One project investigates single-trial event-related potentials
(EEG segments time-locked to a cognitive events) with universal cortical building blocks in
the time and frequency domains [61], and another models electrical signals and calcium-ion
interactions together in a path integral approach [62].

2.3. Quantum MRI (Radiology)

Aside from EEG, MRI scans are the other main imaging modality for neural data.
Quantum machine learning techniques could also prove central to MRI data interpreta-
tion in the classification of 120 different types of brain tumors, as classical deep learning
networks are already used to identify the six most common tumor types (glioma, brain
metastases, meningioma, adenoma, and neuroma) [63]. Qutrits (three-level quantum states)
may be conducive to brain tumor analysis since many quantum states are not binary. One
proposal suggests that a qutrit model might better correspond to grayscale imaging data,
using a quantum neural network model to segment brain lesions [64]. Whereas qubits are
a relatively simple system, expanding to higher dimension qudits (quantum information
digits) is non-trivial as it is difficult to quantify the quantum correlations in the system
(using the diagonalization of correlation matrices for bipartite systems) [65]. Other quan-
tum MRI tumor segmentation projects use a quantum entropy classification method [66]
and a quantum filtering technique (for noise reduction preprocessing) together with a
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quantum artificial immune system-inspired SoftMax function in a deep spiking neural
network (SNN) architecture [67]. Quantum algorithms are also deployed to analyze CT
scans; for example, to classify quantum data comparing COVID-19 and non-COVID-19
patient influenza and virus pneumonia lung CT scans, analyzed with TensorFlow Quantum
and a D-Wave Systems quantum annealer [68].

2.4. Quantum Protein Folding

Protein folding is an NP-hard computationally complex problem with advances in
both classical and quantum methods. The challenge is to predict the three-dimensional
structure that a protein will adopt based on the underlying sequence of amino acids.
Many neurodegenerative diseases (such as Alzheimer’s and Parkinson’s) are thought to be
caused by an accumulation of misfolded proteins [69]. Classically, an important project is
AlphaFold, as Google’s DeepMind team extends its success in game playing [70] to protein
folding, as shown in the CASP-14 data competition [71]. An attention-based mechanism is
used to obtain atomically precise configurations by paying attention to global constraints
such as available space as opposed to exclusively local sequence interactions.

Quantum methods are also progressing, particularly with quantum annealing ma-
chines that model protein folding as a low-energy optimization. A lattice is used to
represent the spatial location of the different amino acid sequences in the protein. Although
annealers can easily analyze the median length of a human protein (375 amino acids),
research often focuses on neuropeptides as short protein strings that can be readily em-
ployed as intervention targets. One lattice-based quantum protein folding project studied
30,000 protein sequences with protein Hamiltonians, finding that simple manipulations
substantially improve folding performance [72]. A related project demonstrated the lattice-
based folding of a 7-amino acid neuropeptide (with the IBMQ Poughkeepsie 20-qubit
quantum computer) [73]. Quantum walks are an alternative to lattice structures, as the
QFold project proposes a quantum algorithm based on the torsion angles of amino acids,
deployed with quantum walks (on the IBMQ Casablanca quantum processor) [74].

2.5. Quantum Genomics

The quantum properties of DNA have been proposed for use in sequencing (for
example, interpreting electron tunneling current–voltage differences between the four
nucleotide bases as a strand of DNA passes through a nanopore [75]), but quantum methods
are mainly deployed in sequence reconstruction (aligning and merging reads to reassemble
the original genome). Quantum algorithms have been proposed (for both gate-array
and quantum annealing machines) to accelerate DNA sequence reconstruction [76] and
demonstrated on quantum annealing platforms to reconstruct short sequences (seven
nucleotides) [77]. Quantum annealing machines are also used in basic research to assess
the binding affinity of gene regulatory proteins to the genome [78]. In other quantum
genomics demonstrations, a quantum machine learning algorithm is implemented for
Alzheimer’s disease to identify neurons that have irregular numbers of chromosomes (copy
number variation) with a Hamming distance-like genomic quantum classifier (tested on
the IBMQX2 and IBMQ 16 Melbourne quantum platforms) [79]. Another project proposes
a cell culture analysis technique to assess the clonogenic survival potential of a cell to grow
and form a colony based on a quantum information-theoretic classifier [80].

Quantum networks offer possibilities for the secure transfer of genome files; for
example, in next-generation federated data sharing for large-scale research using encrypted
blockchain-based quantum networks [81]. The benefits of blockchain technology as a secure
smart network automation technology, particularly for genomic data sharing, have been
proposed [82] and have seen practical deployment for genomic data privacy in whole-
human genome sequencing projects such as Nebula Genomics [83]. Non-fungible genome
tokens (NGTs) provide users with permanent ownership of their genomic data on a publicly
readable ledger, enabling user-controlled, remunerated, transparent data-sharing [84].
Other research uses quantum networks for secure encrypted genome transmission, sending
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data immediately as it is sequenced, demonstrating the world’s first quantum cryptography
transmission of whole-genome sequence data [85].

3. Neural Dynamics

The second area of application in quantum neurobiology is neural dynamics, which
consists of superpositioned data modeling evaluated with quantum probability, neural
field theories, filamentary dynamics, and quantum nanoscience.

3.1. Superpositioned Data and Quantum Probability

Studying complex systems often involves finding otherwise hidden correlations in
datasets. Progress has been made with deep learning networks and also now in the
modeling of classical data with quantum methods [86]. Superpositioned data are data
modeled in superposition as the quantum information representation of all possible system
states simultaneously. A standard model for superpositioned data is neural signaling,
in which system elements (“neurons”) exist simultaneously in two or more states until
collapsed in a measurement (“firing event”). The basic setup is a two-state model in which
elements exist in both inactive (quiescent) and active (firing) states until measured [87].
Another model is a neural field theory with a three-state neural signaling system in which
the neuron states are quiescent, active, and recovering [88]. Neural signaling models
are used, both as a general heuristic to represent any kind of multistate system, and in
particular to study biological signaling in the brain.

Quantum information science approaches require a formulation of quantum prob-
ability (complex probability amplitudes) since the quantum properties of superposition
and interference violate classical total probability [89]; for example, leading to conjunction
and disjunction fallacies in commutativity [13]. Hence, quantum probability has been
formulated by von Neumann and others to apply quantum mechanical rules to probability
assignment [90,91]. A standard quantum information science primitive (building block)
used as a quantum variant of total probability is obtained through POVMs (positive op-
erator valued measures). POVMs are positive measures on a quantum subsystem of the
effect of a measurement performed on the larger system and give an interference term for
incompatible observables [92]. The main interpretation of quantum probability is with the
Born rule (a solvable probabilistic formulation of quantum mechanics), but there can be
others. Quantum Bayesianism methods, notably QBism (“cubism”) [93], is an emerging
standard for considering quantum system updating as the quantum version of Bayesian
updating that includes observer-based (subjective) aspects [94].

3.2. Neural Field Theories

Neural field theories are a physics-based approach for modeling large-scale brain
behavior. An empirical project involving neural dynamics and neural field theories is
combining data from different neural scanning modalities (EEG, fMRI, CT, and PET scans)
into a comprehensive view of brain activity. Integrating EEG and fMRI data, for example,
entails multiple spatiotemporal scales and dynamics regimes [38]. A key finding is that
epileptic seizure can be modeled by chaotic dynamics, which are understood, but the
normal resting state of the human brain is more complicated and is perhaps explained by
instability-bifurcation dynamics, in which there is one system organizing parameters, such
as an orbit that is interrupted periodically by countersignals to trigger a neural signal [95].
A standard modeling element is the Hopf bifurcation—a system-critical point at which a
periodic orbit appears or disappears due to a local change in stability [96,97].

Neural dynamics vary by scale and display unrecognized statistical distributions at
the most complex tiers of collective behavior [38]. Different neural dynamics models are
deployed respectively at the four main scales tiers of activity: single-neuron, local ensemble,
population group, and whole-brain. Small populations, represented by neural ensemble
models, often follow a normal statistical distribution, which can be described with a Gaus-
sian and modeled with a regular linear Fokker–Planck equation; in contrast, if not normally
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distributed, the distribution might be non-Gaussian, but still a known distribution such as
a power law that can be modeled with specialized non-linear or fractional Fokker–Planck
equations. However, larger scale populations of neurons and whole-brain analysis have
unrecognized statistical distributions and require more sophisticated dynamics methods
such as Wilson–Cowan mean field equations, the Jansen–Rit model, Floquet periodicity,
and oscillatory analysis [38]. Large-scale neural dynamics is an active research area with a
substantial opportunity for quantum neurobiology to make a contributive impact. Statisti-
cal approaches in neural field theories continue to contribute to the development of new
mathematics for the understanding of theoretical neuroscience problems [98].

Biological systems have additional requirements compared with other domains in that
organisms do not exist in isolation but are rather constantly interacting with the environ-
ment and changing their behavior as a result. Hence, feedback loops and updating are
important in quantum biological system modeling. One such quantum information biology
approach is based on two-state superposition data modeling, system self-measurement,
and open system (environmental interaction) evolution dynamics [87]. A self-observation
feedback loop is included as the quantum version of the Helmholtz sensation-perception
theory (a unitary operator describes the process of interaction between the sensation and
perception states). Open system evolution dynamics are provided by a Lindbladian quan-
tum master equation. The model applies to all biological system scales (including protein,
cell, brain, human behavior, and ecosystem) and is tested to study epigenetic evolution and
the gene regulation of glucose-lactose metabolism in E. coli bacteria [99] and in a neural
code mapping model of human decision-making states [100].

A final topic in neural dynamics is synchrony—a proposed bulk property of the
brain. Synaptic signals arrive simultaneously but travel varying distances and therefore
must have different propagation speeds [101]. Cortical recordings further reveal that
spontaneous traveling waves are a general topological property of large-scale neural
behavior [102]. One project studies synchrony in axon propagation speeds from data
recorded at multiple spatial scales [103]. A general framework is proposed to integrate
microscale current sources (produced by local field potentials at membrane surfaces) in
a macro-columnar structure. Another project applies the Kuramoto model, a standard
formulation for studying synchrony in nonlinear systems ranging from insect swarms
to superconductors [104]. A solution is produced for the three main synchronization
phenomena in Kuramoto networks (phase synchronization, chimera states, and traveling
waves) with insight into complex behavior arising from connection patterns in nonlinear
networked systems.

3.3. Neurofilamentary Dynamics

Neurofilaments are neuron-specific proteins that provide structural support to the
neuronal cytoskeleton and are implicated in neural signaling (axonal and synaptic) via
dynamical behavior. In synaptic signaling, neurofilamentary proteins are differentially
expressed in the presynaptic and postsynaptic compartments of glutamatergic (excitatory)
and GABAergic (inhibitory) synapses [105]. Neurofilamentary dynamics likewise have a
role in axonal signaling. Research finds that the axon processes information at multiple
time scales [106,107] in the shape of vortex-like signals that can be captured with quan-
tum optics [108]. An axon has thousands of densely packed neurofilaments beneath the
membrane. An intricate mechanism of electromagnetic and ionic signaling is suggested
in that the electromagnetic resonance of neurofilaments first identifies relevant paths or
circuits (branch selection) extremely rapidly at a microsecond speed (10−6), which then
serves as an input to the ion channel transmission that proceeds on the order of millisec-
onds (10−3) [106]. Specifically, four ordered structures in the cytoskeletal filaments were
shown to exchange energy approximately 250 microseconds before a neuron fires [107].
The research program integrates multiple time domains into a single temporal architecture,
extending the traditional Hodgkin–Huxley model used to study neural signaling, branch
selection, spike time-gap regulation, and synaptic plasticity [108]. Understanding filamen-
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tary dynamics is important as these proteins are proposed as a blood-based biomarker of
neurodegenerative pathology, overcoming some of the challenges of amyloid-beta and tau
proteins as the traditional diagnostic markers for Alzheimer’s disease [109]. For example,
one study found blood-based neurofilamentary protein fragment levels to be eight times
higher in neurological disease patients than controls [110].

3.4. Quantum Nanoscience for Neurobiology

Quantum nanoscience is the study of nanostructured systems that incorporate and
exploit quantum effects [111]. The fabrication of integrated circuits and nanomedicine are
two of the primary applications of quantum nanoscience [112,113]. Both are relevant to
quantum neurobiology—nanomedicine most directly—and nanocircuits in the effort to
create standardized quantum neural circuits to test behavior, pathological response, and
pharmacological intervention. Various projects are attempting to identify the structural–
functional organization of neural circuits per connectome project data, serial electron
microscopy, trans-synaptic tracing, and single-cell transcriptomics [114]. In nanomedical
fabrication, nanoparticles (precision-engineered objects with dimensions less than 100 nm)
are the focus of quantum neurobiological modeling and drug design.

3.4.1. Nanoparticle Neuroscience

Nanoparticles allow therapeutics to be delivered across the blood–brain barrier (BBB)
into the brain. A nanoparticle has a relatively large surface area and pores for housing ther-
apeutic agents. Adjusting the size and molecular weight of the delivery system containing
the drug can be used to target where the nanoparticles accumulate in the body and the
tissue that can be accessed. One project creates a blood–brain barrier-crossing nanoparticle
drug delivery platform to treat secondary injuries associated with traumatic brain injury
that can lead to Alzheimer’s, Parkinson’s, and other neurodegenerative diseases [115]. The
therapeutic is a small interfering RNA (siRNA) molecule designed to inhibit the expression
of the tau protein (thought to play a role in neurodegeneration). The solution encapsulates
therapeutic agents into biocompatible nanoparticles with precisely engineered surface
properties to enable their transport into the brain and indicates a 50% reduction in the
expression of the tau protein as a result. In addition to nanoparticles, other contemporary
neuropathology resolutions are being explored such as CRISPR/Cas9 therapeutic strategies
(supplying or blocking proteins) in pre-clinical Alzheimer’s disease models [116].

3.4.2. Molecular Codes

A recent advance is precision molecular control, performed with quantum error
correcting methods (molecular codes), highlighting the integration of quantum information-
based systems and physical systems. Molecular codes are an extension of GKP bosonic
codes (Gottesman, Kitaev, Preskill) [117]). Bosonic codes are a method of quantum error
correction instantiating both the physical qubit and the logical qubits that protect it in a
self-contained system (the continuous variable environment of a harmonic oscillator) [118].
GKP bosonic codes correct errors (seen as molecular displacement) by reorienting the
position and momentum of an oscillator (oscillatory molecule) with known symmetric
rotations. Molecular codes extend GKP bosonic codes by allowing rotations to be performed
on asymmetric rigid bodies in free space, in quantum systems ranging from oscillators to
diatomic and polyatomic molecules [119]. Error-corrected molecular control is an important
capability in the quantum information-theoretic modeling of neural behavior as neural
circuits are instantiated in quantum hardware.

3.4.3. Autonomous Robotic Nanofabrication

Quality-controlled nanomedical fabrication might proceed with autonomous agents.
One project demonstrates the autonomous robotic nanofabrication of supramolecular struc-
tures from single molecules [120]. The method consists of controlling single molecules with
the machine learning agent-based manipulation of scanning probe microscope actuators
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(using reinforcement learning (goal-directed updating) to remove molecules autonomously
with a scanning probe microscope from a supramolecular structure).

4. Neuroscience Physics

The third area of quantum neurobiology applications is neuroscience physics, which
is the neuroscience interpretation of foundational physics findings. Applications discussed
here include a suite of AdS/Neuroscience theories based on the AdS/CFT correspondence
(AdS/Brain, AdS/Memory, AdS/Superconducting, and AdS/Energy (brain Hamiltonian)),
neuronal gauge theories (symmetry-breaking, energy-entropy balances), network neuro-
science, and random tensors (high-dimensional systems).

Of particular interest is neural signaling—a problem involving synaptic integration (ag-
gregating thousands of incoming spikes from dendrites and other neurons) and electrical–
chemical signal transduction (incorporating neuron-glia interactions at the molecular scale).
The standard compartmental models used in computational neuroscience are not equipped
with the multi-variable partial differential equation (PDE) functionality needed to model
inter-neuronal spatial interactions [121,122]. For example, diffusion–reaction equations are
one possibility for integrating the activity of dendritic spikes that involves astrocyte calcium
signaling, protein cascades in dendritic arbors, and the proton and ion-based transfer of
molecules [123], all of which take place on the quantum (atomic and subatomic) scale [124].
Proposed quantum neurobiological solutions to the modeling of neural signaling con-
sider multiscalar models, phase transition, dynamical nonlinear systems, energy–entropy
relations, and high-dimensional representation.

4.1. AdS/Brain

AdS/Brain is a multiscalar theory of neural signaling based on the AdS/CFT cor-
respondence, which incorporates the four scale tiers of network, neuron, synapse, and
molecule [125]. The theory is the first example of a multi-tier interpretation of the AdS/CFT
correspondence with successive levels of bulk–boundary correspondence. The suggested
implementation of the AdS/Brain theory is a matrix quantum mechanics formulation
(multi-dimensional matrix model [126]) with bMERA (brain) random tensor networks
evolved with Floquet periodicity-based neural dynamics.

The AdS/CFT correspondence (anti-de Sitter space/conformal field theory) is a theory
positing that a physical system with a bulk volume can be described by a boundary theory
in one less dimension [127]. Specifically, the theory (gauge/gravity holographic duality)
states that a gravity theory (bulk volume) is equal to a gauge theory or quantum field
theory (boundary surface) in one less dimension. The work constitutes one of the most-
cited papers in any field (over 21,000 references as of December 2021), with applications in
all physics arXiv areas [128].

The AdS/CFT correspondence offers two perspectives of the same system and the
mathematics for solving in either direction. A typical bulk-to-boundary use case is the
AdS/SYK (Sachdev-Ye-Kitaev) formulation, starting with a known classical gravity theory
(Einstein gravity) in the bulk to solve for an unknown quantum field theory describing
a superconducting material on the boundary. The mathematics of black holes (classical
gravity bulk) and unconventional materials (boundary) can be linked in that the two
systems have similar properties related to mass, temperature, and charge [129]. In the
other direction, boundary-to-bulk deployments start with a known quantum field theory
on the boundary and attempt to define a theory of emergent structure such as an unknown
quantum gravity theory in the bulk [130]. Establishing bulk–boundary mappings, including
a quantum error correction setup (protecting a logical qubit in the bulk by linking it to an
ancilla of physical qubits in the boundary [131]), is an active research area [132].

The AdS/Brain theory proposes the first instance of a multi-tier correspondence
(multiple graduated levels of bulk–boundary relationships) to instantiate the four scale tiers
of brain network, neuron, synapse, and molecule (and could be expanded to other tiers).
The model accommodates the entirety of the brain’s neural signaling processes between
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axon, presynaptic terminal, synaptic cleft, postsynaptic density, and dendritic spiking
potentials from dendrite to soma. The bulk–boundary pair relationships are network–
neuron, neuron, synapse, and synapse–ion. The scales and measured signals are local
field potentials at the brain network level (10−2 m), action potentials at the neuron level
(10−4 m), dendritic spikes at the synapse level (10−6 m), and ion docking at the molecular
level (10−10 m).

The AdS/Brain theory addresses the renormalization requirement in multiscalar sys-
tems (the ability to view a physical system at different scales). Renormalization programs
must tackle the infinities that arise in quantum mechanics to reflect the fact that all possi-
ble particle locations and events can actually occur. Various renormalization group (RG)
methods have been proposed as a mathematical apparatus for smoothing systems so that
they may be viewed at different scale tiers on the basis of different parameters (degrees of
freedom). A key advance is the multiscale entanglement renormalization ansatz (MERA),
a tensor network structure that implements an iterative coarse-graining scheme to renor-
malize quantum systems on the basis of entanglement or other attributes [133]. The MERA
tensor network consists of alternating layers of disentanglers and isometries that consoli-
date a multi-tier system into a single view—a structure conducive to the AdS/Brain theory
and applied in a bMERA (brain) implementation.

The second requirement the AdS/Brain theory addresses is the issue that different
neural dynamics paradigms define the system evolution at each scale tier of the neural
signaling operation [38]. Floquet periodicity [134,135] propelled with continuous-time
quantum walks [136] is selected as the basis for a multiscalar model of brain network,
neuron, synapse, and ion channel dynamics, as these formalisms flexibly accommodate
varying dynamical regimes within a system.

4.2. AdS/Memory

AdS/Memory is a neuroscience application of the AdS/CFT correspondence that
examines the problem of information storage. The research program applies the AdS/CFT
correspondence (in the form of black hole physics) to the computational neuroscience prob-
lem of memory formation [137]. Black holes and brains are efficient at storing information,
and critically excited states might be the basis. A quantum neural network with holographic
properties (entropy scaling by area not volume) is introduced. The quantum optical neu-
ral network (with qudit-based bosonic modes) produces critical states (neuron excitatory
synaptic connections based on gravity-like interaction energy) that have an exponentially
enhanced capacity to store information. What is new is the investigation of what a system
can do in a highly excited state (as opposed to exclusively finding the system’s ground state
and related energy tiers). The largest memory capacity quantum state might not necessarily
be the ground state, but rather a highly excited critical state. There could be immediate
implications for quantum memory and also in quantum neurobiology in substantiating
the conceptualization of neural signaling as a criticality triggered phase transition. The
consideration of system extremes is a method also being applied, for example, to find new
matter phases in systems that do not reach thermal equilibrium [134].

4.3. AdS/Superconducting

AdS/Superconducting uses the AdS/CFT correspondence to study phase transition,
which is not well understood in various domains including neural signaling and super-
conducting materials. Explaining how materials become superconducting at high critical
temperatures could be practically useful in producing superconducting chips that do
not require super-cooling. One approach deploys the AdS/CFT correspondence (in the
AdS/SYK program of using a known gravity theory to find an unknown quantum field
theory for a superconducting material) to study superconducting systems [138]. The setup
is a toy-model black hole, constrained to a box (like the gas-in-a-box or particle-in-a-box
model systems). The black-hole-in-a-box (unlike real black holes) can be manipulated
such that a condensate halo (of some material) forms around it. When an external electri-
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cal field is applied (like turning on a battery), the condensate becomes superconducting
due to the Higgs mechanism. In the general case (confirmed by Large Hadron Collider
experiments), the Higgs mechanism “gives particles their mass” as the Higgs field is a
universal field throughout the universe that causes particles to become “heavy” as they
pass through a medium, giving them drag, or mass [139]. In the black hole condensate
situation, the particles that become massive are photons, preventing electric and magnetic
fields from traveling through the medium, causing the medium to become superconduct-
ing (electrons flowing freely with infinite conductivity and zero resistance). The result is
the AdS/Superconducting model, an experimental model for studying phase transition,
particularly in systems with ordered-disordered phases such as neural signaling.

4.4. AdS/Energy (Brain Hamiltonian)

The AdS/Brain theory provides a generic multiscalar model of neural behavior in-
terpretable at various bulk–boundary scale tiers with the AdS/CFT mathematics, which
renormalize entanglement (correlations) across system levels. Although entanglement is the
primary multiscalar quantity, energy-related formulations (expressed as a Hamiltonian) are
also possible. A first law of thermodynamics (the first law of entanglement entropy (FLEE))
has been defined to posit that a change in boundary entropy is equivalent to a change in
bulk energy (Hamiltonian) [140]. Energy formulations are central to quantum systems, but
a formalism did not exist previously for solving the AdS/CFT correspondence in terms of
energy. The implication is that the AdS/CFT correspondence is immediately connected to
the wide range of energy-based Hamiltonian formulations in quantum-mechanical systems.
One line of research that has been more robustly enabled is that of scrambling: complex
systems (such as brains, black holes, and many-body quantum systems) are posited to
be fast-scramblers, dissipating information quickly such that a local measurement is no
longer possible [141]. Various SYK Hamiltonians and scrambling Hamiltonians [142] could
be applied in the AdS/Brain model structure to formalize neural signaling as a quantum
information scrambling problem.

4.5. Neuronal Gauge Theories

Neuronal gauge theories comprise another class of neuroscience physics approaches.
One symmetry-based project models the brain’s neural signaling operation on the basis
of gauge invariance and global symmetry [143]. Symmetry is the property of physical
systems looking the same from different points of view (whether a face, a cube, or the laws
of nature), and symmetry breaking is phase transition. A gauge theory is a field theory in
which the Lagrangian (state of a dynamic system) does not change (is invariant) under local
gauge transformations (changes between possible gauges (levels or degrees of freedom) in
a system). This neuronal gauge theory interprets the brain as a multiscalar system with a
global symmetry, the invariant property of free energy minimization, that is broken and
rebalanced. Neural signaling breaks the symmetry and gauge fields are applied to rebalance
the invariant quantity (free energy). The gauge fields are part of the brain environment and
apply continuous forces to act on the brain elements to produce local perturbations that
counteract the effect of the local force stimulus as neural signals are dispatched in order
to bring the system back into its resting state. The gauge field rebalancing mechanism
coordinates the multiscalar tiers of the brain on the basis of conserving the gauge-invariant
quantity, free energy minimization in this model, but could be otherwise.

Another neuronal gauge theory formulation [144] finds that the macroscopic brain
obeys the same kind of energy–entropy balances when at rest as microscopic processes
and likewise breaks the balance when performing physically and cognitively demanding
tasks (according to connectome project whole-brain imaging data [145]). Non-equilibrium
processes at the macroscale are studied with a dynamic Ising model showing how viola-
tions of the energy–entropy balance emerge from asymmetries in the interactions between
neural elements. A related gauge-theoretic model explores energy–entropy trade-offs in
the relation between the information content of brain states and neural energy [146]. Brain



Quantum Rep. 2022, 4 118

states are modeled as the Shannon entropy content of parcels, and energy via the Boltz-
mann distribution, as the brain network seeks lower-energy stable states. The multiscalar
energy–entropy model is applied to explain how signal propagation along the structural
connectome of the brain may induce changes in the patterns of neural activity (again
similarly tested with empirical connectome data).

4.6. Network Neuroscience

Network neuroscience is a (quantum) information network neurobiology program that
takes a complex systems [20], network [147], physics [148], energy [146], and information-
based view of neurobiology [149]. The program unites elements of the brain network-level
view, energy, entropy (information), neural dynamics, structural–functional linkage, multi-
scalar systems and renormalization, microscale–macroscale interactions, an energy econ-
omy view of the brain, and information signaling theory (encoding and compressibility),
validated with empirical data from the human connectome project and other sources [145].
Recent findings of note are in the areas of renormalization, neural dynamics, neuronal
gauge theories, and information-based encoding.

Overall, the brain is seen as an information problem that can be modeled with entropy
and energy, with potential translation to quantum platforms. Renormalization techniques
might sidestep the usual difficulties of integrating a multiscalar environment by modeling
behavior as an information compression problem in which similar constraints impact all
tiers [149]. Likewise, network architecture and connectivity are indicated as system-wide
parameters that influence multiscalar behavior; for example, contributing to an oscillatory-
based understanding of local and global neural dynamics [150].

Network neuroscience sees practical demonstration by other connectome teams using
graph theory and differential geometry to study the spatiotemporal arrangements of
neurons, synapses, axons, and dendrites. A quantum approach to connectome analysis
calculates the eigenvectors of the human connectome with a graph Laplacian (Schrödinger
wavefunction element) [151]. The resulting harmonic wave is used to examine neural
fields as a basis for structure–function relationships in the human brain, implementing the
Wilson–Cowan neural field theory with high-resolution MRI connectome graph data.

4.7. Random Tensors

Random tensors are a tensor network technology for the treatment of high-dimensional
multiscalar systems—an advance on par with MERA tensor networks (computation of
entangled quantum systems). Tensor networks are a structure for representing and manip-
ulating many-body quantum states as the factorization of high-order tensors (tensors with
a large number of indices) into a set of low-order tensors whose indices are summed to
form a network defined by a certain pattern of contractions. Random tensors generalize
random matrices (2 × 2 matrix formulations) to three or more dimensions and have been
tested for as many as five dimensions (rank-5 tensors) [152].

Random tensors provide another model (in addition to matrix mechanics) for the
implementation of the AdS/Brain theory as a tensor field theory of neural signaling.
Existing neural field theories could be instantiated (with three-state neurons [88]) as tensor
field theories [153] on quantum platforms. Likewise, the four dimensions (network–neuron–
synapse–molecule) of the AdS/Brain theory could be indexed with rank-4 random tensors,
modeling the quiescent-to-firing signal as a matrix(2d)-to-tensor(3+d) phase transition
(planar-to-melonic (high-dimensional) graph representation).

These kinds of tensor field theories and melonic graphs of neural signaling have the
dimensionality needed to instantiate synaptic integration research findings, extending the
sophistication of traditional computational neuroscience compartmental models. Spine
density gradients are known to be important in shaping dendritic response, and decreasing
spine density improves thresholded signal pooling (certain neurons pool the outputs of
many separately thresholded dendrites) [154]. Nonlinear models have also been used to
study the postsynaptic density and dendritic shape as elliptical spheroids, finding that the
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curvature of dendritic geometry gives rise to pseudo-harmonic functions that can be used
to predict dendrite concentrations and their potential role in signal processing [155].

Differential geometry implementations bring a new resolution to the study of mito-
chondrial membrane architecture, whose metabolic impairment may contribute to neu-
rodegeneration [156]. Traditional ways of modeling mitochondria (ATP and heat) are
insufficient as their idealized geometries distort metabolic flux. Applying differential ge-
ometry to empirical TEM tomography data, however, allows a more robust analytic model
based on Gaussian curvature, surface area, volume, and membrane motifs, all of which
are related to the metabolic output of the mitochondria and require a multi-dimensional
approach. Such differential geometry methods might inflect into practical applications
treating mitochondrial bioenergetic stress response [157].

5. Discussion

The study of neuroscience is necessarily migrating to quantum information science
platforms, as quantum computing may become the computational vernacular of the day.
However, simply reinstantiating research programs with quantum information science
methods is not likely to solve neuroscience problems as expediently as also incorporating
the theoretical understanding available in foundational physics discovery. Hence, the
emerging field of quantum information science-driven quantum neurobiology is outlined
in the three levels of its activity in wavefunction analysis, neural dynamics, and neuro-
science physics. These areas include the clinically motivated investigation of wave imaging,
protein folding, and genomics, the study of neural dynamical systems with superpositioned
data, quantum probability, and neural field theories, and the neuroscience physics interpre-
tation of physics findings. A novel quantum theory of neural signaling is proposed—the
AdS/Brain theory, as the first instance of a multi-tier AdS/CFT correspondence model
of successive levels of bulk–boundary relationships between network, neuron, synapse,
and molecular levels in the brain. Quantum solutions to key neural signaling challenges,
the synaptic integration of thousands of incoming signals and electrical–chemical signal
transduction, are proposed in several modalities.

There are many potential risks and limitations to quantum neurobiology. It may be too
early for quantum technologies since technical breakthroughs in quantum error correction
are needed to progress from NISQ (noisy intermediate-scale quantum) devices to fully
FTQC (fault-tolerant quantum computing) [158]. Modeling the complexities of the brain
may not be a near-term application even if quantum methods proceed. The challenge of
obtaining empirical data (due to both technical and privacy-related reasons) constrains the
ability to develop accurate neurobiological models. However, despite these limitations,
quantum neurobiology is extending the study of neuropathological disease.

Future directions in quantum neurobiology could explore topics linking physiological
building blocks to higher-order cognitive behavior as structural-functional relationships
are uncovered in genomics, connectomics, and cortical recording studies. Quantum in-
formation science and quantum measurement theories might be deployed to understand
not only neurobiological behavior but also psychological information processing [159] and
human decision-making [160], including via quantum BCI implementation.

Quantum neurobiological approaches could seek to interrelate three domains: scien-
tific theories of time, temporal modes of cognition, and the underlying time morphology
of biological processes. Physics findings related to time include time entanglement (tem-
poral correlations have a different structure than spatial correlations [161]), the Floquet
model [134], time symmetry breaking [162], time evolution [141], and quantum walks [136].
In the cognitive domain, Kantian neuroscience shows empirically how the spontaneity of
cognition is demonstrated by the constitutive role of the brain in processing incoming sen-
sory input [163] and correlates neurobiology and philosophy [164]. These approaches could
be further linked to the temporality of biological processes (cellular lifecycles, oscillatory
patterns, and circadian rhythms) [165].
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The accelerated pace of the technology-driven “big data” era has sponsored the de-
velopment of a computational informatics field as a complement to traditional academic
disciplines in many areas of the arts and sciences (ranging from digital humanities to
computational astronomy). Likewise, “quantum studies” fields are emerging as an accom-
paniment, pursuing quantum approaches to the underlying questions in the discipline
and enabling a new class of more precise problem-solving, thinking, and discovery, with a
standard slate of quantum information science methods [166]. Quantum neurobiology is in
the early stages of development but could potentially have an extremely transformative
impact on the ability to elaborate the intricacies of the human brain and better protect it
from disease and decline. A better understanding of the neurobiological role of quantum
effects (or quantum-analog effects) may also shed new light on fundamental interpretative
questions in quantum physics.
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Glossary

AdS/Brain Multiscalar neuroscience interpretation of the AdS/CFT correspondence
AdS/CFT correspondence (anti-de Theory positing that a physical system with a bulk volume can be described by a
Sitter space conformal field theory) boundary theory in one less dimension

AlphaFold Protein folding predictor based on system-level attention to spatial constraints (from
DeepMind/Google)

Biological physics Study of living processes through the application of physical principles
Bosonic codes Self-contained photonic system for quantum error correction (e.g. harmonic oscillator)
Chaotic dynamics Dynamical regimes of ballistic spread followed by saturation
Filamentary dynamics Role of neurofilaments (neuron-specific proteins) in axonal and synaptic signaling
GKP bosonic codes Quantum error correction method by reorienting the position and momentum of a
(Gottesman, Kitaev, Preskill) molecule with known symmetric rotations
Hamiltonian (Quantum mechanics) operator corresponding to the total energy of a system
Hamming distance Sum of positional mismatches of two bit strings

Hopf bifurcation System critical point at which a periodic orbit appears or disappears per a local
change in stability

Information biology Study of information processing activities performed by biosystems
Information scrambling Rapid spread of information in a quantum system prohibiting local measurement

Josephson junction Device consisting of two or more superconductors coupled by a link that
conducts electrons

Laplacian (Schrödinger equation) operator representing the flux density of the gradient flow of
a function

Matrix Array of numbers arranged in rows and columns used to study physical phenomena
(probability distribution)

Melonic diagram (Melon-shaped) graph expression of a high-dimensional system
MERA (multiscale entanglement

Entangled quantum systems modelrenormalization ansatz)
tensor networks
Molecular codes Quantum error correction by performing rotations on asymmetric rigid bodies in free space
Nanoparticle neuroscience Nanoparticles (100 nm objects) that cross the blood-brain barrier to perform an intervention

Neurobiology Field investigating the form and function of the nervous system (neurons, glia, axons,
and dendrites)

Neurofilament Neuron-specific protein implicated in neuronal cytoskeletal structure and signaling
Neuromorphic computation Electronic computation inspired by neural systems and spike thresholding
Neuropeptides Small chains of amino acids (chemicals) synthesized and released by neurons
Neuroscience Study of the structure and function of the nervous system and brain
Neuroscience physics Neuroscience interpretation of foundational physics findings
Path integral Approach of summing over all possible paths in a system
Protein folding problem Predicting a protein’s final 3D structure from the underlying sequence of amino acids
Quantum biology Study of how quantum properties may play a governing role in biological functions
Quantum computing Use of engineered quantum systems (with atoms, ions, photons) to perform computation
Quantum information biology Study of biological systems with quantum information methods
Quantum internet Information transmitted with quantum effects (entanglement), using quantum cryptography
Quantum machine learning Machine learning applied in a quantum environment

Quantum memory (QRAM) Quantum-mechanical computer memory, storing information with greater scalability as
quantum states in superposition (vs classical binary states)

Quantum nanoscience Study of nanostructured systems that incorporate and exploit quantum effects

Quantum neurobiology
Discipline within quantum biology and biological physics that studies potential
quantum effects in the brain and applies quantum information science methods
to neurobiological questions
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Quantum physics Description of particles making up all matter including living organisms
Quantum probability Quantum mechanical rules for assigning probabilities

Quantum walk Quantum version of classical random walk based on coin-flip operator and
lattice-graph propagation

Qutrit Three-level quantum state, simultaneously in 0, 1, 2 until collapsed in a measurement
(vs two-state qubit)

Random tensors Generalization of random matrices (2 × 2 matrix formulations) to 3+ dimensions
Renormalization The ability to view a system at multiple scales by collapsing degrees of freedom (parameters)
Spike-activated Bio-inspired neuromorphic computation based on thresholded activationneural networks (SNNs)
Superdeterminism Interpretation that quantum effects are the result of hidden variables (vs indeterminism)
Superpositioned data Quantum information representation of all possible system states simultaneously

Tensor field theories Local field theories whose fields transform as a tensor under a global or local
symmetry group

Tensor networks
Structure for manipulating high-dimensional data (many-body quantum states) as the
factorization of high-order tensors (many indices) into low-order tensors whose indices
are summed to form a contracted network

Transcription factors Proteins regulating gene expression by attaching themselves to DNA
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