UNITARY REPRESENTATIONS OF LIE GROUPS
IN QUANTUM MECHANICS

by

L. 0'Raifeartaigh¥*

1. NON-RELATIVISTIC CLASSICAL MECHANICS
AND THE GALILEAN GROUP#**

Let S(3) denote Euclidean 3-space. A Cartesian observer of S(3) is
a mapping s € S(3) » ; B (X1X2X3) € R3 for which the metric p(s,s’) of S§(3)
may be written as

L
p(s,8") = {(x; = x[)% + (x, =~ x)% + (x; - x)?P . 1.1)

The group of transformations between Cartesian observers is the Euclidean group
E(3)

7 - =
x] Rabxb + Ca » a=1,2,3 R 1.2)
where Rab is any real orthogonal matrix and Ca any real vector (independent of
X).
Let t denote Newtonian time, which is simply a parameter assumed to be
the same, up to a change of origin t +~ t' =t + t for all Cartesian observers.,

s
Note that in general Rab and Ca are functions gf t, i.e., Cartesian observers
may be accelerating relative to each other.

Newtonian physics assumes that physical objects occupy volumes in S(3)
and vary their positions continuously with time, the variation of any body being
determined by the others. The business of physics is to determine the laws of
variation.

We shall be concerned mainly with a simplifying limiting case of
physical objects, namely, Newtonian particles. A Newtonian particle is a physical

object to which is attached an intrinsic label called its mass m (which will be
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*% Throughout this paper an asterisk (*) used in a mathematical expression denotes
complex conjugation and a dagger (1) passing to the adjoint operator.
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discussed in more detail in a moment) and whose volume is so small (relative to
its distance from other particles) that for practical purposes it can be neglected
and shrunk to a point in S(3). Thus, a Newtonian particle is characterized at
any time t by a point in S(3) and its mass.

In view of the importance of the mass of a particle for our later dis-
cussion, we congider in a little detail how it enters in Newtonian theory. Its
existence is, of course, empirical and may, in principle at least, be established
as follows: If any 2 particles interact in isolation (in practice, sufficiently
far from other objects), then there exists a set of Cartesian observers such that

the quantity

2 (1 2.(2)

L Ry 1.3)

12 5 > L.
dt dt

(the ratio of the acceleration of the particles) is positive and is independent of

@ L@

a, t, x and the nature of the interaction. In other words, m;, is an
intrinsic property of the pair of particles 1 and 2. Furthermore, if a, B, y are

any 3 particles then (again empirically)

maﬁ = moLY . mYB . (1.4)

Equation (1.4), however, implies the existence of a set of intrinsic masses m s

one for each particle, and unique up to a common scale factor, such that

mas = mB/ma . (1.5)

As the masses m ~are relatively positive, they are chosen by convention to be
positive.

The result that maB is constant already lays the foundations for the
law of variation of the positions of the particles with respect to time. The
general law (Newton's law) is a linear generalization, namely, given a set of n
isolated particles (mu, xa, a =1,...,n), there exists a set of Cartesian

observers such that

n 2.0
Im &5 -0 . (1.6)
a=1 dt

This law, in turn, brings out the importance of the force, defined by

dzxa

s (1.7
ac?

F =m

o o

as a basic physical concept. Forces are additive, from (1.6), and have additional
good properties, which might be described as follows:

What we are looking for is a description of the interaction of particles

which is as simple and as universal as possible. Now a description would be
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provided by simply stating what each ;d is as a function of t for each ensemble
of particles, (this is what Kepler actually did for the planets), but such a des-
cription would be neither simple nor universal (as Kepler found to his cost). What
Newton discovered is that there exists a quantity that is simple and universal,
namely, Fa' The classic example of a simple universal Fu is in the Newtonian
1m2/r2 is
sufficient to explain all (non-relativistic) effects. (Of course, one can reverse

theory of gravitation, for which the simple inverse square law F =m

the logic and define gravitational effects to be those for which F = mlmz/rz.
However, the point is that gravitational effects so defined cover a huge class of
observed phenomena--falling bodies, projectiles, planetary motion, etc.)

From the group theoretical point of view, the interesting aspect of
Newton's Equation (1.6) is its invariance group. Equation (1.6) does not hold for
all Cartesian observers, but only for a subclass. Let us call the subclass

Galilean observers. By noting that any Cartesian observer is related to a

Galilean observer by a transformation of the form

I = 1= 1.
x Rab(t)xb + Ca(t) , t t+t (1.8)
and inserting this result in (1.6), we see that the Galilean observers are those,

and only those, for whom

Rab(t) = Rab , Ca(t) = Ca + Vat s (1.9)

where Rab’ Ca’ and Va are independent of t. The subgroup G of (1.8) for
which (1.9) holds is called the Galilean group G.
The geometrical significance of the Galilean group becomes clear if we

note that it is formed exhaustively from the four subgroups:

1) Time-translations t' =t + tg
2) Space-translations x'"=x +C
a a a
: ' (1.10)
3) Rotations X Rabxb
4) Accelerations x'=%x +V ¢t
a a a

The invariance of (1.6) under (1.10), 1) to 3), means that (1.6) does not prefer
any origin in space or time or any direction in space, which is understandable.

The invariance under 4) means that observers with different but constant velocities
are equivalent. This is far less obvious, and was first discovered by Galileo.

The invariance under 4) does have, however, a geometrical significance, namely, in
the 4-space spanned by S(3) and &, (1.6) does not prefer any slope for the

t-axis.*

*# I am indebted to Henri Bacry for this remark.
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The force defined by Equation (1.7) is clearly Galilean invariant, pro-
vided that the Galilean transformation is universal, i.e., it is a transformation of
the coordinates of all the particles. Thus, in guessing the forces for any
problem, one can restrict oneself to those that are Galilean invariant.

Let us now consider the Galilean group by itself. By definition, it is
a l0-parameter Lie group, which is the semi-direct product of its connected part
(det Rab = +1) and the 2-element space reflexion (parity) group. Its Lie algebra
dG has the basis:

1) Time-translations E
2) Rotations La
3) Space-translations Pa
4) Accelerations Ka
with commutation relations
[E,M] = 0 [E,2,] = 0 [E,K,] =P,
[Ma’Mb] = EabcMc [Ma’Pb] = EabcPc [Ma’Kb] = Eachc
(1.11)
[Pa’Pb] =0 [Pa’Kb] =0
[K,K1=0 ,
where a,b,c =1,2,3 and Eabc is the Levi-Civita symbol. In words, d¢ is the

semi-direct sum of the rotation algebra L and a 7-dimensional solvable algebra
made up of the two abelian commuting vectors P and K and a scalar E which
projects K onto P and commutes with P.

One of the most important properties of Galilean transformations is that
they are a special case of contact transformations [1], namely, transformations

x > x"(x,p), p > p’(x,p) which leave the symplectic form

JA 9B JA 3B
{A,B} = z (5;—8—}-( - & —B;} > (1.12)

h dxg . X
where =m -—— , invariant.
Py a dt ?

Now a property of the group of contact transformations[2] is that if o
is the parameter of any l-parameter simply conmnected Lie subgroup, then there exists

a function G(p,q) such that

SF

56 = {6,F} , (1.13)

where F 1is any regular function of p and q, and %g is its rate of variation
with respect to the group parameter o. The function G is called the generator
function for the l-parameter subgroup.

Furthermore, for an n-parameter Lie subgroup of contact transformations

with parameters o, B,...
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808 8 8\ v S
(Gu 88 &8 §u> F=Cup Sy > (1.14)

where CZ are the structure constants of the group. Hence, inserting (1.13) into

B8
(1.14) and using the Jacobi relation for {A,B}, we obtain

= Y
{{e,.coE} = Crele s FI s (1.15)
whence,
- Y
{GY,GB} CuSGY'f Aus , (1.16)
where the A have zero bracket with all F and hence are constants. Thus,

aB
under the bracket operation, the generator functions Ga of a Lie group of con-

tact transformations form a representation (up to the_constants kas) of the Lie
algebra. The number of constants AuB can be minimized by transformations of the
form Gu -+ Ga + Xu, where the Aa are constants, but whether the Aaﬁ can be
eliminated entirely depends on the group structure.

The above results hold for any Lie group of contact transformations.

Let us now return to the connected Galilean group G. For G, the generator

functions corresponding to the generators in (1.11) can be seen to be

L=)x xP
(83

P=Zpa
o
K=])mx -Pt (1.17)
[
=7 L 2
E=] 2m L

dx
where P, = T, EEE—, and ¢ 1is the potential from which the Fu can be derived,

i.e.,

If we compute the brackets {L,E}, etc., for the generator functions (1.17), we
obtain, as expected, the Lie algebra (1.11) up to constants. In fact, there is

only one constant; namely, the relations (1.11) hold as they stand except that

[Pa,Kb] =0~ {Pa,Kb} = 6,4, (1.18)
where M = Z Ma is the total mass. Further, the structure of the Galilean group
o

is such that M cannot be eliminated (we shall be discussing this question again

later).
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Note that the generator for the time translations is just the Hamiltonian
H for the system. Ncte further that [H,K] # O, although [H[H,K]} = 0. Thus,
although the Galilean group is an invariance group of Newton's Equations (1.6), it
is not quite an invariance group of the Hamiltonian, or of Hamilton's equations of

motion,
= - - = T . (1.19)

This is understandable since a choice of Hamiltonian forces a choice of direction
for the t-axis in S(3) 8 R and thus destroys the Galilean invariance. Inciden-—
tally, the term -Pt, which is explicitly time-dependent, is inserted in the
definition of K, so that in spite of the fact that [H,K] # 0, K can be a con-
stant of the motion, i.e., so that

4K _ 3K

It Bt+{H,K}=-P+P=0 . (1.20)

2. NON-RELATIVISTIC QUANTUM MECHANICS

As is well known, Newton's laws, or the more general and sophisticated
versions of them, such as Hamilton's, sufficed to explain all physical phenomena
until the end of the last century. But after the turn of the century, the New-
tonian framework was shattered both by the theory of relativity and by the quantum
theory. In this lecture, we shall be concerned only with quantum theory. As is also
well-known, the crux of the quantum theory is to replace the functions x and p

dx

=m3y needed to describe particles, by linear operators X and P on a Hilbert

space, satisfying the relation
[x,p] = ih . (2.1)

(This relation will be made mathematically more precise later.) For the moment, we
shall only emphasize that the assumption (2.1) is the only new assumption made in

the quantum theory. The old equations of motion

dX & dp 3

dt ~ 3P * dt 3

j==f

<

are retained with x =+ X, p > P (which is unambiguous since H = g% + ¢p(x)). There
are four questions which we wish to discuss briefly:

1) How one arrives at the particular Ansatz (2.1)

2) How to make it mathematically precise

3) How to relate it to experiment

4) How the group structure of Newtonian theory is affected.

Let us begin with 1). The decision to replace x and p by operators
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was based on a large number of empirical observations and on partial theories
formed from these observations [l]. Since we could not even begin to describe the
general picture in a part of one lecture, let us concentrate on one experimental
result, namely, the discrete frequency of the light emitted from atoms, and try to
sketch the motivation from that result. It was known at the time the quantum
theory was founded that the atom consisted of a positively charged kernel of very
small radius with negatively charged electrons circling it, about 1078 cms out.

For such a system Newton's laws (extended to include Maxwell's) would
predict a continuous emission of radiation from the circling (and therefore accel-
erating) electrons, leading to a continuous loss of energy on the part of the
electrons (so that the atom would finally run down) and a continuous change in the
frequency of the emitted radiation. The experimental situation, however, was quite
the opposite. First, the atoms were quite stable (otherwise, our universe would
not exist). Second, from spectroscopy it was known that the frequency of the
radiation emitted from atoms, far from being continuous, could only have special
sharp values (spectral lines) characteristic of the atom (yellow for sodium, green
for copper, and so on). Hence, Newton's laws were incompatible with experiment on
the atomic level, The question was: how to change them?

One worked backwards. If one assumes

1) Einstein's empirical law E = hv, where h is Planck's constant,

v the frequency of the emitted light, and E its energy, and
2) comservation of energy, i.e., energy lost by electron in the atom
= energy of emitted radiation,

it follows from the discreteness of the frequency of the emitted radiation that the
energy levels of the electron in the atom must be discrete., It follows that the

Hamiltonian

H= 73— p° - — s (2.2)

for an electron in an atom with nucleus of charge Ze, cannot take continuous
values. This leaves one with three options:

1) Abandon the Hamiltonian (2.2)

2) Impose some conditions on it from outside

3) Change it so that it can naturally take only discrete values.
1) has the difficulty that it is almost impossible to think of a classical Hamil~
tonian which would take discrete values. 2) is what was done in the so-called "old
quantum theory” (1900-25), and is very ad hoe. 3) is the option chosen by
Schrédinger and Heisenberg. The choice they made was to interpret H as a linear
operator, since H could then take discrete values naturally. This means inter-
preting x and p as linear operators X and P. To de;ermine the kind of

operators P and X should be, one must do more. Heisenberg amalyzed the atomic
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spectra in detail and concluded that P and X should be the matrices

p ot 0o VI 0o 0 g oL o Yy o o -
WI |- o /2 o Z [T o /2 0 -
0 V2 0o /3 o Y2 o 3 - (2.3)
0o 0 -3 0 o o /3 0o -
. . . . | - . . S
where f# = o Schrodinger, on the other hand, built on a partial theory due to

de Broglie. According to de Broglie, free particles should diffract like light
from sufficiently small gratings and should therefore satisfy, in the relativistic

case, a wave equation of the form

2
L 37 g2 g Pix) =0 . (2.4)

¢? 3t2?
Comparing this with the classical energy moment relation,
e2 - p2 -m2=0 , (2.5)

Schrddinger concluded that P should be the operator

(2.6)

= sr

3

9% ’
on L3(—w,w), and went on to postulate that this identification should persist in
the nin—relativistic limit and in the presence of a potential.

One sees that the Schr8dinger and Heisenberg Ansatz are equivalent by
noting that they are special realizations of the Ansatz (2.1). Note, incidentally,
that the Ansatz (2.1) need only be made at a single (initial) instant of time and it
is therefore a kinematical Ansatz. Newton's laws then guarantee it for all times.

It might be wondered if the Ansatz (2.1) is absolutely necessary to
obtain agreement with experiment, or whether one could get away with less.

Wigner [2], for example, has proposed that (2.1) might be replaced by the weaker

commutation relations

. oH
[E,X] = -1 ) s (2.7)

4

[H,P] = & 5% ’

where ‘H is the Hamiltonian, which would seem to be necessary from Heisenberg's
analyses of the spectral lines. However, except in the case (2.1), the Ansatz
(2.7) would make the commutation relations depend on H, i.e., on the dynamics.
Let us now turn to question 2), namely the question of putting the
Ansatz [X,P] = ifi on a better mathematical footing. For this we proceed as
follows:
Let X be a Hilbert space, and let X and P be operators on it such

that there exists for them a common invariant dense domain 0 on which
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a) X and P are symmetric

b) X2 + P2 1is essentially self-adjoint

¢) [X,P] = ik

d) the only bounded operator which commutes with X and P is a

multiple of the unit operator.

Then X and P are uniquely and rigorously defined [3] on 3 up to a unitary
transformation (which may depend on the time). They are essentially self-adjoint
on 0. A realization of X and P, is the Schrédinger realization x and
%’%z- on Lz(-w,w), where the domain 0 could be, for example, the space K of
all infinitely differentiable functions of compact support, or the space S of all
infinitely differentiable functions of fast decrease (i.et, which decrease faster
than any inverse power of x as |x| + ©), We shall see later (from Nelson's
theorem) that conditions a) to d) are precisely the necessary and sufficient con-
ditions, that X and P can be exponentiated tc form a unique unitary irreducible

representation of the Weyl-Heisenberg group W, i.e., that

ioX itP
e e =

eiTPeicxeicrﬁ Con X . (2.8)
Thus, an alternative definition of X and P is that they satisfy (2.8), i.e.,
that they are the generators of the unitary irreducible representation (UIR) of

W, [4]. In fact, this definition of X and P was the starting point for

von Neumann's celebrated proof [5] of the uniqueness of X and P up to a unitary
transformation.

Having disposed of these mathematical points, we come to the experi-
mental numbers. To extract the experimental numbers, we first put the self-adjoint
operators A on X into a 1-1 correspondence with the measurable quantities
(observables) which we shall then also denote by A. 1In practice, for the self-

adjoint operators for which it is meaningful, the correspondence is [4]

A= £(P,X) = ——0 J oL (BVHXD) 44, J TtV o yapdx (2.9)
(2m)?
where f(p,x) are the corresponding classical functions. (The bounded subset of
the operators for which (2.9) is meaningful form a dense set in the ring of
bounded self-adjoint operators.)
Now let PA(A) be the projection operator on the eigenspace of A be-
longing to the eigenvalue X, where for the moment we assume X to be discrete and

the eigenspace finite dimensional. The numbers to be extracted are then

trace (PA(A)Pu(B)) , (2.10)

with appropriate modifications in the case that A and u are not discrete and

/

that both eigenspaces are infinite dimensional. ‘The meaning of the numbers (2.10)

is that they are probabilities; namely, trace (PX(A)PU(B)) is the probability of
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finding the value u from a measurement of B, having just previously found X

from a measurement of A, except points in spectra of self-adjoint operators, the

probabilities are the only experimental numbers that quantum mechanics can predict.
In the particular case that the eigenvalues A and u are simple, i.e.,

that PA(A) and PU(B) project onto l-dimensional subspaces, (2.10) reduces to

[, @, £,60] (2.11)

where fX(A) and fU(B) are any unit vectors in the respective subspaces. This
is the case which will be of most interest to us. (For future reference, we shall
need for this case the concept of a ¢quantum mechanical state. The state of a
system after a measurement of A with result XA, where ) 1is simple, is defined
to be the set of unit vectors in the l-dimensional eigenspace. Such a set
of unit vectors liafA(A), 0s o < 2n 1is often called a ray. Thus, the states of
a system are in 1-to-1 correspondence with the rays.)

Let us turn now to question 4), the group theoretical properties of non-

relativistic quantum mechanics, and first consider the Hamiltonian

R
=5 P2+ (X) , (2.12)

for a single particle in an external potential.

In most cases of interest, H 1is essentially self-adjoint on the domain
D above. Hence, by Stone's theorem [6], there exists a unique continuous l-para-
meter group of unitary transformations U(t) on 3, such that

du(t)

T HU(t) on D . (2.13)

We now show that U(t) 1is the group of time translations. Since the Newtonian
equations of motion are the same in classical and quantum theory, we have in both

cases

ax _1 4@
=CP , & X . (2.14)

In the quantum mechanical case, however, we have the extra condition
[X,P] = il .

Inserting this equation into (2.14) and (2.12), we see that in the quantum mechan-

ical case we have

ax _ i i
il [H,X] , it - R [H,P] on D . (2.15)

If we assume that the domain 0 is invariant with respect to U(t), it follows at

once that

X(t) = U(E)X(O)U~I(t) , P(&) = U()PO)U™ () on D (2.16)

>
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and, in general, for suitably defined F(P,X) in (2.9)

F(P()X(t)) = B()F(P(O)X(O))U 1) . (2.17)

Thus, U(t) is the group of time translations. In quantum mechanics, therefore, the
Hamiltonian H, like P and X, plays a dual role. It is a physical observable
(energy) and it generates the group of time translations.

It may happen that H is not essentially self-adjoint on 7. 1In this
case, there is usually a good physical reason, and the corresponding classical
Hamiltonian also has bad properties, e.g., sends the particle off to infinity in
a finite time [7].

Turning now to the Galilean group for a system of interacting particles,
we find that, in analogy to P, X, and H, if we replace the classical generator
functions of the Galilean group by their quantum mechanical counterparts to obtain

- = p2
E= z 2m Pa

L=]X xB
(2.18)
P=]P

K

ImX -Pt ,

then, in analogy to P, X and H, these ten operators (2.18) play a dual role.
They are physical observables and at the same time they are the generators of
unitary representations of the l-parameter subgroups of the Galilean group G on
¥, i.e., if o 1is a parameter,

dF

1 =
i ﬁ'[G ,F1 , o =1...10 . (2.19)

This is the quantum-mechanical analogue of the classical Poisson bracket relation

dF

"y
I5 - {GG,F} . (2.20)

Using the quantum mechanical relation [X,P] = ifi, we can easily compute

the commutators of the operators (2.18) amongst themselves. We obtain

[Ma’Mb] = ieabcMc [Pa’Pb] =0 [Ka’Kb] =0
[Ma’Pb] = iEabCPc [Pa,Kb] = iSabM [Ka,H] =0

(2.21)
[Ma’Kb] = isachc [Pa’H]' =0 ’

i
o

[, ,H]
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These relations are the analogue of the classical Poisson bracket relations for
the generator functions amongst themselves. Note that (2.21) even contains the
term sabM which occurs in the classical Poisson bracket relations, but not in
the Lie algebra of G.

Apart from the term 6abM’ (2.21) is just the Lie algebra of G. Hence,

if the term Sa M were absent, the l-parameter subgroups of G, generated by the

b
Ga’ would mesh together to form a unitary representation of G on ¥ (modulo some
domain restrictions which will be discussed later and which are normally satisfied).
Thus, in quantum mechanics the generators Ga play the dual role of observables
and generators (modulo SabM) of a unitary representation [8] of G on 3. This
is true, of course, in classical mechanics also, where the generator functions are
observables and generators of group transformations in the sense of Poisson brack-
ets. But the relationship in quantum mechanics is more direct. In particular,

the operation of commutation is simpler and more direct than the operation of
forming Poisson brackets. In this sense, group theory, which plays a background
role in classical theory, may be said to come into its own and play a central role
in quantum mechanics.

Let us now consider the term SabM. Since it commutes with all the Ga’
it cannot make a big difference to the representation of G on ¥X. It is easily
checked that the difference it makes is that the l-parameter subgroups of G,
instead of meshing together to form a true unitary representation of G on X,
mesh together to form a unitary ray representation of G on ¥, i.e., a repre-

sentation by unitary operators U(g) satisfying

U(e)U(") = Ugg")e (&8 (2.22)

where g,g’ € G and w 1is real. The reason for the name ray representation is
that the factor exp iw(g,g’) is irrelevant for rays, (where rays are defined as
above to be sets of unit vectors related to a given unit vector f by exp(ia)f,
where 0 < o < 2r). If we now recall that the experimental numbers which can be

extracted from quantum theory are
KGN . (2.23)

where f and g are unit vectors, we see at once that they do not distinguish
between vectors in the same ray. Thus, the experimental numbers do not distinguish
between unitary ray representations and true unitary representations. We shall be
returning in more detail to this point later, but for the moment we merely note
that the failure of the experimental numbers to distinguish between true and ray
representations means that the appearance of ray representations and hence, in
particular, of the term 6a M in the Lie algebra (2.21), is quite natural in

b
quantum mechanics.
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In the case of a single free particle, the generators reduce to

1

Ma T2 EabcPaXc

P =P

a a

(2.24)

K =mX -Pt

a a a

I
£ = 2m P ’

where m is now the mass of the particle and E 1is both a generator of the
Galilean group and the generator of time tramslations. Thus, a free particle
"carries" a unitary ray representation of G. Furthermore, if the quantum mechani-

cal commutation relation
[X,P] = 1f »

is irreducible on 3}, then so is the representation (2.21) of G. A non-relativ-
istic free particle may, therefore, be said to carry an irreducible unitary ray
representation of G.

An interesting question is what would happen if we reversed our line of
approach and demanded that a free non-relativistic particle carry a true unitary
representation of G. This question has been investigated by Indnii and Wigner [9].
They showed that in a true irreducible unitary representation of G the quantum

mechanical relation
[X,pP] = ik ,

cannot be realized, which has the unpleasant physical consequence that X cannot
be localized. The crucial point is that P2 is a Casimir operator for G. Hence,
in any unitary irreducible representation, it is a number, and the Fourier trans-—
form ?(X) of any f(P) must therefore have a spread in X.

In a ray representation, the situation is saved by the ray relation

1K ,P ] = S m (2.25)

or

: 2
1[Ka,P ] 2mPa . (2.26)

The latter relation implies that P2 agsumes all values in the range 0 < P2 < o,
which together with
[Ma,Pb] = leabcPc , | (2.27)

> >
implies that P takes all values in R3, in which case the Fourier tramsform X

is localizable.
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In conclusion it might be worth remarking that the twin postulates of
quantum mechanics, I(f,g)l2 = probability, and [X,P] = iff are not entirely inde-
pendent. The second can be deduced from the first, using group theoretical and

other general arguments of a more or less plausible nature (see ref. 4, lecture 6).

3. INVARIANCE GROUPS IN NON-RELATIVISTIC QUANTUM MECHANICS

In the last two sections, we saw that the Galilean group G was the
group of invariance of the non-relativistic equations of motion of an isolated
system of n particles. Let us now consider a 2-particle system and "factor-off"

the Galilean invariance by introducing center of mass and relative coordinates.

X = (mix;+ moxy) , P=py +pp 5, M=m +mp ,

1
M
and

1
y =% -%X,, 7m=g@mp; -mp,) (3.1

respectively. Because of Galilean invariance the Hamiltonian splits into

H=H_ + Hr’ where

™
p? .
Hoo = 5 o [x,p] = ik,
and
’IT2 .
Ho= g0+ 0 , [yl =ik, (3.2)

where 1 = mm,/M is called the reduced mass.

Clearly H describes the motion of the centre of mass and Hr the

cM
relative motion of the particles.

The equations of motion derived from the "relative" Hamiltonian (3.2)
will not, in general, retain any of the original Galilean invariance. However, in
particular cases (i.e., for particular potentials ¢(y)) they may retain invari-
ance under a subgroup of the Galilean group (e.g., the rotation group) or they may
happen to be invariant under special groups which have nothing to do with Galilean
invariance. In this lecture we wish to consider such cases. For this purpose, we
define an invariance group.

Definition: An invariance group is defined to be any group of transformations on
¥, the Hilbert space of vy, m, which leaves invariant
a) the Hamiltonian H
b) the absolute values of the inner products l(f,g)l.

We first discuss the motivation for this definition. That the group should leave
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the Hamiltonian invariant is practically self-explanatory since this is true of an
invariance group even in classical mechanics. We only note that (in both classical
and quantum mechanics) the invariance of H is slightly stronger than the demand
that the group leave the equations of motion invariant. (For example, as we saw for
an isolated system, the Galilean groﬁp left the equations of motion invariant but
not the Hamiltonian.) However, for invariance groups of the relative Hamiltonian,
the distinction between H and the equations of motion usually does not arise, and
the invariance of H is used as the simplest and most compact was of defining
invariance.

The more interesting question concerns b), namely the invariance of the
inner products |(f,g)| which are peculiar to quantum mechanics. The question is
whether this demand is necessary, or at least reasonable.

For a group of transformations which have a passive interpretation, as is
the case for the Galilean group G, the answer is yes. TFor if we change the
observer of a system, without changing the system itself, the probability of the
system making any particular transition g - f cannot change (since the system
"does not know who is looking at it") and this is just another way of saying that
|(f£,g)| is invariant.

For transformations which do not have a passive interpretation, i.e., for
which we must change the system itself to implement them (these are usually trans-—
formations which have no geometrical interpretation), the argument is not so easy
to establish. However, it is usual to demand the invariance of the probabilities in
this case also, if only for simplicity and to preserve the analogy with the active
case.

Demanding that the probabilities |(f,g)[2 remain invariant, we come to
a second question: Are unitary ray representations the most general group repre-
sentations which leave the probabilities invariant?

To answer this, one first concentrates on a single transformation T

and asks: What is the most general T such that

(rg,T6) | = |(8,£)| , g.f €X . (3.3)

If T 4is linear, then the answer is simple: T must be unitary. In general,

however, there is no need for T to be linear. 1In that case, we fall back on the

following remarkable theorem due to Wigner [1].
Theorem

Let T be a transformation satisfying (3.3). Then there exists a

unitary or anti-unitary transformation U such that for all f € X

wlme = 50 (3.4)
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Note that U is then unique up to a phase-factor, exp(ié), which is independent of

f. [An anti-unitary transformation is defined to be a transformation such that
U, Ug) = (g,6) = (£,)" 1 . (3.5)

This theorem means that, for rays, T is equivalent to, and may be replaced by, a
unitary or anti-unitary transformation.

This theorem was first stated by Wigner in his book on group theory in
1931, [1] However, the proof given in the book is not complete, and since then
many papers [2] have been devoted to completing, simplifying and generalizing the
proof.

The most definitive proof is that given by Bargmann [3] in 1964. This
proof has the advantage of being basis-free and hence valid for non-separable as
well as separable Hilbert spaces.

Wigner's theorem applies to any fixed transformation T. Consider now a
group of transformations T(g). For each fixed g, T(g) can be replaced by a
unitary or anti-unitary transformation U(g), unique up to a phase-factor

exp i8(g). Using the group relation
T(g)T(g') = T(gg") , (3.6)

Equation (3.4), and the unitarity (or anti-unitarity) of U(g), one sees that

U(g)U(g") = U(gg')e (88" (3.7)

H

where w(g,g') is a real number. It follows that any group of transformations
T(g) preserving the probabilities (3.2) is equivalent to a set of unitary or anti-
unitary transformations U(g) forming a ray representation of the group. 1In this
sense, unitary of anti-unitary ray representations are the most general group
representations preserving the probabilities.

In practice, only one anti-unitary transformation is used in physics.
This is the time-reversal transformation. To keep the quantum mechanical equations
of motion

dF i

dt = [H,F] 3 (3-8)

Stk

invariant under time-reversal, it is necessary to let either H~» -H or i -+ -i
when t -+ -t « H~+ -H is ruled out because H 2 0. Hence, i + -i, and this leads
to an anti-unitary transformation.
We turn now to some examples of invariance groups in quantum mechanics.
For this purpose, it is usual to consider the relative motion Hamiltonian
72
Bt (3.9)

The problem is, given ®(y), to find unitary groups of operators which

commute with this H, and have a direct physical meaning. Indeed, in practice, it
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is usually the physical meaning that enables us to find the groups. The advantages
of finding such groups are:

1) Since for the group generators G,
[HsG] =0 s (3.10)

the group provides in the G's at least some of the constants of the
motion.

2) At the same time, the G's are natural operators to diagonalize
simultaneously with H.

3) The group can be used to reduce enormously the labor involved in
making a calculation with the Hamiltonian, e.g., calculating an
energy level, an emission probability, or a scattering amplitude.

Note that Equation (3.10) can be looked at from two points of view: The
group generated by G leaves H invariant (is an invariance group of the equations
of motion). Conversely, the group generated by H leaves G invariant (G is
conserved).

Let us illustrate points 1), 2), and 3) above with the most important
special case of an invariance group; namely, the case when ¢(y) in (3.9) is
central, i.e., depends only on r where r? = y? + yg + yg. In this case, H com-
mutes with the rotation group generated by the three operators L =y X w, with Lie
algebra [L,L}] = iL, and which are at the same time identified with the relative
angular momenta of the particles in the 1, 2, 3 directiomns. [The transition from
the group to the algebra and back will be justified in the next section.] Now with

respect to 1) above it is clear that Ll, L_, and L3 are conserved. With respect

2
to 2) it is not difficult to show that the so-called total relative angular momentum
L2 = L% + Li + Lg and any one of Ll’ L2, L3 (usually LS) can be added to H to

form a complete set on ¥ (K being assumed irreducible with respect to [y,n] =ih).

Thus, a convenient and physically relevant basis in ¥ is f(e,%,m) where

Hf (e2m) = ef (em) R
L2f (efm) = 2(& + 1)f(efm) , (3.11)
Lsf(eﬁm) = mf (e2m) s

where, because the rotation group is compact, & 1is a non-negative integer and
-% =m = k.

With respect to 3), we see at once that in calculating the eigenvalues of
H, which are the eigenvalues of the differential operator

2

h
- 5= v2 + V() s (3.12)

on L2, the use of (3.11) reduces the partial differential operator (3.12) to the

simple differential operator
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p2d et D)

1 d
2m ;E-dr dr €2 + V() ? (3.13)

and so simplifies the calculation.

But the group does much more for us than that. For example, if we wish
to calculate the probability of a particle in the state f£(e,%,m) emitting a
photon with momentum k and ending up in a state f(e¢’,2',m’), then, to lowest
order in the EM coupling constant e, and provided the wavelength of the emitted
photon is large compared with the size of the atom [1,4], the relevant inner pro-
ducts to compute are the multipole moments of the particle. A typical one of these

is the dipole moment,

Ea = I (faizrmlsyafsﬂ‘m) , a=1,2,3 . (3.14)

Now for even quite low value of & and &', the number of quantities (3.14) to be
computed is quite large, since -2’ =m’ = 2’, -2 <m < 4. But thanks to the group
properties of y (it is a polar vector with respect to rotations and space reflex-
ions), we can

a) show that the Ea vanish unless &' =2 1, m' =m, m *+ 1,

b) for &' = & % 1, reduce the calculations in each case to one calcu-

lation. In fact, the group invariance implies that
o)
E, = ¢{'n',on) j; t2drFy, ()rF (@) , 2=l (3.15)

where m’ -m =0, *1 for a = 3, 1 + i2 respectively and the FeQ are the eigen-—
functions of the simple differential operator (3.13). The crucial point about (3.15)
is that the m' and m dépendence appears only in the coefficients (Clebsch-

Gordon coefficients) which are independent of V(r). Thus, these coefficients need

only be calculated once and for all (Figure 3.1), and then they can be used for any

central potential. (The functions in the integral will, of course, depend on V(r).)

o = | m'=m+1 n' =m ' .m'=m -1
2+ 1 @ +n)Q@+m +1) @ -m"+1DQ@ +m+ 1) (L -m")L -=m' + 1)
(2L + 1Y (2% + 2) 2L+ + 1) @+ e+ 2)
e |-/ +mN@+m +1) o’ /(sa-m')(z+m'+1)
25(2 + 1) YORE) 282 + 1)
o -1 @ -m)@ -m +1) [ -n)E +n") /(z+m'+1)(z+m')
22(22 + 1) 2(22 + 1) 22(2% + 1)

FIGURE 3.1. VALUES OF ¢('m',tm)
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The labor saved by using one group to obtain the results a) and b) in
this example is obviously immense. Furthermore, the use of the group gives a much
deeper insight into what is going on. It isolatés the group properties of a
central potential (independence of the potential of the angular variables 6, o)
from the dynamical properties (form of the dependence of V(r) on r). The results
a) and b) for this example are, of course, a special case of the Wigner-Eckart
theorem, which has already been mentioned by Louis Michel and will be formulated
for completeness in the next chapter.

We conclude by considering two Hamiltonians which have special invariance

groups. The first is the harmonic oscillator Hamiltonian
H=n2 41 g2 (3.16)

where « 1is a constant. This is centrally symmetric and has the angular momentum
invariance group generated by L discussed above. But, in addition, H commutes

with the six operators

Mab = XaXb + Pan s (3.17)

1 b

where X = ay, P = o7°w, o' = mk, and these six operators, together with the cor-

responding La’ form the Lie algebra
[L,L] = iL s

[L,M] = iM (3.18)

(M,M]

il s
of the compact, connected Lie group U(3). Thus, the Hamiltonian (3.16) is U(3)
invariant and, in fact, is just Maa(4mK)_1/2.

For 1 particle, this result is not particularly exciting because the
Hamiltonian (3.16) is so simple that we can calculate its properties directly any-
way. However, in nuclear physics, in the nuclear shell model, it is much more
interesting. [5] In the nuclear shell model, it is assumed that the particles in
the nucleus interact with each other in such a way that, for each particle, the
total effect is the same as if it were in a strong central potential due to all the
other particles, together with somewhat weaker potentials due to the effects of
other individual particles. A special case of this model is the Elliott model, in
which one assumes that

a) the central potential is the harmonic oscillator potential.

b) the smaller potentials, while not U(3)-invariant, have definite

U(3) tensor properties (like X in the dipole moment). (These
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properties are guessed from the general nature of the individual
potentials, e.g. that they are 2-body interactions.)
From a) and b), one can go ahead, apply the Wigner-Eckart theorem, and
deduce some general properties of the nuclei (e.g., the spacing of the energy
levels) without having specified the potential in detail.

The second Hamiltonian we consider is the more spectacular

H=z=z—-— (3.19)

of a particle in an attractive 1/R potential, e.g., of an electron in a hydrogen
atom, considered already by Louis Michel. As he points out, using the S0(4)

invariance with generators L and the Lenz vector

N
- —1_JR 1
R omZe?

= xP - P x s 3.20
Naor (L xP L) ( )

one can predict [6]

1) the 8S0(3) (angular momentum) content of each energy level (Figure
3.2), and

2) the value of the energy for each level.

o —>

n=4 ¢ '——— @ lam—— — e e ——

=3 @ e emmm | e ————

=2 & ——

=1 ¢

FIGURE 3.2. ANGULAR MOMENTUM CONTENT OF H-ATOM ENERGY LEVELS

The only thing one cannot predict is the multiplicity of the SO0(4) representation
for each level. I should like to add just two comments to Michel's remarks.
a) The Lenz vector also has a meaning in classical physics; namely, for

the planets in the gravitational field of the sun, it is a vector
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directed along the major axis of the ellipse with length equal to the
eccentricity. The fact that it is a constant of the motion is re-
flected in the fact that the ellipse does not precess. It is perhaps
amusing to see that the absence of plametary precession and the

degeneracy of the spectrum of the hydrogen atom have the same origin!

b) The second point is just a remark in defense of the groups
S0 (4) x TH or 80(4,1) which contain S0(4) and have representa-
tions that can be used to describe all the bound states of the H-atom
with the correct multiplicity. The remark is that these two groups
can be used to simplify many spectroscopic calculations, and have
even been used for calculations which were not feasible by direct
methods [7].

4. GENERAL RESULTS ON REPRESENTATIONS OF LIE GROUPS

In this section, we will fill in some of the mathematical gaps which
were left in the previous discussion. In particular, we wish to establish the
connection between representations of the Lie algebras and the corresponding
representations of Lie groups, to define unbounded tensor operators, and finally
to formulate the Wigner-Eckart (WE) theorem.[1]

We begin with the case of l-parameter continuous groups. From Stone's
theorem, we know that to any l-parameter continuous group of transformations U(t)
on J(, there corresponds a unique skew-adjoint generator G with a dense domain 7

on which

du(e) _
Frae GU(t) s (4.1)

and, conversely, to any skew-adjoint operator G with dense domain 7 there
corresponds a unique continuous group of unitary transformations such that (4.1)
is true on D.

Furthermore, from the spectral resolution [2],

ie = [ AEQ) (4.2)

of G, we see at once that the vectors
[E(a) - E(®B)]Ih (4.3)

for all finite intervals [a,b] and all h € ¥, form a dense domain A on which
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tn n
T (4.4)

| 0~ 8

=0

converges to U(t). A vector f for which (4.4) converges is said to be an
analytic vector for G.

The question now is: What are the analogues, if any, of these results
for general groups of continuous unitary transformations on ¥? The answer is that
for completely general groups, definitive results are not available. But for the
important special case of simply connected finite parameter Lie groups, almost
exact analogues of the above results have been established. We shall restrict our-
selves to this case and let U(g) dencte henceforth a continuous unitary repre-
sentation of a simply connected Lie group G on .

Since the Lie algebra of G contains r elements, where r is the
number of independent parameters of G, the question in this case concerns the

existence of common domains analogous to D and A above, for the r elements

dx
(¢

G = (d—Ui&)—J , a=1l...r (4.5)
x=0

of the Lie algebra of G.
The existence of a common dense domain for the Ga was first established

by G8rding [3] who in 1947 exhibited the domain Dg consisting of the vectors
| dueHuEeHEEH (4.6)

where u(g') 1is the group invariant measure, f(g') 1is any infinitely differenti-
able function of compact support over the group, and h is any vector in (.
(Note that D _ is not only a common dense domain Ga’ but is invariant with

respect to both Ga and U(g).)

It was soon shown by Segal [4] that the Ga are actually essentially
skew-adjoint on Dg’ i.e., their restrictions to Dg have unique skew-adjoint
extensions. This is actually a special case of the following lemma which was later

proved by Nelson. [5]
Lemma

The Ga are essentially skew-adjoint on any dense domain T which is

invariant with respect to U(g).

Proof. Let £ be an eigenvector of GZ with complex eigenvalue .

Then the function y(g) = (£,U(g)d), d € D both satisfies the differential equation
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Bgi ) - t¥(g) and is bounded. Hence it is zero, in which case, since 0 1is

dense, f = 0. Thus, the deficiency indices of Gu are zero, i.e., Gu is essen-
tially skew-adjoint [2].
The next question is whether there exists a common dense domain of

analytic vectors for the Ga, i.e., a dense domain on which
N n
t
] & “.7)
n=0 :

converges where G 1is any linear combination of the Ga' Here the spectral theo-
rem does not help since, in general, the closures Gu and GS do not commute and
so cannot be simultaneously resolved. Furthermore, the Girding domain D  does
not help since that is not in general analytic. However, it has been shown by
Cartier and Dixmier [6], Nelson [7] and G8rding [8] that for a unitary representa-
tion of a Lie group, a common dense analytic domain for the Lie algebra does in
fact exist. Here we describe briefly a simplification of Nelson's proof due to
Garding. The point is to replace the infinitely differentiable functions of com-
pact support £(g) in the G8rding integral by a dense set of analytic functions
a(g) of sufficiently fast decrease to counter the (at most exponential) growth of

the Haar measure and make the integral converge. Such a dense set of functions is

given by

a(g) = eth(g) s> £ >0 s (4.8)

where A is the unique self-adjoint extension of the operator

A=1—G§—G§—...—G§ , (4.9)

on the G8rding domain Dg for the regular representation. The functions a(g)
have Gaussian decrease for t > 0.

It is interesting to note that the above results concerning the existence
of a Grding and analytic dense domain are not confined to unitary representations.
They hold for any continuous representation by bounded operators. This is clear
for the G8rding domain and follows for the analytic domain because, for a continu-
ous representation, the growth of U(g), like the Haar measure, is at most exponen-—
tial. Even the result that the Gu are skew-adjoint on any group invariant domain
D generalizes; namely, if superscript c¢ denotes contragredient quantities, we

have

c T _ Ty
(Gu/Dc) = (Ga/D)
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So far, we have given the group representation U(g) and asked questions
about the Lie algebra. Now we ask the converse question: What is a necessary and
sufficient condition that a Lie algebra Ga generate a unique unitary group U(g)

on X? An answer was given by Nelson [7] in 1959, who established the following

theorenm:
Theorem

A necessary and sufficient condition that a Lie algebra of symmetric
operators 1iG be the Lie algebra of a unique unitary Lie group U(g) on X is
o
that there exist in ¥ a common dense invariant domain 0 for the Ga on which

the iGa are symmetric, and the operator

A=-§ 2 +1
a=1
is essentially self-adjoint.

In the course of the proof, Nelson has shown that the analytic domain for
the self adjoint extension & of the operator A 1is a common analytic domain for
the Lie Algebra, and thus furnished an alternative proof of the existence of a dense
analytic domain for the unitary representations. The essence of Nelson's proof is
to obtain, from the general form of the commutation relations and the obvious

bounds ||¢]| < [T}, |62} < |7, a bound [|6”) < c_IT%], where C_=< n!. Then, if

n n
7 (tg?- <o for all t, ) (ti% - < » for t < £, where t,; > 0. Note that, in

general, the entire vectors for *«, i.e., Z © all t, are not necessarily

m"
Tarl o
entire vectors for G. Indeed, in general there do not exist any entire vectors

for the Lie algebra of a unitary Lie group. The unitary representations of SL(2,C)
already provide a counter-example. Recently it has been shown by R. Goodman [10]
that the analytic domain for the Lie algebra is exactly the analytic domain for the
operator Al/z. Goodman has also discussed the question of the existence of entire
vectors [11].

From the above results, namely the existence of an analytic domain for
any continuous representation, and the existence of a unique continuous unitary
representation when A is essentially self-adjoint, it is evident that for con-
tinuous Lie groups the relationship between Lie algebra and Lie group representa-
tions is all that could be required. We can operate relatively freely with the
algebra in spite of the unbounded nature of the operators, a circumstance we had
anticipated earlier. We close with a few incidental remarks:

First, in the case of UIR's of semisimple Lie groups, there are some
stronger results due to Harish-Chandra.[9] For example, the vectors in the (neces-

sarily finite dimensional) subspaces, which are invariant with respect to the
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maximal compact subgroup of the group, are analytic vectors for the whole group.
Furthermore, the linear span of such vectors, which is dense in ¥, can be gener-
ated from any one such vector using the enveloping algebra of the Lie algebra.

Second, there are still some outstanding problems. One is to find an
analogue of Nelson's results (A essentially self-adjoint) for non-unitary
representations. Another is to ask for statements concerning the analytic
continuation of the functions (h,U(g)a) to complex values of the group
parameters., How close are the singularities? Are they poles or cuts? And so
on.

We next consider briefly tlie domain question for tensor operators. For
a set of operators Ta’ a =1...s to transform as a tensor under a unitary group
U(g), we need only a dense domain 0 with

1) the T, essentially self-adjoint on D,

2) D stable with respect to U(g),

3) U(g)TaU'l(g) = ﬁga(g)Tb on D, where ﬁm(g) is a representation of

U(g).
ﬁﬂﬁﬁ is usually finite-dimensional (r < ), but the definition can be extended to
cover infinite dimensional representations as well.

If the group U(g) 1is compact, one is usually interested not in the
full (generally unbounded) tensor components Ta’ but only in the restrictions
P'TaP, where P,P' are the projections onto finite dimensional subspaces of
3} which are invariant with respect to U(g). TFor the restrictions P'TaP to
exist, one needs only the weaker condition that there exist a dense domain
D for the T, such that PD c D(EA), where Eé is the unique self-adjoint
extension of Ta' The physical conditions are usually enough to guarantee
this.

For example, in the dipole radiation example of the last section, the

relevant matrix elements were (f ), i.e., they were the matrix elements

a’l'm”yafslm

of the restrictions of y, to the finite spaces fekm' One can see that these

restrictions must exist from the physical point of view as follows: The dipole

radiation is 7ctua11y just the first coefficient in the expansion of
iy /2
<fs'2'm"e feom
radiation. Now the restriction P’ exp iya/AP certainly exists since exp iy /X
a

) 1in powers of 1]%, where X is the wavelength of the emitted

is a bounded operator, so the only question is the validity of the subsequent
expansion in powers of llk. This expansion is justified on the physical grounds
that the wavelength X can be (and in practice usually is) large compared with the

mean value of ]y| for the wavefunction fskm’ i.e., compared with the "size" of

the atom.
Finally, we consider the WE theorem. Let U(g) be a unitary represen-
tation of G on ¥ and T, a tensor component belonging to the representation

N
D (g). Let ¥, M, be irreducible subspaces of K with respect to U(g), let



169

%

into

A
be the Hilbert space for D (g), and let the product space M% 8 3¢, decompose

%, 8%, = ; &K, (4.10)
with respect to U(g). The WE theorem states that
(£1,Tyfp) = ; (£,,E,8 P00 T, (4.11)

where the sum is taken over all X such that the representations Dx(g) and
(U(g)/Kl) are equivalent and fx,fa are vectors in the directions £, and Ty
respectively. In other words, the T-dependent tensor (fl’Tafz) can be expanded
linearly in terms of the T-independent tensors (fx’fafZ) with scalar coefficients
mCKlTHé)A. In particular, if U(g)/ﬁ}C1 occurs only once in the decomposition
(4.10), then

(£,,T,6,) = (£,f £ 06K, (4.12)

i.e., (fl’Tafz) is parallel to (fl’fafz)'

The coefficients mCKiEKE)A are usually called reduced matrix elements,
and the T-independent tensors (fx’ﬁfo) are called Clebsch-Gordon coefficients.
Note that the (fx’faEZ) are just the matrix elements of the unitary (intertwining)
operator which transforms the direct product basis in Hk 8 }(, into the basis in

which U(g) is diagonal.

5. SURVEY OF EXPERIMENTAL AND THEORETICAL
BACKGROUND TO ELEMENTARY PARTICLE PHYSICS

The rest of these chapters will be devoted to the group theory of ele-
mentary particle physics. But before going on to the group theory proper, it might
be worthwhile to f£ill in a little of the experimental and theoretical background.
This we shall do in the present chapter.

First we consider the experimental background [1].

The non~relativistic quantum mechanics discussed up to now suffices to
describe completely the greater part of modern physics--atomic, molecular, plasma,
solid state, low temperature, etc., physiecs. It is built on the twin postulates of
Newton's laws and [X,P] = ifi. The basic constituents of matter for all these
branches of physics are the protons, neutrons, and electrons which form the atoms,
and the photons, which carry the EM (electromagnetic) field. These constituents of
matter, or particles, are regarded as elementary. In particular, the protons,

neutrons, and electrons are regarded as indestructible.
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As soon, however, as one wishes to inquire into the finer features of
atomic phenomena or wishes to investigate the structure of the atomic nucleus or
the structure of the protons, neutrons, and electrons themselves, then the situ-
ation changes drastically. First, the energies necessary for the investigation are
relativistic. Second, the electrons, protons, and neutrons are found to be far
from indestructible. They can be destroyed and created almost at will. Third, not
only can these particles be destroyed and created, but new particles are created
and destroyed along with them. The new particles include the anti-particles of the
proton, neutron, and electron, the m-meson which keeps the protons and neutrons
bound in the nucleus, and many other particles (along with their anti-particles).
To date, the number of new particles which have been produced is of the order of
100.

It should, perhaps, be emphasized that the particles referred to here
differ in some fundamental ways from the Newtonian particles defined in the first
lecture; namely,

a) they can be created and destroyed.

b) Although they can be created and destroyed, their masses are not

arbitrary but are fixed by nature to have definite values outside

our control. For example, the electron has a mass 9.11 x 10728 grams.
¢) As well as an intrinsic mass, the particles have an intrinsic

angular momentum. The Casimir operator of the intrinsic angular

momentum group takes the values J(J + 1), where J (the spin of

the particle) is half-integer.

Thus, the particles appear to be particles in the sense of Democritus
(fixed, ultimate constituents of matter) rather than of Newton (fictitious limits

of small bodies). For this reason they are called elementary particles. Of course,

it is difficult to believe that 100 particles can be elementary, but until some-
thing more elementary is discovered, they are regarded as such. (An analogy is
provided by the chemical elements, all 92 of which were regarded as elementary
until the advent of atomic theory.)

In Figure 5.1, a list of the particles is presented. They are grouped
together into multiplets (so-called isospin multiplets) of particles with approxi-
mately the same mass and spin. Even so, the number of multiplets is very large and
it might help to clarify the situation a little if we briefly classify them by word.

The broadest classification of the particles is in terms of their inter-
actions. Apart from the gravitational interactions, in which all the particles
participate, but which are so weak as to be negligible, the particles can interact
in only three ways:

a) By electromagnetic interactions, with coupling constant e2/ficvl/137

b) By weak interactions, with coupling constant g2 << e2ftic

c) By strong interactions, with coupling constant G2 >> e?/fic.
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Isospin 0 SU(3) multiplets
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FIGURE 5.1b MESONS

The following bumps have also been observed, but
their spins and parities are not yet known; o (410);
H(990); nv(1080); Al1.5(1170); A22(l320); pp (1410) ;
KR (1440) 5 ¢(1650), R(1750);5 n or 0 (1830) ~+ 4m;

¢ or m(1830) =+ wmrmy S(1930); p(2100); T(2200);
p(2275) Nﬁi=0(2380); k(725); KN(1080—1260);

KA(I=3/2)(1175): KA(I=3/2)(1265); KN(I=1/2)(1660>?

K*(2240) + IN; X (2500); X (2620; X (2880).
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A7 (1520) 0§§[2-2 Data are taken from A. Rosenfeld et al., Rev. Mod.
A‘(1670) O§1:2-} Phys. (January, 1970). The numbers in brackets are
"( P ) - masses in millions of electron volts. J 1is the spin
&7 (1690 0(3/27)

(half-odd-integer and integer for baryons and mesons

respectively), and P is the parity.
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Apart from the photon, which carries the EM field and interacts only electromag-
netically, there are three main classes of particles:

1) The leptons: These do not interact strongly. There are four of

them; the electron e, the u-meson, and the two neutrinos ve, vu.
All have spin 1/2.
2) The baryons: The particles which interact strongly and obey Fermi-
Dirac statistics (i.e., have half-odd integer spin).
3) The mesons: The strongly interacting particles which obey Bose-
Einstein statistics (have integer spin).
The mesons and baryons can, of course, also interact weakly and electromagneti-
cally, both with each other and with the leptons. The collective name for all
strongly interacting particles is hadrons.

Anti-particles are omitted in Figuré 5.1 because they have the same
masses and spins as the particles. Further subdivisions of the particles have
already been considered by Michel and will be touched on again in later lectures.
An important property of the particles is their stability, or lack of it, (when
left alone). The only really stable ones are the photon, neutrinos, electron, .
and proton. However, many others are metastable, i.e., have relatively long (1013
sec) lifetimes. These include the leptons, n, £, A, =, and Q 1in class 2), and
7y, K, n in class 3). The rest of the particles are unstable. They have lifetimes
of ~10723 gecs and are usually not observed directly but as resonances in the scat-
tering cross-sections for metastable particles.

It should, perhaps, be emphasized at this point that the experimental
information that we can get on the elementary particles is very limited. The par-
ticles are so tiny and so unstable that essentially all one can do is scatter them
and watch them decay.

In particular, one can only build particles with masses up to the ener—
gies available in the accelerators. Figure 5.1 is based on the present energies
(pending the building of the 200 Gev Weston machine and Super-Cern). This table
may not be, and probably is not, sufficient to let us see the true picture. For
example, ten years ago only the part of Figure 5.1 sbove the Q-line was available,
and it is now clear that this would have been insufficient to predict today's pic-
ture.

Further, one gets information for weak and electromagnetic interactions
only when these interactions are not swamped by the strong ones and, for the weak
interactions in particular, the information is limited to decay.

For the strong interactions themselves, the information is limited not
only by the energies available, but by the particles which are available as targets
and projectiles for the scattering. Essentially the only available ones are:

Target: Protons, neutrons (and electrons)

Projectiles: Protons, neutrons (and electrons), photons and the
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metastable mesons w and K, together with their anti-
particles.
What is actually measured in the strong collisions is the scattering
amplitude A(pA; Py} pcl...pCN) for the processes

A+ 3B~ C1 + C2 + .00+ CN

(Figure 5.2), which is a function of the momenta pA...PC of the particles and
N
whose absolute value squared is the probability for A and B to scatter into

particles Cl...CN with these momenta.

Similarly, what is measured in electromagnetic interactions is the form~
factor FAB(t) whose square is the probability for the particle A with momentum
p, to interact with the EM field, lose momentum k, and emerge as particle B
(possibly the same as A) with momentum P = Py - k (Figure 5.3). On account of

Lorentz invariance, FAB(t) is essentially a function of

t=k*=(py - p)% ,

only. (It may have some polynomial dependence on PA and PB through the spins
of A and B.) Actually, at present FAB(t) is known reasonably well (up to ¢t ~
proton-mass) only for the electron (for which it is trivial), the proton, and the
neutron. For some other metastable particles, notably m, I, A, K, a little is
known about it for t - 0.

Thus, to sum up, what has been established experimentally is the existence
of a large number (~100) of particles of definite masses and spins and various life-
times, most of them short. What can be measured, essentially, are their electro-
magnetic form-factors FAB(t), their strong scattering amplitudes, and their weak
decays, all subject to strong experimental limitations.[1]

The business of elementary particle physics is to construct a theory which
will

1) explain the interactions (form-factors, scattering amplitudes, decays)

of the particles, and

2) predict their masses and spins.

This is a tall order since it combines 1) solving Newton's problem at a
subnuclear level with solving 2) the problem of the structure of matter.

Not surprisingly, one has at present nothing like a complete theory of the
elementary particles, though one does have some ideas and a workable, if not yet mathe-
matically rigorous, theory of electromagnetic interactions. Almost all the ideas
one has can be traced back to the theory of quantized fields introduced by Pauli,
Heisenberg, and Dirac [2] in the heroic days of quantum mechanics, 1925-28. Be-
cause they lie at the root of most later developments and because they are necessary

later as background for relativistic group theory, we conclude this lecture with a
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FIGURE 5.2

FIGURE 5.3
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brief review of the ideas underlying the theory of quantized fields.
To begin with, we return to the Hamiltonian, which describes a non-

relativistic classical particle in a potential

2
H =»§E+cp(x) ) (5.1)

Generalizing to describe interactions with the EM field and the field equations for

the EM field itself, we have

2 >
B telp@) + ¢ VAT +3 [ a2 + @A), 5.2)

>
where A = (p,A) is the EM potential and the integral term is the Hamiltonian for
the free EM field. (It is equivalent to %—I dzy[E(y)2 + H(y)z] whe;e (E,H)

= FUY = BUAY - BYAu, but the form (5.2) is better for later quantization.) We can

also write the interaction term (with coupling coefficient, or charge, e) as
e[ &y MA® (5.3)
where
3,0 =8 - y)lLv/el . (5.4)

If we now quantize the particle according to non-relativistic quantum mechanics,

we obtain

2
H = z_m +e [ a3 (A &) +%f ddy[n? + (vA)2] (5.5)
]
where
25 () = 6 - I, =1 + 11, 25 -y (5.6)
u mc me

and P and X are now the usual quantum mechanical operators, satisfying [X,P]
= ifi. This Hamiltonian is only
a) semirelativistic because the EM field is relativistic but the
particle is not.
b) semi-quantized because the particle is quantized but the EM field
is not.

To remedy these defects, one quantizes the EM field by the Ansatz

[4,(x),4 (1] = ifig, Dlx - x) (5.7)

where D(x) is a numerical function (or, more precisely, distribution) to be dis-

cussed in a moment, and one makes the particle relativistic by the substitution

1 - >
o5 P2 » g*P + Bm N (5.8)
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ju(x) > 8(x - X)Yu s (5.9)

where the Yy are the 4 X 4 Dirac matrices defined by

[Yu,\(\)]J£ = 2g s (5.10)

My

B dis vy, g' is YO?’ guv is the metric temsor, and, for simplicity, we have
assumed that the particle in question has spin %-(e.g. is an electron). For other
spins we use an appropriate generalization of the YO (see Section 7).

The Ansatz (5.7) for the EM field is the analogue of [X,P] = ili for the
particle. Indeed, one can expand the purely EM part of the Hamiltonian as a sum of

formal harmonic oscillators
1
3 @02 + (W2 = 3 [ CRP@? +0@02QW®2]

whgre
a(k) = I d3%k sin kx K(x) .

P) = Q)

and
Qk) + 02(K)Q(k) =0

and then (5.7) amounts to the Ansatz
[Q(k),P(k")] = dhs(k - k')

for the formal oscillators. The important properties of the distribution D(x,t)

are that D(x) is Lorentz invariant,

D(x) =0 , x?<0 ,
D(x,0) =0 ,
(5.11)
D(x,0) = §3(x)
l 32\
(-5 -9)D(x) =0 -
c? 3t?

The Ansatz (5.8)(5.9) for the particle means that it is no longer des-
cribed in the Hilbert space LZ(—w,m) for [X,P] = ik, but in a Hilbert space
Lz[—m,w) X Ry where Ry 1is the 4-dimensional Dirac space.

It turns out, however, that while the relativistic quantized Hamiltonian
(5.5)(5.10) is sufficient to describe processes in which the relativistic particle
is conserved, it cannot take account of the experimental fact that when the rela-
tivistic energies are large enough, the particle can be created or destroyed. To
allow for this possibility, one must go further and second quantize the Hamiltonian.
This means introducing for the particle a field wd(x), which is quantized according
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to the rule

[v, ()5, (x)], = iFLDaB(x -x" ., (5.12)

where Dae(x) is a function analogous to D(x), the + commutator is taken
according as to whether the particle obeys Fermi-Dirac statistics (has half-odd-
integer spin) or Bose-Einstein statistics (integer spin), and a,8 are spin indi-
ces. (In the case of the electron, which is a spin %-particle, the + sign is
taken and the indices o, are the Dirac indices.) Using the field wu(x), one

makes the substitutions
B 4em vt @ @EF v, (5.13)
ju(X) - 1!J+(X)YOYU¢'(X) s (5.14)

in the relativistic first~quantized Hamiltonian (5.5)(5.8) and (5.9) and obtains

finally N +
H=y (a8 +8mv + e [ d3xy () vpv, P(x)A ()

+ 3 [ @xlre? + A@)IZ] (5.15)

This is the fully quantized, relativistic, Hamiltonian of Dirac, Heisenberg, and
Pauli. Note that in this theory the particles and the EM field are on the same
footing. Each is described by a field and the field has a particle interpretation
(photon interpretation in the case of the EM field), which is obtained by analyzing
the quantization Ans#tze (5.7) and (5.12).

Without accepting the Hamiltonian H (and its generalization to include
interactions between particle~fields other than the electron ¢(x) and photon
A(x)) too literally, ome can extract from it most of the ideas which are used in
the later theories. Let us summarize briefly the most important and relevant
ideas: [3]

1) The particles are described in some way by fields o(x) (¥(x) and

A(x) above) which are quantized locally, i.e., whatever quantization

rules are adopted for the interacting fields, they should at least

satisfy the conditions
o) sp(x)1, =0 , (x-x")2<0 ) (5.16)

These conditions are dictated by the principle of strong microscopic
causality; measurements which are separated by spacelike distances
should not interfere. (The + sign in (5.16) is taken for fermion
fields for which only bilinears in the field are observables.) The
locality assumption is usually strengthened by the demand that the

fields, which, to make sense both mathematically and physically, are
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not operators but operator-valued distributions, should not be too
wild in the sense of distributions.

The fields interact locally. For example, if a Hamiltonian exists,

the interaction term in it would be of the form

Hy = g [ d3xw+(x)vow(X)Cp(X) s
(5.17)
Hoo= e ] @ Gy p@ap@
etc., but not of the form
Bine = 8 [ O [ it oy,
F(x - x"yx = )Y (DpE) . (5.18)

where f 1is some Lorentz invariant function which does not vanish
for x# x', x # x".
Under Lorentz transformations, the fields transform according to the

law
0, 60" e 0TI - a) (5.19)

where A is a homogeneous Lorentz transformation, a is a trans-
lation, and SuBQ\) is a representation of A, The choice of repre-
sentation SdSO\) is determined by the masses and spins of the parti-

cles. For free fields, or in the free field limit of interacting

fields, the above description can be made a little more exact. The

fields can be expanded in the form

ipx

o) = [ @ p@a®e ™ +5en (e P, (5.20)

"

where the unquantized "wavefunctions" ®©(p), ©(p) carry the Lorentz
properties of ©(x), and the operators a(p) and b+(p), which

satisfy quantization relations of the form

[a(p),a (N1, =8> - p")
[a(p),b(p")]1 =0 , etc. , (5.21)

carry the quantization properties. An analysis of the algebra (5.21)
in Hilbert space shows that the operators a(p) and b+(p) can be
considered as creation and destruction operators for states which
have the right properties to be identified with free particle states.
Thus, the particle description of the field may be said to be embodied

in the quantization relations.
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To sum up, one is confronted with a huge number of elementary particles
experimentally and one is looking for a theory which will explain the elementary
particles and their interactions. For want of better alternatives, one tries to
find such a theory by using general ideas derived from local field theory. The
fields in local field theory have particle properties in the free field limit, have
definite transformation properties with respect to the Lorentz group, and they

interact and are quantized locally.

6. REPRESENTATIONS OF THE POINCARE
GROUP IN HILBERT SPACE

In the last lecture, we sketched briefly the experimental background to
elementary particle physics and the basic theoretical tool, namely the theory of
quantized fields, which is used to attack it. We saw that one of the most impor-
tant properties of the fields was that they transformed in a manifestly covariant

manner ,
1,03 (v, TG - ) 6.1

under inhomogeneous Lorentz, or Poincaré, transformations. 1In this lecture we wish
to consider the question of Poincaré covariance in a more general way, that is,
divorced from any particular theory such as field theory, and using nothing but the
most fundamental quantum mechanical ideas. Later we shall try to establish the link
with field theory.

We begin, as usual, with the probabilities
], (6.2)

where f and h are vectors in the Hilbert space 3. The assumption that apart
from the spectra these, and only these, are the physical numbers to be extracted
from the theory is made not only in non-relativistic but in relativistic quantum
theory, and underlies all other assumptions. (For simplicity, we assume that all
vectors in ¥ represent physical states (no super-selection rules), but the argu-
ment can easily be generalized to the case where this is not so.)

Let us now suppose that, due to the geometry of space-time, we wish to
impose an invariance principle on the quantum mechanical system~--we wish to demand
that the system be invariant under some group G of space-time transformations.
Let us for the moment not specify the group although, in practice, it will be the
Galilean group or the Poincaré group. How are we to impose the invariance princi-
ple? Following the arguments used earlier, namely that under a change of observer
the probability of a system making a given transition remains unchanged (the old
argument that '"the system does not care who is looking at it"), we impose the in-

variance principle by demanding that, under the transformations of the group, the



181

inner products (6.2) remain invariant, i.e.,
(@), T | = [(£,0)] (6.3)

f,h €X, g € G. We also demand that the Hamiltonian transform under the group in
a way appropriate for the energy. The latter demand generalizes the idea of invar-
iance groups used in non-relativistic theory.

Using Wigner's theorem, it follows that the invariance group can be imple-
mented on X by a set of unitary or anti-unitary operators U(g), forming a ray

representation

U(g)u(g’) = eiw(g’g')U(g,g’) > (6.4)

of the group.
If the group is continuous, physical continuity demands that as g - 1

in the group topology, T(g)f should represent the same state as f, i.e.,

T(g)f + e % (6.5)

whence

iy(g, D)

U(g)t »> e , (6.6)

i.e., physical continuity demands that U(g) be ray-continuous in the sense of
(6.6).

We see, therefore, that from quite general principles the invariance of a
quantum mechanical system under a geometrical group demands that the Hilbert space
3 of the system carry a unitary or anti-unitary ray representation of the group.
If the group is continuous, the representation must be ray-continuous.

For connected Lie groups, such a representation can be shown [1] to be
equivalent to (or can be "lifted" to) a true continuous unitary representation of
the covering group of either the group itself or some continuous central extension
of it.

Thus, without loss of generality, we can confine ourselves to continuous
unitary group representations. Whether we can use continuous unitary representa-
tions of the geometrical group itself or of some central extension depends on the
geometrical group in question.

To proceed further, we must therefore specify the geometrical group more
precisely. We shall specify finally to the Galilean and Poincaré group, in partic-
ular to the Poincaré group, but before doing so it might be interesting to point
out that we could first limit ourselves to kinematical groups, i.e., 10-parameter,
continuous, connected space~time Lie groups with rotations, a scalar time trans-
lation, vector space translations, and vector accelerations, with the commutation
relationships not mentioned left open. Under general conditions [2], it can be
shown that there are, in fact, only eight such groups, four non-relativistic

(t' =t + ty) groups including the Galilean group, and four relativistic groups
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including the Poincaré group. For the four relativistic groups, the phase-factors
exp iw(gg’) can be lifted completely. For the four non-relativistic groups, the
lifting requires a l-parameter central extension. We have already seen this in the
case of the Galilean group for which the central extension is generated by the
total mass M.

Let us now concentrate on the relativistic case and in particular on the
connected Poincaré group. From what we have just said, the Hilbert space ¥ must
carry a true continuous unitary representation of its covering group, which we de-
note by

P, = TEBL(2,0) (6.7)

where TL+ is the 4-dimensional translation group, s denotes semi-direct product,
and 4+ mean that time~and space-inversions are not included. Group multiplication
is to the left. In particular, if we use the conventional paramatrization (4,a)
for P, we have (1,a)(A',b) = (1A',a + Ib).

Needless to say, the representation of Pi carried by ¥ will not, in
general, be irreducible. However, Pi is a type 1 group, which means that any con~
tinuous unitary representation decomposes uniquely into a direct sum and/or a
direct integral of continuous unitary irreducible representations (CUIR's). It
follows that, from the group theoretical point of view, the elementary objects to
study are the CUIR's of Pi. Some of the CUIR's will, in fact, be identified
directly (i.e., without summation or integration) with elementary particles. This
point will be discussed in more detail later. For the moment, we merely remark
that for the case of non-relativistic quantum mechanics, we have already seen that
a free Newtonian particle carries a CUIR of the extended Galilean group.

The CUIR's of P_T_ were first classified by Wigner {[3] in 1939. However,
they are most simply classified by Mackey's method [4] of induced representations,
which generalizes and simplifies Wigner's approach. We, therefore, proceed using
Mackey's method. We first describe the method for a general group G, and then
specialize to Pi v

Let G be any separable locally compact group, H any closed subgroup,
G/H the right coset space, and un(s) the left invariant (or left quasi-invariant)
measure on G/H. Let W(h), h € H be any unitary representation of H
on a Hilbert space N, and f(g) the set of vector functions over G with values
in N satisfying the

1) subsidiary condition
f(hg) = W(h)f(g) 5 (6.8)

2) square integrability condition

[ au(s) (g ,E(e) < = (6.9)
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where the inner product in the integrand is with respect to W and, on account of
1), is a function over G/H only.

The representation U(g) of G defined by letting G act transitively

on f(g), i.e.,

te ¥ o) (6.10)
is unitary and is called the unitary representation of G induced by the repre-
sentation W of H.

Note that if H =1, W= 1, U is just the regular representation. At
the other extreme, if H = G, then U = W. ©Note also that to induce U, two choices
are necessary: a choice of subgroup H and a choice of representation U(H) of
H. 1In general, there is no guarantee that U will be irreducible or that the set
of all induced representations will be exhaustive.

Let us turn now to the special case of Pi. The question is how, in this
case, we make our choice of H and W. To answer it, we first have to introduce

the concept of optics.

Orbits. Consider T,. Every unitary irreducible representation of T,
is l-dimensional and of the form exp ipa, where au €R, v=1...4, are the group

parameters, and p € RLF is the character. Now let g € Pi act on a. We have

exp(ip.a) — exp(ip.ga) = exp(ipg.a) . (6.11)
where pg € Rq, i.e., we have an associated action of P: on p. The orbit of

breaks up dis-—

p is defined to be the subset pg of R.s 8 S Pi. Clearly, R,

jointly into orbits, and there are six kinds:

a) p?=m? Po >0, py <0 (timelike) SU(2)

b) p? = -m? (spacelike) SU(1,1)

¢) p2=0 Py < 0, py > O (lightlike) E(2)

d) p=20 (trivial) . SL(2,0)
where m? is any fixed positive number.

We are now in a position to choose the subgroup H and its representa—
tion W. The rules are as follows:

1) Choose an orbit (e.g., p? = -m?),

2) Choose any point p = o on the orbit,

3) Determine the stability (little) group of o, i.e., the maximal sub-
group K of SL(2,C), leaving o fixed,

4) Choose H = T, ®K,

5) Choose W(H) = exp ica ® V(K), where V(K) is any unitary irreduc-
ible representation of K,

6) Induce with H and W(H).
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With this choice of H, the representations of Pi obtained are irreducible and
(using all possible V(K)) exhaustive.

One can gain an intuitive feeling why this is so by noting that the
following three things coincide: the coset space G/H, the orbit 0, and the simul-

taneous spectrum S of the infinitesimal generators of T,. Thus
G/H=0-=S5

The irreducibility can then be seen intuitively as follows. From the subsidiary
condition 1), f(g) is essentially a function over G/H and the Hilbert space of
W(H) only. But Pi acts irreducibly on O by definition. Hence, P: acts ir-
reducibly on G/H = 0. And V(K) acts irreducibly on N. Hence, Pi acts irreduc-
ibly on both G/H and N. Hence, Pi acts irreducibly on f(g), as required. To
see why the induced representations should be exhaustive, we note that given any
representation Pi, the infinitesimal generators of Tq can be simultaneously
diagonalized and hence the vectors in the representation space can be written as
functions over S. Hence, these vectors can be written as functions over 0 = S.
For a fixed point in s € S, the only remaining freedom is to transform according
to some representation of the group leaving S invariant. But since S = 0, the
group leaving s € S invariant is just the stability group for a point p = o in
0. Thus, the representation of P: corresponds to an induced representation.

The little group corresponding to the orbits a) to d) above are written

beside them. The invariant differential form is

3 3
du(p) = d—pE ,  du(p) = %P- , (6.12)
0 1

for a), c¢), and b), respectively. The continuous unitary irreducible representa-
tions of SU(2), E(2), SU(1,1), and SL(2,C) are all known. We are thus in a
position to determine explicitly all the CUIR's of Pi. In the next section, we
shall do this in some detail, at least for the physically relevant representations.
In particular, we shall try to express the induced representations in a form which
is immediately useful for physics. For the rest of the present lecture, we turn to
the more general question of the physical interpretation of the CUR's of Pi car-
ried by 3C.

First, according to the theorems of Nelson et al., there exists in 3} a
domain U on which it is permissible to work with the Lie algebra of Pi. A

canonical basis for the Lie algebra is

[P,,L] = 0 [P,,P] =0 - [P,.K] = P
[L,L] = il [L,p] = iP [L,K] = iK (6.13)
[p,] =0 [p,k] = 1P

[K,K] -iL

U
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on 7.

Following non-relativistic quantum mechanics, we identify PO’P and L
with the physical energy, 3-momentum, and angular momentum, respectively, and call
K, by analogy, the relativistic angular momentum. Thus, once again the operators
play a dual role~-group generators and physical observables.

Note that the relations (6.13) differ from the Galilean relations in only

two respects,

(P,K] = M~ [P,K]

1]
.
la~]

(6.14)

[K,K] = 0 -~ [K,K] =

I

i
=%
=

the first of which means that [P,K] maps back onto the algebra itself instead of
onto a central extension.

We have already seen that the spectrum S of the generators of TL+ can
be identified with the orbit 0. More precisely, if we denote the four generators
of Tl+ by Pu, uw=20,1,2,3, they take values pu, uw=0,1,2,3, in the orbit
(p2 = +m?2,0), The orbit in a unitary irreducible representation of P: is, there-
fore, precisely the energy momentum spectrum. (Note that it makes sense to talk
about the simultaneous spectrum of the Pu since they commute on a domain 0 on
which they are essentially self-adjoint.)

The identification of the orbits with the energy-momentum spectrum means
that we can use direct physical arguments to decide which orbits and hence which
CUIR's 3 should carry. Since physical mass-squared and energy are not negative,
one usually makes the following assumptions about the energy-momentum spectrum and,
hence, about the orbits:

1) X contains a unique normalizable ray (the vacuum state), which is

invariant under Pi.

2) 1If there are no massless particles, the energy-momentum spectrum
contains at least one isolated hyperbola (Figure 6.1) plus a con~
tinuum beginning at twice the height of the lowest hyperbola.

3) 1If there are massless particles present, the energy momentum spectrum
fills the closed forward light cone.

On the isolated hyperboloids

P2 = p2 = constant . (6.15)

Furthermore, for each CUIR on such a hyperboloid, P takes all values in Rs.
Hence, in contrast to the case of true unitary representations of the Galilean
group, a position operator (Newton-Wigner operator) [5] satisfying [X,P] = il
can be defined. Hence, the CUIR's on the isolated hyperboloids can be iden-
tified with stable l-particle states. The CUIR of the little group K{(= SU(2)

in the case when p2 > 0) used to induce the CUIR of Pi is then identified

with the spin group of the particle. Thus, the spin group, which in non-

relativistic quantum mechanics is introduced empirically and forms a direct
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product with the Galilean group, is included automatically in the relativistic
case.

Empirically, it is found that for any given mass there are only a finite
number of elementary particles. Hence, the isolated hyperbolas are assumed to be

finitely degenerate, i.e., to carry only a finite number of CUIR's of Pi.

The continuum states in the energy-momentum spectrum represent, in gen-
eral, two or more particle states, but may include l-particle states which happen
to have a higher mass than the lowest two particle states. In general, the con-
tinuum states are infinitely degenerate. 1In the case that zero mass particles are
present, the continuum is everywhere in and on the forward light-cone and there is
a serious problem as to how one should identify the l-particle states, including
the zero-mass particle states themselves. One possibility would be to identify
them with normalizable, non-isolated, eigenvalues of P2. But this is by no means
the only possibility and, within some of the postulated frameworks, it is even
impossible. [6]

From the point of view of the orbits of Pi allowed on ¥, the energy-
momentum spectrum conditions imposed are very strong. They reduce the six possible
kinds of orbit which could be carried by ¥ to the two kinds p2 = 0, Py Z 0. These
orbits we shall call physical orbits. (They are actually characterized by py = 0.)

The corresponding little groups are SU(2) and E(2). The CUIR's of
SU(2) are well-known and require no comment. Those of E(2) are not so well-
known, perhaps, but are actually simpler, as can be seen in the following way. The

Lie algebra of E(2) is

[L3’EOL] ie E s

af B
(6.16)

[E,,Egl = 0 )
where o,8 = 1,2, It follows at once that exp (ZiﬂLa) and E2 are the Casimir
operators of E(2). Assuming that exp (2mil3) = #1 (i.e., integer or half-odd-
integer values for L3), it is then easy to see that there are only two possibili-
ties:
a) E2 # 0. The CUIR is infinite-dimensional and L3 takes gil integer
or half-odd-integer values.
b) E2 = 0. The CUIR is l-dimensional and L3 takes one integer or half-
odd-integer value.
Case a), the so-called continuous spin case, does not seem to be realized in nature.
Case b) is realized (it describes the photons and neutrinos for L3 = *1 and
Ly =% %3 respectively). When Case b) does occur, it is usual to use a 2-dimension-
al reducible CUR of E(2) with L3 = *m, rather than the l-dimensional CUIR. This
is to accommodate the parity operator.
Since ¥ can carry only the physical orbits p2 20, P, z 0, it follows
that only the CUIR's of Pi corresponding to these orbits are directly related to
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physics. This does not mean that the other orbits are completely irrelevant. As

we shall see later, they play an important role in the analyses of scattering ampli-
tudes. The reason is that, in practice, one uses not only the matrix elements of
operators on X themselves, but also the analytic continuation of these matrix
elements, considered as functions of pu, to points other than those in the physical

spectrum.

7. REDUCTION OF REPRESENTATIONS OF
Pi TO MANIFESTLY COVARIANT FORM

In the last section, it was shown that on quite general grounds the Hil-
bert space X of a relativistic quantum mechanical system must carry a CUR of Pi,
and the CUIR's which this CUR could contain were described from the point of view
of Mackey's theory. For a complete description of the elementary particles (origin
of the masses and spins, nature of the interactions, etc.), however, much more is
needed., For example, in a field theory, as we saw in Lecture 5, we need not only
the Poincaré transformation properties of the field, but its commutation relations
and interaction laws as well, The next step, therefore, is to try to relate the
CUIR's of Pi to other aspects of relativistic particle physics.

The question is: How is the contact between the group theoretical pro-
perties and the other physical properties to be made?

Traditionally, following non-relativistic quantum mechanics, Maxwell's
theory, and Dirac's (non-second-quantized) relativistic quantum mechanics, the con-
tact is made through wave functions y(p) or fields ¢(x) which transform in a

manifestly covariant way, i.e.,

vp) B s . o=, 7.1

where g = (A,a), A € SL(2,C), a € Tq, and S(A) is a finite-dimensional represen-
tation of the homogeneous part SL(2,C) of Pi. In the second-quantized theory of
free particles of Dirac, Heisenberg, and Pauli, we have, as mentioned in Lecture 5,

also the relation
3 {pe —ipe —_
b = [ SR P am) y ) + P GE) (7.2)
0

between ¥ (x) and y(p) where a(p) and b+(p) are the creation and destruction
operators and where the fields y(x) have local commutation relations and, when
interactions are introduced, local interactions.

We shall follow the above tradition to the extent that we shall try to
relate Mackey's method to manifestly covariant wavefunctions. [1] As we shall see
for the physical orbits, this can always be done, and so it implies no restrictionmns.

(Restrictions come when we try to relate the manifestly covariant wavefunctions to
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local fields, but that shall concern us only peripherally.)
¢

We first recall Mackey's ﬁrescription for P+ on X

a) Choose an orbit p2 =m?22 0, Py > 0.

b) Choose a point p = o in the orbit.

¢) Determine the little group K of q.

d) Let H= T&:K. )

e) Induce with W(H) = elaaV(K).
The induction procedure, we recall, is to choose the functions £(g) over the group
satisfying

1) f(hg) = V(h)E(g)
2) [ du(p)(£(8),8(g)) < =
and letting the group act transitively on these functionms,
&2
3) f(g)) — f(g;8,).

We now make the transition from £(g) to manifestly covariant wavefunc-

tions in two steps.

/r
First Step. We have a natural o-mapping P+

. + . .
We now define an inverse mapping p ~ P+ by introducing a representative Lorentz

- Orbit given by ag = p.

transform Ao(a,p) € SL(2) < Pi for each p. The choice of Ao(a,p) is arbitrary
but two standard ways of defining it are:

1) The canonical method: [2] AO is defined to be the unique Lorentz
transformation in the 2-flat spanned by p and a.

2) The helicity method: [3] An arbitrary direction is chosen for the
r-axis and A0 is defined to be a pure Lorentz transformation in the
g-direction to momentum |E|, followed by a rotation from (e 0 0 ];I)
to (e, ).

We then make the transformation

) > 0() = Va A DI 7.3

where g = (A,a), ah = aAO = p and V(AOA'l) makes sense because
AOA"1 € K. The point of this transformation is that, as is easily
verified from Condition (1) and the relation (kA)O = AO’ which follows
from the definitions of k and AO, ¢(g) satisfies the simpler
subsidiary condition

1 ¢(hg) = <1>(g)ewa s

h=(k,a) , k€K , act T, .

Recalling that group multiplication is to the left, one sees at once

from 1') that ¢(g) must be of the form

$(g) = 6(h,a) = 8 (n)e® 2
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where
(A = o(kp) .
It follows that 6(A) is a function of p only, i.e.

10 a

$(g) = o(p)e

Since V is unitary, the inner product remains unchanged.

2" [ due) (£(2),£(e)) = [ du(p) (0(p),0(p)) . (7.4)

The group multiplication law changes, however. In place of the simple transitivity

3), we obtain
37 () =& v any De(p )P (7.5)

where

g = (L&) , Ay=4,(a,p) Ay = hoCasp™) 5 p" = pr .

Note that V(AOAAé“l) makes sense since AOAAé—l € K. The rotations V(AOAAé—l)
are called Wigner rotations. We see that, in effect, what we have done essentially
is to change the "twist" introduced by V(k) from the subsidiary condition to the
group transformation.

For many purposes, the wavefunctions 6(p) are the most convenient.
For example, the standard analysis of scattering amplitudes for general spin car-
ried out by Jacob and Wick [3] is done in terms of 6(p). However, if we wish for
manifest covariance, we must go farther. The transformation law (7.5) is not man—
ifestly covariant on two counts:

1) It depends explicitly on p.

2) V 1is a representation of the little group, not SL(2,C).
This brings us to Step 2.

Second Step. Elimination of the p-dependence from the transformation
(7.14).

The basic idea underlying Step 2 is to modify V(AOAAé_l) so that it can
be split into V(AO)V(A)V(Aé)—l. At the moment, V(AO), etc., make no sense since
AO’ A, and Aé are not separately in K. The modification is ?chieved by embedding
V(k) in any representation S(A) of SL(2,C) which is unitary when restricted to
K. Letting VA(K) be the representations of K occurring in S(A), we define a

set of wave functions SK(P) (including 6 (p)) with the transformation law

A, ip'a

6,() 37 v, (aanr e, (e (7.6)

In other words, we induce with the reducible representation z ® V., of K (all on

A
the orbit p2 = m2),
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Now by definition

sku(K) = dAuVA(K) . 7.7

Hence, (7.6) can be written as

Aya i e
> =1 APRS A
6,(») — S}\U(AOAA0 )Gu(p e . (7.8)
But since S(A) makes sense, we then have
b0 22 [s(a)s(ST AN, 6 (phelP? (7.9)
A p 0 07 P s .
or
510 e(p) 23 SIS eptp NP2 (7.10)
0 olp) — A 0/ pe s .
where

op) =] @ o, () .

Remembering that A; depends only on o and p, we see that (7.10) is equivalent to

s 22 suepnet®? | (7.11)
where
v(p) = S_I(AO(OL),(P))(:p(P) . (7.12)

Equation (7.11) has the required manifestly covariant transformation properties.

Note that in the manifestly covariant formulation the Lie algebra of Pi takes the
simple form

P =P:L =T(P PO _)+S s (7-13)
v H

where Suv are the generators of S(A) and Luv = (Z,E).

Equation (7.13) shows that in the manifestly covariant formulationm, Luv
splits into the direct sum of an "orbital" part and a "spin" part S .

For the manifest covariance, we have, however, to pay a heavy price:

1) The representation S(A) of SL(2,C) 4is arbitrary.

2) Wé‘have introduced the unwanted subsidiary fields
6, () # 8(p) .

3) Since S(A) 1is, in gemeral, not unitary, the inner product must be
changed accordingly-
Let us discuss these points in turn:
1) The representation S() in (7.10), which is usually called the

spin group, is completely arbitrary. It is usually chosen to be a
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finite~-dimensional (non-unitary) representation of SL(2,C) and as
we shall be considering infinite dimensional spin groups in the next
section, let us concentrate on the finite dimensional case. Even for
the finite~dimensional representations, there is much arbitrariness.
All choices of S(A) will, of course, be the same from the point of
view of the original CUIR of Pi. But they will not necessarily be
the same from other points of view. For example, an interaction
which involves no derivatives for one choice of S(A) will have
derivatives for another. Indeed for spin =1, the whole question of
choosing the correct S(A) is very much open. [4,5]

With regard to the subsidiary fields BA(P)’ the Point is that they
should be eliminated in a manifestly covariant way. That this is
possible for P: and finite~dimensional S(A) follows from the
following two properties of SL(2,C): (a) The y(p) for every ir-
reducible finite-dimensional representation D(n,m) of SL(2,C) is

of the form
. . 7.14
Gpessln3 81...Bm(p) ? ( )
where the B are 2-valued indices belonging to the fundamental
2-dimensional representation, the & are similar 2-valued indices

for the conjugate representation, and ¢ 1is completely symmetric in

the o and B, respectively [6]. (b) P, is of the form P
o
and hence if p-B is contracted with . (p) to remove
o

Otl...Ctn, Bl...ﬁm
either all the undotted or dotted indices, the remaining indices carry
an irreducible representation of SL(2,C). These two properties canbe
used in an obvious way to project out, with polynomials in p, the

parts of w& (p) which are irreducible with respect
1 m
to Pi. The use of multispinors (7.14) is due originally to Fierz

and Pauli [7].

With regard to the inner product, for finite dimensional-represen-

...an; Bl...B

tations of SL(2,C), which carry a parity operator, the situation is
saved by the fact that although S(A) is not unitary, it is pseudo-

unitary, i.e., there exists a metric n in S(A)-space such that

StOOns(A) =n , X €p ,
[sk),n] =0 , k€K , (7.15)
n=nt=n1l,

where the adjoint is with respect to the V(K) space. In fact, n is
just the spinspace part of the parity operator. Hence the inner

product

V@I, () = (¥, () snp, () (7.16)
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is SL(2,C) invariant and Mackey's inner product can be replaced by

J @y, ev,e (7.17)

which is manifestly invariant i.e. invariant under Pi and S(1)

separately. Note that

[ anewenwe (7.18)

is positive-definite on account of the subsidiary conditions.
We conclude this chapter with some examples of manifestly covariant fields.
a) On the orbit p? = m?, we choose a D(n,n) representation of SL(2,C).
The corresponding field .,
Qpeeelys Bl...
2, ... n representations of Pi. We can eliminate the spins j =0, 1, 2,
++. n-1 by the manifestly covariant subsidiary conditions

8 (p) carries the spin j =0, 1,
n

“lslw (@) =0 (7.19)
p . p) = . .
al...an, Bl...Sn

We usually see this field in its traceless symmetric tensor form

wu ’ (p) with the subsidiary conditious p? = m?,
RERIY

" (7.20)
=0 , 7.20

p wul._.un(p)

b) On p2 = m?2 we choose a D(n,n+1) representation
Pe . . (7.21)
al"°un81"'6n6n+l

This carries the spins j = %3 % vee 0+ %, and we can eliminate the lower

spins by the subsidiary condition
a,B
Plye =0 (7.22)

ul...an; 61"'8n8n+1

Again, one can use vector notation and replace (7.21) by the field

e a® (7.23)

with the subsidiary conditions

H
p U ®=0
Ul.--unOL
and
af
=0 , .24
Tulwul..-unB(P) (7 )

where the T, are the Pauli and unit 2 x 2 matrices.

¢) Because the field wu y u(P) for o = 1,2 does not accommodate parity,
v Hy

it is customary to replace o« = 1,2 by a Dirac index o = 1,2,3,4. The
subsidiary conditions then become
M1

(M, + m)y =0 , vy =0 . (7.25)
U ul...pna ul...unu
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These equations are known as the Rarita-Schwinger equations, [8] and des-

cribe spin j = n + %,
d) One can similarly use (p) where a = 1,2,3,4 are Dirac indices,

OC]_...OLn

with the subsidiary conditions
u = o=
(Y(r)pu + m)wal"'an(p) =0 , r=1l...n . (7.26)

These fields carry spin %—(n + 1) and the subsidiary conditions are known
as the Bargmann-Wigner [9] equations. The Rarita-Schwinger and Bargmann-
Wigner equations automatically include the orbit condition p2 = m2.%*

A simpler and somewhat more general approach to the results of Section 7 will appear
in the Proceedings of the 1970 Istanbul Nato Summer School in Mathematical Physics.

N

8. INFINITE COMPONENT WAVE FUNCTIONS

In the last section, we saw that any representation of the Lorentz spin
group SL(2,C) whose restriction to the little group was unitary could be used to
product a manifestly covariant unitary representation of P:. We then devoted our
attention to the finite-dimensional (non-unitary) spin groups. In the literature
also, attention has been devoted almost entirely to finite-dimensional spin groups.
In this section we wish to discuss why this is so.

In the first place, there are good historical precedents for using finite-
dimensional spin groups, since the classical fields of Newton, Maxwell, Einstein,
and Dirac are of this form (they use the finite-dimensiomal D(00), D(10) + D(01),
D(1,1) and D(%O) + D(O%) representations of SL(2,C), respectively).

Secondly, in particle physics, each of the particles ome wishes to des—
cribe is known empirically to have finite spin. Hence, it is natural to use a
finite~dimensional spin group to describe it.

On the other hand, one could legitimately ask the question:

1) Since in the spin group a number of superfluous representations of

the little group appear anyway and are eliminated by subsidiary con-
ditions, why not use an infinite dimensional spin group plus infinite

dimensional subsidiary conditions?

* Note added in proof: 1In Step 1 of this chapter, if one wishes to avoid the ex-
plicit decomposition of g into (A,a) one can do so by defining 6(p)
according to the equation

0(p) = 6(g) = W(gg™NE(R) , gy = (4,00 .

Also, if one is interested only in the final manifestly covariant form (7.11) and

wishes to eliminate Step 1, one can do so by letting f(g) - z f (g) = F(g),
and defining ¢(p) = u(z) = S™1(a)e 3 3p(q),
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2) Since what we observe experimentally is, in any case, not just one
particle but the infinite family of particles suggested by Figure
5.1, why not go the whole hog and try to describe all of the
particles, or at least large sub—families of them, by means of a
single covariant field. This field, in order to carry an infinite
number of UIR's of Pi, would have to correspond to an infinite
dimensional representation of SL(2,C).

The possibility raised by Question 2) is even highly attractive. What we
shall show, however, is that the attraction is deceptive and that infinite spin
groups lead to difficulties which, at present at any rate, seem to be unsurmount-
able. We shall do this first for two special models, and then present a general
no-go theorem which has been proved recently.

The difficulties come under two headings:

a) Violation of the spectral condition p2 = 0

b) Violation of locality for quantized fields.

We first illustrate a) for two special models.

The first model we consider dates back to 1932 and was proposed by
Majorana [1] as a possibility for avoiding the "negative energy'" states of Dirac's
theory, which were thought to be an embarrassment at that time. Majorana proposed
that one use a wave function, with spin group corresponding to the (j0 = %3 c =0)

or (j0 =0, ¢ = l) UIR of SL(2,C) and satisfying the subsidiary condition

2
r - =0 8.1
( WPy <y (p) s (8.1)
where k 1s a positive number and Fu is a p—independent SL(2,C) vector. (The
"Majorana representations' (g = %3 ¢=0) and (j, =0, c= %) are the only

irreducible UR's of 8L(2,C) to carry a vector operator.)
The question then is: What UIR's of Pi does Majorana's y(p) carry?
To answer it, consider an orbit p2 = m? > 0, Py 0. Such an orbit

would contain the vector o = (m000) whence from (8.1)

(Fom - yYpla) =0 s (8.2)
which is possible if and only if m 1is equal to one of the eigenvalues of K/FO.
The eigenvalues of K/FO turn out [2] to be (g + %-+ 7)1, n=0,1,2,3... Thus,
Majorana's y(p) carries the orbits p? = m?, m = ————Ei————', P, > 0.

j0+5+n

Furthermore, the little group of such an orbit is SU(2) and, in the
reduction of Majorana representations with respect to SU(2), each representation

3=13gs 35 *1,... of SU(2) occurs once and only once, with

1 1
= 1 — = ] —_— . .
r i+ 5 ig ¥+ 7 +n (8.3)
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1
Hence, each orbit m = K/FO =k/(G + EO carries exactly one UIR of Pi, and we

have the mass-spin relationship

K

n = . (8.4)
1
J + >

Experimentally this mass—spin relationship is disastrous, but that is not a real
problem as it could easily be modified. For example, by replacing « by sz in
the subsidiary condition, it could be inverted, which would be very good experimen-—
tally. ‘

The real difficulty comes from the non-physical orbits p2 = m? < O.
These exist because they can be generatasd from vectors o = (000m) for which (8.1)

is equivalent to

(Tjm - V(@ =0, (8.5)

and this equation has non—trivial solutions since T3 is self-adjoint. (Note that
in this connection the unitarity of the Majorana representation of SL(2,C) 1is
actually a liability, since it implies that if FO is self-adjoint, then so is

r the above argument would have broken down for the finite-dimensional non-uni-

33
tary Dirac representation of SL(2,C), for which Yo is hermitian but Yy, is not.)
The p2 < 0 orbits are undesirable but are not an immediate catastrophe
for the Majorana equation since they could simply be ignored. The trouble is that,
in practice, one is intevested not merely in the free Majorana particles, but also
in their interactions. For example, if we try to introduce the EM interaction by

means of the traditional minimum principle
r - =0~ (r - =T A (k + k 8.6
( WPy )y (p) ( WPy k) (p) " u( Y (p ) (8.6)

where Au is the vector potential and k the momentum transfer, one can show that
for k # 0 the system makes transitions from p2 > 0 to p2 < 0 states, and simi-
larly for any other interactions which are local in the Fourier transformed space.
Now, of course, one might do better with some more complicated, non-local inter-
action. But since the purpose of the manifestly covariant wavefunctions is to pro-
vide a framework for introducing simple, local commutation rela;ions and interactionsg
this would defeat the purpose. For this reason, the p2? < 0 orbits are a real dif-
ficulty in Majorana's theory.

The second model we consider is a wavefunction ¢ (p) carrying a Dirac
® wunitary spin representation and satisfying the subsidiary condition

Gy -p+Mu@E)=0 , (8.7)

where M is a spin invariant, e.g.,

M=m +mog I
0 1 pv uv ’

where m,, m; are constants and cuv and Zuv are the generators of the Dirac
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and unitary representations, respectively. This equation was first studied by
Abers Grodsky and Norton [3] (AGN) in 1965 and has since been used in current
algebra theory. An analysis of the equation, similar to that described above for
the Majorana equation, for the case in which the unitary representation is

(jo, C = 0), shows that for the p? > 0 orbits there is a mass-spin relationship
tmo=m T+ D) £{m, - m)2 + m2[I@ + 1) = i, + 1) -2} (8.8)
- 1 27 Y0 1 1 1983, 4 s .

which can be drawn graphically as in Figure 8.1. The rising curve for m > 0 fits
well with the observed particles (and with Regge theory, which we shall be des-
cribing later). However, the falling curve for m > 0 has no satisfactory inter-

pretation. (The m < 0 curves can be identified with anti-particles.)

g

FIGURE 8.1. MASS-SPIN RELATIONSHIP FOR AGN EQUATION

Leaving aside the interpretation of the falling curve, we ask again
whether ¢ (p) carries unphysical p2 < 0 orbits. The answer is yes. The proof

is perhaps worth giving.

Proof. Write the subsidiary condition (8.7) in the form
> >
(0 - p+ MY = pulp) s 8.9
where & and B are the self-adjoint Dirac matrices Yo? and Yoo respectively.
Now P#M must be self-adjoint to provide a mass spectrum in the rest frame ; =0,

- - > > >
and o + p 1is self-adjoint and bounded. Hence, for each p, a * p + BM 1is self-
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adjoint. Hence, (8.9) may be regarded as an eigenvalue eguation for the self-
adjoint operatotr Z . ; + gM, i.e., P, is any point in the spectrum of 3 . ;
+ BM.
The condition that there be no p2 < O orbits is that p% P ;2. But
since p, is any point in the spectrum of Z . E + 8M, this implies that
(@ -p+em22p2 (8.10)

or, since a2 = 1,

p- (el + (BD2=z0 . (8.11)
But since ; varies over the whole Euclidean 3-space, this is possible if and only
if
>
[a,BM]+ =0 s (8.12)
which on account of the anti-commutativity of & and B, reduces to
[e,M] =0 . (8.13)
But since
>
=0, o

g =
uv ’
this means that p2 =z 0 1is possible if and only if

>
X o N

[ouv,M] =0 , (8.14)

i.e., if and only if M is a Dirac invariant, in which case equation (8.7) can be
reduced to a direct sum of Dirac equations with M = constant.

Thus, the AGN equation, like the Majorana, is either trivial or contains
unphysical orbits ﬁ% < 0 and, once again, it can be checked that local inter-
actions couple the physical orbits to unphysical ones.

Note that the p2? < 0 difficulties arise whether or not the wavefunc—
tion ¢(p) is quantized. If the field is quantized, then there are the further
difficulties (b) concerning locality. To illustrate the point, consider an infin-
ite component wavefunction ¥{(p) which has not yet been quantized, introduce a
set of creation and destruction operators for particles satisfying Bose-Einstein or

Fermi-Dirac statistics on a Hilbert space X, i.e., satisfying
+, _ .
[a(p),a (N1, =6 -p" ; (8.15)

etc., and construct from Y(p) and a(p) a quantized field in the standard way,
namely,
ine —ipex +. .
o) = [ aw@ P Famue) + PR @ve) (8.16)

where %(p) transforms like ¢(p). The locality difficulties can be subdivided

into
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a) locality proper
b) spin-statistics
c) CPT-invariance

d) analyticity.

Locality proper is the question whether the commutator
[p()px")] (8.17)

vanishes for (x - x')2 < 0., In the finite-dimensional case, the commutator does
vanish for suitable choice of * in (8.16). In the infinite dimensional case,
however, in general no choice of sign in (8.15) and no simple modification will
make (8.17) vanish. The possibilities for evading this difficulty have been inves—
tigated in some detail in the recent literature [4], but with no particularly
attractive solution.

The spin-statistics difficulty is an extension of the problem: In the
finite—-dimensional cases, (8.17) vanishes for * in (8.15), but the choice of =
is not arbitrary. It must be (+) (Fermi-Dirac statistics) if the field carries
half-odd-integer spin and (-) (Bose-Einstein statistics) if the field carries
integer spin, a correlation which is verified experimentally and is regarded as one

of the most fundamental results of quantum field theory. But in the infinite
dimensional case, since (8.17) does not vanish for either choice of sign, the spin-

statistics correlation gets lost. (In the cases that (8.17) can be made to vanish,
it can be made to vanish for either choice of sign, so the correlation becomes, at
best, arbitrary.)

The other two difficulties, CPT invariance and analyticity, are special
cases of the general result that for finite-dimensional spin groups, the Lorentz
transformations can be continued to any complex values of the parameters whereas
for infinite dimensional spin‘representations, this is not the case. (Infinite-
dimensional representations of BSL(2,C) have dense sets of analytic vectors, but
no entire vectors.) As a result, the EM form factors and the scattering matrix
S have different analytic properties (as functions of the inner products of the
momenta) in the finite and infinite-dimensional cases, and the analytic properties
in the infinite-dimensional case do not seem to be the most desirable.

A1l models so far constructed using infinite-dimensional representations
of SL(2,C) have been found to be unsatisfactory in at least some of the above
ways. This suggests that it might be possible to rule out infinite component
fields on quite general grounds and, thus, restrict oneself to the finite-
dimensional spin representations without any real loss in generality.

One such general set of conditions was found recently by Streater and

Grodsky [5]. Their argument is as follows:
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Let (o,x) be an infinite component field operating on a physical
Hilbert space J} with vacuum state h, and carrying a continuous bounded irreduc-

ible infinite dimensional spin group, S Rather than specify precisely how

ro®
tw(o,x) 1is quantized, they assume only that it has been quantized in such a way

that the vacuum expectation value

F(o,0',x,x') = (O,Cer(c,X)cp(o',X')O) s (8.18)

with unique vacuum state 0), has the following properties:
a) Translational invariance: F(o,0’,x,x') = F(o,0',x - x')
b) Reasonable spectrum: %(o,c',p) =0 for p2 <0, where F denotes
Fourier transform

0 for x2 <0

¢) Causality (locality): F(o,0'x)
d) Temperedness: F(o,0’,x) is a tempered distribution in x for all
g0’

e) Finite degeneracy of the lowest isolated mass-hyperboloid.

These are all assumptions that are made normally in quantum field theory.
The temperedness assumption is a strengthening of locality (it implies that
f(o,0’,x) 1is not too singular on the light cone) and, although this assumption
can be relaxed, it cannot be relaxed very much if the correct analyticity proper-—
ties are to be obtained for the S-matrix.

Grodsky and Streater now claim that these assumptions are incompatible.
To prove this, they make use of a theorem due to Bogoliubov and Vladimirov [6]
which states that if f£(x) is a tempered distribution with £f(x) =0 for x2 < 0
and the Fourier transform T(p) = 0 for p2 < 0, then T(p) is a finite covariant,
i.e., ?(p) has the representation

n n
Fe) =7 ¢ 1,0 .p ) dnZor o @2)s(p2 - m?) (8.19)
[n] [n3% SI (n]

where the sum is finite, [n] = [n1n2n3n0] and p[n] is tempered. Applying this
theorem to F(o,0’,x), which obviously satisfies the conditions, and smearing with
a test function f(X);?(p) with support only in the neighborhood of the lowest
mass—hyperboloid in p-space, one obtains

+ ! L 1 no n

0, (0,f)p(c',£)0) = Const. $*(p' - p) Z o] (c,0")p. 0. ..p.3 .
[n}] 0 3
[nl *°
But since the spin-representation is assumed to be continuous, C[nj(c,c') is con-
tinuous in ¢ and o¢’. Hence, C[n](o,o’) is the matrix element of a bounded
linear operator in spin space V. Hence, for fixed o', C[ ](0,0') may be re-
n

garded as a vector in V and since there are only a finite number of C[n]’ the

linear span

[z]c[n] (G,o’)plgo...pzs . (8.20)
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for all Pye Py and fixed o', is finite dimensional. It follows that the expres-
sion (8.20) vanishes for an infinite number of values of 0. Referring back to
(8.18), we see that there are, therefore, an infinite number of states o(o,£)0)

in J3(, orthogonal to the state ©(c'f)0) for all E and ;'. Furthermore, since
the spin group is irreducible, ¢(o,£)0) vanishes if and only if o(c’,£)0) van-
ishes. It follows that the orthogonal states are not zero. Thus, the lowest mass-
hyperboloid is infinitely degenerate. This is the result of Grodsky and Streater.

A corollary to their result, which has been pointed out by Grodsky and
Streater, is that since any field ¢(x) which is obtained by quantizing in the
usual manner (8.16), a wavefunction ¢(p) whose support is in p2 > 0 and whose
SL(2,C)-space projection on py, > 0 is polynomially bounded in p, will be auto-
matically tempered and causal, it must belong to a finite dimensional represen-—
tation of SL(2,C).

What does this result mean physically? It means that if we use infinite-
dimensional representations of SL(2,C) one of two things must happen. Either the
subsidiary conditions imposed on the wavefunctions are too weak, in which case
there is an infinite number of spin states on each mass-hyperboloid (in gross
contradiction to experiment), or else the subsidiary conditions are too strong (as
in the Majorana and AGN cases discussed above). In that case, there is no spin
degeneracy but the wavefunction cannot be quantized so as to describe a tempered
local field with p2 > 0.

Note that the temperedness of the distribution plays a critical role in
the above arguments. It leads directly to the finiteness of the expansion (8.19),
which leads in turn to the finiteness of the linear span (8.20) and hence to the
infiniteness of the orthogonal complement. (Note added in proof: a generalization
of the GS theorem which allows more general distributions, including Jaffe distri-
butions, is now available [7].)

Perhaps the best way to summarize the results of this chapter is to say

that while there are no group-theoretical reasons for excluding infinite spin

groups, there appear to be other reasons to exclude them, namely, mass—spectrum,
locality, and finite-spin degeneracy considerations., Thus, one can return, (with

some relief!) to the finite dimensional spin representations.

9. LITTLE GROUP DECOMPOSITION OF THE SCATTERING AMPLITUDE

In the last couple of chapters we saw how the Poincaré group Pl and its
little group for p2 > 0 could be used to characterize relativistic particles. 1In
this chapter I should like to mention briefly how Pi and its little group can be
used to analyze scattering processes. One of the interesting features will be that,
in spite of the spectral condition, the SU(1,1) 1little group for the orbits

p? < 0 will also be relevant.
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To put the role of the little groups into perspective, we consider the
scattering amplitude (Figure 9.1) for 2-particles scattering into 2 particles (not

necessarily the same), e.g. 7N > IK. The probability of the particles 1 and 2

X >< |
Ps Py » N D)
FIGURE 9.1. SCATTERING IN S—-CHANNEL

with momenta P, and P, scattering into particles 3 and 4 with momenta P, and
Py, is given by
= 2
P(pip, » P3p,) = |[(pgp,» TR )% (9.1)

where T is the scattering matrix. Because of Poincaré invariance, the scattering
amplitude (papu, T Plpz) is (apart from some kinematical factors, which we omit)

a function of two invariant variables, s and t
(ngq’ T P]_Pz) = F(s,t) s (9.2)
where
= 2 = - 2
s=(p, +p)% , t=1( ~-p) . (9.3)

For symmetry we can also define u = (p1 - pq)z, but u 1is not an independent
4

variable. In fact u+ s+t = Z mi, where m, ~are the masses. (In general, the
a=1

scattering amplitude for 2 particles into n-2 particles depends on 3n - 10 invar—
iant variables, the 3n variables being the n 3-momenta of the n particles
involved, the ten constraints coming from the conservation of the ten generators of

P+.) 1f the four particles involved in the scattering of Figure 9.1 are spinless

(as we shall assume for simplicity) then F is a scalar function.
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Now consider the process of Figure 9.2, namely the scattering of particles

FIGURE 9.2. SCATTERING IN S—CHANNEL

1 and 3 with momenta p; and p, into particles 2 and 4 with momenta P, and P,

(e.g. 7K > NL). The probability for this scattering is given by

= 2
P(ppy > p,p) = [(,p,,Tp )% (9.4)
where
(p,p,»T PyP,) = F'(s',t") 9.5)
and
' = - 2 T 2
s'=(pp -p,)° , t (e, +p) . (9.6)

One of the most basic and fruitful ideas to emerge in particle physics during the
fifties was that the two scattering amplitudes F(s,t) and F'(s’,t') are not only
related, but are in fact the same analytic function [1]. That is to say, if one
considered s’ to be the analytic continuation of s = (p1 + pz)2 to p, > -p,

and t' the analytic continuation of t = (p; - P3)2 to py > Py then
F(s,t) = F'(s,t) . 9.7)

The process of Figure 9.1, for which s > 0, is called the s~channel and that of
Figure 9.2, for which t > 0, the t-channel. The hypothesis (9.7) is based upon an
analysis of Feynman diagrams and of axiomatic field theory [2]}. It is related to
the spectral condition, causality and the temperedness of the field-distributions.
Returning to the s—channel, an alternative pair of variables to (s,t)

are (s, cos 8),

F(s,t) = f(s, cos 8) , (9.8)
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where © 1is the angle between the three-momenta ;1 and 52 in the center of
mass frame of P and Py (Figure 9.3). The relationship between t and cos ©
is
£ - + (@2 - m2) (@2 - o2
s( u) (m3 mq)(m1 m<)

cos- 9 = 2 N (9.9)

{fs = m - m)?ls ~ (m +m)%ls - (@, -~ m)?][s - (m, + m)2]}Z

This looks complicated unless the masses are equal. However, the important point
is that cos & is linear in t. In the analyses of scattering data it is usual [3]
to make a "partial wave decomposition" of £f(s, cos 9) i.e., to expand £(s, cos 9)

in terms of Legendre functions

f(s, cos 9) = Z (28 + 1)az(s)P2(cos 8) . (9.10)
2
o >
251 P3
<
p >
L p2

FIGURE 9.3. SCATTERING IN CM SYSTEM IN S-CHANNEL IN 3-SPACE

This is done for two reasons. (a) The unitary condition, which says that the
total probability for scattering is unity, is diagonal in the PZ basis. In fact,
it reads

ai(s) = sin 62(5) exp iéz(s) s

where 6Z(S) is real, and a scattering analysis is normally an analysis of the
"phase-shifts" 62(5)' (b) For low-emergies, s ~ (m; + m2)2, the low values of
2(% = 0,1,2) dominate. (One can see this intuitively by noting that for low
energy we have low relative angular momentum of the two particles, and as we shall

see later, ¢ is the relative angular momentum.)

Regge Theory

One of the problems of scattering theory was how to combine the analyti-
city (9.7) with the expansion (9.10). As we go from the s channel, where t < 0
and ]cos 6’ < 1, to the t—-channel, where ¢t > (m1 + mz)2 and |cos 6! =z 1, the

expansion (9.10) diverges. To overcome this difficulty, Regge [4] showed that, at
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least for a class of non-relativistic potential scattering theories, the way to con-—
tinue cos 6 was to express the expansion (9.10) in integral form. First, one

writes

£(s, cos 0) =_1_J (20 + 1)de
C

ol oin ni aﬁ(s)Pz(cos 8) R (9.11)

where G 1is the contour of Figure 9.4, then divides the integrand into + and -
signature parts

+
£ (s, cos 8) =

1 (29 + 1)da
2mi C sin 74

ai(s)[P (cos 8) £+ P (-cos 6)] , (9.12)
I L 2

which have independent physical properties, and then, because each converges sepa-

rately on the circle at infinity, opens up the contour to 1L, which is the furthest

L
c
| <
T4 U
-1IN\J0_ 1 2 3 4 § —>

I >

1
!
|
l
|
FIGURE 9.4. THE CONTOURS OF C AND L

line to the left allowed by the Pz(cos 6). On the way, one picks up the poles of
ai(s), which for the class of potentials considered is a meromorphic functioz of &
to the right of L, and obtains (simplifying for clarity to the case when ai(s)
has only one pole to the right of L)

+
fi(s, cos 8) = (Zui(s) + 1) B [P, (cos 6) £ P (—cos 8)]

sin ﬂai(s) o (8) a” (s)

ai(s)[Pg(cos 8)

1 (24 + 1)ds
2mi L sin 7wl

+ Pm(—cos 8)] s (9.13)

where ui(s) is the position of the pole, and Bi(s) the residue of ai(s) at
the pole. The expression (9.13) can now be continued in cos € into the t—channel,
and indeed to t ~ cos 6 - =,

What is the relevance of all this to relativistic scattering? The point
is that one now makes the hypothesis [5] that although relativistic scattering may
be quite different from non-relativistic scattering, it retains at least one fea-

ture of it, namely, the fact that aZ(s) is meromorphic to the right of L.
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This is quite an assumption, and indeed, has had to be modified. But it
is at least within the general philosophy that nature is simple if looked at the
right way-—and here the postulate is that the right way to look at £(s, cos 8) is
from the point of view of its properties in the f2-plane to the right of L! In any
case, let us investigate [6] the physical implications of (9.13).

The physical implications of (9.13) are best seen by noting that the pole
a(s) 1is not fixed, but varies with s, and drawing the path of its real part as a

function of s (Figure 9.5). There is good reason to believe, as we shall see in

41
E
Re a(s) 29

14

]
A

FIGURE 9.5. REGGE TRAJECTORIES

a moment, that its path is as in this figure. The physical implications are then
two—fold:
(i) for t~cos B >, s < 0, we have from (9.13)

+ +
fi(s, cos 8) -+ zﬁ_iél:i_l Bi(s)(cos e)“ (e) . (9.14)

sin 7o (s)

This means that in the t-channel, as t » «,

+
s, t) » ATy ) (9.15)

i.e., we have an explicit statement about the behavior of the
scattering amplitude as a function of the energy (t) for high
energy. This is a result which could not be obtained experimentally
and was not obtained theoretically before the advent of Regge
theory. What was known theoretically before was that, because of
the unitary condition for T, f(s,t) was bounded, and probably
decreased, as a function of t for t » «, This is why Rl ui(s)
is assumed to be less than 1 for s < 0 in Figure 9.5. But the
explicit t—dependence was first obtained in Regge theory, and is

+
clearly controlled by the Regge-pole at £ = a (s).
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If Im ui(s) is small, then when RI1 ai(s) = integer, 1/sin nui(s)
is large. Hence, remembering the factor P | (cos 8) = P N

. o (s a~(s)
(-cos 8), which is small for Rl o (s) = even/odd integer, we see
that fi(s, cos 0) is large for RI1 ui(s) = even/odd integer.
Returning to the s-channel, s > (m1 + mz)z, we see that the s-
channel amplitude therefore becomes large, or resonates, whenever
R1l ui(s) = even/odd integer. Furthermore, a simple analysis of how
the amplitude resonates near ai(s) = even/odd integer, shows that
it behaves as if it were the contribution to the s-channel scattering
of an unstable bound state particle or resonance of mass = Vs,
spin = RL ai(s), and life time «[Im ui(s)]—l, Figure 9.5. This
result clearly suggests that the RI1 ut(s) = even/odd integer points
on the Regge-trajectory of Figure 9.5 should be interpreted as un-
stable particles of increasing mass and spin. And indeed, if one
examines Figure 5.la, one sees that the baryons for which it can be
checked do indeed lie on Regge trajectories. The mesons do not have
sufficiently well-determined spins and parities for a direct check
but other considerations support the conjecture that they also lie on
Regge trajectories. A typical conjecture [11] is shown in Figure
9.6.

U(2380)’
T(2200)

$(1930)

1
W 7, (1016)
1.0 2.0 3.0 4.0 5.0 6.0 7

t (Gev)?2

FIGURE 9.6.
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The most beautiful part of the results (i) and (ii) lies in their combina-
tion. By combining them we see that the resonant states, or unstable particles,
which are produced in the s—channel, dictate the high-energy behavior in the t-
channel (and, of course, conversely). This unexpected relationship between these
hitherto unconnected phenomena is a result that is almost certain to survive, no
matter how the details of the Reggé theory may have been modified.

A further beauty of the result is that it simultaneously solves a long-
standing puzzle in scattering theory, namely, that if onme were to continue the con-
tribution to F(s,t) of a particle with a fixed high spin (therefore high powers of
cos ©, therefore high powers of t) from the s-channel to the t-channel, this con-
tribution alone would violate the unitary condition for large t. The Regge result
solves the problem by showing that the spin is really RI1 ai(s), and hence is not
fixed, but varies with s and becomes less than 1 for s < 0 in the t-channel.

After the above rather lengthy description of the background, let us turn
at last to the little groups.

Consider first the two—particle state Iplp2> in the s-channel. This

state can equally well be described by IP,q> where P = I + P, 4 = p1 - pz.
Since p% = m%, pé = mi, if we consider P as 4 independent variables there are
two constraints on q. As a result, we can write lP,q> as |P,R(61¢1)q0> = ls

= p2, 3, R(el¢1)q0>, where 4, is a fixed vector and R(61¢1) is a rotation be-
longing to the little group SO(3) of P. (The angle (61¢1) is the angle between
a fixed z-axis and the ;1 - 32 line in the 3-dimensional diagram of Figure 9.3.)
In a similar way the state |p3pu> can be written as |s' =pr2, ?’, R(62¢2)q0>,
where P’ = p3 + py, R(92¢5) is an element of the little group SO(3) of P’, and
(62¢2) is the angle between the fixed z-axis and a’ = ;3 - ;“. However, from

energy momentum conservation we have

' 3 =B
s =8 , P =P

. (9.16)

Hence R(91¢1) and R(62¢2) are elements of the same little group, namely that of
P = P'. TFor the scattering amplitude, which is Poincaré, and therefore rotation-

ally invariant, we then have

> >
<p,p,|T|Pp,> = <s,B,R(0,9,)q,[T]s,P,R(6181)qp>

I

> >
<s,P,qq|T|s,P,R 1(@2¢2)R(91¢1)q0>

> >
<S,P,q0|T|S,P,R(93’¢3)q0> N (9.17)

where (63,¢3) = 0 1is the angle between the lines ;P - S

a ;
, and p, p, in

Figure 9.3. Hence

> >
f(s, cos 0) = <p3pqlT|p1p2> = <s,P,thT|s,P,R(6)qd> . (9.18)
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But since R(0) is an element of the little group S0(3) of P, this means that
as a function of 8, f(s, cos 6) is a function over the }ittle group S0(3).

Hence the expansion

f(s, cos 0) = z 28 + l)al(s)pl(cos 9) s (9.19)
2

emerges as nothing but the expansion of the scattering amplitude as a function over
the little group S0(3) in terms of the irreducible representations of S0(3) [7].

Once it is realized that the partial wave decomposition (9.19) which is
restricted to the parE of the s - t plane which belongs to the s—channel, s > 0,
is nothing but an expansion over the little group S0(3) of P = P, + P, & method
for extending the expansion to other channels immediately suggests itself, namely,
to make a little group expansion in the same variable in the other channel also.

In the other channel, s = P2 < 0, since P =p; + Py with pg < 0, Hence the
little group is S0(2,1).

However, there is a snag. The snag is that whereas in the s-channel the
unitary condition guarantees that £(s, cos 6) will be square integrable over the
little group SO0(3), in the other channels there is no guarantee that it wiliybe
square-integrable over S0(2,1), and in general it is not.

At this point, however, one can return to Regge theory. Looking at the
Regge expansion (9.13) one sees at once that the background integral is nothing but
the expansion of the scattering amplitude in terms of the principal series of
$0(2,1). Thus what Regge theory says is that, although the full scattering ampli-
tude is not square-integrable over S0(2,1), when one removes the contribution of
the Regge poles, the remainder is square-integrable. Thus equation (9.13) can be
looked at from two points of view. From the Regge, or physical, point of view, the
pole term is the important term and the integral just an incidental background term.
From the group theoretical point of view, the integral is the interesting group ex-
pansion term, and the pole term just an incidental subtraction term to make the
integral converge.

One may ask why only the principal series appears in the Regge formula.
First there is a theorem due to Bargmann [8] which states that any square-integra-
ble function over S0(2,1) can be expanded in terms of the principal series and
the discrete series with 2 > =~ %u This theorem explains why the supplementary,
trivial and Di(- %) representations do not appear. Secondly, the discrete series
with & > - %— do not appear in our case because we have left out the spin of the
particles [9].

In conclusion, I should mention that the further generalization to an ex—
pansion of £(s, cos 6) in terms of the Lorentz group S0(3,1) (to include 50(2,1)
for t ~ cos Gs, and S0(3) for s) has been considered. The S0(3,1) expansion

becomes particularly interesting and illuminating at the point s = 0 in the
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continuation of s from the s to the t-chanmel, because we cam choose P = 0 as
our reference frame, and then, for s = 0, P = 0, in which case 50(3,1) is itself
the little group. The fact that at s = 0 the little group expands to S0(3,1)

has physical consequences, notably that to every Regge trajectory crossing the line
s = 0 in Figure 9.5 there is a family of trajectories with values a(0), a(0) - 1,
a(0) - 2, ... corresponding to the representations j = Jg» 3g t 1, «v. of 50(3)

occurring in an irreducible representation of S0(3,1) [10].

10. TINTERNAL SYMMETRIES

In the previous three chapters, we have considered the space time pro-
perties of relativistic Hilbert space in general, and of l-particle states in
particular. In the present lecture, we should like to consider some properties of
the particles which are independent of space-time. Because they are independent of
space-time, these properties, or symmetries, are called internal symmetries [1].
The first internal symmetries came to light when the structure of the
atomic nucleus began to be investigated in the early thirties. The nucleus was
found to consist of protons and neutrons (each about 2,000 times the mass of the
electron, i.e., each about 10725 grs.) and investigation of the forces that held
them together (the nuclear forces) showed that
1) they were much stronger than the electromagnetic forces (they are
the strong forces mentioned in Section 5) and

2) they were charge—independent., That is to say, apart from statistics,
they did not distinguish between protons and neutrons—--the force
between two protons was the same as the force between two neutrons or
the force between a proton and neutron. (This is in marked contrast
to the electromagnetic forces which distinguish clearly between the
proton and neutron, since the proton is charged and the neutron is
not.)

To formulate charge-independence, it was convenient to introduce on the
physical Hilbert space, an abstract invariance group. The group used was the
SU(2) group (isotopic spin group) and the idea was to assign the proton and the
neutron, respectively, to two orthogonal vectors |p) and ]n) in the 2-dimen-—
sional representation of SU(2) and then to demand the invariance of the nuclear

Hamiltonian HN under the SU(2) group

[SU(Z),HN] =0 . (10.1)
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The generator I of SU(2) for which
) 1 -1
o =51m , 1l == , (10.2)

is called by convention I3 or the third component of isospin. For many-nucleon
states (nucleon = proton, neutron), one uses tensor products of the states [p),
In) in conjunction with (10.1).

The mathematics of the isospin group is the same as for the ordinary
electron spin group SU(2), but the physics is quite different. First, every vec-—
tor in the ordinary 2-dimensional spin space is realizable in nature, but only |p)
and in) in isotopic spin space are realizable. (Nobody has ever succeeded in
constructing a state which is a linear superposition a|p) + b|n)ab # 0.) Secondly,
the operators in spin space transform non-trivially under space rotations, whereas
the operators in isospace are independent of space—time.

Later in the investigation of nuclear structure, it was found that the
nuclear forces between protons and neutrons were mediated by w-mesons, of which
there are three, 70 and wi, the index referring to the charge. It turned out
that the w's could be incorporated into the isospin scheme by assigning them to

the 3-dimensional representation of SU(2) with
+ +
Iglv) ==+ [r) Il =0 . (10.3)

Once higher (relativistic) energies became available, and the bombardment
of nuclei with protons and neutrons of high energy resulted in the production of

r . r) I3 [4
new particles, it was found that the forces producing the new particles were

a) of the same order of strength as the nuclear forces

b) still charge independent.
These forces are, therefore, called generically ''strong" forces, and the associated
Hamiltonian the strong Hamiltonian Hs.

From the charge independence of the strong interactions and the assign-
ment of the creating particles (p,n) and (ﬂio) denoted by N and =, respec-—
tively, to irreducible representations of SU(2), it follows that the created

particles should also belong to irreducible representations of SU(2). And this
+ + -
— +
turns out to be the case. In fact, the metastable hadrons X0, K0, n, A, 570, 80,

and Q are found to belong to the 2,2,1,1,3,2 and l-dimensional representations
of SU(2) and, hence, are denoted by K, E, n, A £, E, and ¢, respectively.
For the unstable hadrons, the same results are found. All can be

assigned to irreducible representations of SU(2) with
[SU(2),H_1 =0 s (10.4)
and, indeed, the number of unstable hadrons is now so large that ome no longer

refers to them individually but refers only to the isospin multiplets to which they

belong. This method of referring to them has been anticipated in Table 5, in which
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T (the total isospin) labels the representation of SU(2) to which the particles
belong (dimension = 2I + 1). Note that all particles in the same SU(2) multiplet
have the same mass (up to electromagnetic and weak interaction corrections) and the
same spin, indeed have the same space-time properties in genmeral. This is because
the internal invariance group SU(2) and the space-time Poincaré group are inde-

pendent, i.e.,
/r
[SU(2),P+] =0 . (10.5)

In the production of new particles from N,ﬁ,w, a new invariance law
became evident, namely, that when new particles are produced from N,N and =«
they come only in certain combinations. The simplest description of the allowed
combinations is obtained by introducing a new operator Y on ¥, assigning the

SU(2) multiplets to integer eigenvalues of Y and demanding that

[Y,HS] =0 s (10.6)

i.e., that Y be conserved in the strong interactions. Because of its analogy to
the electric charge, Q, which takes integer values on the particle states and is
conserved in interactions, Y is called the hypercharge. Note, however, that
whereas Q 1is conserved in all interactions, Y (like SU(2)) is conserved only
in the strong ones. The hypercharges of ﬂ,K,K;n and N,A,I,E,Q are (0,1,-1,0)

and (1,0,0,-1,-2), respectively. In general, we have also the relation

Q=I,+=>Y , (10.7)

which was first discovered by Gell-Mann and Nishijima.

The strong interactions are found to be invariant, therefore, under
SU(2) and Y, and hence under the group SU(2) x U(1) where U(l) is generated
by Y. But, as Louis Michel has pointed out, the fact that Q in (10.7) is inte-
ger, means that only those representations of SU(2) x U(1) occur, for which
Y = D (modulo 2), where D is the dimension of the SU(2) representation. Since
such representations of Sﬁ(2) x U(1l) are exactly those which are representations
of U(2), it follows that we can replace the invariance under SU(2) x U(l) by
invariance under U(2).

A glance at Figure 5.1 will show that U(2) is the maximal group with the
property [U(Z),Pi] = 0, up to electromagnetic and weak corrections, since any
other transformations among the particles will not commute with the mass and spin.

In spite of this, Figure 5.1 does suggest that one could go beyond U(2).
The reason is that the different TU(2) multiplets seem to fall into sets which,
while they do mot have the same mass, do have the same spin and have approximately

the same mass. Examples of such sets are (w, K, K, n) and (N, A, I, 5). For
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this reason, it has been proposed that U(2) be enlarged to a group SU(3). The
original choice SU(3) rested primarily on two factors:
1) SU(3) allows two and only two commuting generators, and two and only

two additive operators (I and Y) are necessary to label the

particles. ’
2) 8U(3) has an irreducible representation (the 8-dimensional adjoint
representation) which can accommodate the two sets of eight particles
(v, K, K, n) and <N, A, I, E) with the correct I, 13, and Y
values. (I(I + 1) = I% + I% + Ig) See Figure 5.1.
(Actually, the n was not known experimentally at the time SU(3) was proposed
and was predicted by SU(3).) Having adopted SU(3), one tries to assign the other,

unstable, pirticles to SU(3) multiplets. Success has already been achieved with

the JP = %— multiplet (N%, z* = Y* 2%, Q) which is assigned to the+10;dimen—
sional representation (decimet) of SU(3) (Figure 5.1) and the JP =33 ,1, and

>
2+ multiplets which are assigned to the 8-dimensional representation %ociet). The
higher JP (spin-parity) multiplets look equally promising. The existence of @,
like n, was actually predicted by the SU(3) assignment.
Thus, for particle assignments, SU(3) turns out to be as successful as
the exact invariance group U(2) had been before it. Unlike U(2), however, SU(3)

is not an invariance group, i.e.,

(X5, 1 #0 (10.8)

for those generators X of 8SU(3) which do not generate transformations within
U(2). 1Indeed, if (10.8) were zero, SU(3) transformations would commute with the
mass—operator and all the particles assigned to an SU(3) multiplet would have to
have the same mass, which is manifestly not the case.

One might then ask: Of what use is SU(3) apart from classifying and
predicting particles? The answer is that although SU(3) dis not an invariance
group, it is approximately an invariance group, and by stating how certain oper-
ators transform with respect to it, one can obtain physical predictions, correct to
within the approximation (~20%).

The operators whose transformation properties are of most interest are

1) the Hamiltonian HS

2) the mass operator M

3) the electric current ju(x)

4) the weak current of the hadrons jﬁ(x)

The transformation properties of these operators are assigned on physical grounds
apd amount to a statement about the tensor character of the operators. The physi-
cél predictions are then extracted by using the WE theorem. Let us consider the

operators 1) to 4) briefly:



214

The Hamiltonians: one usually assumes that

2

Ho=u 4
s s s

(0)

where HS is SU(3) invariant and about five times as large as

1
Hé ). Hence, to within 207, HS can be regarded as SU(3) invari-
ant. This allows us to obtain 20% estimates for the relations

between strong decay processes such as

N#* - Nm ,
I% > 3w N

- AT >
B >

for example,

(BN (N*,HS(O)NW)

N#* - N1 3 .0
T * -
- At o (2 ,HSAﬂ) c (Z*,HéO)N“)
1088 (3 4ol
B Q_CN* Nn {2 ’Hg 2 OJ
T 0 al0 88 (4 -
Coz 3 .01
% A = =
K (2 ’Hs 2 0
clo & 8
o NNm o (10.9)
GCIOSS
& A

where ¢, ¢ are kinematical phase-space factors, depending only on

the masses (see Equation (10.15) below), the C's are Clebsch-Gordan

. 3 01
coefficients, and ff ’Hi)i

similar way, one can relate scattering processes such as

O] is a WE reduced matrix element. In a

N -+ 7N
- K&
- RA
RN » niI
etc., for particles (W,K,E) and (N,Z,A,Z) in the same SU(3)
multiplets.

The Mass Operator M, like HS, is assumed to be of the form

+M(1) )

0) (1)

where M( is SU(3)-invariant and M is not. However, in the
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case of the mass, one goes further and also makes a positive state-

1) (&)

ment about M , namely, M transforms as the Y-component of the
eight-dimensional representation of SU(3).

Using the WE theorem or general tensor techniques, it is
then possible to show that operating on the space of an irreducible

representation of SU(3),

M=o+ BY + y[I(I+ 1) - i3{2] s (10.10)
4

where I(I + 1) = I% + I% + I% is the total isotopic spin and o, B
and vy are SU(3) scalars. Thus, for any SU(3) multiplet, we have
the mass-formula (10.10), where o is the mean value of M for the
multiplet.

This formula agrees with experiment to within 4% for the

metastable baryon octet, to within 0.5% for the % baryon decimet

(for which it makes two predictions, one of which is the predictioﬂ of
the € at exactly the right mass value) and it agrees reasonably well
(with some '"representation mixing" modifications) for the remaining

SU(3) multiplets. .
At this point, we make a digression and use the SU(3) mass

operator to illustrate the following point concerning temsor operators
in finite—dimensional spaces. (There is a generalization to infinite
dimensional spaces but it is more complicated in several respects.)
Let J be a finite-dimensional Hilbert space, G a group implemented
by unitary transformations on ¥, and L(A) the space of linear
operators on A. Then L(A) is itself a representation space for

G. Hence any given operator A € L(A) can be expanded in terms of
G. But this means that any operator is a tensor operator in the
sense that it can be expanded as a series of irreducible tensor oper-—
ators. Thus, the real content of the statement that an operator is

a "tensor" is that in its expansion, one (or a few) irreducible ten-
sor components dominate. For example, in the case of the mass oper-
ator M restricted to the octet space, M must be one of the 64
possible linear independent operators A on this space. With
respect to SU(3), however, this 64-dimensional space (L(A)) splits
into irreducible subspace of dimension 1,8,8,27,10,16. with respect

to SU(3). Hence, a priori, M is limited to be

M= Mo+ M8 + M8+ MI0 + M0 4 M27 . (10.11)

In addition, the direction of M within each irreducible subspace
is completely determined by the condition that M be a U(2) invar-

iant

[v2)y,M} =0 , (10.12)
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and, in fact, this condition kills 10 and Iﬁ; and constrains M

to be
= Ml 8 8 27
M= MO + MY + MY + MY N (10.13)

where Y is the direction of the hypercharge. Thus, the only
assumption that goes into the mass formula (10.10) which is not
already implied by general considerations is that in (10.13) the
component of M in the 27 is suppressed. This assumption is made
for other tensor operators also (see below), in which case it is
called explicitly "octet dominance". Incidentally, it might be worth
remarking that the analogue of (10.13) for the decimet is M = Mé

+ Mg + M§7 + M%“, so that the octet dominance assumption kills two
parameters (27 and 64) in this case. This is why the mass—formula
yields two predictions for the decimet.

The strong decay rates and the mass formulae provide strin-
gent cross—checks on the SU(3) particle assignments. In fact,
since the mass of a particle is usually known experimentally long
before its spin-parity, in practice one assigns according to the
mass formula first and checks with spin-parity afterwards.

An interesting feature emerges in the case of the mesons
0_, l_, and 2+. These come not in octets but in nonets and, to fit
the mass formula, one must assume that the two U(2) scalar
particles (n,n*){w,p) and (£f,f*), respectively, which occur in the
nonets, do not have definite SU(3) properties; rather, the linear

combinations

Ng cos 0 n + sin 6 n*
(10.14)

cos O n* - sin 6 n N

=
I

etc., belong to the SU(3) octet and scalar representations, res-
pectively. This phenomenon is called "representation mixing" and

it robs the mass formula of its direct predictions for these parti-
cles by adding the new unknown parameter ©6. The best that the mass-
formula can do is determine the various 8's. (They turn out to be
8= 109, el_ =~ 600, 62+ =~ 300,) The interesting point, however, is
that in spite of this, the mass formula is not empty. One can get
indirect predictions, and indeed one of the most remarkable features
of the decay rate analyses is that in two cases in which the experi-
mental decay rates are in complete contradiction with phase space and
SU(3) without mixing, the use of mixing accounts for the discrep—

ancy. For example, experimentally
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£ £ > 2m _ 1
£ om 21 =50 , =g T (10.15)
f > KK f* > KK

whereas, on account of the much smaller mass of the pion, phase space

would predict the ratio 3 1 in both cases. With mixing, SU(3)
predicts, using the WE theorem,

cos © <§. ’SO §> + sin 6 <0 |S0
£>21 o 8 "
£ > KK cos 6 —s°i§>‘§ +sin6<— Soi-‘>}:
. 2\fel” Ix/I¥ 2 fo K/ IR

—

8

Q

888 88012

s
+ i C
cos ezcwa o sin 62 S

2
alo

888

s . 880
+
cos eZCKKB o sin GZC Zo

3(20 sin 8, + cos 92)2

=g— o, (10.16)
4(a sin 6, - cos 62)2

where SO is the scalar approximation to the S-matrix S,

_ 40|[s%]88)

(8||s%|[88)

and the phase space factor p/o 1is given by

ap

= [E}zlﬂ |me - 4mﬁ|m;.)1/2 S

1 - AmI%[sze)l/z

q
t m

f

5
= [(1 - 4(500)2] (1250)2)"1/2]5 = [—g—] =15 (10.17)

where m denotes mass, p and ¢ are the final state 7 and K
three-momenta, respectively, and % = 2 is the final state orbital

angular momentum. Similarly,

— a5 2
f*‘*2”=£.z 20¢cos62 81n62
o cos 62 + sin 6, >

(10.18)

where

a- 4m2|m2 yi/2

f*
f*

p!
G

Q- 4m2|m2 )1/2

= [(1 - 4(500)2] (1500)2)71/2]5 = (-—-}5 = 4.5
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The values of 62 and o can be calculated from the mass formula
and from f and AZ decays, respectively. The values calculated

in this way yield
20 = tan 92 »

and from (10.18) and (10.16) we see at once that this is exactly what

is required to explain (10.15). Note that if there were no mixing
(sin 8, = 0), SU(3) would predict

f*—>21T= D’

3_
£% > KK of ’

which is even worse than phase space alone.
The Electromagnetic Current: Here one takes a lead from the charge.

From the Gell-Mann-Nishijima result
Q=1, +3v (10.19)
32 ? :

we see that the charge is actually a generator of SU(3). Hence, it
transforms like a component of an 8-tensor (octet). We call this the
Q-component of the octet. Since the charge is constructed from the

current according to
Q=[ 1, (10. 20)

it is then natural to assume that the current ju(x) transforms in
the same way, i.e., as the Q-component of an octet of currents. The
assumption is not binding unless one uses other principles such as
locality and minimal principle, but it is a good Ansatz. Algebra-

ically, the Ansatz may be written

[J“,jﬂ(x)] =if 3760, Awo=1l..8 , (10.2D

AUC
where Jl are the generators of SU(3) and the EM current is the
Q-component of the octet temsor ja(x). As an application of the
Ansatz, one can consider the magnetic moments of the stable baryons.
The magnetic moment operator is a linear function of the current so
that if the current transforms like the Q-component of an octet, so

8

does the magnetic moment operator Now for any octet member o,

&
we have from the WE theorem
8| 8|8 g8 88 B8 888, 8
<a uQ|a> =g BB+ d o PERE, L (0.22)

8
where the c¢ and d are Clebsch-Gordan coefficients and (8,u,8)C
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and (S,S,S)d the corresponding reduced matrix elements. (The
appearance of two reduced matrix elements is due to the fact that
the 8 8 8 representation of SU(3) happens to contain the 8
twice.) From (10.22), it follows that all eight of the magnetic
moments of the octet can be predicted from two of them. The two
used as input are u(p) and u(n), which are well-known. The only
predicted one which has been measured with good accuracy so far is
u(2+) and the result agrees quite well with the prediction.
Similar considerations can be applied to the electromag—
netic mass differences of the i+ baryons, which are of order

2
(e/fic)?, and the prediction obtained

- _ - +

m(E ) - mEY) = m(@) - n(@) + n) - mn) ,
agrees extremely well with experiment.
The Weak Current jﬁ(x) of the Metastable Hadrons: jﬁ(x)isassumedtn
determine their leptonic (e.g., A > p + e +v) and non-leptonic
(e.ges A > p + ) decays through the Hamiltonians

Boo= ] @lere L [ @ieite . 10.23)

respectively, where ji(x) is the leptonic current. (Note the

analogy between these interactions and the interaction

o
[ a i (04 (), (10.24)

between the EM current ju(x) and the EM field Au(x).)

The weak current is actually a linear combination of a
true vector current vu(x) and an axial (or pseudo) vector current
a (x

u( )

w
jox =v(x)+a(x) (10.25)
u i u

and VU(X) and au(x), in turn, comsist of parts that change the

hypercharge eigenvalues by 0 and 1 wunits, respectively,
3560 =i + Vi) +allx) +ax) . (10.26)

We have already seen that the EM current is assumed to be the

Q=1 +<% Y component of an SU(3) octet. It is now assumed that

vﬁ(x) and vi(x) are the 1 and AY = *1 members of the same EM

+
octet as ju(x). (The identiEy of the octet means that Vu(x) and
the EM ju(x) have the same reduced matrix elements.) The aﬁ(x)
and a&(x) are assumed to be the It and AY = *1 components of a
new SU(3) octet. They cannot be components of the same octet as

v and j since they have different space-time properties.
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Using these transformation properties of jﬁ(x) in the
Hamiltonians (10.23), one can apply the WE theorem and obtain selec-
tion rules for the decays. One obtains the empirically observed
AS = A(Y + B) = AQ and AL = %' rules for leptonic decays and (if
one invokes also octet dominance, i.e., suppression of the 27-dimen-
sional representation in (8 8 B%ymmetric =1+ 81+ 27), the empiri-
cally observed rules AS # 2, AS = AQ, and AL = 2 rules for non-
leptonic decays.

In sum, therefore, SU(3) is a group which is useful not only for classi-
fying the elementary particles, but for predicting mass relationships between them
and, because it is an approximate invariance group, it can be used for obtaining
20% estimates on the scattering, electromagnetic, and decay processes of the parti-
cles. The estimates are, of course, only on relative matrix elements. The dynami-
cal content of the theory is hidden in the reduced matrix elements, which cancel
out in the ratios.

At present, the origins of SU(3) symmetry and the 207 SU(3) symmetry-
breaking are unexplained. Both are empirical discoveries which one has learned how

to handle, but not to explain.

11. BEYOND SU(3)

It is natural to try to go beyond SU(3) and see if

1) the elementary particles have any further regularities

2) the SU(3) properties have any relation to space-time.

One regularity the particles certainly possess is the "Regge recurrence' mentioned
in Section 9, namely, the property that each SU(3) multiplet of spin parity JP
reoccurs at higher masses with spin parity (J + Zn)P for n=1,2,3... .
Attempts to describe the Regge families (J + 2n)P, n=1,2,3,..., with infinite
component wavefunctions do not‘seem successful, as we saw earlier.

Apart from the Regge recurrences and SU(3), the particles do not have
any obvious regularities. However, the search for new regularities and the at-
tempts to relate 8SU(3) to space-time have led to some interesting ideas. One of
these is the use of new particles called quarks which are perhaps worth discussing,

The idea behind the quarks [1] is that the fundamental, 3-dimensional
representation of SU(3) should, like the 8- and 10-dimensional representation,
describe real particles (the quarks), and that since the 3-dimensional represen-
tation is fundamental, all the other particles should be bound states of the

quarks. In particular, the 0 and 1 mesons should be bound states qq of
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+ -+
1 quark and 1 anti-quark, and the %— and g— baryons should be bound states

qqq of 3 quarks. This would certainly be compatible with the SU(3) decomposi-
tions,
3x3=1+8 |,

(11.1)
3 x3x3

1+8+8+ 10

On the other hand, the charges and hypercharges of the particles are additive quan-
tum numbers because the corresponding operators are generators of SU(3). Hence,
the charges and hypercharges of the component quarks would have to add up to those
of the composite mesons and baryons, and one can check that for this to be true the
charges and hypercharges of the quarks would have to be %~integer (the charge of
the proton having been normalized to 1). This means that physically the quarks
would be rather unusual objects.

Much experimental effort has been devoted to finding quarks, but so far
without success. Nevertheless, the quark idea is used extensively. The reason is
that even if the quarks are only fictitious, they provide a basis for making edu-
cated guesses about the real particles. Their use also simplifies many mathematical
calculations.

The existence of quarks would pot explain SU(3) itself, since an S5U(3)
triplet of quarks is assumed from the outset. But their existence would go far to
explain the existence and mass—spin values of the JP multiplets which are

observed with ever increasing mass and spin.
+

- - +
In particular, for the lower multiplets 0 , 1 , %—, and g- one has

even been able to go beyond SU(3) to a larger group SU(6) [2] by using the quark
model. The procedure is the following: The quarks are assumed to be spin %
particles. Hence, in their rest frames their wavefunctions fi(x) are labeled
by two sets of indices, i = 1,2,3 referring to SU(3) and o = 1,2 referring to
ordinary spin. One can now consider the group SU(6) of all unitary unimodular
x-independent transformations on the 6-dimensional space fi(x). This group con-
tains SU(3) and the spin group SU(2) as subgroups in direct product form. If

we now make the physical assumption that when the quarks bind together to form the
+ +

0, 1, 7 and %— particlef, the binding is in some sense SU(6) invariant,

then we see that the bound state particles should belong to the 6 x 6 and

6 x 6 x 6 representations of SU(6), respectively. To see whether this prediction

agrees with experiment, one makes the SU(6) decompositions:

% x6=1+35 ,
(11.2)

6 x 6 x6

70 + 56 + 20 s

and asks whether any of the irreducible representations obtainid have the correct
- 1 3+

22
The answer is yes. Indeed, if one makes the SU(3) x SU(2) decompositions of the

SU(3) and spin content to accommodate the observed 0_, 1 multiplets.
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SU(6) 35 and 56, one finds

35

I

(1,1) + (8,1) + (8,0) ,
(11.3)

56= (10,2 + (8,

where the first figure refers to the dimension of the SU(3) representation and
the second to the spin. This means that the 35 and 56 of SU(6) can accom—
modate the mesons 0 and 1 and the baryons % and %r, respectively. Thus,
for the lower lying SU(3) multiplets, the assumption of SU(6) dinvariant binding
for the quarks leads to the correct SU(3)-spin relationships. Attempts to extend
the hypothesis of SU(6) invariant binding to the higher multiplets does not seem
to work (presumably because the orbital angular momentum as well as the spin must
be taken into account). For these, one falls back on more explicit dynamical quark
models.

Having discovered that the lower lying SU(3) multiplets are predicted
by SU(6) it is of interest to see whether SU(6) could be exploited farther.
The investigation takes two forms, practical and principle. The practical investi-
gations ask whether, following SU(3), we can make postulates about the SU(6)
transformation character of Hs’ M, ju(x) and jﬁ(x) and obtain useful predic-
tions.

For Hs’ the answer is no. Although the quark-binding appears to be
SU(6) invariant, the scattering matrix certainly is not. With the mass operator,

one does a little better. By assuming that the mass breaking is additive with
respect to SU(3) and spin, one can predict with 10Z accuracy the mass spacing
within the two higher SU(3) multiplits (% and 1) 1in terms of the mass
spacing within the two lower ones (% and 0 ), respectively.

For the electric current ju(x), only the magnetic moment is considered,
and this is assumed to transform like a member of an SU(6) 35. The matrix ele-
ments to be calculated are theg of theliorm Cg\u§5|5$>, where o and y refer
toc members of the 56, i.e., 35 and 5 particleg, and B refers to the magnetic
moment member of the 35. 3ut since for SU(6), 56 x 35(= 56 + 70 + 300 + 1134)
contains the 56 only once, there is only one reduced matrix element

56| 35{56\ _ .56 35 56 35
<OL|LIB l Y> = Ca 8 v (56,11 56) R

to be inserted in the WE theorem, and we obtain very strong predictions. In parti-
cular, using the proton magnetic moment un(p) as input for the reduced matrix

element, one obtains the SU(3) independent predictions

b@ = - S0

w(10) = quip) , (11.4)
/
22y

PReNby 3
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where up(n) is the magnetic moment of the neutron, u(l0) the magnetic moment,
and ¢ the charge, of any member of the §+ decimet, and UN*+N+Y the magnetic
moment contribution (which is the largest contribution) to the EM decay N* - Ny
The first equation is in unbelievably good agreement with experiment (~3%), the
u(10) have not yet been measured, and the third equation is in reasonable agree-
ment with experiment (~30%). Thus, the assignment of SU(6) properties to the
magnetic moment seems to be quite successful.

Finally, for the weak current, SU(6) has the advantage of being able to
carry the vector and axial vector currents in the same representation. This is
because in the SU(6) limit, which is assumed to be non-relativistic, VU(X)

- vo(x) which is spin O, au(x) - Z(x) which is spin 1, and we already know from
the meson classification that the 35 of SU(6) has exactly the right content to
carry spin 0 and 1 SU(3) octets. Assigning v, and 2 to the 35, one can

make some interesting predictions, and they agree reasonably well with experiment.

In brief, therefore, the attempt to push S8U(6) beyond a mere clagssi-
fication group for the particles, while not spectacularly successful, is not un-
successful. It is only when SU(6) invariance is demanded for the scattering
matrix that we get a complete breakdown.

The other kind of investigation into SU(6) is more a question of prin-
ciple. The relationship between the space-time symmetries of particles and the

internal SU(2),3U(3) symmetries has never been properly understood, and with the
advent of S8U(6), in which SU(3) and the spin group are simultaneously embedded,

it looked as if one might have a handle on this problem. The question also arises
as to how SU(6), whose formulation is completely non-relativistic, should be made
relativistic. These two questions are related and hinge on the question as to how
the spin group SU(2) din SU(6) is to be interpreted. Three possibilities sug-
gest themselves

a) as the little group of p = o for p? > 0

b) as a subgroup of SL(2,C) in the manifestly covariant Lorentz

transformations

PG > S(WYAIx) , A € 8L(2,0)

,1\

.

Each of these possibilities suggest a way of making SU(6) relativistic.

c) as a subgroup of P

In Case a), it is simply a question of expressing the SU(6) theory in
a manifestly covariant formalism and this has been done explicitly in Ref. [3].
There are no new predictions.

In Case b), one takes the quark wavefunctions

i Aya i,,-1 _

£, 0 3% (VU7 G - @), (11.5)
where o is now a Dirac index and SaB(A) the Dirac representation of SL(2,C),
and considers the pseudo-unitary unimodular x-independent group SU(6,6) on the

index space (8,i) [4]. This group contains SU(3) and SL(2,C) as subgroups in



224

direct product form, and thus replaces SU(6) directly. Using S8U(6,6), one can
proceed exactly as with SU(6). But one obtains very few new good predictions,
and encounters a lot of trouble [5].

The difficulty stems from the fact that to relate the manifestly co-
variant wavefunctions to the physical particles, one must eliminate the auxiliary
parts of the wavefunctions. This is done by means of the manifestly invariant

projection operators

%; (yupu - m) s ) (11.6)
etc., discussed in Section 7. But while the operators (11.6) are manifestly
Poincaré invariant, they are not SL(2,C) dinvariant (p_is an SL(2,C) scalar)
and, hence, certainly not SU(6,6) invariant. Hence, the auxiliary components of
the wavefunction cannot be eliminated in a way which is simultaneously SU(6,6)
and Pi invariant.

The problem becomes particularly acute in connection with probability
conservation in scattering theory. Probability conservation is expressed through

the unitarity condition

for the scattering matrix. Now consider this equation in matrix notationm,

. T N
E (i,8 n)(n,Sj) Sij .

If in the sum Z we put in all the S8U(6,6) states, then we have SU(6,6) invari-
n .
ance, but we do not have true probability conservation since the sum is not over

the physical states. If, on the other hand, we include in the E only the physi-
n
cal states, then we have true probability conservation, but we do not have SU(6,6)

invariance since the projections on the physical states, as we have just seen, are
not SU(6,6) invariant. Thus, for the scattering matrix, physical unitary and
SU(6,6) invariance are mutually incompatible.

Of course, one might legitimately ask: Why should the S-matrix be
SU(6,6) invariant? After all, it is not SU(6) dinvariant. The point is that by
making SU(6) relativistic one had hoped to overcome the defect that SU(6) was
not an invariance group. The failure to overcome that defect is a serious setback
for SU(6,6), and together with the failure of SU(6,6) to provide useful new pre-
dictions, it has led to its abandonment.

The third attempt (c)) to make SU(6) relativistic is, in a sense, more
ambitious than b). It rests on the observation that SU(3) cannot be completely
independent of the space~time coordinates x since it does not commute with the

space-time mass operator. So the attempt is to combine SU(3) and the full
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Poincaré group Pi in a larger group G. Of course, for the combination to be
useful, some restrictions must be placed on G. (The group of all possible unitary
transformations on Fock space obviously contains both SU(3) and P*, but this
observation contains no useful information.) The two main restrictions which have
been suggested for G are:

1) In the limit of SU(3)-symmetry, G 1is an invariance group for the

S-matrix.

2) Whether or not it is an invariance group, G is a Lie group.
Unfortunately, both suggestions run into trouble. In Case 1), one can show [6]
8 Gy,

1 or

that under very general conditions either S = 1 (no scattering) or G =P

n+ >

where @ denotes direct product and GO contains SU(3), i.e., either §
the combination is trivial. 1In Case 2), one can show that in any irreducible repre-
sentation of G the mass spectrum of Pi has no gaps [7]. Hence, G would be
unsuitable for classifying the hadrons. Even apart from this kind of trouble, the
difficulties of combining SU(3) and Pi in a larger group G can be seen by con-
sidering the action of G on Pi and SU(3) space respectively. One can see
that the action cannot make much physical sense unless the combination is trivial
[8].

The failure of attempts b) and c) to make 8U(6) relativistic make it
appear that if SU(6) is to be regarded as anything other than a nonrelativistic
accident, one must look elsewhere for a framework in which to embed it. Such a

framework is provided by current algebra, which we shall discuss in the next

chapter.

12. CURRENT ALGEBRA

In the last two sections, we saw that the elementary particles exhibit
regularities or symmetries other than those demanded by Poincaré invariance. How-
ever, none of the symmetries is exact. U(2) symmetry becomes exact only in the
limit that weak and electromagnetic interactions are neglected, SU(3) symmetry is
broken to within about 20% by even the strong interactions, and SU(6) symmetry
works at best in a haphazard and empirical way. The question is: Could one find
a framework within which the U(2), SU(3), and SU(6) results could be understood
in a coherent fashion? We have already seen that the idea of putting SU(3) and
SU(6) into larger groups is rather unsuccessful. In the present lecture, we wish
to discuss a more successful approach, namely, current algebra [1].

The starting point for the introduction of current algebra is the idea
that the fundamental objects for strong interaction physics are not the fields

Y{(x) but the currents

e (12.1)
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(which in a field theory would be conmstructed out of the fields). The role of the
currents is to mediate the interactions. For example, the electromagnetic inter-
actions of all the particles (strongly interacting or not) are assumed to take

place via an interaction Hamiltonian of the form
= d3 4 .
H =e I xji (A (x) (12.2)

where e is the electric charge, ju(x) the electric current, and Au(x) the
electromagnetic potential. Similarly, the leptonic and non-leptonic weak decays of
the (otherwise) strongly interacting particles are assumed to take place via inter-
action Hamiltonians of the form

W, -6 [ Bttt L By =6 [ dxima e (12.3)

where G is the weak coupling constant, jz(x) is the weak current of the strongly

interacting particles, and jj(x) is the weak current of the leptons.

From the currents jﬁ(x), we can define charges
- 34X
X(e) = [ a¥xip) . (12.4)

What current algebra assumes is that independent of the form or even the existence
of an underlying field theory, the charges and currents satisfy simple algebraic
relations among themselves (analogous to [X,P] = ifi in quantum mechanics). The

postulated relations are

charge-charge algebra [X,Y] =iz , (12.52a)
Y .2

_charge—current algebra [X,Ju(x)] = 1Ju(x) s At (12.5b)
X Y z equal

current-current algebra [jo(x),jo(x')] = ij7(x)8(x - x') (12.5¢)
0 times

X >Y >Z
[3,(0),3 ") = 1] R (x - ') + S(x,x") (12.5d)

where the structure constants of the algebra in question are in practice those of
SU(2), SU(3), SU(2) x SU(2), SU(3) x SU(3) (and, with a modification to be dis-
cussed later, SU(6) x SU(6)). '"At equal times'" means that the time variable in
X, Y and Z, etc., has the same value. The term S(x,x') in the last equation
is called a Schwinger term [2]. It is inserted because it can be shown that with-
out it the equation would not be consistent. S(x,x') is unknown, but it is
usually assumed to be purely symmetric in X and Y, so that at least the anti-
symmetric part of the last equation is not empty.

Note particularly that since the algebraic relations (12.5) are non-
linear, they normalize the currents and hence make it meaningful to say that the

coupling constants in (12.2), (12.3) are small, large, universal, etc. In fact,
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the need to normalize the weak currents was one of the motivations for current-
algebra [3].
In general, it is not assumed that the charges are time independent.

However, we have the equivalence relations

dx(t)

-0 mx®] e e =06 x| =0 (12.6)

where H 1is the Hamiltonian under consideration and ‘0> is the vacuum state.
The first two relations are fairly obvious. The last follows from a theorem due. to
Colemen [4].

The question now is: How are physical consequences to be extracted from
this formal algebra?

Let us first consider the exact symmetry limit, e.g., SU(2) with weak
and electromagnetic interactions neglected or SU(3) with the 207 SU(3) breaking
interaction neglected. In that limit (12.6) holds for all the charges and the
charge x charge algebra becomes the usual SU(2) or SU(3) symmetry algebra, with
the charges as generators. In particular, if the physical Hilbert ¥ is decom-
posed with respect to the charge algebra (12.5a), the mass degenerate particles
can be, and are, assigned to irreducible subspaces of the algebra. We then obtain
the usual SU(2) or SU(3) theory. In particular, the charge x current algebra
(12.5b) then becomes the assignment of tensor properties to the current as des-—
cribed in the last two chapters.

The real advantage of the current algebra appears when the symmetry is
not exact. In that case, it is assumed that the current algebra relations (12.5)
are exact, but that (12.6) does not hold and, hence, that the assignment of parti-
cles to SU(3) subspaces of 3 is incorrect. IHowever, it is assumed that there
is at least a subalgebra of the charge algebra which is exact and is large enough
to locate the particles in ¥ vrelative to the algebra. (The subalgebra is that of
U(2) for SU(3) and that of U(1) for SU(2).)

Having placed the particles relative to the algebra, the physical infor-
mation is then extracted as follows: Consider the charge x charge relation [X,Y]
= iZ. The presently measurable matrix elements of X, Y, Z are their values
between l-particle states. It is, therefore, suggestive to sandwich the equation
[X,Y] = iZ between l-particle states. Let ﬁs denote l-particle states by (n)

and 2-or-more-particle states by (c). We obtain

Z (n, X n2")(n’', Y n") + z (n, Xc)(e, Yn") -X® Y =i(n, Zn"), (12.7)
n' c

where the sum z runs over all the l-particle states and z over all the many-
'
n c

particle states. Now if

) (n, X e)(e, Y n") =0 R (12.8)
(o4

we would be in a strong position with regard to experiment, since we would have a
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direct algebraic statement about the measurable quantities (n, X n'). However,

in general, (12.8) is not true. Indeed, (12.8) is true essentially only in the
exact symmetry limit since (12.8) implies that at least one of X and Y Ileaves
the l-particle states invariant and, in general, this can only happen if they leave
the vacuum invariant as well. '

Thus, in general one cannot omit the c¢c—summation in (12.7), and one must
proceed otherwise. How one proceeds depends on the matrix elements to be calcu-
lated. We shall mention here only two well-known examples:

1) Adler-Weisberger calculation [5]: One uses SU(2) x SU(2) algebra,

namely one assumes that the isospin charges T. and the charges A.i

belonging to the axial vector current jﬁ(x) satisfy the relations

[Ti,Tj] = 1€ijka N

= 1 { = '
[Ti’Aj] 1€ijkAk s i 1, 2, 3 (12.5a)
[Ai’Aj] = leijka .

Then one chooses n = n" = proton, and X, Y = A = (A1 * iAz)/Z. It

follows that Z = I, and n' = neutron. If

+
g, = @A p)

denotes the weak coupling constant between the neutron and proton,

(12.7) reduces to

|8A|2 +) (pA+C)(cA_p) - (PA—C)(CA+p) =1 . (12.10)
C

Thus, we would have a prediction for IgA[2 if we could evaluate Z.

c

(In particular, |gA|2 would be 1 if z were zero.) To evaluate
c

2, one makes the so-called PCAC (partially comnserved axial current)

¢

hypothesis, namely, that
B ALG) = kg (), (12.11)

4
where 1 _(x) 1is the field of the m -meson, and the constant « is
determined from the decays n -+ p + leptons and 7 - leptons. Inte-

grating (12.11) to
.
TEA@ =« [ Sxm0 (12.12)

and inserting the result into 2, one obtains
c

2§ (' e) (enp) = (re)(erp) | _ 1L (12.13)

[g ]2 1+ «
A - 2
c (EC Ep)
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The point now is that the %—term can be directly related to the cross-
sections o+(g) for m,p scattering. Inserting the observed values
for ot(c),_one obtains— |gA|2 = 1.18, in excellent agreement with
experiment. Note that the entire departure of |gA|2 from unity
comes from the mnon-conservation of A+(t) (Equation (12.12)).

2) The second example [6] uses SU(6) x 5U(6) algebra, or at least that

part of it in which

A,k =1+% |, (12.14)
where T is the isospin charge (generator of the isospin group) and
K is the spatial charge

Koy = [ a3 a0 (12.15)

where Z(x) is the space-part of the S8U(3) axial vector current.

The use of the spatial charge is peculiar to SU(6) x SU(6). Only the

time-component charges (12.4) are used for SU(2), SU(3), SU(2) XSUiZ),
+

and SU(3) x SU(3). Inserting Equation (12.14) between % and %
states, denoted by N, we obtain
o K[z n)(n + ] c)(c]K' N) -Ae A= (N,T+A"N) . (12.16)
n c

If one now makes the approximation of replacing the sum over n and

¢ by a sum over N only, i.e.,

I+ ) D> )nE (12.17)
n c N
in (12.16), one obtains
Lk, d - % e B = + A , (12.18)
N'

and by choosing appropriate members of N and K, one can derive

from (12.18) practically all the interesting SU(6) results. Thus,
SU(6) can be simply understood as a combination of the charge-algebra
(12.14) and the saturation assumption (12.17). It should be empha-
sized that the masses of the particles N are not assumed to be the
same and the charges K(t) are not assumed to be time-independent.

These examples and other applications of the charge algebra support the
view that the correct way to understand SU(3), SU(3) ® SU(3), etc., is not as
exact symmetry groups, but as exact charge algebras. Any approximations to be made
are made in the saturation of the algebra (the sum over intermediate states).

So far, we have discussed only the charge x charge algebras (when the
symmetry is not exact). However, the charge x current algebras can be similarly
handled, and in recent years most of what is called current algebra theory has been
devoted to systematically (and very successfully) exploiting the charge x current

algebras.
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Let us sketch very briefly the kind of idea involved for one of the most
important applications [1] of current algebra, namely, the derivation of what are
called low emergy theorems. For an interaction involving an external m-meson, the

matrix element of interest can be written as
ipx+qy...
M= (a,T [ e PV rp(y) .. .d¥ (xy. ) b) (12.19)

where a and b are initial and final states, pu is the meson 4-momentum, 7(x)
is the meson field, o(y) any other typical field or current (possibly another
m-meson field), and T dis the time ordering operator (T(m(x)p(y)) = o(¥y)n(x),
m(x)p(y) for Xy < ¥gs Xg > yo).

Replacing m(x) by BUAU(X) according to (12.11), we obtain

M= (a7 [ .0 A G)...b)

=p,@T [ cd (D) - ] @T [ A ) e e b) L (12.20)

where the second term comes from the fact that the time derivative does not commute
with the time-ordering T. The non-commutativity of 80 and T can be expressed
in the form %F 8(t) = 6§(t) and hence leads to equal-time commutators such as the
commutator [Ao(x),cp(y)]ET exhibited, together with a residual time ordering T’
for the remaining unequal times.

Now because the mass of the pion is small, for processes for which the
pion 3-momentum is small, it is legitimate to let p ~ 0. Then the first term in
(12.20) vanishes and in the second term I eipxdax Ao(x) > I dsx AO(X) = AO where
Ay 1s the axial charge. Hence, in the'soft-pion limit" P, »+ 0, M is dominated by
the second term in (12.20), and the second term, in turn, is determined by the
equal time charge x current commutator [A0,¢(y)] of the charge x current algebra.
In this way the charge x current algebra determines the low emnergy or soft pion

limit of w-meson processes. The argument generalizes, of course, to processes

with more than one 7, e.g., ™ — p scattering (Figure 12.1).

P P

FIGURE 12.1., ELASTIC AND w-PRODUCING m-p SCATTERING

The success achieved with charge * charge and charge x current algebra

tempts one to go farther and assume the current X current algebra. The current
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x current algebra has not yet been severely tested experimentally, but its simpli-
city is appealing,as is the fact that it yields the charge x current and charge

x charge algebras on integration. Note that neither the charge X current nor the
current X current algebra is a Lie algebra, and a mathematical problem of some
interest at present is to find all the unitary irreducible representations of an

algebra of this form, i.e., an algebra of the form

(X, ()X (] = £ ny(X)G(X -y, (12.21)

oB

where the faSY are the structure constants of a simple Lie group and x € R3.

An algebra of the form (12.21) would be particularly useful if the sum
over all intermediate states to be inserted between the operators on the left hand
side of (12.21) could be approximated (saturated) by a sum over a number of 1
particle states (not necessarily a finite number). This is because a saturation
with l-particle states would clearly yield algebraic relations for quantities of

the form

{l-particle, Xu(x) l-particle) , (12.22)

and such quantities have the property that their Fourier transforms with respect
to x are the form-factors for the particles and so are within reach of experi-
ment. Unfortunately, the saturation with l-particle states raises some diffi-
culties of principle. One can show, for example, that unless the current ju(x)
is trivial, the current X current algebra (12.21) cannot be even approximately
saturated with l-particle states (even if an infinite number of l-particle states
are used) unless the masses are degenerate. However, it has been conjectured [7]
that in the limit that Pz, the third component of the total momentum of all the
states, becomes infinite, the saturation with l-particle stafes may become exact
and lead to predictions for the mass-spectrum and the form factors, or at least to
correlations between the two. This conjecture, which is based on experience with
the free-Dirac equation and the charge x current algebra, is still open. Prelim~

inary investigations, using, for simplicity, the special case of a factored current

Jgt) = A 3%,

[Au,AB] = lEaBYAY s (12.23)

9@ %) = 1%x)sx - y)

show that in the factored case the solutions can be written as infinite component
wave equations. This result furnishes another link between conventional physics and
infinite component wave equations, but since, as we have seen in Lecture 8, infinite
component equations have some undesirable physical properties, the result may only

be an indication that the factorization hypothesis (12.23) is too strong.
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