

RECEIVED: November 17, 2023

ACCEPTED: November 23, 2023

PUBLISHED: December 6, 2023

Erratum: Low-energy effective field theory below the electroweak scale: operators and matching

Elizabeth E. Jenkins, Aneesh V. Manohar and Peter Stoffer¹

*Department of Physics, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0319, U.S.A.*

E-mail: ejenkins@ucsd.edu, amanohar@ucsd.edu, pstoffer@ucsd.edu

ERRATUM TO: [JHEP03\(2018\)016](#)

ARXIV EPRINT: [1709.04486](https://arxiv.org/abs/1709.04486)

¹Now at: Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, and Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.

In ref. [1], the operator basis of the low-energy effective field theory below the weak scale (LEFT) was worked out to dimension six and the tree-level matching conditions to the Standard Model effective field theory (SMEFT) above the weak scale were given. Here, we correct two mistakes in the original publication.

In table 3 of ref. [1], the number of operators in the case of $n_g = 1$ generation of fermions was incorrect, although the number of operators for a generic number of generations was correctly given in table 22. The corrected table reads as follows.

d	quantum numbers	$n_g = 1$	$n_g = 3$
3	$(\Delta L = 2) + \text{h.c.}$	$1 + 1$	$6 + 6$
5	$\Delta B = \Delta L = 0$	$5 + 5$	$35 + 35$
5	$(\Delta L = 2) + \text{h.c.}$	$0 + 0$	$3 + 3$
6	$\Delta B = \Delta L = 0$	$80 = 57_+ + 23_-$	$3631 = 1933_+ + 1698_-$
6	$(\Delta L = 2) + \text{h.c.}$	$11 + 11$	$600 + 600$
6	$(\Delta L = 4) + \text{h.c.}$	$0 + 0$	$6 + 6$
6	$(\Delta B = \Delta L = 1) + \text{h.c.}$	$6 + 6$	$288 + 288$
6	$(\Delta B = -\Delta L = 1) + \text{h.c.}$	$2 + 2$	$228 + 228$

Furthermore, the matching condition for the first two $\Delta B = \Delta L = 1$ operators in table 20 in ref. [1] was incorrect. The correct entries should read as follows.

$\Delta B = \Delta L = 1 + \text{h.c.}$			
	Number	SM	Matching
$\mathcal{O}_{udd}^{S,LL}$	$n_\nu n_u n_d^2$	54	$C_{qqql}^{srpt} - C_{qqql}^{rspt} + C_{qqql}^{rpst}$
$\mathcal{O}_{duu}^{S,LL}$	$n_e n_d n_u^2$	36	$C_{qqql}^{srpt} - C_{qqql}^{rspt} + C_{qqql}^{rpst}$

The complete tree-level SMEFT-LEFT matching was reproduced and generalized to one loop in ref. [2].

Acknowledgments

We thank the authors of ref. [3] for pointing out the mistake in the matching conditions. Financial support by the U.S. DOE (Grant No. DE-SC0009919) and the Swiss National Science Foundation (Project No. PCEFP2_194272) is gratefully acknowledged.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License ([CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/)), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- [1] E.E. Jenkins, A.V. Manohar and P. Stoffer, *Low-energy effective field theory below the electroweak scale: operators and matching*, *JHEP* **03** (2018) 016 [[arXiv:1709.04486](https://arxiv.org/abs/1709.04486)] [[INSPIRE](#)].
- [2] W. Dekens and P. Stoffer, *Low-energy effective field theory below the electroweak scale: matching at one loop*, *JHEP* **10** (2019) 197 [*Erratum ibid.* **11** (2022) 148] [[arXiv:1908.05295](https://arxiv.org/abs/1908.05295)] [[INSPIRE](#)].
- [3] J. Fuentes-Martín, P. Ruiz-Femenía, A. Vicente and J. Virto, *DsixTools 2.0: the effective field theory toolkit*, *Eur. Phys. J. C* **81** (2021) 167 [[arXiv:2010.16341](https://arxiv.org/abs/2010.16341)] [[INSPIRE](#)].