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Abstract. By using the self-consistent approach based on the Skyrme functional and with account of pairing

correlations, we calculate global properties of nuclei, such as binding energies, one and two-neutron separation

energies, density distributions of nucleons, root-mean-square radii of nucleon distributions. For description

of excitation energies and transition rates we apply the RPA+BCS approach based on the finite range effective

interaction defined by us before. Everywhere, where it is possible, we perform comparison of theoretical results

with the experimental data.

Study of evolution of nuclear properties in the long

chains of isotopes or isotones, from the extremely proton-

excess up to the extremely neutron-excess nuclei is of spe-

cial theoretical interest, as here one can check the ade-

quacy of the used theoretical models in the broad inter-

val of (N − Z)/A. Formerly, [1] we studied in details the

chain of the N = 82 isotones. Different long chain is rep-

resented by the sequence of the nickel isotopes from 48Ni

up to 78Ni, where all nuclei, except for 78Ni, turn out to be

discovered by the present time. The mentioned chain is of

special interest as it includes doubly-magical nucleus 48Ni

(which is an extremely proton-excess one), and 78Ni (the

last one is strongly neutron-excess, and also the doubly-

magical nucleus). This chain also includes doubly magical
56Ni and semi-magical 68Ni. The mentioned series of iso-

topes was theoretically analyzed by us in [2]. Another long

isotopical chain is offered by the succession of tin isotopes

having Z = 50. The experimental data are available from
102Sn (N = 52) up to 136Sn (N = 86). These nuclei were

theoretically studied by us in [3]. Here, we study chain of

isotones from 78Ni up to 100Sn having N = 50, this chain

includes nuclei 88Sr and 90Zr which also demonstrate some

properties of magicity (Z = 38 and Z = 40, correspond-

ingly).

For description of global properties of nuclei such as

their masses, root-mean-square radii of nucleon distribu-

tions, one- and two-nucleon separation energies, as well

as single-particle energies of protons and neutrons, we ap-

ply the Hartree–Fock+BCS method. We also study in the

framework of the QRPA approach excitation energies of

nuclei and reduced electromagnetic transition rates. To

this aim, we use the phenomenological mean field poten-

tial that was defined by us before [4]. This potential cor-

rectly takes into account isovector terms, which is very im-

portant when we consider long isotopic or isotonic chains
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of nuclei. In our QRPA calculations we also employ effec-

tive two-body interaction used by us in our previous papers

[2, 3].

To determine nuclear binding energies B in the self-

consistent approach, we performed calculations based on

the HF+BCS procedure that employs the Skyrme interac-

tion and constant pairing with the corresponding proton

and neutron pairing constants Gp and Gn to account for

pairing correlations. In this case, one can represent the to-

tal energy of an even-even nuclei in its ground state in the

following form

E = −B =
∫

HHF+BCS(r) dr − Δ
2
n

Gn
− Δ

2
p

Gp
. (1)

Here and below, “n" refers to neutrons, while “p"

to protons. Pairing correlations in the Hartree–Fock–

Bogoliubov energy density HHF+BCS(r) were considered

by introducing the occupancies v2i into the single-particle

density of matter, as well as into the kinetic energy and

spin densities. In this way, the Hartree–Fock problem with

modified densities was solved in coordinate representa-

tion, while the iteration procedure was applied for joint

solution of the HF+BCS equations. In cases of odd, or

odd–odd nuclei one should add to (1) the quasiparticle en-

ergy (energies) E j0 of an odd particle (particles),

E j0,p, j0,n =
√

(ε j0,p, j0,n − λp,n)2 + Δ2
p,n .

In our self-consistent calculations we used parameters of

the Skyrme 3 interaction, while the pairing constants G
were close to those from [5]. The exchange Coulomb

terms were treated in the Slater approximation. In our cal-

culations of binding and single-particle energies as well

as of the quasiparticle characteristics, we considered all

bounded and quasistationary single-particle levels.

One can see the values of the obtained binding energies

for even isotones having N = 50 in Fig. 1. In accordance
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with the experiment, the maximal binding energy per one

nucleon happens for isotones having A ∼ 90(88).

In Fig. 2, we show both theoretical and empirical val-

ues of the two-proton separation energies S 2p for the se-

quence of even isotones having N = 50, where calcula-

tions were performed in the framework of the HF+BCS

method. One can see a good agreement with the experi-

ment. The comparison of theoretical (HF+BCS method)

and empirical values of the one-proton separation ener-

gies S p for the chains of isotones having N = 50 and

even and odd values of Z is shown in Fig. 3. Analo-

gous calculations, but in the framework of phenomeno-

logical (WS+BCS) scheme were performed by using the

ansatz: Sp(nl j)(Z + 1,N) = −λp(Z) − Emin
nl j (Z + 1) and

S p(nl j)(Z,N) = −λp(Z) + Emin
nl j (Z − 1); Z and N are even.

In our phenomenological calculations we used the

mean-field potential of the form

V(r, σ) = U· f (r)+Uls·1r
d f
dr

l·s ; f (r) =
1

1+exp((r−R)/a)
.

(2)

Here, U = V0

(
1 − β N−Z

A · tz
)

, Uls = Vls

(
1 − βls

N−Z
A · tz

)
,

R = r0A1/3, tz=1/2 for neutrons and tz = −1/2 for protons.

In the case of protons we added to (2) the potential of a uni-

formly charged sphere with Rc = rcA1/3. The parameters

of potential used here were as follows: V0 = −51.0 MeV,

Vls = 32.4 MeV·fm2, r0=1.27 fm, rc=1.25 fm, β=1.31,

βls = −0.6, a = 0.67 fm for protons and a = 0.55 fm for

neutrons. These parameters are very close to those from

the paper [4].

The comparison of the empirical and theoretical (WS)

values of the one-neutron separation energies S p for the

chains of isotones with N = 50 and N = 51 is shown in

Fig. 4.

For description of excited states and transition rates we

used the QRPA approach, see details in [2, 3], with the

phenomenological mean field potential shown by us be-

fore, as well as the effective interaction, the same in the

particle–particle, particle–hole, and pairing channels. This

interaction was also used in our previous paper and has the

form

ϑ̂=
(
V + Vσσ1σ2+ VT S 12+ Vττ1τ2+ Vτσσ1σ2 ·τ1τ2 (3)

+ VτT S 12τ1τ2

)
exp

(
− r2

12

r2
00

)
+

e2

r12

(
1

2
− t̂z(1)

)(
1

2
− t̂z(2)

)
.

The entering parameters are as follows: V =−16.65, Vσ =
2.33, VT = −3.00, Vτ = 3.35, Vτσ = 4.33, VτT = 3.00

(all these values are in MeV), while r00 = 1.75 fm.

Using the standard procedure we can pass to the quasi-

particle basis, a+ → ξ+:

a+α = u|α|ξ+α − v|α|ϕαξ−α; u2
|α| + v

2
|α| = 1; ϕα = (−1)lα+ jα−mα .

(4)

We also define the creation operator Q+n,JM of the one-

phonon excited state |ωn, JM〉 with |ωn, JM〉 = Q+n,JM |0̃〉
in the following way:

Q+n,JM =
∑
a≥b

Xn,J
ja jb

[
ξ+a ξ

+
b

]
JM
−

∑
c≥d

Yn,J
jc jd

[
ξcξd

]
JM , (5)

Then we obtain the set of the QRPA equations which

define the amplitudes “X” and “Y” of the states |ωn, JM〉
and the eigenvalues ωn, these equations have the form∥∥∥∥∥∥ [(E − ω)I + A] B

−B −[(E + ω)I + A]

∥∥∥∥∥∥×
(X

Y

)
= 0. . (6)

Here, E = Eab = E ja + E jb , Icd,ab = δ ja jcδ jb jd , while the

matrix elements of the sub-matrices A and B in the case of

even–even nuclei are as follows [2, 3]:

Acd,ab ≡ AJ
jc jd , ja jb =

(
u jc u jd u ja u jb + v jcv jdv jav jb

)
×

× a〈 jc jd; J|ϑ̂| ja jb; J〉a +
+

(
u jcv jd u jav jb + v jc u jdv ja u jb

)
a〈 jc j̄d; J|ϑ̂| ja j̄b; J〉a +

+ (−1) ja+ jb+J+1
(
v jc u jd u jav jb + u jcv jdv ja u jb

)
×

× a〈 jc j̄d; J|ϑ̂| jb j̄a; J〉a ; (7)

Bcd,ab ≡ BJ
jc jd , ja jb =

(
u jc u jdv jav jb + v jcv jd u ja u jb

)
×

× a〈 jc jd; J|ϑ̂| ja jb; J〉a −
(
u jcv jdv ja u jb + v jc u jd u jav jb

)
×

× a〈 jc j̄d; J|ϑ̂| ja j̄b; J〉a + (−1) ja+ jb+J × (8)

×
(
v jc u jdv ja u jb + u jcv jd u jav jb

)
a〈 jc j̄d; J|ϑ̂| jb j̄a; J〉a .

In Eqs. (7) and (8), a〈 jc jd; J|ϑ̂| ja jb; J〉a and

a〈 jc j̄d; J|ϑ̂| ja j̄b; J〉a are the antisymmetric matrix elements

of the effective interaction ϑ̂ in the particle–particle and

particle–hole channels with a given spin. They have the

form

a〈 jc jd; J|ϑ̂| ja jb; J〉a = 1√
(1 + δ jc jd )(1 + δ ja jb )

× (9)

×
[
〈 jc jd; J|ϑ̂| ja jb; J〉 + (−1) ja+ jb+J+1〈 jc jd; J|ϑ̂| jb ja; J〉

]
,

a〈 jc j̄d; J|ϑ̂| ja j̄b; J〉a = − (−1)lb+ld√
(1 + δ jc jd )(1 + δ ja jb )

×

×
∑

J′
(2J′ + 1)W[ jb ja jc jd; JJ′] × (10)

×
[
〈 jb jc; J′|ϑ̂| jd ja; J′〉+ (−1) jd+ ja+J′+1〈 jb jc; J′|ϑ̂| ja jd; J′〉

]
.

Using an explicit form of the matrix equation (6), we

obtain the orthonormality relation∣∣∣∣∣∣∣
∑
a≥b

Xn,J
ja jb

Xm,J
ja jb

−
∑
c≥d

Yn,J
jc jd

Ym,J
jc jd

∣∣∣∣∣∣∣ = δmn , (11)

which in terms of the QRPA bosons corresponds to the

condition

〈ωn, JM|ωm, JM〉 = 〈0̃|Qn,JM · Q+m,JM |0̃〉 = δmn . (12)

The transition rate between the one-phonon and the

ground state is described by the reduced matrix element,

see also [2, 3]

〈0̃‖M(λ)‖ωn, J〉 = (−1)λδ(J, λ)δ(πnπλ) × (13)

×
[ ∑

ja≥ jb

Xn,J
ja jb

(u jav jb ± v ja u jb )
(−1)lb√
1 + δ ja jb

〈 ja‖m̂(λ)‖ jb〉 −

−
∑
ja≥ jb

Yn,J
ja jb

(v ja u jb ± u jav jb )
(−1)lb√
1 + δ ja jb

〈 ja‖m̂(λ)‖ jb〉
]
,
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Table 1. Root-mean-square radii of the proton and neutron

distributions in N = 50 isotones. Empirical data are from [7, 8]

Z Rp(exp) Rp(th) Rn(th)

27 3.933 4.196

28 3.957 4.198

29 3.989 4.208

30 4.019 4.218

31 4.044(9) 4.048 4.227

32 4.075 4.236

33 4.100 4.246

34 4.125 4.255

35 4.150 4.265

36 4.183(2) 4.174 4.274

37 4.199(2) 4.197 4.283

38 4.224(2) 4.219 4.292

39 4.243(2) 4.243 4.300

40 4.269(1) 4.267 4.308

41 4.288(4) 4.288 4.317

42 4.315(1) 4.310 4.325

43 4.331 4.333

44 4.351 4.341

45 4.372 4.349

46 4.391 4.357

47 4.420(23) 4.410 4.365

48 4.429 4.372

49 4.447 4.380

50 4.464 4.388

51 4.494 4.399

where the upper signs refer to T-even (Eλ), while the lower

ones to T-odd (Mλ) transitions.

In Fig. 5, we show systematics of 2+1 levels and re-

duced transition rates B(E2, 2+1 → gr.st.) in even N = 50

isotones. One can see a good agreement with the experi-

ment.

Table 1 shows the comparison of the empirical and the-

oretical (HF+BCS) root-mean-square radii for N = 50 iso-

tones. The deviation from the experiment is no more than

0.2 %.

Figures 6–8 demonstrate proton and neutron densities

for 78Ni, 88Sr, and 100Sn calculated both in (HF+BCS)

and (WS+BCS) approaches. Here, we see the character-

istic behavior of densities by moving from neutron-excess

to neutron-deficient nuclei. In particular, HF+BCS cal-

culations, as compared to WS+BCS ones, give the more

smooth variation of both proton and neutron densities as

functions of radii.
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Figure 1. (Color online) Binding energies per nucleon,B/A in

the chain of N = 50 isotones. All experimental data are from [6].

Figure 2. (Color online) Two-proton separation energies in the

chain of N = 50 isotones. Empirical data are from [6].

Figure 3. (Color online) Proton separation energies in the chain

of N = 50 isotones, calculated in the HF+BCS scheme. Experi-

mental data are from [6].
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Figure 4. (Color online) Neutron separation energies for the

chains of N = 50 and N = 51 isotones; WS scheme. The ex-

perimental data are from [6].

Figure 5. (Color online) Systematics of the energies of 2+1 levels

and reduced transition rates, B(E2; 2+1 → gr.st.), in even N =
50 isotones. Here, ep(e f f ) = 1.3|e| and en(e f f ) = 0.3|e|. The

experimental data are from [7].

Figure 6. (Color online) Proton and neutron densities in 78Ni.

Figure 7. (Color online) Proton and neutron densities in 88Sr.

Figure 8. (Color online) Proton and neutron densities in 100Sn.
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