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Abstract In this paper, we obtain analytical approximate
black hole solutions in the framework of f (R) gravity and the
absence of a cosmological constant. In this area, we apply the
equations of motion of the theory to a spherically symmet-
ric spacetime with one unknown function and derive black
hole solutions without any constraints on the Ricci scalar.
To do so, first, we obtain the near horizon and asymptotic
solutions and then use both of them to obtain a complete
solution by utilizing a continued-fraction expansion. Finally,
we investigate the stability of the solutions by employing the
thermodynamics and quasi-normal modes.

1 Introduction

More than a century ago, Newtonian gravity failed to explain
the anomalies in the orbits of Mercury. In 1915, Einstein
introduced his theory of General Relativity (GR), which not
only described the answer to the physics problems of that
time, including the issue of Mercury but also its ability in its
interesting predictions like the gravitational lensing, gravita-
tional waves, black holes, etc. However, despite all of these
successes, in recent years this theory, failed to be consis-
tent with observation and was not able to describe the dark
energy and dark matter that are confirmed by observations.
Also, GR was not renormalizable and, therefore, could not
be quantized by using the conventional methods in quantum
field theory. It was shown that if one demands the renormal-
ization to be satisfied at one-loop, the Einstein–Hilbert action
should be supplemented by higher-order curvature terms [1].
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Later on, Einstein’s theory of GR had many forms of modifi-
cations such as: f (R) gravity with R as the Ricci scalar [2–4],
f (R, T ) gravity, where T is the trace of energy-momentum
tensor [5,6], f (G) gravity with G the Gauss–Bonnet invari-
ant [7] etc. All of these modified theories have received much
attention to investigating the accelerated expansion of our
universe, flat rotation curves of galaxies, wormhole behavior
[8–11]. One of the familiar extensions of GR is to include
terms such as

f (R) = · · ·+ β2

R2 + β1

R
+R−�+α2R

2+α3R
3+· · · (1)

where αi and βi are constants, and αi = βi = 0 cor-
responds to the Einstein–Hilbert action. The special case
α2 �= 0, αi = 0(i �= 2), and βi = 0 is R2 gravity and
known as the Starobinsky model [12]. In f (R) gravity, the
interaction of spacetime and matter is different from GR. In
GR, gravity appears as the curvature of spacetime, where the
source of this curvature is all forms of matter. In the absence
of any mass or energy, spacetime can become completely flat.
What f (R) gravity does is allow spacetime to act as a source
of its curvature so that there can still be some curvature even
if spacetime is empty of matter. Therefore, as the universe
expands and the matter density decreases, some curvature
may remain that is capable of driving cosmic acceleration.

Many applications have been developed in the framework
of the f (R) gravity such as early-time inflation [12–14],
cosmological phases [15–21], gravitational wave detection
[22,23], the stability of the solutions [24–26] and other dif-
ferent issues [27]. Interestingly, the duality between gravity
and quantum field theory that has been introduced in [28,29]
and its applications considered in different theories and f (R)

gravity such as [30–46]. In addition, the different solutions of
f (R) gravity have been studied. Among these solutions, the
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authors in [47] and [48] deduced the static spherically sym-
metric solutions by involving a perfect fluid. The black hole
solution with/without electric charge is presented in [49].
Many analytic spherically symmetric solutions are derived
in [51–53].

In this work, following the papers of quadratic [54] and
cubic gravity [55], we concentrated on the analytic approxi-
mate black hole solutions of f (R) gravity using a continued-
fraction expansion and their stability through Quasi-Normal
Modes (QNMs) and thermodynamic.

The paper is organized as follows: In Sect. 2, first, we give
a brief review of f (R) gravity and apply the field equations of
the theory to static-spherically symmetric spacetime. Then,
to obtain the full black hole solution, we combine the asymp-
totic and near horizon solutions using a continued-fraction
expansion. In Sect. 3, using the QNMs we study the dynam-
ical stability of the black hole solutions. Finally, in Sect. 4
we give our concluding remarks.

2 Basic equations

The action of f (R) gravity can be written as

I = 1

8πG

∫
d4x

√−g f (R) . (2)

The variation to action gives the vacuum field equations as

Eμν = Rμν fR − 1

2
gμν f (R)+[gμν�−∇μ∇ν] fR = 0 , (3)

where � is the d’Alembertian operator and fR = d f/dR.
The trace of the field equations takes the form

E = Eμ
μ = 3� fR + R fR − 2 f = 0 . (4)

Inserting Eq. (4) in Eq. (3) we get

Eμν = Rμν fR−1

4
gμνR fR+1

4
gμν� fR−∇μ∇ν fR = 0 . (5)

In this paper, we consider f (R) as follows

f (R) = R + αR2 . (6)

Inserting into the field Eq. (5), one can get

Rμν − 1

4
gμνR + α

[
2RRμν − 1

2
gμνR

2

+1

2
gμν�R − 2∇μ∇νR

]
= 0 . (7)

For this model α > 0 from the Dolgov and Kawasaki stability
point of view [56]. We consider the following spherically
symmetric and static line element for describing the geometry
of spacetime

ds2 = −h(r)dt2 + dr2

h(r)
+ r2

(
dθ2 + sin2(θ)dφ2

)
. (8)

As we know, generic static, spherically, and symmetric met-
rics do not need to obey gtt grr = −1 necessarily, but field
Eq. (7) admits solutions with this property [57,58], to which
case we shall restrict our consideration here. By inserting the
metric into the field equations (7), the differential equations
for h(r) become

Err = − 30αr2hh′′ − 24αrhh′ + αr4h′h′′′ + 3αhr4h′′′′

+ 10αr3hh′′′ + 4αr2h′′ − 18αr2h′2

+ 28αrh′ + 2r3h′ + 2r2h − 28αh + 36αh2

− 8α − 2r2 = 0 . (9)

We would like to emphasize that, utilizing the other compo-
nents of field equations gives the same result. Expanding the
function h(r) around the event horizon r+ we obtain

h(r) = h1(r − r+) + h2(r − r+)2 + h3(r − r+)3 + · · · ,

(10)

and then inserting these expressions into Eq. (9), we find

h3 = −−4α + h1r3+ + 4αr2+h2 − r2+ + 14αr+h1 − 9αr2+h2
1

3αr4+h1
,

h4 = 24αh1h2r3+ − 4h1r3+ + 80αr2+h2
1 − 48αr3+h3

1 + 5r4+h2
1 − 8α + 4αr2+h2 − 2r2+ + 24αr4+h2

1h2

24αr6+h2
1

+4αh2
2 − h2

24αr2+h2
1

, (11)

where r+, h1 and h2 are undetermined constants of integra-
tion. The other near horizon constants are provided in the
Appendix 1. In the large r limit, we linearize the field equa-
tions about the flat background

h(r) ≈ 1 + εH(r) , (12)

where H(r) is to be determined by the field equations, and
we linearize the differential equation by keeping terms only
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to order ε. The resulting differential equation for H(r) takes
the form

H ′′′′ + 10

3r
H ′′′ − 26

3r2 H
′′ + 2(r2 + 2α)

3αr3 H ′

+2(r2 + 22α)

3αr4 H = 0 . (13)

In the large r limit we obtain

H ′′′′ + 10

3r
H ′′′ − 26

3r2 H
′′ + 2

3αr
H ′ + 2

3αr2 H = 0 , (14)

that can be solved as

H(r) = c1r
4

0F2

(
; 3,

25

6
;− r2

12α

)

+ c2r
− 7

3 0F2

(
;−13

6
,−1

6
;− r2

12α

)

+ c3r 1F3

(
1;−1

2
,

2

3
,

8

3
;− r2

12α

)
, (15)

here, the pFq(a, b, z) is the generalized hypergeometric
function [59,60]. For c1 = c2 = c3 = H1 and in the large r ,
H(r) becomes

H(r) = H1

r
− 10αH1

r3 − 210α2H1

r5
− 37800α3H1

r7

− 20374200α4H1

r9 − 23837814000α5H1

r11

+ O
(

1

r12

)
. (16)

Finally, the solution is

h(r) = 1 + H(r) . (17)

We wish to obtain an approximate analytic solution that is
valid near the horizon and at large r . To reach this goal, we
employ a continued-fraction expansion and write 1 [62–65]

h(r) = x A(x), x = 1 − r+
r

, (18)

with

A(x) = 1 − ε(1 − x) + (a0 − ε)(1 − x)2

+ a1(1 − x)3

1 + a2x

1 + a3x

1 + a4x

1 + · · ·

. (19)

1 It should be noted that the other components of field equations give
the same result for the Eqs. (10)–(17).

Even at lowest order, the continued fraction approximation
does a good job of approximating the solution everywhere
outside the horizon. This only gets better as more terms are
included. Here, we truncated the continued-fraction expan-
sion at order 4. This method give an accurate analytic expres-
sion approximating for the metric for the whole space out-
side the event horizon, and not only near the black hole or far
from it (r+ ≤ r < ∞). By expanding (18) near the horizon
(x → 0) and the asymptotic region (x → 1) we obtain

ε = −H1

r+
− 1, a0 = 0, a1 = −1 − a0 + 2ε + r+h1 ,

(20)

for the lowest order expansion coefficients, with the remain-
ing ai given in terms of (r+, h1, h2). Also, we provided these
expressions in the Appendix 1.

The result is an approximate analytic solution for metric
functions everywhere outside the horizon. For a static space
time we have a timelike Killing vector ξ = ∂t everywhere
outside the horizon. Therefore, one can obtain

T = h
′
(r)

4π

∣∣∣∣∣
r+

= h1

4π
= (1 − 2ε + a1 + a0)

4πr+
. (21)

We computed the entropy as follows [71,72]

S = A
4
fR = A

4

[
1 − 2α

r2

(
h′′r2 + 4rh′ − 2 + 2h

)]
r=r+

= πr2+

[
1 − 2α

r2+

(
h2r

2+ + 4r+h1 − 2
)]

. (22)

We now consider the thermodynamics of these black hole
solutions, whose basic equations are the first law and Smarr
formula

dM = TdS , (23)

M = 2T S , (24)

where there are no pressure/volume terms since we have set
� = 0. From Eq. (24) we have

M = h1(r+)

2

(
r2+ − 2αr2+h2(r+) − 8αr+h1(r+) + 4α

)
,

(25)

yielding the mass parameter as a function of the horizon
radius. Regarding the asymptotic flat spacetimes, we can
define the total mass at spatial infinity as the Arnowitt-
Deser-Misner (ADM) mass. Besides, the Komar mass makes
sense for calculating total mass of a black hole solutions
enjoying a timelike Killing vector. In addition to these two

123



   45 Page 4 of 12 Eur. Phys. J. C            (2023) 83:45 

approaches, one can use alternative methods like Misner-
Sharp prescription. Although the Misner-Sharp mass is just
the Schwarzschild-like mass in the Schwarzschild space, it
can be extended to 4-dimensional f(R) gravity (see for exam-
ple: [66–68] for higher dimensions). In the Appendix 1, we
showed that the asymptotic behavior of the mass (25) is the
same as the mass of the Schwarzschild black hole. There-
fore, one can interpret the mass (25) as ADM mass. We now
impose the first law (23), which becomes

∂M

∂r+
− T

∂S

∂r+
= 0 , (26)

where differential equation that must be satisfied by h1(r+)

and h2(r+). Therefore, we achieve the prominent equation
as follows

R[r2+ − 2r2+αh2(r+) − 12αr+h1(r+) + 4α]h′
1(r+)

− h1(r+)[4αh1(r+) − r+
+ 2αr+h2(r+) + αr2+h′

2(r+)] = 0 . (27)

In order to solve the differential Eq. (27), we need to define
h2. To do so, we assume h2 = g(α). Recall that, near the
horizon, the metric function is expanded as

h(r) = h1(r−r+)+h2(r−r+)2+
∑

hi (h2)(r−r+)i , (28)

where the constants with i > 2 are determined by the field
equations in terms of other parameters. We will demand that
this expansion has a smooth α → 0 limit. Therefore, the
expansions for the first four terms are

h3(h2) = −r+h1 − 1

3h1r2+α

− 14h1r+ − 9h2
1r

2+ − 4 + 4r2+g(0)

3h1r4+
+ O(α),

(29)

h4(h2) = 5r4+h2
1 − 2r2+ − 4r3+h1 − r4+g(0)

24h2
1r

6+α

+ 4r4+g(0)2 − 48h3
1r

3+ + 4r2+g(0)

24h2
1r

6+

+ 24r4+h2
1g(0) + 24r3+h1g(0) − r4+g′(0) + 80h2

1r
2+ − 8

24h2
1r

6+
+ O(α) , (30)

h5(h2) = h1r+ − 1

210h3
1r

4+α2

+ 100h2
1r

2+ − 12 − 3h2
1r

4+g(0) + 5r4+g(0)2 + 2r3+h1g(0)

420h3
1r

6+α

+ 28r2+g(0) + 80r0h1 − 146h3
1r

3+
420h3

1r
6+α

+ O(α) , (31)

h6(h2) = −90r7+g(0)h1 − 24h1r5+ − 97r6+g(0) − 106r4+ + 165r6+h2
1 − 42r7+h3

1

25200h4
1r

10+ α2

− 120g(0)3r8+ − 97r6+g′(0) − 72g(0)2r8+h2
1 + 90r7+g′(0)h1 + 1976r3+h1

25200r10+ h4
1α

+ 4200r4+h2
1 + 6420h3

1r
5+ + 60r7+h3

1g(0) + 3692r5+h1g(0) + 216g(0)r4+
25200r10+ h4

1α

+ 1084r6+g(0)2 − 832r2+ − 9882r6+h4
1 − 1374r6+g(0)h2

1 − 180h1r7+g(0)2

25200r10+ h4
1α

+ O(α0) . (32)

Demanding h3 to have a smooth behavior at α → 0 limit,
we must take

h1 = 1

r+
. (33)

Then, for h4 we have

g(0) = − 1

r2+
. (34)

Now, by inserting (33) and (34) into the h5 and h6, one can
find h5 = 0 and g′ = 0. By continuing the procedure in
this way, one can find that the other coefficients of expansion
should be zero.

g′′(0) = g′′′(0) = g′′′′(0) · · · = 0 . (35)

Therefore, h2 can be obtained as

h2 = g(0) + g′α + g′′α2 + · · · = − 1

r2+
. (36)

By inserting h2 into the Eq. (27), one can obtain a differ-
ential equation only for h1. By solving it we obtained three
solutions for h1

h(1)
1 = B

1
3

24αr+
+ (r2+ + 6α)2

24αr+B
1
3

+ r2+ + 6α

24αr+
, (37)
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h(2)
1 = − B

1
3

48αr+
− (r2+ + 6α)2

48αr+B
1
3

+ r2+ + 6α

24αr+

− i
√

3

2

(
B

1
3

24αr+
− (r2+ + 6α)2

24αr+B
1
3

)
, (38)

h(3)
1 = − B

1
3

48αr+
− (r2+ + 6α)2

48αr+B
1
3

+ r2+ + 6α

24αr+

+ i
√

3

2

(
B

1
3

24αr+
− (r2+ + 6α)2

24αr+B
1
3

)
, (39)

where

A = c1(216α3 + 1728c1α
2r2+ + r6+ + 18αr4+ + 108α2r2+)

(40)

B = 3456c1α
2r2+ + r6+ + 18αr4+ + 108α2r2+

+ 216α3 + 48αr+
√

3A. (41)

For α > 0 and c1 > 0 we have just one real solution and
also for α > 0 and c1 ≤ 0 we have three real solutions.
Inserting (37)-(41) into the thermodynamical quantities and
plotting them, one can obtain Fig. 1. In this figure, we have
illustrated the temperature, mass, and entropy for different
values of parameters in the left, middle, and right panels,
respectively. As can be seen, there are two kinds of solu-
tions with four branches in such a way that the black dashed
lines are the Schwarzschild-like solution and the solid lines
non-Schwarzschild-like solution. The black solid line is a
non-physical black hole solution due to having a negative
temperatures and mass. In Fig. 2 we have shown the behav-
ior of heat capacity and free energy in the left and right panels,
respectively. As can be seen, the heat capacity is negative for
all values of r+ which shows the black holes locally are unsta-
ble. The free energy for a non-Schwarzschild-like solution is
decreasing function which shows the solutions globally are
stable.

In Fig. 3 we present the solutions for h(r) with different
values of horizons in the left, middle, and right panels that
depicting the full continued-fraction solution (18) along with
its comparison to the near-horizon solution with blue dashed
lines and large-r series expansions solution with black dashed
lines. We see that the continued-fraction expansion converges
to both of these two approximations. Similar to quadratic
gravity, we find two groups of solutions [54,69,70]. For the
first group, the metric function is increasing functions in r ≥
r+. These solutions are generalizations of the Schwarzschild
black hole solution and reduce to the Schwarzschild as α →
0. The non-Schwarzschild solutions are physically distinct
from the first group, and as α → 0, it does not go back to the
Schwarzschild metric.

Here, we would like to solve the field equation (8) and the
metric near the center of a black hole. Therefore, we consider

the following expansion around the origin as

h(r) =
∑
i=0

cir
i . (42)

Similar to previous cases for near horizons and asymptotes,
one can obtain the metric as

h(r) = c0 + c0r2

4α(9c0 + 1)

+ 3(3c0 + 1)c2
0r

4

8α2(9c0 + 1)2(27c2
0 − 40c0 − 2)

+ 15c3
0(9c

2
0 − 3c0 − 2)r6

64α3(159c3
0 + 36c0 + 1)(9c0 + 1)3(27c2

0 − 40c0 − 2)

+ O(r8) , (43)

with c0 = 1 and c0 = −2/9. The metric is fully determined
and there is no free parameter. The Kretschmann scalar and
Ricci scalars near the origin behaves as

K = Rabcd R
abcd = 4(c0 − 1)2

r4 + 2c0(c0 − 1)

α(9c0 + 1)r2

+ 3c2
0(33c2

0 − 44c0 − 4)

2α2(9c0 + 1)2(27c2
0 − 40c0 − 2)

+ O(r2) , (44)

R = 2(1 − c0)

r2 − 2

3α
+ O(r2) . (45)

As can be seen, for the case c0 = 1, the behavior of the metric
near the origin corresponds to an Anti-de Sitter space-time
and the Kretschmann and Ricci scalar have a finite values
(K = 3/200α2, R = −2/3α) (with a nonzero mass). Reg-
ular solutions with an Anti-de Sitter core have been studied
with a nonlinear electromagnetic source in [73]. But, for the
case c0 = −2/9, the Kretschmann and Ricci scalar do not
become zero and there is a singularity. In Fig. 4, we have
shown the full solutions of the field equations from center
to infinity by starting from the near origin metric (43) and
asymptotic solution (17), for c0 = 1 (a solution without hori-
zon2) and for c0 = −2/9 (black hole case).

3 Dynamical stability

In this section, we are interested in calculating the Quasi-
Normal Modes (QNMs) of constructed black hole solutions
to investigate the dynamical stability of obtained black hole
solutions undergoing scalar perturbations. To do so, we used
the Klein–Gordon equation for the massless real scalar probe
φ(r) as follows

�φ(r) = 0 . (46)

2 This solution is not a naked solution because the Kretschmann and
Ricci scalar do not diverge.
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(a) (b) (c)

Fig. 1 Plots of T , M and S in terms of r+ for α = 0.5, c1 = −0.1406. In all panels the dashed line curves indicate Schwarzschild-like behavior
and solid line curves non-Schwarzschild-like behavior

Fig. 2 The behavior of heat
capacity (left) and free energy
(right) in terms of r+ for
α = 0.5, c1 = −0.1406

(a) (b)

Fig. 3 The plots of metric for α = 0.5, c1 = −0.1406. The red solid line is the full continued-fraction solution, the blue dashed line is the
near-horizon solution and black dashed line is the large-r solution
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Fig. 4 The solution without
horizon (left panel) and
Schwarzschild-like black hole
solution with horizon radius
r+ = 1.4 (right panel) in terms
of r for
α = 1, H1 = −0.047, c0 = 1,
and
α = 0.5, H1 = −1, c0 = −2

9 ,
respectively. At both cases we
set c1 = −0.1406

It is important to note that, since we assume that the met-
ric (8) is the vacuum solution of the field Eq. (9) and also
the perturbation of the scalar field is second order then can
not contribute at the linear perturbation to the field equation
[74,75]. After the separation of variables and changing the
radial coordinate to the tortoise coordinate, one can find the
second-order Schrodinger-like Ordinary Differential Equa-
tion (ODE) for a radial coordinate as follows

d2ϕ(x)

dx2 + (ω2 − V (x))ϕ(x) = 0 , (47)

where

V (r) = h

(
j ( j + 1)

r2 + h′

r

)
, x =

∫
dr

h
, (48)

here,h(r)has been obtained in (18). The boundary conditions
for asymptotically flat black holes are

ϕ ∼ e±iωx , x → ±∞ . (49)

Now, in order to solve the differential equation (47) with the
conditions (49), we used the Mashhoon’s Method [76,77].
According to this method the QNM’s of a potential barrier
are related to the bound states of the inverted potential. The

frequency of waves must be complex, ω = ωr + iωi . The
imaginary and real parts are related to the damping time scale
(τi = 1/ωi ) and oscillation time scale (τr = 1/ωr ), respec-
tively. The proper QNM’s using this method can be obtained
as

ωr = ±
(
V0 − η2

4

)1

2
, ωi = η

(
n + 1

2

)
, (50)

where

V0 = V (x0), η2 = − 1

2V0

d2V

dx2

∣∣∣∣
x0

. (51)

Our results are presented in Tables 1, 2 and 3 and plotted
in Fig. 5. A couple of points should be mentioned. First, from
the figures and the tables, one can conclude that the quasi-
normal frequencies have a positive imaginary part, which
shows that both the Schwarzschild and non-Schwarzschild
black holes are stable under the scalar perturbations. Second,
it is observed for both black holes, with increasing j , the
values of the real part of the frequencies increase while the
imaginary part of the frequencies decreases, which is a sign
of more stability of black holes. Also, as can be seen from

Fig. 5 The behavior of ωi in terms of ωr for j = 0, 1, 3, 4 (left) and j = 0, 1, 2, 3, 4, 5, 6, 7 (right)
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Table 1 The values of the quasinormal frequencies in the (small) non-
Schwarzschild geometry for the values of parameters r+ = 0.5, M =
0.55, α = 0.5

j n ωr ωi

0 0 0.2272 0.1805

1 0 0.6231 0.1504

1 0.6231 0.4511

2 0 1.02145 0.1450

1 1.02145 0.4302

2 1.02145 0.7251

3 0 1.4227 0.14338

1 1.4227 0.4301

2 1.4227 0.7169

3 1.4227 1.00368

the figures and tables with increasing n, the imaginary part
of the frequencies increase which shows that the black hole
becomes more unstable.

4 Conclusion

f (R) gravity is a natural generalization of GR and has been
received extensive investigation in past decades. In particular,
the black hole solutions of this gravity are interesting. To do
so, in this paper, we obtained analytical approximate black
hole solutions in the framework of R2 gravity. To achieve
this goal, first, we obtained the near horizon and asymp-
totic solutions and then use these to obtain a complete solu-
tion using a continued-fraction expansion. It is important

Table 3 The values of the quasinormal frequencies in the (large) non-
Schwarzschild geometry for the values of parameters r+ = 2.0, M =
0.37, α = 0.5

j n ωr ωi

0 0 0.097 0.254

1 0 0.3595 0.252

1 0.3595 0.7564

3 0 0.8323 0.3279

1 0.8323 0.984

2 0.8323 1.638

3 0.8323 2.296

4 0 1.063 0.398

1 1.063 1.194

2 1.063 1.99

3 1.063 2.79

4 1.063 3.582

to note that the continued fraction expansion is applicable
just from horizon to infinity. Two general types of solutions
numerically have been obtained, i.e. black hole solutions and
the solutions without horizon and singularity. In addition,
the black hole solutions are categorized in two types, i.e.
Schwarzschild and non-Schwarzschild-like solutions. Our
results showed that there are obvious differences between
Schwarzschild and non-Schwarzschild-like solutions. In the
non-Schwarzschild-like solutions unlike the Schwarzschild
case by increasing the radius of horizon mass and entropy
decrease while temperature increases. We studied the stabil-
ity of the solutions and we found that the solutions thermo-
dynamically and dynamically are stable. We would like to

Table 2 The values of the quasi-normal frequencies in the (large) Schwarzschild geometry for the values of parameters r+ = 1.5, M = 0.57, α = 0.5

j n ωr ωi j n ωr ωi

0 0 0.0659 0.2055 5 0 1.3133 0.1187

1 0 0.3711 0.1471 1 1.3133 0.3561

1 0.3711 0.4414 2 1.3133 0.5935

2 0 0.6071 0.1283 3 1.3133 0.8309

1 0.6071 0.3847 4 1.3133 1.0683

2 0.6071 0.6413 5 1.3133 1.3057

3 0 0.8418 0.1217 6 0 1.5501 0.1140

1 0.8418 0.3651 1 1.5501 0.3421

2 0.8418 0.6083 2 1.5501 0.5701

3 0.8418 0.8517 3 1.5501 0.7981

4 0 1.0773 0.1186 4 1.5501 1.0262

1 1.0773 0.3558 5 1.5501 1.2542

2 1.0773 0.5929 6 1.5501 1.4823

3 1.0773 0.83016 7 0 1.7866 0.1165

4 1.0773 1.067 1 1.7866 0.3494
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emphasize that in this work similar to our previous works
[54,55], we assumed that the near horizon constant h1 is a
function of r+. This assumption is eligible, because h1 is
proportional to temperature according to Eq. (21).

Another interesting direction to extend our work will be
to investigate the non-vacuum, rotating black hole, and other
solutions of the theory by using the continued-fraction expan-
sion.
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A Explicit terms in the continued-fraction expansion

We present terms up to order 4 in the continued-fraction
expansion:

ε = −H1

r+
− 1, a1 = −1 − a0 + 2ε + r+h1,

a2 = −4a1 − 5ε + 1 + 3a0 + h2r2+
a1

a3 = − 1

a1a2

×
[
−h3r+3 + a1a2

2 + 5a1a2 + 6a0 + 10a1 − 9ε + 1
]

a4 = −h4r+4 + a1a2
3 + 2a1a2

2a3 + a1a2a3
2 + 6a1a2

2 + 6a1a2a3 + 15a1a2 + 10a0 + 20a1 − 14ε + 1

a1a2a3
(52)

B Near horizon constants

Here, we present some near horizon constants regarding sec-
tion (10) as follows:

h5 = 1

420α2r8+h3
1

[−344r3+α2h1h2 − 3r6+h2αh
2
1

− 372r5+α2h3
1h2 − 556α2r4+h2h

2
1 + 12r6+α2h2

2h
2
1

− 80r5+α2h1h
2
2 + 28αr4+h2 + 80αr3+h1 − 2r4+ + 2r5+αh1h2

− 20α2r6+h3
2 + 5αr6+h2

2 − 12αr2+
+ 16α2r2+h2

1 − 146r5+h3
1α

+ 1308α2r4+h4
1 − 2212α2r3+h3

1 + 100r4+αh2
1

− 60α2r4+h2
2 + 96 α2r2+h2

+ 256α2r+h1 + 2r5+h1 − 16 α2], (53)

and

h6 = − 1

25200α2r10+ h4
1

[−106r4+ − 832αr2+ − 24r5+h1 − 1632α2

+ 165r6+h2
1 − 42r7+h3

1 + 3504r3+α2h1h2

− 1374r6+h2αh
2
1 − 32112r5+α2h3

1h2 − 33048α2r4+h2h
2
1

− 1752r6+α2h2
2h

2
1 − 14688r5+α2h1h

2
2

+ 3692r5+αh1h2 + 4848α2r3+h3
1 − 158736α2r4+h4

1

+ 6420r5+h3
1α + 3600α2r2+h2

1 − 2304α2r6+h3
2

+ 1084αr6+h2
2 + 216αr4+h2 + 1976 αr3+h1

+ 4200r4+αh2
1 + 2064α2r4+h2

2 + 2352α2r2+h2+
8160 α2r+h1 − 97r6+h2 + 120h3

2r
8+α − 480h4

2r
8+α2

+ 90144α2r5+h5
1 − 9882r6+h4

1α + 90r7+h2h1−
1680r7+α2h1h

3
2 − 72h2

2r
8+αh2

1 + 288h3
2r

8+α2h2
1

− 29664r6+α2h4
1h2 + 1008r7+α2h2

2h
3
1 + 60r7+αh3

1h2

− 180r7+αh2
2h1]. (54)

C Misner-sharp mass

Here, we compute the Misner-Sharp mass with equation
(4.16) of [66] as follows:

E = r

2G

[
(1 − hab∂ar∂br) fR + r2

6
( f − R fR)

]
, (55)
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where xa is the coordinate on a two-dimensional spacetime
witha = t, r . By inserting metric (8) into the above definition
for mass and using (6), one can get

E = r

2
(1 − h) + α

12r
[12hh′′′r3 − 8r2h′′(1 − 7h + rh′)

− 16r2h′2 + 8rh′(h − 4) − r4h′′2

+ 4(1 − h)(7h + 5)]. (56)

Using the asymptotic metric (17), one can get

E = −H1

2
+ 5αH1

r2 + α2

[
100H1

r4 + 80H2
1

r5

]

+O(α3) (57)

If we assume H1 = −2M , the total energy of black hole
becomes

E = M − 10αM

r2 − α2
[

200M

r4 − 320M2

r5

]

+O(α3), (58)

which is the same as ADM mass.
While the mass (25) in the case of small α � 1 becomes

M ∼ i
√
c1r+ + 8c1 + 3i

√
c1

r+
α + O(α2),

∼ −i
√
c1r+ + 8c1 − 3i

√
c1

r+
α + O(α2),

∼ −16c1

r+
α + 96c1α

2

r3+
+ O(α3), (59)

for three solutions of h1 in Eqs. (36)–(41). It is straightfor-
ward to show that for c1 = −1/4, the asymptotic value of
the mass (59) is the same as Schwarzschild mass.
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