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Abstract. We present an application of Scalable Deep Learning to analyze simulation data
of the LHC proton-proton collisions at 13 TeV. We built a Deep Learning model based on
the Convolutional Neural Network (CNN) which utilizes detector responses as two-dimensional
images reflecting the geometry of the Compact Muon Solenoid (CMS) detector. The model
discriminates signal events of the R-parity violating Supersymmetry (RPV SUSY) from the
background events with multiple jets due to the inelastic QCD scattering (QCD multi-jets).
With the CNN model, we obtained x1.85 efficiency and x1.2 expected significance with respect
to the traditional cut-based method. We demonstrated the scalability of the model at a Large
Scale with the High-Performance Computing (HPC) resources at the Korea Institute of Science
and Technology Information (KISTI) up to 1024 nodes.

1. Introduction
In the High Energy Physics (HEP) data analysis, there are successful applications of Machine
Learning (ML) algorithms that significantly improve event classification performance compared
to the traditional methods based on the expert’s knowledge. ML algorithms such as the Boosted
Decision Tree (BDT), Shallow Neural Network, or similar algorithms have been used in the
HEP data analysis. Recently, the Deep Neural Network (DNN) or Deep Learning is widely
adopted because it is able to be applied to data with complicated data structures such as
images, videos, natural languages, or sensors. There are studies to apply DNNs in analyzing
low-level information such as the position and momentum of particles that pass through the
detector, which give higher efficiency to select signal events compared to the ML algorithms
with conventional feature variables based on the physics knowledge [1, 2].

In order to train the DNN model at a reasonable time scale with the Big Data from the LHC
and the future High-Luminosity LHC (HL-LHC), we studied the performance of the DNN from
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the viewpoint of the physics performance but also the computing performance with available
computing resources. In Korea, the largest High-Performance Computing (HPC) resources for
scientific research – Nurion – [3] are provided by the supercomputing center at the Korea Institute
of Sciences and Technology Information (KISTI). We studied scalability to train the model on
the Nurion system by measuring speed-up factors by increasing the number of computing nodes.

2. Model
The major purpose of this study is to do binary classification between signal and background.
The signal process is RPV gluino pair production. We assume the gluino mass equals 1.4 TeV.
In this process, each gluino decays as follows: g̃ → t̃ → tbs. The top quark decays to a b-jet
and W boson. Subsequently, the W boson decays hadronically, thus there are 10 jets in the final
state. The significant number of SM backgrounds makes it difficult to search the RPV SUSY
process. The major background in this analysis is QCD multi-jet process which also has almost
10 jets in the final state.

The proton-proton collision events with a center-of-mass energy of 13 TeV in the LHC ring
are generated using the pythia8 [4]. The detector simulation assuming the CMS detector [5] is
performed using delphes 3.4 [6] with the default “CMS detector configuration”. 330 000 RPV
SUSY events and 20 000 000 QCD multi-jet events are generated. Furthermore, an average of
32 interactions per proton bunch crossing (pile-up) are considered. Before making images, a
baseline selection is applied event-by-event to select the event of interest and increase training
performance. We reference all the cut criteria and physics variables of baseline selections from
the CMS cut-based analysis [7]. Finally, the signal efficiency obtained from the CNN method is
compared with the efficiency from the cut-based method [7]. To obtain results of the cut-based
method, the signal-region selected in [7] is used. Table 1 shows the number of selected events
after passing the baseline selection and basic information of the dataset.

Table 1: Summary of dataset: The QCD multi-jet samples are generated in different scalar sum
of transverse momentum (HT) ranges. The number of selected events is the remaining events
after passing the baseline selection. These events are used as inputs of DNN model. There are
roughly 450 000 training images, 150 000 validation images, and 150 000 testing images. The
QCD multi-jet sample with HT < 1000 GeV are all excluded after the baseline selection.

dataset Cross section [pb] Number of generated events Number of selected events

RPV 0.02530 330 599 294 762
QCD (HT 1000-1500 GeV) 1207 15 466 225 37 091
QCD (HT 1500-2000 GeV) 119.9 3 368 613 137 805
QCD (HT 2000-Inf GeV) 25.24 3 250 016 280 279

After the baseline selection, the information of final-state particles is interpreted as 224×224
or 64 × 64 pixel images corresponding to an azimuthal angle |ϕ| < 3.15 and a pseudorapidity
|η| < 2.5 which is defined as η = − ln[tan( θ2)]. All sub-detectors of the CMS, i.e. tracker,
electromagnetic calorimeter, and hadronic calorimeter are considered as 3 different channels
likewise RGB colors.

We exploit symmetry when we build the neural network structure instead of building a typical
2D image classification model because the detector image has a circular symmetry according to
the ϕ direction. Therefore, we focus on the padding method that works well with the circular
symmetry of detector images. The CNN models incorporate the “zero-padding” process to
maintain the size of the feature map by attaching zeros to the outline of the image. However,
this can lead to loss of information along to η direction because of the ϕ symmetry. Therefore,
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Figure 1: Illustration of the CNN architecture. Before the training step, image data are prepared
by merging three sub-detector images: tracker, ECAL, and HCAL. The ECAL and HCAL images
are weighted by energy measured in the detector, the tracker image is weighted by transverse
momentum, and finally, these three images are merged as an image with 224x224x3 dimension

we adopt a new padding technique namely the “circular padding” wherein we still use the “zero-
padding” in the η direction, however, in the ϕ direction the left column is patched to the right
column in the same order. The circular-padding scheme with the CNN architecture used to
classify 224× 224 pixel images is illustrated in Figure 1.

At the start of the training, two weights of the events are considered. First, is the
normalization factor calculated as a cross-section divided by the number of generated events.
This implies the number of expected events considering the probability of the production of a
particular physical process and acceptance efficiency after the baseline selection. The second
is the re-scale weight designed to balance the two input classes. After the normalization,
background events are re-scaled to match the weighted sum of background events equal to
the number of selected signal events.

We use the “Data parallelism” for the distributed training. In this method, the training
model is copied to all the worker nodes, and the data are divided and distributed to all the
nodes. When the training stage begins, the gradient of each node is calculated for each batch,
and when the gradient calculations of all the nodes are completed, the model is updated with the
average of all the gradients (Synchronous distributed training) [8]. Because “Data parallelism”
and “Synchronous distributed training” are used, the overall batch size (effective batch size) is
equal to batch size times the number of nodes. Therefore, we scale the training model conserving
the overall batch size equals 32K (Strong scaling). The CNN model is trained using Pytorch[9]
DNN library with Horovod[10] distributed training framework.

3. Results
We compare the classification performance between the CNN method and the cut-based method.
The signal efficiency using the CNN method is 1.845 (1.803) times higher than that of using the
cut-based method for 224×224 (64×64) images. We obtain an average AUC of 0.9903 (0.9914)
for the 224× 224 (64× 64) pixel images. The left panel of Figure 2 shows the ROC curve of the
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CNN method using 224 × 224 pixel image. In addition, we compare the expected significance
from the cut-based method and the CNN method in the same background rejection point (False
positive rate of 0.003503). The expected significance of the CNN method is 1.2 times higher
than that of the cut-based method. Furthermore, we investigate the number of expected events
in the discovery level (5σ) from the CNN results. There are 258 (259) signals and 2476 (2473)
backgrounds, for 224× 224 pixel images and 64× 64 pixel images.

Figure 2: ROC curve of training results from 224 × 224 (left) and speedup according to the
number of nodes (right). ROC curves of the CNN results with a different number of nodes are
represented as solid lines. The True positive rate (TPR) point in the given False positive rate
(FPR) from the cut-based method is represented as a blue point. Each AUC value according to
the number of nodes is shown in the legend. The results of the CNN method with multi-nodes
show higher signal efficiency (TPR) than that of the cut-based method. The training using
128 nodes shows the highest AUC. Also, each node shows a similar ROC curve, which means
that performances of multi-node are stable. The scalability is checked using a strong scale and
visualized in the right panel. The “speedup” (y-axis) is calculated as the training time of the
number of nodes divided by that of the single node. The linear gray line in the plot is an ideal
speedup. We check the scalability of our model up to 1024 nodes using 224× 224 pixel images.

We demonstrate the scalability of our CNN model using 224 × 224 pixel images up to 1024
nodes in the Nurion system. The scalability is checked using two ways, i.e. training time and
the “speedup” factor which is equal to the training time of N (N>1) nodes divided by that of a
single node. As the number of nodes increases, the training time decreases, and the “speedup”
factor increases. Figure 2 shows the ROC curve and speedup plot using strong scaling methods.
Also, we compare the training time of 1024 KNL nodes with a single GPU machine (TITAN
RTX). The training time per epoch using 1024 nodes is found to be 25 times faster than that
observed using the GPU.

4. Conclusion
In this study, mainly, the CNN performance is compared with the conventional cut-based
method. We demonstrate that the CNN overperforms the cut-based method in both signal
efficiency and expected significance. Furthermore, we verify the scalability of our CNN model
at the Nurion up to 1024 parallel “Xeon Phi” CPUs to speedup the training.
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