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where 

x). 

Let S(3) denote Euclidean 3-space. A Cartesian observer of S(3) is 

a mapping s E S(3) ~ x E (XlX2X3) E R 3 for which the metric p(s,s t) of S(3) 

may be written as 

1 
_ _ r 2 - x~)2} 2 (i.i) p(s,s') = {(x I x~) 2 + (x 2 x 2) + (x 3 

The group of transformations between Cartesian observers is the Euclidean group 

E(3) 

Xta = RabXb + C a , a = 1,2,3 , (1.2) 

Rab is any real orthogonal matrix and Ca any real vector (independent of 

Let t denote Newtonian time, which is simply a parameter assumed to be 

the same, up to a change of origin t ~ t p = t + to, for all Cartesian observers. 

Note that in general Rab and Ca are functions of t, i.e., Cartesian observers 

may be accelerating relative to each other. 

Newtonian physics assumes that physical objects occupy volumes in S(3) 

and vary their positions continuously with time, the variation of any body being 

determined by the others. The business of physics is to determine the laws of 

variation. 

We shall be concerned mainly with a simplifying limiting case of 

physical objects, namely, Newtonian particles. A Newtonian particle is a physical 

object to which is attached an intrinsic label called its mass m (which will be 
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Merrion Square, Dublin 2, Ireland. 

** Throughout this paper an asterisk (*) used in a mathematical expression denotes 
complex conjugation and a dagger (t) passing to the adjoint operator. 
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discussed in more detail in a moment) and whose volume is so small (relative to 

its distance from other particles) that for practical purposes it can be neglected 

and shrunk to a point in S(3). Thus, a Newtonian particle is characterized at 

any time t by a point in S(3) and its mass. 

In view of the importance of the mass of a particle for our later dis- 

cussion, we consider in a little detail how it enters in Newtonian theory. Its 

existence is, of course, empirical and may, in principle at least, be established 

as follows: If any ~ particles interact in isolation (in practice, sufficiently 

far from other objects), then there exists a set of Cartesian observers such that 

the quantity 

ml = _ d2x~l) /d2x~ 2) 

2 dt 2 / ~ (1.3) 

(the ratio of the acceleration of the particles) is positive and is independent of 

a, t, x (I), x (2) and the nature of the interaction. In other words, m12 is an 

intrinsic property of the pair of particles 1 and 2. Furthermore, if o, B, y are 

any ~ particles then (again empirically) 

mob = moy • myB (1.4) 

Equation (1.4), however, implies the existence of a set of intrinsic masses mo, 

one for each particle, and unique up to a common scale factor, such that 

= mB/m ° (1.5) mo~ 

As the masses m are relatively positive, they are chosen by convention to be 
o 

positive. 

The result that mob is constant already lays the foundations for the 

law of variation of the positions of the particles with respect to time. The 

general law (Newton's law) is a linear generalization, namely, given a set of n 

(m , x °, o = l,...,n), there exists a set of Cartesian 
o 

isolated particles 

observers such that 

n 
m ° d2x° = 0 

o=l dt 2 

This law, in turn, brings out the importance of the force, defined by 

d2x ° 
F = m 
o o dt 2 ' 

(1.6) 

(1.7) 

as a basic physical concept. Forces are additive, from (1.6), and have additional 

good properties, which might be described as follows: 

What we are looking for is a description of the interaction of particles 

which is as simple and as universal as possible. Now a description would be 
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provided by simply stating what each x is as a function of t for each ensemble 

of particles, (this is what Kepler actually did for the planets), but such a des- 

cription would be neither simple nor universal (as Kepler found to his cost). What 

Newton discovered is that there exists a quantity that is simple and universal, 

namely, F . The classic example of a simple universal F is in the Newtonian 

theory of gravitation, for which the simple inverse square law F = mlm2/r2 is 

sufficient to explain all (non-relativistic) effects. (Of course, one can reverse 

the logic and define gravitational effects to be those for which F = mlm2/r2. 

However, the point is that gravitational effects so defined cover a huge class of 

observed phenomena--falling bodies, projectiles, planetary motion, etc.) 

From the group theoretical point of view, the interesting aspect of 

Newton's Equation (1.6) is its invariance group. Equation (1.6) does not hold for 

all Cartesian observers, but only for a subclass. Let us call the subclass 

Galilean observers. By noting that any Cartesian observer is related to a 

Galilean observer by a transformation of the form 

Xra = Rab(t)Xb + Ca(t) " tt = t + ~ , (1.8) 

and inserting this result in (1.6), we see that the Galilean observers are those, 

and only those, for whom 

Rab(t) = Rab , Ca(t) = Ca + Vat , (1.9) 

where Rab , Ca, and Va are independent of t. The subgroup G of (1.8) for 

which (1.9) holds is called the Galilean group G. 

The geometrical significance of the Galilean group becomes clear if we 

note that it is formed exhaustively from the four subgroups: 

i) Time-translations t r = t + t O 

2) Space-translations x r = x + C a a a 

(i.io) 
3) Rotations x r = a RabXb 

4) Accelerations x r = x + V t a a a 

The invariance of (1.6) under (i.i0), i) to 3), means that (1.6) does not prefer 

any origin in space or time or any direction in space, which is understandable. 

The invariance under 4) means that observers with different but constant velocities 

are equivalent. This is far less obvious, and was first discovered by Galileo. 

The invariance under 4) does have, however, a geometrical significance, namely, in 

the 4-space spanned by S(3) and t, (1.6) does not prefer any slope for the 

t-axis.* 

* I am indebted to Henri Bacry for this remark. 
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The force defined by Equation (1.7) is clearly Galilean invariant, pro- 

vided that the Galilean transformation is universal, i.e., it is a transformation of 

the coordinates of all the particles. Thus, in guessing the forces for any 

problem, one can restrict oneself to those that are Galilean invariant. 

Let us now consider the Galilean group by itself. By definition, it is 

a 10-parameter Lie group, which is the semi-direct product of its connected part 

(det Rab = +I) and the 2-element space reflexion (parity) group. Its Lie algebra 

dG has the basis: 

i) Time-translations E 

2) Rotations L 
a 

3) Space-translations P 
a 

4) Accelerations K 
a 

with commutation relations 

[E,M a] = 0 [E,P a] = 0 

[Ma,~] = gabeMc [Ma,P b] = SabcP c 

[Pa,eb] = 0 [ea,~] = 0 

[Ka, ~] = 0 

[E,Ka] = Pa 

[Ma,Kb] = gabcKc 
(i.ll) 

where a,b,c = 1,2,3 and ~abc is the Levi-Civita symbol. In words, dG is the 

semi-direct sum of the rotation algebra L and a 7-dimensional solvable algebra 

made up of the two abelian commuting vectors P and K and a scalar E which 

projects K onto P and commutes with P. 

One of the most important properties of Galilean transformations is that 

they are a special case of contact transformations [I], namelF, transformations 

x ÷ xr(x,p), p ÷ pr(x,p) which leave the symplectic form 

{A,B} = ~ ~(~pA ~x~B ~x~A ~I ' (1.12) 

dx~ 
where pa = m d-~ ' invariant. 

Now a property of the group of contact transformations[2] is that if a 

is the parameter of any 1-parameter simply connected Lie subgroup, then there exists 

a function G(p,q) such that 

~F 
6a - {G,F} , (1.13) 

6F 
where F is any regular function of p and q, and ~ is its rate of variation 

with respect to the group parameter a. The function G is called the generator 

function for the i-parameter subgroup. 

Furthermore, for an n-parameter Lie subgroup of contact transformations 

with parameters a, B,... 
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(f~ ~ 6 6 ) cy 6F 
~B 68 ~e F = ~6 ~Y ' (1.14) 

where C Y eB are the structure constants of the group. Hence, inserting (1.13) into 

(1.14) and using the Jacobi relation for {A,B}, we obtain 

{{Ge,GB}F 1 = C~B{G ,F} , (i.15) 

whence, 

{Gy'GB} = C~6Gy + %~B ' (1.16) 

where the %~B have zero bracket with all F and hence are constants. Thus, 

under the bracket operation, the generator functions G of a Lie group of con- a 

tact transformations form a representation (up to the constants %e6) of the Lie 

algebra. The number of constants %eB can be minimized by transformations of the 

form Ge + Ge + X~, where the %~ are constants, but whether the Xe6 can be 

eliminated entirely depends on the group structure. 

The above results hold for any Lie group of contact transformations. 

Let us now return to the connected Galilean group G. For G, the generator 

functions corresponding to the generators in (i.ii) can be seen to be 

L= Ix x p 
e 

e 

P=[ P~ 
e 

K = ~ mcxc~ - P t  

E =  2-~--- pa +qo 
e 

dx~ 
where Pe = ms ~ ' and ~ is the potential from which the 

i.e., 

= _ ~ 
F ~x 

e 

(1.17) 

F can be derived, 

If we compute the brackets {L,E}, etc., for the generator functions (1.17), we 

obtain, as expected, the Lie algebra (i.ii) up to constants. In fact, there is 

only one constant; namely, the relations (I.Ii) hold as they stand except that 

where M = ~ M 

is such that M 

later). 

[Pa,Kb] = 0 ÷ {Pa,~} = 6abM , (1.18) 

is the total mass. Further, the structure of the Galilean group 

cannot be eliminated (we shall be discussing this question again 
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Note that the generator for the time translations is just the Hamiltonian 

H for the system. Note further that [H,K] ~ 0, although [H[H,K]] = 0. Thus, 

although the Galilean group is an invariance group of Newton's Equations (1.6), it 

i~ not quite an invariance group of the Hamiltonian, or of Hamilton's equations of 

motion, 

dpa ~H dx ~H 

dt ~x dt ~p (1.19) 

This is understandable since a choice of Hamiltonian forces a choice of direction 

for the t-axis in S(3) @ R and thus destroys the Galilean invariance. Inciden- 

tally, the term -Pt, which is explicitly time-dependent, is inserted in the 

definition of K, so that in spite of the fact that [H,K] ~ 0, K can be a con- 

stant of the motion, i.e., so that 

dK ~K 
d-~ = ~-~ + {H,K} = -P + P = 0 (1.20) 

2. NON-RELATIVISTIC QUANTUM MECHANICS 

As is well known, Newton's laws, or the more general and sophisticated 

versions of them, such as Hamilton's, sufficed to explain all physical phenomena 

until the end of the last century. But after the turn of the century, the New- 

tonian framework was shattered both by the theory of relativity and by the quantum 

theory. In this lecture, we shall be concerned only with quantum theory. As is also 

well-known, the crux of the quantum theory is to replace the functions x and p 
dx 

= m~ needed to describe particles, by linear operators X and P on a Hilbert 

space, satisfying the relation 

[X,P] = i~ (2.1) 

(This relation will be made mathematically more precise later.) For the moment, we 

shall only emphasize that the assumption (2.1) is the only new assumption made in 

the quantum theory. The old equations of motion 

dX ~ dP ~H 
dt ~P ' dt ~X 

are retained with x ÷ X, p ÷ P (which is unambiguous since H = p2 + ~(x)). There 
2m 

are four questions which we wish to discuss briefly: 

i) How one arrives at the particular Ansatz (2.1) 

2) How to make it mathematically precise 

3) How to relate it to experiment 

4) How the group structure of Newtonian theory is affected. 

Let us begin with i). The decision to replace x and p by operators 
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was based on a large number of empirical observations and on partial theories 

formed from these observations [i]. Since we could not even begin to describe the 

general picture in a part of one lecture, let us concentrate on one experimental 

result, namely, the discrete frequency of the light emitted from atoms, and try to 

sketch the motivation from that result. It was known at the time the quantum 

theory was founded that the atom consisted of a positively charged kernel of very 

small radius with negatively charged electrons circling it, about 10 -8 cms out. 

For such a system Newton's laws (extended to include Maxwell's) would 

predict a continuous emission of radiation from the circling (and therefore accel- 

erating) electrons, leading to a continuous loss of energy on the part of the 

electrons (so that the atom would finally run down) and a continuous change in the 

frequency of the emitted radiation. The experimental situation, however, was quite 

the opposite. First, the atoms were quite stable (otherwise, our universe would 

not exist). Second, from spectroscopy it was known that the frequency of the 

radiation emitted from atoms, far from being continuous, could only have special 

sharp values (spectral lines) characteristic of the atom (yellow for sodium, green 

for copper, and so on). Hence, Newton's laws were incompatible with experiment on 

the atomic level. The question was: how to change them? 

One worked backwards. If one assumes 

i) Einstein's empirical law E = h~, where h is Planck's constant, 

the frequency of the emitted light, and E its energy, and 

2) conservation of energy, i.e., energy lost by electron in the atom 

energy of emitted radiation, 

it follows from the discreteness of the frequency of the emitted radiation that the 

energy levels of the electron in the atom must be discrete. It follows that the 

Hamiltonian 

1 p2 Ze2 (2.2) 
H=~m r ' 

for an electron in an atom with nucleus of charge Ze, cannot take continuous 

values. This leaves one with three options: 

i) Abandon the Hamiltonian (2.2) 

2) Impose some conditions on it from outside 

3) Change it so that it can naturally take only discrete values. 

i) has the difficulty that it is almost impossible to think of a classical Hamil- 

ionian which would take discrete values. 2) is what was done in the so-called "old 

quantum theory" (1900-25), and is very ad hoc. 3) is the option chosen by 

Schr6"dinger and Heisenberg. The choice they made was to interpret H as a linear 

operator, since H could then take discrete values naturally. This means inter- 

preting x and p as linear operators X and P° To determine the kind of 

operators P and X should be, one must do more. Heisenberg analyzed the atomic 



spectra in detail and concluded that P and X 

P = i----~ -¢~ 0 ¢~ 0 

-/f 0 /f 

0 -/f 0 

h 
where ~ = ~. 

i 
X = - -  

~f 

should be the matrices 

u 

0 ~ 0 0 

¢T 0 £f 0 

0 ~f 0 ¢T 

0 0 /f 0 

(2.3) 

Jo ° 

Schrodlnger, on the other hand, built on a partial theory due to 

de Broglie. According to de Broglie, free particles should diffract like light 

from sufficiently small gratings and should therefore satisfy, in the relativistic 

case, a wave equation of the form 

[ ~2 V 2 - m2| ~(x) = 0 (2.4) 
~t 2 J 

Comparing this with the classical energy moment relation, 

~2 _ p2 _ m 2 = 0 , (2.5) 

Schr~dinger concluded that P should be the operator 

i ~x ' (2.6) 

on L3(-~,~), and went on to postulate that this identification should persist in 
2 

the non-relativistic limit and in the presence of a potential. 

One sees that the Schrod~nger and Heisenberg Ansatz are equivalent by 

noting that they are special realizations of the Ansatz (2.1). Note, incidentally, 

that the Ansatz (2.1) need only be made at a single (initial) instant of time and it 

is therefore a kinematical Ansatz. Newton's laws then guarantee it for all times. 

It might be wondered if the Ansatz (2.1) is absolutely necessary to 

obtain agreement with experiment, or whether one could get away with less. 

Wigner [2], for example, has proposed that (2.1) might be replaced by the weaker 

commutation relations 

~H ~H 
[H,P] = i ~--~ , [H,X] = -i ~-~ , (2.7) 

where ~ is the Hamiltonian, which would seem to be necessary from Heisenberg's 

analyses of the spectral lines. However, except in the case (2.1), the Ansatz 

(2.7) would make the commutation relations depend on H, i.e., on the dynamics. 

Let us now turn to question 2), namely the question of putting the 

Ansatz IX,P] = ih on a better mathematical footing. For this we proceed as 

follows: 

Let ~ be a Hilbert space, and let X and P be operators on it such 

that there exists for them a common invariant dense domain ~ on which 
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a) X and P are symmetric 

b) X 2 + p2 is essentially self-adjoint 

c) IX,P] = i~ 

d) the only bounded operator which commutes with X and P is a 

multiple of the unit operator. 

Then X and P are uniquely and rigorously defined [3] on ~ up to a unitary 

transformation (which may depend on the time). They are essentially self-adjoint 

on ~. A realization of X and P, is the Schr~dinger realization x and 
ha 

on L3(-=,~), where the domain ~ could be, for example, the space K of 
i ~x 2 
all infinitely differentiable functions of compact support, or the space S of all 

infinitely differentiable functions of fast decrease (i.et, which decrease faster 

than any inverse power of x as Ixl ÷ ~). We shall see later (from Nelson's 

theorem) that conditions a) to d) are precisely the necessary and sufficient con- 

ditions, that X and P can be exponentiated to form a unique unitary irreducible 

representation of the Weyl-Heisenberg group W, i.e., that 

i~X iTP iTP laX i~T~ 
e e = e e e , on ~ (2.8) 

Thus, an alternative definition of X and P is that they satisfy (2.8), i.e., 

that they are the generators of the unitary irreducible representation (UIR) of 

W, [4]. In fact, this definition of X and P was the starting point for 

von Neumann's celebrated proof [5] of the uniqueness of X and P up to a unitary 

transformation. 

Having disposed of these mathematical points, we come to the experi- 

mental numbers. To extract the experimental numbers, we first put the self-adjoint 

operators A on ~ into a i-i correspondence with the measurable quantities 

(observables) which we shall then also denote by A. In practice, for the self- 

adjoint operators for which it is meaningful, the correspondence is [4] 

A = f(P,X) = i I e~(P~+X~)d~d~ f e-i(P~+X~)f(p~x)dpdx , (2.9) 
(27) 2 

where f(p,x) are the corresponding classical functions. (The bounded subset of 

the operators for which (2.9) is meaningful form a dense set in the ring of 

bounded self-adjoint operators.) 

Now let P%(A) be the projection operator on the eigenspace of A be- 

longing to the eigenvalue %, where for the moment we assume % to be discrete and 

the eigenspace finite dimensional. The numbers to be extracted are then 

trace (P~(A)P (B)) , (2.10) 

with appropriate modifications in the case that X and ~ are not discrete and 

that both eigenspaces are infinite dimensional. !The meaning of the numbers (2.10) 

is that they are probabilities; namely, trace (P%(A)P (B)) is the probability of 
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where 

finding the value ~ from a measurement of B, having just previously found 

from a measurement of A, except points in spectra of self-adjoint operators, the 

probabilities are the only experimental numbers that quantum mechanics can predict. 

In the particular case that the eigenvalues % and ~ are simple, i.e., 

that P%(A) and P (B) project onto 1-dimensional subspaces, (2.10) reduces to 

I(fx(A) , f (B)) I , (2.11) 

fx(A) and f (B) are any unit vectors in the respective subspaces. This 

is the case which will be of most interest to us. (For future reference, we shall 

need for this case the concept of a quantum mechanical state. The state of a 

system after a measurement of A with result %, where ~ is simple, is defined 

to be the set of unit vectors in the 1-dimensional eigenspaee. Such a set 

of unit vectors ~i~f~(A), 0 ~ ~ < 2~ is often called a ray. Thus, the states of 

a system are in 1-to-i correspondence with the rays.) 

Let us turn now to question 4), the group theoretical properties of non- 

relativistic quantum mechanics, and first consider the Hamiltonian 

i p2 
H = 2~m + ~0(X) , (2.12) 

for a single particle in an external potential. 

In most cases of interest, H is essentially self-adjoint on the domain 

D above. Hence, by Stone's theorem [6], there exists a unique continuous 1-para- 

meter group of unitary transformations U(t) on ~, such that 

dU(t) HU(t) on ~ (2.13) 
dt 

We now show that U(t) is the group of time translations. Since the Newtonian 

equations of motion are the same in classical and quantum theory, we have in both 

cases 

HX = i e HP = _ ~(X) (2.14) 
dt m ' dt ~X 

In the quantum mechanical case, however, we have the extra condition 

IX,P] = i~ 

Inserting this equation into (2.14) and (2.12), we see that in the quantum mechan- 

ical case we have 

dX i dP i 
d-~ = ~ [H,X] --=- [H,P] on D (2.15) 

' dt 

If we assume that the domain D is invariant with respect to U(t), it follows at 

once that 

X(t) = U(t)X(0)U-I(t) , P(t) = U(t)P(0)U-I(t) on D , (2.16) 
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and, in general, for suitably defined F(P,X) in (2.9) 

F(P(t)X(t)) = U(t)F(P(0)X(0))U-I(t) (2.17) 

Thus, U(t) is the group of time translations. In quantum mechanics, therefore,the 

Hamiltonian H, like P and X, plays a dual role. It is a physical observable 

(energy) and it generates the group of time translations. 

It may happen that H is not essentially self-adjoint on 9. In this 

case, there is usually a good physical reason, and the corresponding classical 

Hamiltonian also has bad properties, e.g., sends the particle off to infinity in 

a finite time [7]. 

Turning now to the Galilean group for a system of interacting particles, 

we find that, in analogy to P, X, and H, if we replace the classical generator 

functions of the Galilean group by their quantum mechanical counterparts to obtain 

E = H  = ~ 1 p 2 + ~  

L = ~ X  x P  

(2.18) 
p = ~ P~ 

K = ~ m X - Pt , 

then, in analogy to P, X and H, these ten operators (2.18) play a dual role. 

They are physical observables and at the same time they are the generators of 

unitary representations of the 1-parameter subgroups of the Galilean group G on 

~, i.e., if a is a parameter, 

dF i 
d-~ = ~ [Ga'F] , o = i...i0 (2.19) 

This is the quantum-mechanical analogue of the classical Poisson bracket relation 

d ZF 
= {~a'F} (2.20) 

da 

Using the quantum mechanical relation [X,P] = i~, we can easily compute 

the commutators of the operators (2.18) amongst themselves. We obtain 

[Ma, ~] = ieabcM c [Pa,Pb] = 0 

[Ma,P b] = ieabcP c [Pa,~] = i6abM 

[Ma,~] = ieabcK c [Pa,H] = 0 , 

[Ka,~] : 0 

[Ka,H] = 0 

(2.21) 

[Ma,H] = 0 
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These relations are the analogue of the classical Poisson bracket relations for 

the generator functions amongst themselves. Nete that (2.21) even contains the 

term ~ab M which occurs in the classical Poisson bracket relations, but not in 

the Lie algebra of G. 

Apart from the term ~ab M, (2.21) is just the Lie algebra of G. Hence, 

if the term ~ab M were absent, the 1-parameter subgroups of G, generated by the 

G , would mesh together to form a unitary representation of G on X (modulo some 

domain restrictions which will be discussed later and which are normally satisfied). 

Thus, in quantum mechanics the generators G play the dual role of observables 

and generators (modulo ~ab M) of a unitary representation [8] of G on ~. This 

is true, of course, in classical mechanics also, where the generator functions are 

observables and generators of group transformations in the sense of Poisson brack- 

ets. But the relationship in quantum mechanics is more direct. In particular, 

the operation of commutation is simpler and more direct than the operation of 

forming Poisson brackets. In this sense, group theory, which plays a background 

role in classical theory, may be said to come into its own and play a central role 

in quantum mechanics. 

Let us now consider the term 6ab M. Since it commutes with all the G , 

it cannot make a big difference to the representation of G on ~. It is easily 

checked that the difference it makes is that the 1-parameter subgroups of G, 

instead of meshing together to form a true unitary representation of G on ~, 

mesh together to form a unitary ray representation of 

sentation by unitary operators U(g) satisfying 

where g,gl 6 G 

that the factor 

G on X, i.e., a repre- 

U(g)U(g r) = U(ggr)e i~(g'gr) , (2.22) 

and ~ is real. The reason for the name ray representation is 

exp im(g,g r) is irrelevant for rays, (where rays are defined as 

above to be sets of unit vectors related to a given unit vector f by exp(i~)f, 

where 0 ~ ~ < 2~). If we now recall that the experimental numbers which can be 

extracted from quantum theory are 

l(f,g) l , (2.23) 

where f and g are unit vectors, we see at once that they do not distinguish 

between vectors in the same ray. Thus, the experimental numbers do not distinguish 

between unitary ray representations and true unitary representations. We shall be 

returning in more detail to this point later, but for the moment we merely note 

that the failure of the experimental numbers to distinguish between true and ray 

representations means that the appearance of ray representations and hence, in 

particular, of the term ~ab M in the Lie algebra (2.21), is quite natural in 

quantum mechanics. 
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In the case of a single free particle, the generators reduce to 

i 
M a = ~ SabcPaXc 

p = p 
a a 

(2.24) 
K =mX -Pt a a a 

i p2 
E =Tm 

where m is now the mass of the particle and E is both a generator of the 

Galilean group and the generator of time translations. Thus, a free particle 

"carries" a unitary ray representation of 0. Furthermore, if the quantum mechani- 

cal commutation relation 

[X,P] = i~ , 

is irreducible on ~, then so is the representation (2.21) of G. A non-relativ- 

istic free particle may, therefore, be said to carry an irreducible unitary ray 

representation of G. 

An interesting question is what would happen if we reversed our line of 

approach and demanded that a free non-relativistic particle carry a true unitary 

representation of 0. This question has been investigated by InSn~ and Wigner [9]. 

They showed that in a true irreducible unitary representation of G the quantum 

mechanical relation 

IX,P] = i~ , 

cannot be realized, which has the unpleasant physical consequence that X cannot 

be localized. The crucial point is that p2 is a Casimir operator for G. Hence, 

in any unitary irreducible representation, it is a number, and the Fourier trans- 

form ~CX) of any f(P) must therefore have a spread in X. 

In a ray representation, the situation is saved by the ray relation 

or 

i[Ka,Pb] = 6abm , (2.25) 

i[Ka,P2 ] = 2mP a 

The latter relation implies that p2 assumes all values in the range 

which together with 

[Ma,Pb] = iSabcPc , 

implies that 

is localizable. 

(2.26) 

0 ~ p2 < ~, 

(2.27) 

takes all values in R 3, in which case the Fourier transform 
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In conclusion it might be worth remarking that the twin postulates of 

quantum mechanics, I(f,g) l 2 = probability, and [X,P] = i~ are not entirely inde- 

pendent. The second can be deduced from the first, using group theoretical and 

other general arguments of a more or less plausible nature (see ref. 4, lecture 6). 

3. INVARIANCE GROUPS IN NON-RELATIVISTIC QUANTUM MECHANICS 

In the last two sections, we saw that the Galilean group G was the 

group of invariance of the non-relativistic equations of motion of an isolated 

system of n particles. Let us now consider a 2-particle system and "factor-off" 

the Galilean invariance by introducing center of mass and relative coordinates. 

i 
X = ~ (mlXl+ m2x 2) , P = Pl + P2 , M = m I + m 2 , 

and 

1 f 

y = x I - x 2 , ~ = ~ tm2Pl - mlP2) 

respectively. Because of Galilean invariance the Hamiltonian splits into 

H = HCM + Hr, where 

p2 
HCM = 2--M ' IX,P] = in , 

and 

(3. i) 

~2 
H r = ~+ ~(y) , [y,~] = i~ , (3.2) 

where ~ = mlm2/M is called the reduced mass. 

Clearly HCM describes the motion of the centre of mass and Hr the 

relative motion of the particles. 

The equations of motion derived from the "relative" Hamiltonian (3.2) 

will not, in general, retain any of the original Galilean invariance. However, in 

particular cases (i.e., for particular potentials ~(y)) they may retain invari- 

ance under a subgroup of the Galilean group (e.g., the rotation group) or they may 

happen to be invariant under special groups which have nothing to do with Gslilean 

invariance. In this lecture we wish to consider such cases. For this purpose, we 

define an invariance group. 

Definition: An invariance group is defined to be any group of transformations on 

~£, the Hilbert space of y, ~, which leaves invariant 

a) the Hamiltonian H 

b) the absolute values of the inner products l(f,g) l. 

We first discuss the motivation for this definition. That the group should leave 
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the Hamiltonian invariant is practically self-explanatory since this is true of an 

invariance group even in classical mechanics. We only note that (in both classical 

and quantum mechanics) the invariance of H is slightly stronger than the demand 

that the group leave the equations of motion invariant. (For example, as we saw for 

an isolated system, the Galilean group left the equations of motion invariant but 

not the Hamiltonian.) However, for invariance groups of the relative Hamiltonian, 

the distinction between H and the equations of motion usually does not arise, and 

the invariance of H is used as the simplest and most compact was of defining 

invariance. 

The more interesting question concerns b), namely the invariance of the 

inner products l(f,g) I which are peculiar to quantum mechanics. The question is 

whether this demand is necessary, or at least reasonable. 

For a group of transformations which have a passive interpretation, as is 

the case for the Galilean group G, the answer is yes. For if we change the 

observer of a system, without changing the system itself, the probability of the 

system making any particular transition g ÷ f cannot change (since the system 

"does not know who is looking at it") and this is just another way of saying that 

I(f,g)I is invariant. 

For transformations which do not have a passive interpretation, i.e., for 

which we must change the system itself to implement them (these are usually trans- 

formations which have no geometrical interpretation), the argument is not so easy 

to establish. However, it is usual to demand the invariance of the probabilities in 

this case also, if only for simplicity and to preserve the analogy with the active 

case. 

Demanding that the probabilities I(f,g)I 2 remain invariant, we come to 

a second question: Are unitary ray representations the most general group repre- 

sentations which leave the probabilities invariant? 

To answer this, one first concentrates on a sin$1e transformation T 

and asks: What is the most general T such that 

I(Tg,Tf) l = ](g,f) l , g,f E~ (3.3) 

If T is linear, then the answer is simple: T must be unitary. In general, 

however, there is no need for T to be linear. In that case, we fall back on the 

following remarkable theorem due to Wigner [i]. 

Theorem 

Let T be a transformation satisfying (3.3). Then there exists a 

unitary or anti-unitary transformation U such that for all f E 

(U-IT)f = ei~(f)f (3.4) 
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Note that U is then unique up to a phase-factor, exp(i~), which is independent of 

f. [An anti-unitary transformation is defined to be a transformation such that 

(Uf,Ug) = (g,f) = (f,g)* ] (3.5) 

This theorem means that, for rays, T is equivalent to, and may be replaced by, a 

unitary or anti-unitary transformation. 

This theorem was first stated by Wigner in his book on group theory in 

1931. [i] However, the proof given in the book is not complete, and since then 

many papers [2] have been devoted to completing, simplifying and generalizing the 

proof. 

The most definitive proof is that given by Bargmann [3] in 1964. This 

proof has the advantage of being basis-free and hence valid for non-separable as 

well as separable Hilbert spaces. 

Wigner's theorem applies to any fixed transformation T, Consider now a 

group of transformations T(g). For each fixed g, T(g) can be replaced by a 

unitary or anti-unitary transformation U(g), unique up to a phase-factor 

exp i6(g). Using the group relation 

T(g)T(g t) = T(gg r) , (3.6) 

Equation (3.4), and the unitarity (or anti-unitarity) of U(g), one sees that 

U(g)U(g r) U(gg )e i~(g'g~) = r , (3.7) 

where m(g,gr) is a real number. It follows that any group of transformations 

T(g) preserving the probabilities (3.2) is equivalent to a set of unitary or anti- 

unitary transformations U(g) forming a ray representation of the group. In this 

sense, unitary of anti,unitary ray representations are the most general group 

representations preserving the probabilities. 

In practice, only one anti-unitary transformation is used in physics. 

This is the time-reversal transformation. To keep the quantum mechanical equations 

of motion 

dF = ! [H,F] (3.8) 
dt h 

invariant under time-reversal, it is necessary to let either H ÷ -H or i ÷ -i 

when t ÷ -t • H ÷ -H is ruled out because H m 0. Hence, i ÷ -i, and this leads 

to an anti-unitary transformation. 

We turn now to some examples of invariance groups in quantum mechanics. 

For this purpose, it is usual to consider the relative motion Hamiltonian 

~2 
H = ~+ ~(y) (3.9) 

The problem is, given ~(y), to find unitary groups of operators which 

commute with this H, and have a direct physical meaning. Indeed, in practice, it 



160 

is usually the physical meaning that enables us to find the groups. 

of finding such groups are: 

l) Since for the group generators G, 

2) 

The advantages 

[H,G] = 0 

the group provides in the 

motion. 

At the same time, the G's 

simultaneously with H. 

, (3.10) 

G's at least some of the constants of the 

are natural operators to diagonalize 

3) The group can be used to reduce enormously the labor involved in 

making a calculation with the Hamiltonian, e.g., calculating an 

energy level, an emission probability, or a scattering amplitude. 

Note that Equation (3.10) can be looked at from two points of view: The 

group generated by G leaves H invariant (is an invariance group of the equations 

of motion). Conversely, the group generated by H leaves G invariant (G is 

conserved). 

Let us illustrate points i), 2), and 3) above with the most important 

special case of an invariance group; namely, the case when ~(y) in (3.9) is 

central, i.e., depends only on r where r 2 2 + 2 + 2 In this case, H com- 
= Yl Y2 Y3" 

mutes with the rotation group generated by the three operators L = y x ~, with Lie 

algebra [L,L] = iL, and which are at the same time identified with the relative 

angular momenta of the particles in the i, 2, 3 directions. [The transition from 

the group to the algebra and back will be justified in the next section.] Now with 

respect to I) above it is clear that LI, L2, and L 3 are conserved. With respect 

to 2) it is not difficult to show that the so-called total relative angular momentum 

L 2 = L 2 + L 2 + L 2 and any one of L L L 3 (usually L3) can be added to H to 
i 2 3 I ~ 2' 

form a complete set on ~ ~ being assumed irreducible with respect to [y,z] =i~). 

Thus, a convenient and physically relevant basis in ~ is f(e,Z,m) where 

Hf(s~m) = sf(s~m) 

L2f(e%m) = Z(Z + l)f(eZm) , (3.11) 

L3f(E~m) = mf(eim) 

where, because the rotation group is compact, Z is a non-negative integer and 

-~m~Z. 

With respect to 3), we see at once that in calculating the eigenvalues of 

H, which are the eigenvalues of the differential operator 

~2 V 2 + V(r) (3.12) 
2m 

on L2, the use of (3.11) reduces the partial differential operator (3.12) to the 

simple differential operator 



and s o  s i m p l i f i e s  t h e  c a l c u l a t i o n .  

But t h e  group does much more f o r  us than t h a t .  For example, i f  we wish 

t o  c a l c u l a t e  t h e  p r o b a b i l i t y  of a  p a r t i c l e  i n  t h e  s t a t e  f(E,k,m) emi t t ing  a  
-+ 

photon w i t h  momentum k  and ending up i n  a  s t a t e  f  ( E  ' , Q  ' ,mr)  , then,  t o  lowest 

order  i n  t h e  EM coupling cons tan t  e ,  and provided t h e  wavelength of t h e  emit ted 

photon is l a r g e  compared with t h e  s i z e  of t h e  atom [ 1 , 4 ] ,  t h e  r e l e v a n t  inner  pro- 

d u c t s  t o  compute a r e  t h e  mul t ipo le  moments of t h e  p a r t i c l e .  A t y p i c a l  one of t h e s e  

i s  t h e  d i p o l e  moment, 

Now f o r  even q u i t e  low va lue  of R and R ' ,  t h e  number of q u a n t i t i e s  (3.14) t o  be 

computed i s  q u i t e  l a r g e ,  s i n c e  - R r  5 m'  5 R ' ,  -R 5 m 5 R .  But thanks t o  the  group 

p r o p e r t i e s  of y  ( i t  i s  a  p o l a r  v e c t o r  with respec t  t o  r o t a t i o n s  and space re f lex-  

i o n s ) ,  we can 

a )  show t h a t  t h e  Ea van ish  un less  R '  = R i 1, m' = m,  m i- 1, 

b )  f o r  R '  = R + 1, reduce t h e  c a l c u l a t i o n s  i n  each case t o  one calcu- 

l a t i o n .  I n  f a c t ,  t h e  group invar iance  impl ies  t h a t  

where m '  - m = 0,  + 1  f o r  a  = 3, 1 i i 2  r e s p e c t i v e l y  and t h e  FEQ a r e  t h e  eigen- 

func t ions  of t h e  simple d i f f e r e n t i a l  opera tor  (3.13). The c r u c i a l  po in t  about (3.15) 

i s  t h a t  t h e  m '  and m d=<errdence appears only i n  t h e  c o e f f i c i e n t s  (Clebsch- 

Gordon c o e f f i c i e n t s )  which a r e  independent of V(r) .  Thus, t h e s e  c o e f f i c i e n t s  need 

only be c a l c u l a t e d  once and f o r  a l l  (Figure 3.1) ,  and then they can be used f o r  any 

c e n t r a l  p o t e n t i a l .  (The func t ions  i n  t h e  i n t e g r a l  w i l l ,  of course,  depend on V(r).) 

, + l I  / ( a  + m ' ) ( R  + m r  + 1 )  (R - m'  + 1 )  (R + m + 1 )  (a - m') (a - m '  + 1 )  
(29. + 1 )  (2R + 2) 1 / (2R + 1 )  (R + 1 )  (2R + 1 )  (2R + 2) 

(R + m') (R + m'  + 1 )  
2R(R + 1 )  

R - 11 / (L - mr)(R 2R(2R + - m'  1 )  + 1 )  I / I /  (Q + m '  + 1)(R + m') 
2R(2R + 1 )  

FIGURE 3.1. VALUES OF @(R'mr,Rm) 
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The labor saved by using one group to obtain the results a) and b) in 

this example is obviously immense. Furthermore, the use of the group gives a much 

deeper insight into what is going on. It isolates the group properties of a 

central potential (independence of the potential of the angular variables 6, 9) 

from the dynamical properties (form of the dependence of V(r) on r). The results 

a) and b) for this example are, of course, a special case of the Wigner-Eckart 

theorem, which has already been mentioned by Louis Michel and will be formulated 

for completeness in the next chapter. 

We conclude by considering two Hamiltonians which have special invariance 

groups. The first is the harmonic oscillator Hamiltonian 

i 72 i y2 
H = ~m + ~ , (3.16) 

where ~ is a constant. This is centrally symmetric and has the angular momentum 

invariance group generated by L discussed above. But, in addition, H commutes 

with the six operators 

Mab = Xa~ + PaPb , (3.17) 

where 

responding 

X = ~y, P = ~-i~, ~4 = m<, and these six operators, together with the cor- 

L , form the Lie algebra a 

[L,L] = iL , 

[L,M] = iM , (3.18) 

[M,M] = iL , 

of the compact, connected Lie group U(3). Thus, the Hamiltonian (3.16) is U(3) 

invariant and, in fact, is just Maa(4mK)-I/2. 

For 1 particle, this result is not particularly exciting because the 

Hamiltonian (3.16) is so simple that we can calculate its properties directly any- 

way. However, in nuclear physics, in the nuclear shell model, it is much more 

interesting. [5] In the nuclear shell model, it is assumed that the particles in 

the nucleus interact with each other in such a way that, for each particle, the 

total effect is the same as if it were in a strong central potential due to all the 

other particles, together with somewhat weaker potentials due to the effects of 

other individual particles. A special case of this model is the Elliott model, in 

which one assumes that 

a) the central potential is the harmonic oscillator potential. 

b) the smaller potentials, while not U(3)-invariant, have definite 

U(3) tensor properties (like X in the dipole moment). (These 
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properties are guessed from the general nature of the individual 

potentials, e.g. that they are 2-body interactions.) 

From a) and b), one can go ahead, apply the Wigner-Eckart theorem, and 

deduce some general properties of the nuclei (e.g., the spacing of the energy 

levels) without having specified the potential in detail. 

The second Hamiltonian we consider is the more spectacular 

p2 Ze 2 
H 2m R ' (3.19) 

of a particle in an attractive 

atom, considered already by Louis Michel. As he points out, using the 

invariance with generators L and the Lenz vector 

A = -~H ~+--2mZe 2 (L x p - p x L) 

one can predict [6] 

i) the S0(3) 

3.2), and 

2) the value of the energy for each level. 

I/R potential, e.g., of an electron in a hydrogen 

SO(4) 

(3.20) 

(angular momentum) content of each energy level (Figure 

n=4 

n=3 

n=2 

n=l 

%=i ~=2 4=3 

~=0 

FIGURE 3.2. ANGULAR MOMENTUM CONTENT OF H-ATOM ENERGY LEVELS 

The only thing one cannot predict is the multiplicity of the S0(4) representation 

for each level. I should like to add just two comments to Michel's remarks. 

a) The Lenz vector also has a meaning in classical physics; namely, for 

the planets in the gravitational field of the sun, it is a vector 
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b) 

directed along the major axis of the ellipse with length equal to the 

eccentricity. The fact that it is a constant of the motion is re- 

flected in the fact that the ellipse does not precess. It is perhaps 

amusing to see that the absence of planetary precession and the 

degeneracy of the spectrum of the hydrogen atom have the same origin! 

The secon~ point is just a remark in defense of the groups 

S0(4) × T H or S0(4,1) which contain S0(4) and have representa- 

tions that can be used to describe all the bound states of the H-atom 

with the correct multiplicity. The remark is that these two groups 

can be used to simplify many ~pectroscopic calculations, and have 

even been used for calculations which were not feasible by direct 

methods [7]. 

4. GENERAL RESULTS ON REPRESENTATIONS OF LIE GROUPS 

In this section, we will fill in some of the mathematical gaps which 

were left in the previous discussion. In particular, we wish to establish the 

connection between representations of the Lie algebras and the corresponding 

representations of Lie groups, to define unbounded tensor operators, and finally 

to formulate the Wigner-Eckart (WE) theorem.[l] 

We begin with the case of 1-parameter continuous groups. From Stone's 

theorem, we know that to any 1-parameter continuous group of transformations U(t) 

on ~, there corresponds a unique skew-adjoint generator G with a dense domain D 

on which 

dU(t) GU(t) (4.1) 
dt 

and, conversely, to any skew-adjoint operator G with dense domain D there 

corresponds a unique continuous group of unitary transformations such that (4.1) 

is true on D. 

Furthermore, from the spectral resolution [2], 

iG = ~ %dE(%) (4.2) 

of G, we see at once that the vectors 

[E(a) - E(b)]h , (4.3) 

for all finite intervals [a,b] and all h E~, form a dense domain A on which 
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oo n 

t G n 
;5-. 

n=O 
, (4.4) 

converges to U(t). A vector f for which (4.4) converges is said to be an 

analytic vector for G. 

The question now is: What are the analogues, if any, of these results 

for general groups of continuous unitary transformations on ~? The answer is that 

for completely general groups, definitive results are not available. But for the 

important special case of simply connected finite parameter Lie groups, almost 

exact analogues of the above results have been established. We shall restrict our- 

selves to this case and let U(g) denote henceforth a continuous unitary repre- 

sentation of a simply connected Lie group G on $C. 

Since the Lie algebra of G contains r elements, where r is the 

number of independent parameters of G, the question in this case concerns the 

existence of common domains analogous to D and A above, for the r elements 

: fd _ei  ) I  , : 1 . . . r  , 
G [ dx ix:0 

of the Lie algebra of G. 

The existence of a common dense domain for the 

by GSrding [3] who in 1947 exhibited the domain D 
g 

(4.5) 

J' d~(g')U(g r) f(gr)h 

G was first established 

consisting of the vectors 

, (4.6) 

where ~(gt) is the group invariant measure, f(gr) 

able function of compact support over the group, and 

(Note that D is not only a common dense domain 
g 

respect to both G and U(g).) 

It was soon shown by Segal [4] that the G 

i.e., their restrictions to D skew-adjoint on Dg, 
g 

is any infinitely differenti- 

h is any vector in ~. 

G , but is invariant with 

are actually essentially 

have unique skew-adjoint 

extensions. This is actually a special case of the following lemma which was later 

proved by Nelson. [5] 

Lemma 

The G are essentially skew-adjoint on any dense domain 

invariant with respect to U(g). 

D which is 

Proof. Let f be an eigenveetor of G t with complex eigenvalue ~. 

Then the function ~(g) = (f,U(g)d), d E D both satisfies the differential equation 
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= ~(g) and is bounded. Hence it is zero in which case, since D is 
~x 

dense, f = 0. Thus, the deficiency indices of G are zero, i.e., G is essen- 

tially skew-adjoint [2]. 

The next question is whether there exists a common dense domain of 

analytic vectors for the G , i.e., a dense domain on which 

~ (G) n 

n=0 
(4.7) 

converges where G is any linear combination of the G . Here the spectral theo- 

rem does not help since, in general, the closures G~ and GB do not commute and 

so cannot be simultaneously resolved. Furthermore, the G~rding domain D does 
g 

not help since that is not in general analytic. However, it has been shown by 

Cartier and Dixmier [6], Nelson [7] and G~rding [8] that for a unitary representa- 

tion of a Lie group, a common dense analytic domain for the Lie algebra does in 

fact exist. Here we describe briefly ~ simplification of Nelson's proof due to 

G~rding. The point is to replace the infinitely differentiable functions of com- 

pact support f(g) in the GSrding integral by a dense set of analytic functions 

a(g) of sufficiently fast decrease to counter the (at most exponential) growth of 

the Haar measure and make the integral converge. Such a dense set of functions is 

given by 

a(g) = etAf(g) , t > 0 , (4.8) 

where ~ is the unique self-adjoint extension of the operator 

A = i - G 2 - G 2 - ... - G 2 (4.9) 
I 2 r ' 

on the GSrding domain Dg for the regular representation. The functions a(g) 

have Gaussian decrease for t > 0. 

It is interesting to note that the above results concerning the existence 

of a GSrding and analytic dense domain are not confined to unitary representations. 

They hold for any continuous representation by bounded operators. This is clear 

for the G~rding domain and follows for the analytic domain because, for a continu- 

ous representation, the growth of U(g), like the Haar measure, is at most exponen- 

tial. Even the result that the G are skew-adjoint on any group invariant domain 

D generalizes; namely, if superscript c denotes contragredient quantities, we 

have 

(G~IDc)t = - (G ID) 
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So far, we have given the group representation U(g) and asked questions 

about the Lie algebra. Now we ask the converse question: What is a necessary and 

sufficient condition that a Lie algebra G generate a unique unitary group U(g) 

on ~? An answer was given by Nelson [7] in 1959, who established the following 

theorem: 

Theorem 

operators 

that there exist in 

the iG are symmetric, and the operator 

r 
=- 

~=1 

is essentially self-adjoint. 

A necessary and sufficient condition that a Lie algebra of symmetric 

iG be the Lie algebra of a unique unitary Lie group U(g) on }[ is 

X a common dense invariant domain ~ for the G on which 

G2+I , 

In the course of the proof, Nelson has shown that the analytic domain for 

the self adjoint extension ~ of the operator A is a common analytic domain for 

the Lie Algebra, and thus furnished an alternative proof of the existence of a dense 

analytic domain for the unitary representations. The essence of Nelson's proof is 

to obtain, from the general form of the commutation relations and the obvious 

bounds IIGII < II~I fIG211 < II~I a bound llGnll < Cnli~nll, where C ~ n!. Then, if 
' ' n 

(t~) n 
~ < ~ for all t, ~ ~tg)n < where t O > 0. Note that, in n! ~ for t < to, 

(t~) n 
general, the entire vectors for ~, i.e., ~--~,< ~ all t, are not necessarily 

entire vectors for G. Indeed, in general there do not exist any entire vectors 

for the Lie algebra of a unitary Lie group. The unitary representations of SL(2,C) 

already provide a counter-example. Recently it has been shown by R. Goodman [i0] 

that the analytic domain for the Lie algebra is exactly the analytic domain for the 

operator A I/2. Goodman has also discussed the question of the existence of entire 

vectors [ii]. 

From the above results, namely the existence of an analytic domain for 

any continuous representation, and the existence of a unique continuous unitary 

representation when & is essentially self-adjoint, it is evident that for con- 

tinuous Lie groups the relationship between Lie algebra and Lie group representa- 

tions is all that could be required. We can operate relatively freely with the 

algebra in spite of the unbounded nature of the operators, a circumstance we had 

anticipated earlier. We close with a few incidental remarks: 

First, in the case of U!R's of semisimple Lie groups, there are some 

stronger results due to Harish-Chandra.[9] For example, the vectors in the (neces- 

sarily finite dimensional) subspaces, which are invariant with respect to the 
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maximal compact subgroup of the group, are analytic vectors for the whole group. 

Furthermore, the linear span of such vectors, which is dense in ~, can be gener- 

ated from any one such vector using the enveloping algebra of the Lie algebra. 

Second, there are still some outstanding problems. One is to find an 

analogue of Nelson's results (A essentially self-adjoint) for non-unitary 

representations. Another is to ask for statements concerning the analytic 

continuation of the functions (h,U(g)a) to complex values of the group 

parameters. How close are the singularities? Are they poles or cuts? And so 

on. 

We next consider briefly the domain question for tensor operators. For 

a set of operators T a, a = l...s to transform as a tensor under a unitary group 

U(g), we need only a dense domain D with 

i) the T~ essentially self-adjoint on D, 

2) D stable with respect to U(g), 
A 

3) U(g)T u-l(g) = Db~(g)T b on D, where DA(g) is a representation of 

U(g). 

DA(g) is usually finite-dimensional (r < ~), but the definition can be extended to 

cover infinite dimensional representations as well. 

If the group U(g) is compact, one is usually interested not in the 

full (generally unbounded) tensor components Ta, but only in the restrictions 

P 'TaP , where P,P~ are the projections onto finite dimensional subspaces of 

which are invariant with respect to U(g). For the restrictions P'TaP to 

exist, one needs only the weaker condition that there exist a dense domain 

D for the T a such that P~ c D(~a) , where ~a is the unique self-adjoint 

extension of T . The physical conditions are usually enough to guarantee 

this. 

For example, in the dipole radiation example of the last section, the 

relevant matrix elements were (fEr~rm,,YafEEm), i.e., they were the matrix elements 

of the restrictions of Ya to the finite spaces fs%m" One can see that these 

restrictions must exist from the physical point of view as follows: The dipole 

radiation is actually just the first coefficient in the expansion of 

(f t%rmr,eiYa/%f %m) in powers of 11% , where % is the wavelength of the emitted 

radiation. Now the restriction P~ exp iYa/%P certainly exists since exp iYa/% 

is a bounded operator, so the only question is the validity of the subsequent 

expansion in powers of ii%. This expansion is justified on the physical grounds 

that the wavelength % can be (and in practice usually is) large compared with the 

mean value of IYl for the wavef unction fg%m' i.e., compared with the "size" of 

the atom. 

Finally, we consider the WE theorem. Let U(g) be a unitary represen- 

tation of G on ~ and T a a tensor component belonging to the representation 

DA(g). Let ~i~ 2 be irreducible subspaces of ~ with respect to U(g), let 
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A 
]CA be the Hilbert space for D (g), and let the product space ]CA ~ ~2 decompose 

into 

with respect to U(g). 

]CA @ ~2 = ~ @]C% ' (4.10) 

The WE theorem states that 

(fl,T&f2) = ~ (f%,f~f2)~0~iT~2) % , (4.11) 
% 

where the sum is taken over all % such that the representations D%(g) and 

(U(g)/~l) are equivalent and fA,f~ are vectors in the directions fl and Ta, 

respectively. In other words, the T-dependent tensor (fl,T f2) can be expanded 

linearly in terms of the T-independent tensors (f%,f f2) with scalar coefficients 

~IT~)%. In particular, if U(g)~ I occurs only once in the decomposition 

(4.10), then 

(fl,Tf2) = (fl,f f2)~2) , (4.12) 

i.e., (fl,T~f2) is parallel to (fl,faf2). 

The coefficients ~ ) A  are usually called reduced matrix elements, 

and the T-independent tensors (fl,f f2 ) are called Clebsch-Gordon coefficients. 

Note that the (fA,f f2) are just the matrix elements of the unitary (intertwining) 

operator which transforms the direct product basis in ]CA @~2 into the basis in 

which U(g) is diagonal. 

5. SURVEY OF EXPERIMENTAL AND THEORETICAL 
BACKGROUND TO ELEMENTARY PARTICLE PHYSICS 

The rest of these chapters will be devoted to th~ group theory of ele- 

mentary particle physics. But before going on to the group theory proper, it might 

be worthwhile to fill in a little of the experimental and theoretical background. 

This we shall do in the present chapter. 

First we consider the experimental background [i]. 

The non-relativistic quantum mechanics discussed up to now suffices to 

describe completely the greater part of modern physics--atomic, molecular, plasma, 

solid state, low temperature, etc., physics. It is built on the twin postulates of 

Newton's laws and IX,P] = i~. The basic constituents of matter for all these 

branches of physics are the protons, neutrons, and electrons which form the atoms9 

and the photons, which carry the EM (electromagnetic) field. These constituents of 

matter, or particles, are regarded as elementary. In particular, the protons, 

neutrons, and electrons are regarded as indestructible. 
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As soon, however, as one wishes to inquire into the finer features of 

atomic phenomena or wishes to investigate the structure of the atomic nucleus or 

the structure of the protons, neutrons, and electrons themselves, then the situ- 

ation changes drastically. First, the energies necessary for the investigation are 

relativistic. Second, the electrons, protons, and neutrons are found to be far 

from indestructible. They can be destroyed and created almost at will. Third, not 

only can these particles be destroyed and created, but new particles are created 

and destroyed along with them. The new particles include the anti-particles of the 

proton, neutron, and electron, the q-meson which keeps the protons and neutrons 

bound in the nucleus, and many other particles (along with their anti-particles). 

To date, the number of new particles which have been produced is of the order of 

i00. 

It should, perhaps, be emphasized that the particles referred to here 

differ in some fundamental ways from the Newtonian particles defined in the first 

lecture; namely, 

a) they can be created and destroyed. 

b) Although they can be created and destroyed, their masses are not 

arbitrary but are fixed by nature to have definite values outside 

our control. For example, the electron has a mass 9.11 × 10 -28 grams. 

c) As well as an intrinsic mass, the particles have an intrinsic 

angular momentum. The Casimir operator of the intrinsic angular 

momentum group takes the values J(J + i), where J (the spin of 

the particle) is half-integer. 

Thus, the particles appear to be particles in the sense of Democritus 

(fixed, ultimate constituents of matter) rather than of Newton (fictitious limits 

of small bodies). For this reason they are called elementary particles. Of course, 

it is difficult to believe that I00 particles can be elementary, but until some- 

thing more elementary is discovered, they are regarded as such. (An analogy is 

provided by the chemical elements, all 92 of which were regarded as elementary 

until the advent of atomic theory.) 

In Figure 5.1, a list of the particles is presented. They are grouped 

together into multiplets (so-called isospin multiplets) of particles with approxi- 

mately the same mass and spin. Even so, the number of multiplets is very large and 

it might help to clarify the situation a little if we briefly classify them by word. 

The broadest classification of the particles is in terms of their inter- 

actions. Apart from the gravitational interactions, in which all the particles 

participate, but which are so weak as to be negligible, the particles can interact 

in only three ways: 

a) By electromagnetic interactions, with coupling constant e2/~c~i/137 

b) By weak interactions, with coupling constant g2 << e2/~c 

c) By strong interactions, with coupling constant G 2 >> e2/~c. 
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x+(140) I-(0-)+ 

x0(135) 

~ ( 5 4 9 )  o+(o-)+ 

I s o s p i n  0 

- 
n(550) 0 

~ ( 7 8 0 )  1- 

n*(960) 0- (?) 

$(1020) 1- 

n(1070) 0' 

f (1260) 2' 

D(1285) P=(-1) J+1 

E(1420) 0- (? )  
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I s o s p i n  112 

- 
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- 
~ ( 1 4 0 )  0 

- 
~ ( 7 6 0 )  1 

~ ( 1 0 1 6 )  0' 

A1(1070) 1' (?) 
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p (1650) P= (-1) 
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B(1235) 1' (? )  

SU(3) m u l t i p l e t s  

FIGURE 5 .  l b  MESONS 

The fo l lowing  bumps have a l s o  been observed,  b u t  

t h e i r  s p i n s  and p a r i t i e s  a r e  no t  y e t  known; ~ ( 4 1 0 ) ;  

H(99O) ; nV (1080) ; Al.5 (1170) ; A22 (1320) ; pp (1410) ; 

KSKS(1440) ; $ (1650),  R(1750) ; n o r  p (1830) + 4 ~ ;  

$ o r  IT (1830) + m a ;  S (1930) ; p (2100) ; T(2200) ; 

p (2275) #1=0(2380) ; ~ ( 7 2 5 )  ; \(1080-1260); 

K ~ ( ~ = 3 / 2 )  (1175) : KA(I=3/2) (1265) ; KN(I=1/2) (1660) ; 

K*(2240) + YN; X-(2500) : X-(2620; X-(2880). 
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Particle or 1 "'(jP) 
resonance 2 

p 1/2(1/2 +) 
n 

N" (1470) 1/2(1/2 + ) 

N" (1 520)  1/2(3/2-) 

N'(1535) 1/2(1/2-) 

N(1670) 1/2(5/2-) 

N(1688) 1/2(5/2 + ) 

N' '(1700) 1/2(1/2-) 

N'" (1780) 1/2(I /2 +) 

N(1860) 1/2(/2+) 

N(1990) V2<7/2 +) 

N ' "  (2040) 1/2(3/2-) 

N(2190) 1/2(7/2-) 

N(2650) I/2(?-) 

N(3030) I/2(?) 

~(1236) 3/2(3/2 + ) 

~(1650) #2(I/2-) 

A(1670) / 2 (3 /2 - )  

~(189o) >/2(>/2 + ) 

~(19~o) /2(1/2 +) 

A(I 9.50) 3/2(7/2 +) 

A (2420) 3/2(11/2 +') 

&(2850) 3/2(? + ) 

A(3230) 3/2(?) 

A 0(1/2 + ) 

A(IZ~05) 0(1/2-) 

A" (1 520)  0(3/2-) 

A" (1670) 0(1/2-1 
A 

~' "(169o) 0(3/2-) 

E 

A0815) 0(/2 + ) 

A(183o) 

A(2100) 0 7_tQtO. 

A(23.50) o(~) 

~, 1(1/2+)_ 

$(138,5) 1(3/2 +) P,~ 

z (175o) ~ s,, 

Z (1765) 1(5/2-) D,5 

z (1915) ±(5/2*) ~,5 

z(2o3o) 1 7_.QZAL F 

z(225o) i(?) 
z (2455) !(?) 

z (2~9~) !(?) 

1/2(1/2+) 

.-.(I ~3o) 1/2(~/2 + ) 

s(182o) #i(?) 

E(1930) I/2(?) 

E(2030) 1/2,(?) 

s(22.~) 1/2(?) 

s(25oo) !/__Z(?) 

n- o(3/2 +) 

SU(3) multiplets 

i + 
P 

n 

A 

Z 11 

3 + A(1236) -- 
2 

Z(1385) " 

z(1530) " 

f~- (1686) " (?) 

3- 
N(1525) 

A (1520) " 

Z (1660) " 

E (i8i5) " (?) 

5 + 
N(1688) -~ 

A (1820) " 
E (1910) " 
=_(1930) " (?) 

Regge Recurrences 

+-multiplet 

+-multiplet 

3-- 3-- 
N(1525) ~ A (1520) 

7- 7- 
N(2190) ~ A (2100) 

FIGURE 5.1a. BARYONS 

Data are taken from A. Rosenfeld et al., Rev. Mod. 

Phys. (January, 1970). The numbers in brackets are 

masses in millions of electron volts. J is the spin 

(half-odd-integer and integer for baryons and mesons 

respectively), and P is the parity. 
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Apart from the photon, which carries the EM field and interacts only electromag- 

netically, there are three main classes of particles: 

I) The leptons: These do not interact strongly. There are four of 

them; the electron e, the u-meson, and the two neutrinos ~e' ~" 

All have spin 1/2. 

2) The baryons: The particles which interact strongly and obey Fermi- 

Dirac statistics (i.e., have half-odd integer spin). 

3) The mesons: The strongly interacting particles which obey Bose- 

Einstein statistics (have integer spin). 

The mesons and baryons can, of course, also interact weakly and electromagneti- 

cally, both with each other and with the leptons. The collective name for all 

strongly interacting particles is hadrons. 

Anti-particles are omitted in Figure 5.1 because they have the same 

masses and spins as the particles. Further subdivisions of the particles have 

already been considered by Michel and will be touched on again in later lectures. 

An important property of the particles is their stability, or lack of it, (when 

left alone). The only really stable ones are the photon, neutrinos, electron, 

and proton. However, many others are metastable, i.e., have relatively long (10 -13 

sec) lifetimes. These include the leptons, n, Z, A, ~, and ~ in class 2), and 

~, K, ~ in class 3). The rest of the particles are unstable. They have lifetimes 

of NI0 -23 secs and are usually not observed directly but as resonances in the scat- 

tering cross-sections for metastable particles. 

It should, perhaps, be emphasized at this point that the experimental 

information that we can get on the elementary particles is very limited. The par- 

ticles are so tiny and so unstable that essentially all one can do is scatter them 

and watch them decay. 

In particular, one can only build particles with masses up to the ener- 

gies available in the accelerators. Figure 5.1 is based on the present energies 

(pending the building of the 200 Gev Weston machine and Super-Cern). This table 

may not be, and probably is not, sufficient to let us see the true picture. For 

example, ten years ago only the part of Figure 5.1 above the ~-line was available, 

and it is now clear that this would have been insufficient to predict today's pic- 

ture. 

Further, one gets information for weak and electromagnetic interactions 

only when these interactions are not swamped by the strong ones and, for the weak 

interactions in particular, the information is limited to decay. 

For the strong interactions themselves, the information is limited not 

only by the energies available, but by the particles which are available as targets 

and projectiles for the scattering. Essentially the only available ones are: 

Target: Protons, neutrons (and electrons) 

Projectiles: Protons, neutrons (and electrons), photons and the 
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amplitude 

metastable mesons ~ and K, together with their anti- 

particles. 

What is actually measured in the strong collisions is the scattering 

A(PA; PB; PC I ' ' 'pC N) for the processes 

A + B ÷ C1 + C2 + ... + C N 

(Figure 5.2), which is a function of the momenta pA...PCN 

whose absolute value squared is the probability for A and 

particles CI...C N with these momenta. 

of the particles and 

B to scatter into 

Similarly, what is measured in electromagnetic interactions is the form- 

factor FAB(t) whose square is the probability for the particle A with momentum 

PA to interact with the EM field, lose momentum k, and emerge as particle B 

(possibly the same as A) with momentum PB = PA - k (Figure 5.3). On account of 

Lorentz invariance, FAB(t ) is essentially a function of 

t = k 2 = (PB - PA )2 ' 

(It may have some polynomial dependence on PA and PB through the spins 

and B.) Actually, at present FAB(t ) is known reasonably well (up to t 

only. 

of A 

proton-mass) only for the electron (for which it is trivial), the proton, and the 

neutron. For some other metastable particles, notably ~, E, A, K, a little is 

known about it for t ÷ 0. 

Thus, to sum up, what has been established experimentally is the existence 

of a large number (NI00) of particles of definite masses and spins and various life- 

times, most of them short. What can be measured, essentially, are their electro- 

magnetic form-factors FAB(t) , their strong scattering amplitudes, and their weak 

decays, all subject to strong experimental limitations.[l] 

The business of elementary particle physics is to construct a theory which 

will 

i) explain the interactions (form-factors, scattering amplitudes, decays) 

of the particles, and 

2) predict their masses andspins. 

This is a tall order since it combines i) solving Newton's problem at a 

subnuclear level with solving 2) the problem of the structure of matter. 

Not surprisingly, one has at present nothing like a complete theory of the 

elementary particles, though one does have some ideas and a workable, if not yet mathe- 

matically rigorous, theory of electromagnetic interactions. Almost all the ideas 

one has can be traced back to the theory of quantized fields introduced by Pauli, 

Heisenberg, and Dirac [2] in the heroic days of quantum mechanics, 1925-28. Be- 

cause they lie at the root of most later developments and because they are necessary 

later as background for relativistic group theory, we conclude this lecture with a 
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PB =PA-k 

FIGURE 5.3 
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brief review of the ideas underlying the theory of quantized fields. 

To begin with, we return to the Hamiltonian, which describes a non- 

relativistic classical particle in a potential 

H = p2 + ~(x) (5. i) 
2m 

Generalizing to describe interactions with the EM field and the field equations for 

the EM field itself, we have 

H e!+e[~(x) +I÷+ 1 = V.A(x)] + ~ d3y[~(y) 2 2m ~ ~ + (VA(y)) 2] , (5.2) 

÷ 
where A = (~,A) is the EM potential and the integral term is the Hamiltonian for 

1 
the free EM field. (It is equivalent to ~ ~ d2y[E(y) 2 + H(y) 2] where (E,H) 

= F = ~ A - ~ A , but the form (5.2) is better for later quantization.) We can 
~ p Y Y 

also write the interaction term (with coupling coefficient, or charge, e) as 

where 

jp(y) = ~(x - y)[l,v/c] (5.4) 

If we now quantize the particle according to non-relativistic quantum mechanics, 

w4 obtain 

p2 1 
H = ~m + e ~ d3yjp(y)A (y) + ~ d3y[~ 2 + (VA) 2] , (5.5) 

J 

• P m~]6(X y) (5 6) 23p(y) = 6(X - y)[l, ~c ] + [i, - , . 

and P and X are now the usual quantum mechanical operators, satisfying [X,P] 

= i~. This Hamiltonian is only 

a) semirelativistic because the EM field is relativistic but the 

particle is not. 

b) semi-quantized because the particle is quantized but the EM field 

is not. 

To remedy these defects, one quantizes the EM field by the Ansatz 

[A (x),Ay(Xr)] = i~gpvD(X - x r) , (5.7) 

where D(x~ is a numerical function (or, more precisely, distribution) to be dis- 

cussed in a moment, and one makes the particle relativistic by the substitution 

1 p2 + + + 
2-~ ~'P + 8m , (5.8) 

e ~ d3yj~(y)Ap(y) , (5.3) 

where 
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jo(x) ÷ ~(x - X)yu , (5.9) 

where the y~ are the 4 × 4 Dirac matrices defined by 

[yU,y]± = 2g~ , (5.10) 

B is Y0' ~ is yOy, g~ is the metric tensor, and, for simplicity, we have 
I 

assumed that the particle in question has spin ~ (e.g. is an electron). For other 

spins we use an appropriate generalization of the Y0 (see Section 7). 

The Ansatz (5.7) for the EM field is the analogue of [X,P] = J~ for the 

particle. Indeed, one can expand the purely EM part of the Hamiltonian as a sum of 

formal harmonic oscillators 

1 1 ~ d3x[~(X) 2 + (VA) 2] = ~ dBk[P(k) 2 + ~(k) 2Q(k) 2] , 

where 

and 

Q(k) = j' d3k sin kx ~(x) 

P(k) = Q(k) , 

Q(k) + ~2(k)Q(k) = 0 , 

and then (5.7) amounts to the Ansatz 

[Q(k),P(k')] = i~(k - k') , 

for the formal oscillators. The important properties of the distribution D(x,t) 

are that D(x) is Lorentz invariant, 

D(x) = 0 , x 2 < 0 , 

D(x,0) = 0 , 

(5.ii) 

D(x,0) = ~3(I) , 

~2" V2)D(x) = 0 
(~2 ~ t  2 

The A n s a t z  ( 5 . 8 ) ( 5 . 9 )  f o r  t h e  p a r t i c l e  means  t h a t  i t  i s  no l o n g e r  d e s -  

c r i b e d  i n  t h e  H i l b e r t  s p a c e  L 2 ( - ~ , ~ )  f o r  [X,P]  = i ~ ,  b u t  i n  a H i l b e r t  s p a c e  

L 2 [ _ ~ , ~  ) x R4 w h e r e  R b i s  t h e  4 - d i m e n s i o n a l  D i r a c  s p a c e .  

I t  t u r n s  o u t ,  h o w e v e r ,  t h a t  w h i l e  t h e  r e l a t i v i s t i c  q u a n t i z e d  H a m i l t o n i a n  

(5.5)(5.10) is sufficient to describe processes in which the relativistic particle 

is conserved, it cannot take account of the experimental fact that when the rela- 

tivistic energies are large enough, the particle can be created or destroyed. To 

allow for this possibility, one must go further and second quantize the Hamiltonian. 

This means introducing for the particle a field @a(x), which is quantized according 
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to the rule 

[~(x),~8(xl)] ± = i~D B(x - x r) , (5.12) 

where D 6(x) is a function analogous to D(x), the ± commutator is taken 

according as to whether the particle obeys Fermi-Dirac statistics (has half-odd- 

integer spin) or Bose-Einstein statistics (integer spin), and ~,B are spin indi- 
i 

ces. (In the case of the electron, which is a spin ~ particle, the + sign is 

taken and the indices e,6 are the Dirac indices.) Using the field @~(x), one 

makes the substitutions 

÷ ÷ ~+ ÷ ÷ 
~.P + 6m ÷ (x)(~.~ + $m)~(x) , (5.13) 

j~(x) + ~+(X)Yoy~(x) , (5.14) 

in the relativistic first-quantized Hamilton±an (5.5)(5.8) and (5.9) and obtains 

finally 

+ + ÷ e d3x~+(X)Yoy~(x)A (x) H = ~ (e.~ + 8m)~ + 

1 
+ ~ ~ dax[~(x) 2 + (VA(x)) 2] (5.15) 

This is the fully quantized, relativistic, Hamilton±an of Dirac, Heisenberg, and 

Paul±. Note that in this theory the particles and the EM field are on the same 

footing. Each is described by a field and the field has a particle interpretation 

(photon interpretation in the case of the EM field), which is obtained by analyzing 

the quantization Ans~tze (5.7) and (5.12). 

Without accepting the Hamilton±an H (and its generalization to include 

interactions between particle-fields other than the electron ~(x) and photon 

A(x)) too literally, one can extract from it most of the ideas which are used in 

the later theories. Let us summarize briefly the most important and relevant 

ideas: [3] 

l) The particles are described in some way by fields ~(x) (~(x) and 

A(x) above) Which are quantized locally, i.e., whatever quantization 

rules are adopted for the interacting fields, they should at least 

satisfy the conditions 

[~(x),~(x')]± = 0 , (x - x') 2 < 0 (5.16) 

These conditions are dictated by the principle of strong microscopic 

causality; measurements which are separated by spacelike distances 

should not interfere. (The + sign in (5.16) is taken for fermion 

fields for which only bilinears in the field are observables.) The 

locality assumption is usually strengthened by the demand that the 

fields, which, to make sense both mathematically and physically, are 
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2) 

3) 

not operators but operator-valued distributions, should not be too 

wild in the sense of distributions. 

The fields interact locally. For example, if a Hamiltonian exists, 

the interaction term in it would be of the form 

Hin t = g ~ d3x~+(x)Y0~(x)~(x) , 

(5.17) 

Hin t = g ~ d3x~+(X)YoY~(x)~(x) , 

etc., but not of the form 

Hint = g ~ dBx ~ d4x'd4x"*+(x")Y0 

f ( x  - x ' , x  - x " ) ~ ( x ' ) e p ( x )  , ( 5 . 1 8 )  

is some Lorentz invariant function which does not vanish where f 

for x ~ x r, x ~ x'. 

Under Lorentz transformations, the fields transform according to the 

law 

A a (A)~B(A-I(x - a)) (5.19) ~ ( x )  ~ s B 

where A is a homogeneous Lorentz transformation, a is a trans- 

lation, and S B(A ) is a representation of A. The choice of repre- 

sentation S B(A) is determined by the masses and spins of the parti- 

cles. For free fields, or in the free field limit of interacting 

fields, the above description can be made a little more exact. The 

fields can be expanded in the form 

~(x) = ~ d~(p)[~(p)a(p)e ipx + ~(p)bt(p)e -ipx] , (5.20) 

where the unquantized "wavefunctions" ~(p), ~(p) carry the Lorentz 

properties of ~(x), and the operators a(p) and bT(p), which 

satisfy quantization relations of the form 

[a(p),a+(pf)]± = ~8(p - pt) , 

[a(p),b(pr)] = 0 , etc. , (5.21) 

carry the quantization properties. An analysis of the algebra (5.21) 

in Hilbert space shows that the operators a(p) and bT(p) can be 

considered as creation and destruction operators for states which 

have the right properties to be identified with free particle states. 

Thus, the particle description of the field may be said to be embodied 

in the quantization relations. 
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To sum up, one is confronted with a huge number of elementary particles 

experimentally and one is looking for a theory which will explain the elementary 

particles and their interactions. For want of better alternatives, one tries to 

find such a theory by using general ideas derived from local field theory. The 

fields in local field theory have particle properties in the free field limit, have 

definite transformation properties with respect to the Lorentz group, and they 

interact and are quantized locally. 

6. REPRESENTATIONS OF THE POINCARE 
GROUP IN HILBERT SPACE 

In the last lecture, we sketched briefly the experimental background to 

elementary particle physics and the basic theoretical tool, namely the theory of 

quantized fields, which is used to attack it. We saw that one of the most impor- 

tant properties of the fields was that they transformed in a manifestly covariant 

manner, 

~(x)A~as ~(A)~(A-I(x - a)) , (6.1) 

under inhomOgeneous Lorentz, or Poincar~, transformations. In this lecture we wish 

to consider the question of Poincar~ covariance in a more general way, that is, 

divorced from any particular theory such as field theory, and using nothing but the 

most fundamental quantum mechanical ideas. Later we shall try to establish the link 

with field theory. 

We begin, as usual, with the probabilities 

l(f,h) I , (6.2) 

where f and h are vectors in the Hilbert space ~. The assumption that apart 

from the spectra these, and only these, are the physical numbers to be extracted 

from the theory is made not only in non-relativistic but in relativistic quantum 

theory, and underlies all other assumptions. (For simplicity, we assume that all 

vectors in ~ represent physical states (no super-selection rules), but the argu- 

ment can easily be generalized to the case where this is not so.) 

Let us now suppose that~ due to the geometry of space-time, we wish to 

impose an invariance principle on the quantum mechanical system--we wish to demand 

that the system be invariant under some g~oup G of space-time transformations. 

Let us for the moment not specify the group although, in practice, it will be the 

Galilean group or the Poincar~ group. How are we to impose the invariance princi- 

ple? Following the arguments used earlier, namely that under a change of observer 

the probability of a system making a given transition remains unchanged (the old 

argument that "the system does not care who is looking at it"), we impose the in- 

variance principle by demanding that, under the transformations of the group, the 
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inner products (6.2) remain invariant, i.e., 

l(T(g)f,T(g)h) I = l(f,h) l , (6.3) 

f, h 6~, g 6 G. We also demand that the Hamiltonian transform under the group in 

a way appropriate for the energy. The latter demand generalizes the idea of invar- 

iance groups used in non-relativistic theory. 

Using Wigner's theorem, it follows that the invariance group can be imple- 

mented on ~ by a set of unitary or anti-unitary operators U(g), forming a ray 

representation 

U(g)U(g ~) = eim(g'g')u(g,g ') , (6.4) 

of the group. 

If the group is continuous, physical continuity demands that as g ÷ i 

in the group topology, T(g)f should represent the same state as f, i.e., 

whence 

T(g)f ÷ eief , (6.5) 

U(g)f ÷ eiy(g'f)f , (6.6) 

i.e., physical continuity demands that U(g) be ray-continuous in the sense of 

(6.6). 

We see, therefore, that from quite general principles the invariance of a 

quantum mechanical system under a geometrical group demands that the Hilbert space 

of the system carry a unitary or anti-unitary ray representation of the group. 

If the group is continuous, the representation must be ray-continuous. 

For connected Lie groups, such a representation can be shown [i] to be 

equivalent to (or can be "lifted" to) a true continuous unitary representation of 

the covering group of either the group itself or some continuous central extension 

of it. 

Thus, without loss of generality, we can confine ourselves to continuous 

unitary group representations. Whether we can use continuous unitary representa- 

tions of the geometrical group itself or of some central extension depends on the 

geometrical group in question. 

To proceed further, we must therefore specify the geometrical group more 

precisely. We shall specify finally to the Galilean and Poincar~ group, in partic- 

ular to the Poincar~ group, but before doing so it might be interesting to point 

out that we could first limit ourselves to kinematical groups, i.e., lO-parameter, 

continuous, connected space-time Lie groups with rotations, a scalar time trans- 

lation, vector space translations, and vector accelerations, with the commutation 

relationships not mentioned left open. Under general conditions [2], it can be 

shown that there are, in fact, only eight such groups, four non-relativistic 

(t' = t + t O ) groups including the Galilean group, and four relativistic groups 
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including the Poincar~ group. For the four relativistic groups, the phase-factors 

exp i~(gg r) can be lifted completely. For the four non-relativistic groups, the 

lifting requires a l-parameter central extension. We have already seen this in the 

case of the Galilean group for which the central extension is generated by the 

total mass M. 

Let us now concentrate on the relativistic case and in particular on the 

connected Poincar~ group. From what we have just said, the Hilbert space ~ must 

carry a true continuous unitary representation of its covering group, which we de- 

note by 

+ = T4~SL(2,C) , (6.7) P+ 

where T 4 is the 4-dimensional translation group, s denotes semi-direct product, 

and ++ mean that time-and space-inversions are not included. Group multiplication 

is to the le f t. In particular, if we use the conventional paramatrization (A,a) 
+ 

for P+, we have (A,a)(Ar,b) = (AAr,a + Ah). 

+ carried by ~ will not, in Needless to say, the representation of P+ 
+ 

general, be irreducible. However, P+ is a type i group, which means that any con- 

tinuous unitary representation decomposes uniquely into a direct sum and/or a 

direct integral of continuous unitary irreducible representations (CUIR's). It 

follows that, from the group theoretical point of view, the elementary objects to 
+ 

study are the CUIR's of P+. Some of the CUIR's will, in fact, be identified 

directly (i.e., without summation or integration) with elementary particles. This 

point will be discussed in more detail later. For the moment, we merely remark 

that for the case of non-relativistic quantum mechanics, we have already seen that 

a free Newtonian particle carries a CUIR of the extended Galilean group. 
+ 

The CUIR's of P+ were first classified by Wigner [3] in 1939. However, 

they are most simply classified by Mackey's method [4] of induced representations, 

which generalizes and simplifies Wigner's approach. We, therefore, proceed using 

Mackey's method. We first describe the method for a general group G, and then 
+ 

specialize to P+. 

Let G be any separable locally compact group, H any closed subgroup, 

G/H the right coset space, and ~(s) the left invariant (or left quasi-invariant) 

measure on G/H. Let W(h), h E H be any unitary representation of H 

on a Hilbert space N, and f(g) the set of vector functions over G with values 

in N satisfying the 

i) subsidiary condition 

f(hg) = W(h)f(g) , (6.8) 

2) square integrability condition 

d~(s)(f(g),f(g)) < ~ , (6.9) 
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where the inner product in the integrand is with respect to W and, on account of 

i), is a function over G/H only. 

The representation U(g) of G defined by letting G act transitively 

on f(g), i.e., 

g' ,) 
f (g) ÷ f (gg , (6.10) 

G induced by the repre- is unitary and is called the unitary representation of 

sentation W of H. 

Note that if H = i, W = i, U is just the regular representation. At 

the other extreme, if H = G, then U = W. Note also that to induce U, two choices 

are necessary: a choice of subgroup H and a choice of representation U(H) of 

H. In general, there is no guarantee that U will be irreducible or that the set 

of all induced representations will be exhaustive. 

+ The question is how, in this Let us turn now to the special case of P+. 

case, we make our choice of H and W. To answer it, we first have to introduce 

the concept of optics. 

Orbits. Consider T 4. Every unitary irreducible representation of T 4 

is 1-dimensional and of the form exp ipa, where a E R, D = 1...4, are the group 
+ 

parameters, and p E R 4 is the character. Now let g 6 P+ act on a. We have 

exp(ip.a) ---+ exp(ip.ga) = exp(ipg.a) (6.11) 

where pg E R4, i.e. we have an associated action of P+ , + on p. The orbit of 

p is defined to be the subset ng of R 4, g E P+. 

jointly into orbits, and there are six kinds: 

wh ere 

tion 

Clearly, R 4 breaks up dis- 

W. 

a) p2 = m 2 P0 > 0, P0 < 0 (timelike) SU(2) 

b) p2 = _m 2 (spacelike) SU(I,I) 

c) p2 = 0 P0 < 0, P0 > 0 (lightlike) E(2) 

d) p = 0 (trivial) SL(2,C) 

m 2 is any fixed positive number. 

We are now in a position to choose the subgroup 

The rules are as follows: 

i) Choose an orbit (e.g., p2 = _m2), 

2) Choose any point p = ~ on the orbit, 

3) Determine the stability (little) group of 

group K of SL(2,C), leaving ~ fixed, 

4) Choose H = T4~K , 

5) Choose W(H) = exp i~a 8 V(K), where V(K) 

ible representation of K, 

6) Induce with H and W(H). 

H and its representa- 

~, i.e., the maximal sub- 

is any unitary irreduc- 
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÷ obtained are irreducible and With this choice of H, the representations of P+ 

(using all possible V(K)) exhaustive. 

One can gain an intuitive feeling why this is so by noting that the 

following three things coincide: the coset space G/H, the orbit O, and the simul- 

taneous spectrum S of the infinitesimal generators of T 4. Thus 

G/H = 0 = S 

The irreducibility can then be seen intuitively as follows. From the subsidiary 

condition i), f(g) is essentially a function over G/H and the Hilbert space of 
+ + 

W(H) only. But P+ acts irreducibly on 0 by definition. Hence, P+ acts Jr- 
+ 

reducibly on G/H = O. And V(K) acts irreducibly on N. Hence, P+ acts irreduc- 
+ 

ibly on both G/H and N. Hence, P+ acts irreducibly on f(g), as required. To 

see why the induced representations should be exhaustive, we note that given any 
+ 

representation P+, the infinitesimal generators of T~ can be simultaneously 

diagonalized and hence the vectors in the representation space can be written as 

functions over S. Hence, these vectors can be written as functions over 0 = S. 

For a fixed point in s E S, the only remaining freedom is to transform according 

to some representation of the group leaving S invariant. But since S = O, the 

group leaving s E S invariant is just the stability group for a point p = e in 

+ corresponds to an induced representation. O. Thus, the representation of P+ 

The little group corresponding to the orbits a) to d) above are written 

beside them. The invariant differential form is 

d~(p) = d3P , d~(p) = d3p , (6.12) 

P0 Pl 

for a), c), and b), respectively. The continuous unitary irreducible representa- 

tions of SU(2), E(2), SU(I,I), and SL(2,C) are all known. We are thus in a 
+ 

position to determine explicitly all the CUIR's of P+. In the next section, we 

shall do this in some detail, at least for the physically relevant representations. 

In particular, we shall try to express the induced representations in a form which 

is immediately useful for physics. For the rest of the present lecture, we turn to 
+ 

the more general question of the physical interpretation of the CUR's of P+ car- 

ried by ~. 

First, according to the theorems of Nelson et a~., there exists in ~ a 

domain ~ on which it is permissible to work with the Lie algebra of P+ A +" 

canonical basis for the Lie algebra is 

[P0,L] = 0 [P0,P] = 0 ' [F0,K] = P 

[L,L] = iL [L,P] = iP [L,K] = iK (6.13) 

[P,P] = 0 [P,K] = iP 0 

[K,K] = -iL , 
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on 9. 

Following non-relativistic quantum mechanics, we identify P0,P and L 

with the physical energy, 3-momentum, and angular momentum, respectively, and call 

K, by analogy, the relativistic angular momentum. Thus, once again the operators 

play a dual role--group generators and physical observables. 

Note that the relations (6.13) differ from the Galilean relations in only 

two respects, 

[P,K] = M ÷ [P,K] = iP 0 
(6.14) 

[K,K] = 0 ÷ [K,K] = -iL , 

the first of which means that [P,K] maps back onto the algebra itself instead of 

onto a central extension. 

We have already seen that the spectrum S of the generators of T 4 can 

be identified with the orbit O. More precisely, if we denote the four generators 

of T 4 by P~, ~ = 0,1,2,3, they take values p~, ~ = 0,1,2,3, in the orbit 
+ 

(p2 = ±m2,0). The orbit in a unitary irreducible representation of P+ is, there- 

fore, precisely the energy momentum spectrum. (Note that it makes sense to talk 

about the simultaneous spectrum of the P since they commute on a domain ~ on 

which they are essentially self-adjoint.) 

The identification of the orbits with the energy-momentum spectrum means 

that we can use direct physical arguments to decide which orbits and hence which 

CUIR's ~ should carry. Since physical mass-squared and energy are not negative, 

one usually makes the following assumptions about the energy-momentum spectrum and, 

hence, about the orbits: 

i) ~ contains a unique normalizable ray (the vacuum state), which is 
+ 

invariant under P+. 

2) If there are no massless particles, the energy-momentum spectrum 

contains at least one isolated hyperbola (Figure 6.1) plus a con- 

tinuum beginning at twice the height of the lowest hyperbola. 

3) If there are massless particles present, the energy momentum spectrum 

fills the closed forward light cone. 

On the isolated hyperboloids 

p2 = p2 = constant (6.15) 

Furthermore, for each CUIR on such a hyperboloid, P takes all values in R 3. 

Hence, in contrast to the case of true unitary representations of the Galilean 

group, a position operator (Newton-Wigner operator) [5] satisfying [X,P] = i~ 

can be defined. Hence, the CUIR's on the isolated hyperboloids can be iden- 

tified with stable 1-particle states. The CUIR of the little group K(= SU(2) 

in the case when p2 > O) used to induce the CUIR of p+ is then idgntified + 

with the spin group of the particle. Thus, the spin group, which in non- 

relativistic quantum mechanics is introduced empirically and forms a direct 



"]86 

CD 

H 

O 

~D 

Z 

! 

Z 

H 



~187 

product with the Galilean group, is included automatically in the relativistic 

case. 

Empirically, it is found that for any given mass there are only a finite 

number of elementary particles. Hence, the isolated hyperbolas are assumed to be 
+ 

finitely degenerate~ i.e., to carry only a finite number of CUIR's of P+. 

The'continuum states in the energy-momentum spectrum represent, in gen- 

eral, two or more particle states, but may include 1-particle states which happen 

to have a higher mass than the lowest two particle states. In general, the con- 

tinuum states are infinitely degenerate. In the case that zero mass particles are 

present, the continuum is everywhere in and on the forward light-cone and there is 

a serious problem as to how one should identify the 1-particle states, including 

the zero-mass particle states themselves. One possibility would be to identify 

them with normalizable, non-isolated, eigenvalues of p2. But this is by no means 

the only possibility and, within some of the postulated frameworks, it is even 

impossible. [6] 

+ allowed on X, the energy- From the point of view of the orbits of P+ 

momentum spectrum conditions imposed are very strong. They reduce the six possible 

kinds of orbit which could be carried by ~ to the two kinds p2 m 0, P0 ~ 0. These 

orbits we shall call physical orbits. (They are actually characterized by P0 ~ 0.) 

The corresponding little groups are SU(2) and E(2). The CUIR's of 

SU(2) are well-known and require no comment. Those of E(2) are not so well- 

known, perhaps, but are actually simpler, as can be seen in the following way. The 

Lie algebra of E(2) is 

[L3,E ] = is BE B 

(6.16) 
[E,EB] : 0 , 

where ~,$ = 1,2. It follows at once that exp (2i~L3) and E 2 are the Casimir 

operators of E(2). Assuming that exp (2~iL3) = ±i (i.e., integer or half-odd- 

integer values for L3) , it is then easy to see that there are only two possibili- 

ties: 

a) E 2 ~ O. The CUIR is infinite-dimensional and L 3 takes all integer 

or half-odd-integer values. 

b) E 2 = 0. The CUIR is 1-dimensional and L takes one integer or half- 
3 ' 

odd-integer value. 

Case a), the so-called continuous spin case, does not seem to be realized in nature. 

Case b) is realized (it describes the photons and neutrinos for L 3 = ±i and 
i 

L 3 = ± ~, respectively). When Case b) does occur, it is usual to use a 2-dimension- 

al reducible CUR of E(2) with L 3 = _+m, rather than the 1-dimensional CUIR. This 

is to accommodate the parity operator. 

Since ~ can carry only the physical orbits p2 m 0, P0 ~ 0, it follows 

that only the CUIR's of P+ corresponding to these orbits are directly related to + 
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physics. This does not mean that the other orbits are completely irrelevant. As 

we shall see later, they play an important role in the analyses of scattering ampli- 

tudes. The reason is that, in practice, one uses not only the matrix elements of 

operators on ~ themselves, but also the analytic continuation of these matrix 

elements, considered as functions of p~, to points other than those in the physical 

spectrum. 

7. REDUCTION OF REPRESENTATIONS OF 
P$ TO MANIFESTLY COVARIANT FORM 

In the last section, it was shown that on quite general grounds the Hil- 

bert space ~ of a relativistic quantum mechanical system must carry a CUR of P+ +, 

and the CUIR's which this CUR could contain were described from the point of view 

of Mackey's theory. For a complete description of the elementary particles (origin 

of the masses and spins, nature of the interactions, etc.), however, much more is 

needed. For example, in a field theory, as we saw in Lecture 5, we need not only 

the Poincar~ transformation properties of the field, but its commutation relations 

and interaction laws as well. The next step, therefore, is to try to relate the 
+ 

CUIR's of P+ to other aspects of relativistic particle physics. 

The question is: How is the contact between the group theoretical pro- 

perties and the other physical properties to be made? 

Traditionally, following non-relativistic quantum mechanics, Maxwell's 

theory, and Dirac's (non-second-quantized) relativistic quantum mechanics, the con- 

tact is made through wave functions ~(p) or fields ~(x) which transform in a 

manifestly covariant way, i.e., 

~(p) -~ S(A)~(pf)e ip'a p = pA (7 i) 

where g = (A,a), A E SL(2,C), a E T4, and s(A) is a finite-dimensional represen- 

+ In the second-quantized theory of ration of the homogeneous part SL(2,C) of P+. 

free particles of Dirac, Heisenberg, and Pauli, we have, as mentioned in Lecture 5, 

also the relation 

~(x) = ~ d3p {eip'Xa(p) , (p) + e-ip'xbt(p)T(p)} , (7.2) 
P0 

between ~(x) and ~(p) where a(p) and h#(p) are the creation and destruction 

operators and where the fields ~(x) have local commutation relations and, when 

interactions are introduced, local interactions. 

We shall follow the above tradition to the extent that we shall try to 

relate Mackey's method to manifestly covariant wavefunctions. [i] As we shall see 

for the physical orbits, this can always be done, and so it implies no restrictions. 

(Restrictions come when we try to relate the manifestly covariant wavefunctions to 
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local fields, but that shall concern us only peripherally.) 
+ 

We first recall Mackey's p resc r ip t ion  for P+ on ~:  

a) 

b) 

c) 

d) 

e) 

The induction 

satisfying 

Choose an orbit p2 = m 2 m 0, P0 > 0. 

Choose a point p = ~ in the orbit. 

Determine the little group K of ~. 

Let H = T~. 

Induce with W(H) = ei~av(K). 

procedure, we recall, is to choose the functions f(g) over the group 

i) f(hg) = V(h)f(g) 

2) ~ d~(p)(f(g),g(g)) < ~ 

and letting the group act transitively on these functions, 

3) f(gl ) g2 > f(glg2 ) • 

We now make the transition from f(g) to manifestly covariant wavefunc- 

tions in two steps. 

+ + Orbit given by ~g = p. First Step. We have a natural s-mapping P+ 

+ by introducing a representative Lorentz We now define an inverse mapping p ÷ P+ 

transform A0(~, p) E SL(2) c p++ for each p. The choice of A0(~,p) is arbitrary 

but two standard ways of defining it are: 

i) The canonical method: [2] A 0 is defined to be the unique Lorentz 

transformation in the 2-flat spanned by p and ~. 

2) The helicity method: [3] An arbitrary direction is chosen for the 

~-axis and A 0 is defined to be a pure Lorentz transformation in the 

~-direction to momentum Ipl, followed by a rotation from (~ 0 0 IPl) 

to (s, p). 

We then make the transformation 

(7.3) 
f(g) ÷ ~(g) = V~0A-l)f(g ) , 

where g = (A,a), ~A = ~A 0 = p and V(AoA-I) makes sense because 

AOA-I E K. The point of this transformation is that, as is easily 

verified from Condition (i) and the relation (kA) 0 = A0, which follows 

from the definitions of k and A0, #(g) satisfies the simpler 

subsidiary condition 

I r) ~(hg) = ~(g)e z~a , 

h = (k,a) , k E K , a E T 4 

Recalling that group multiplication is to the left , one sees at once 

from i r) that ~(g) must be of the form 

~(g) = ~(A,a) = O(A)e i~'a 
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where 

e(A) = e(kA) 

It follows that 8(A) is a function of p only, i.e. 

~(g) = e(p)e~ .a 

Since V is unitary, the inner product remains unchanged. 

2 ~) ~ dp(p)(f(g),f(g)) = ~ dp(p)(0(p),e(p)) (7.4) 

The group multiplication law changes, however. In place of the simple transitivity 

3), we obtain 

3 r) e(p) -$-+ V(AoAA~-I)e(p~)e ip'a (7.5) 

where 

g = (A,a) , A 0 = A0(~,p) A~ = A0(~,p') , p' = pA 

Note that V(AoAA~-I ) makes sense since AoAA~-I E K. The rotations V(AoAA~-I ) 

are called Wigner rotations. We see that, in effect, what we have done essentially 

is to change the "twist" introduced by V(k) from the subsidiary condition to the 

group transformation. 

For many purposes, the wavefunctions e(p) are the most convenient. 

For example, the standard analysis of scattering amplitudes for general spin car- 

ried out by Jacob and Wick [3] is done in terms of e(p). However, if we wish for 

manifest covariance, we must go farther. The transformation law (7.5) is not man- 

ifestly covariant on two counts: 

i) It depends explicitly on p. 

2) V is a representation of the little group, not SL(2,C). 

This brings us to Step 2. 

Second Step. Elimination of the p-dependence from the transformation 

(7.14). 

The basic idea underlying Step 2 is to modify V(AoAAg -I) so that it can 

be split into V(A0)V(A)V(Ag)-I. At the moment, VfA0) , etc., make no sense since 

A A and A r are not separately in K. The modification is achieved by embedding 
0' ' 0 

V(k) in any representation S(A) of SL(2,C) which is unitary when restricted to 

K. Letting Vx(K) be the representations of K occurring in S(A), we define a 

set of wave functions 8%(p) (including ~(p)) with the transformation law 

e~(p) A~a V~(AoAA~_l)0~(p~)eiP. a (7.6) 

In other words, we induce with the reducible representation ~ @ V X of K (all on 

the orbit p2 = m2). 
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Now by definition 

Hence, (7.6) can be written as 

But since S(A) 

or 

where 

Sk (K) = ~% V%(K) 

ek(P) A,a S%~(AoAA~_I)O (p,)eiP. a 

makes sense, we then have 

A,a 
0x(p) ---+ [S(A0)S(A)S-I(A~)]X 0 (pt)eip'a 

A,a • 

S-I(A0)~0(p ) ---+ S(A)S-I(A0)~p(p')elP'a , 

Remembering that 

where 

(7.7) 

(7.8) 

, (7.9) 

(7.10) 

~(p) = ~ ~ 0k(p) 

%0 depends only on ~ and p, we see that (7.10) is equivalent to 

A,a S(A)~(pr)eip-a ,(p) ---+ , (7.11) 

,(p) = S-l(A0(~),(p))~p(p ) (7.12) 

Equation (7.11) has the required manifestly covariant transformation properties. 

+ takes the Note that in the manifestly covariant formulation the Lie algebra of P+ 

simple form 

P = p~ L 1 (p~ ~ ~-~--) + S (7.13) , =- - - _  p~ D~ ' 
~ i ~Pv ~P~ 

-> -> 

where S are the generators of S(A) and L = (L,K). 

Equation (7.13) shows that in the manifestly covariant formulation, L 

splits into the direct sum of an "orbital" part and a "spin" part S 

For the manifest covariance, we have, however, to pay a heavy price: 

i) The representation S(A) of SL(2,C) is arbitrary. 

2) We have introduced the unwanted subsidiary fields 

ek(p) ~ e(p) 

3) Since S(A) is, in general, not unitary, the inner product must be 

: changed accordingly~. 

Let us discuss these points in turn: 

i) The representation S~) in (7.10), which is usually called the 

spin group, is completely arbitrary. It is usually chosen to be a 
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finite-dimensional (non-unitary) representation of SL(2,C) and as 

we shall be considering infinite dimensional spin groups in the next 

section, let us concentrate on the finite dimensional case. Even for 

the finite-dimensional representations, there is much arbitrariness. 

All choices of S(A) will, of course, be the same from the point of 
+ 

view of the original CUIR of P+. But they will not necessarily be 

the same from other points of view. For example, an interaction 

which involves no derivatives for one choice of S(A) will have 

derivatives for another. Indeed for spin ml, the whole question of 

choosing the correct S(A) is very much open. [4,5] 

2) With regard to the subsidiary fields ~l(p), the point is that they 

should be eliminated in a manifestly covariant way. That this is 

possible for P+ + and finite-dimensional S(A) follows from the 

following two properties of SL(2,C): (a) The ~(p) for every ir- 

reducible finite-dimensional representation D(n,m) of SL(2,C) is 

of the form 

~i...~n; SI...Bm(p) , (7.14) 

where the B are 2-valued indices belonging to the fundamental 

2-dimensional representation, the & are similar 2-valued indices 

for the conjugate representation, and ~ is completely symmetric in 

the ~ and B, respectively [6]. (b) p~ is of the form p~, 

and hence if p~B is contracted with ~I" " " BI'"B (p) to remove 
"'an' m 

either all the undotted or dotted indices, the remaining indices carry 

an irreducible representation of SL(2,C). These two properties canbe 

used in an obvious way to project out, with polynomials in p, the 

parts of ~&l...~n " . B1 ...Bm(p) which are irreducible with respect 

+ 
to P+. The use of multispinors (7.14) is due originally to Fierz 

and Pauli [7]. 

3) With regard to the inner product, for finite dimensional-represen- 

tations of SL(2,C), which carry a parity operator, the situation is 

saved by the fact that although S(A) is not unitary, it is pseudo- 

unitary, i.e., there exists a metric q in S(A)-space such that 

St(X)~S(~) = ~ , ~ E A , 

[S(k),q] = 0 , k E K , (7.15) 

q = qf = q-I , 

where the adjoint is with respect to the V(K) 

just the spinspace part of the parity operator. 

product 

~I(P)~2 (p) = (41 (p)'q~2 (p)) 

space. In fact, q is 

Hence the inner 

(7.16) 
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a) 

is SL(2,C) invariant and Mackey's inner product can be replaced by 

; dM(P)~l(P)~2(p) , (7.17) 

+ and S (A) which is manifestly invariant i.e. invariant under P+ 

separately. Note that 

d~ (p)~(p)~ (p) , (7.18) 

is positive-definite on account of the subsidiary conditions. 

We conclude this chapter with some examples of manifestly covariant fields. 

On the orbit p2 = m 2, we choose a D(n,n) representation of SL(2,C). 

The corresponding field ~l'''~n" . Sl...~n(p) carries the spin j = O, i, 

2 .... n representations of P~-' We can eliminate the spins j = O, i, 2, 

... n-i by the manifestly covariant subsidiary conditions 

&IBI 
p ~l...~n ' Bl...Bn(p) = 0 (7.19) 

We usually see this field in its traceless symmetric tensor form 

~l...~n(p) with the subsidiary conditions p2 = m 2, 

b) On p2 = m 2 we choose a 

c) 

p @~l...~n(p) = 0 , (7.20) 

D(n,n+l) representation 

• (7.21) 
~l...~nBl...~nBn+l 

zGB@M1 MI'''Mn B(p) = 0 , (7.24) 

where the T are the Pauli and unit 2 x 2 matrices. 

Because the field @MI'''Mn ~(p) for a = 1,2 does not accommodate parity, 

it is customary to replace G = 1,2 by a Dirac index a = 1,2,3,4. The 

subsidiary conditions then become 

(y~p~ + m)~l " = 0 , T ~i" = 0 (7.25) 
• .~n ~ • .~n ~ 

and 

] 3 1 
J = L ]' 2 "'" n + ~ ' and we can eliminate the lower 

(7.22) 

(7.23) 

This carries the spins 

spins by the subsidiary condition 

&~t31 
• = 0 

P *~l...an ; Sl. • .BnBn+ 1 

Again, one can use vector notation and replace (7.21) by the field 

~ 1 "  " '~n a(p) 
with the subsidiary conditions 

p ~l...~n (p) = 0 , 
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d) 

These equations are known as the Rarita-Schwinger equations, [8] and des- 
1 

cribe spin j = n + ~. 

One can similarly use ~l'"an(P) where ~r = 1,2,3,4 are Dirac indices, 

with the subsidiary conditions 

( ~ + m)*e (p) = 0 r = i..n (7.26) Y (r)P~ ...~ , • 
1 n 

i 
These fields carry spin ~ (n + i) and the subsidiary conditions are known 

as the Bargmann-Wigner [9] equations. The Rarita-Schwinger and Bargmann- 

Wigner equations automatically include the orbit condition p2 = m2., 

A simpler and somewhat more general approach to the results of Section 7 will appear 

in the Proceedings of the 1970 Istanbul Nato Summer School in Mathematical Physics. 

8. INFINITE COMPONENT WAVE FUNCTIONS 

In the last section, we saw that any representation of the Lorentz spin 

group SL(2,C) whose restriction to the little group was unitary could be used to 

product a manifestly covariant unitary representation of P+ +. We then devoted our 

attention to the finite-dimensional (non-unitary) spin groups. In the literature 

also, attention has been devoted almost entirely to finite-dimensional spin groups. 

In this section we wish to discuss why this is so. 

In the first place, there are good historical precedents for using finite- 

dimensional spin groups, since the classical fields of Newton, Maxwell, Einstein, 

and Dirac are of this form (they use the finite-dimensional D(00), D(10) + D(01), 

D(I,I) and D(~) + D(~) representations of SL(2,C), respectively). 

Secondly, in particle physics, each of the particles one wishes to des- 

cribe is known empirically to have finite spin. Hence, it is natural to use a 

finite-dimensional spin group to describe it. 

On the other hand, one could legitimately ask the question: 

i) Since in the spin group a number of superfluous representations of 

the little group appear anyway and are eliminated by subsidiary con- 

ditions, why not use an infinite dimensional spin group plus infinite 

dimensional subsidiary conditions? 

* Note added in proof: In Step i of this chapter, if one wishes to avoid the ex- 
plicit decomposition of g into (A,a) one can do so by defining 0(p) 
according to the equation 

O(p) = 0(g) = W(g0g-l)f(g) , go = (A0'0) 

Also, if one is interested only in the final manifestly covariant form (7.11) and 

wishes to eliminate Step i, one can do so by letting f(g) ÷ I f%(g) = F(g), 

and defining ~(p) = ~(~) = S-I(A)e-i~A'aF(~). % 
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2) Since what we observe experimentally is, in any case, not just one 

particle but the infinite family of particles suggested by Figure 

5.1, why not go the whole hog and try to describe all of the 

particles, or at least large sub-families of them, by means of a 

single covariant field. This field, in order to carry an infinite 

number of UIR's of P+ would have to correspond to an infinite +, 

dimensional representation of SL(2,C). 

The possibility raised by Question 2) is even highly attractive. What we 

shall show, however, is that the attraction is deceptive and that infinite spin 

groups lead to difficulties which, at present at any rate, seem to be unsurmount- 

able. We shall do this first for two special models, and then present a general 

no-go theorem which has been proved recently. 

The difficulties come under two headings: 

a) Violation of the spectral condition p2 ~ 0 

b) Violation of locality for quantized fields. 

We first illustrate a) for two special models. 

The first model we consider dates back to 1932 and was proposed by 

Majorana [i] as a possibility for avoiding the "negative energy" states of Dirac's 

theory, which were thought to be an embarrassment at that time. Majorana proposed 
1 

that one use a wave function, with spin group corresponding to the (J0 = ~' c = 0) 
1 

or (J0 = O, c = ~) UIR of SL(2,C) and satisfying the subsidiary condition 

(r% - <)~(p) = 0 , (8.1) 

where K is a positive number and F is a p-independent SL(2,C) vector. (The 
i 

"Majorana representations" (J0 = ½' c = 0) and (J0 = 0, c = 7) are the only 

irreducible UR's of SL(2,C) to carry a vector operator.) 
+ 

The question then is: What UIR's of P+ does Majorana's ~(p) carry? 

To answer it, consider an orbit p2 = m 2 > 0, P0 > 0. Such an orbit 

would contain the vector ~ = (m000) whence from (8.1) 

(r0m - K)~(~) = 0 , (8.2) 

which is possible if and only if m is equal to one of the eigenvalues of K/F 0. 

1 
The eigenvalues of </F 0 turn out [2] to be <(J0 + ~ + n)-l' ~ = 0,1,2,3... Thus, 

Majorana's ~(p) carries the orbits p2 = m 2, m 
' P0 > 0. i 

J0+~+n 
Furthermore, the little group of such an orbit is SU(2) and, in the 

reduction of Majorana representations with respect to SU(2), each representation 

J = J0' J0 + 1 .... of SU(2) occurs once and only once, with 

1 1 
F0 = J + ~ = J0 +~+ n (8.3) 
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1 
Hence, each orbit m = K/F 0 = K/ (j + ~) carries exactly one UIR of p i, and we 

i 

have the mass-spin relationship 

K 
m - 1 (8.4) 

J+-- 
2 

Experimentally this mass-spin relationship is disastrous, but that is not a real 

problem as it could easily be modified. For example, by replacing < by Kp 2 in 

the subsidiary condition, it could be inverted, which would be very good experimen- 

tally. 

The real difficulty comes from the non-physical orbits p2 = m 2 < 0. 

These exist because they can be generated from vectors ~ = (000m) for which (8.1) 

is equivalent" to 

(r3m - K)~(~) = 0 , (8.5) 

and this equation has non-trivial solutions since F 3 is self-adjoint. (Note that 

in this connection the unitarity of the Majorana representation of SL(2,C) is 

actually a liability, since it implies that if £ is self-adjoint, then so is 
0 

F3; the above argument would have broken down for the finite-dimensional non-uni- 

tary Dirac representation of SL(2,C), for which Y0 is hermitian but Y3 is not.) 

The p2 < 0 orbits are undesirable but are not an immediate catastrophe 

for the Majorana equation since they could simply be ignored. The trouble is that, 

in practice, one is interested not merely in the free Majorana particles~ but also 

in their interactions. For example, if we try to introduce the EM interaction by 

means of the traditional minimum principle 

(rpp~ - K)~(p) = 0 ÷ (£ppp - ~)~(p) = rpA (k)~(p + k) , (8.6) 

where A is the vector potential and k the momentum transfer, one can show that 

for k ~ 0 the system makes transitions from p2 > 0 to p2 < 0 states, and simi- 

larly for any other interactions which are local in the Fourier transformed space. 

Now, of course, one might do better with some more complicated, non-local inter- 

action. But since the purpose of the manifestly covariant wavefunctions is to pro- 

vide a framework for introducing simple, local commutation relations and interaction~ 

this would defeat the purpose. For this reason, the p2 < 0 orbits are a real dif- 

ficulty in Majorana's theory. 

The second model we consider is a wavefunction ~(p) carrying a Dirac 

@ unitary spin representation and satisfying the subsidiary condition 

(y • p + M)~(p) = 0 , (8.7) 

where M is a spin invariant, e.g., 

M = m 0 + ml~pvEp~ , 

where m0, m I are constants and ~ and Epv are the generators of the Dirac 



and unitary representations, respectively. This equation was first studied by 

Abers Grodsky and Norton E3] (AGN) in 1965 and has since been used in current 

algebra theory. An analysis of the equation, similar to that described above for 

the Majorana equation, for the case in which the unitary representation is 

(J0' C = 0), shows that for the p2 > 0 orbits there is a mass-spin relationship 

i _ )2 m~[J(J + i) j0(j 0 + i) ¼]} , (8.8) ±m = m l(J + 7) ±{(m 0 m I + - - 

which can be drawn graphically as in Figure 8.1. The rising curve for m > 0 fits 

well with the observed particles (and with Regge theory, which we shall be des- 

cribing later). However, the falling curve for m > 0 has no satisfactory inter- 

pretation. (The m < 0 curves can be identified with anti-particles.) 

FIGURE 8.1. P~ASS-SPIN RELATIONSHIP FOR AGN EQUATION 

Leaving aside the interpretation of the falling curve, we ask again 

whether ~(p) carries unphysical p2 < 0 orbits. The answer is yes. The proof 

is perhaps worth giving. 

Proof. Write the subsidiary condition (8.7) in the form 

(~ + 
• p + BM)~(p) = p0~(p) , (8.9) 

where ~ and B are the self-adjoint Dirac matrices y0 ~ and Y0" respectively. 
÷ 

Now BM must be self-adjoint to provide a mass spectrum in the rest frame p = 0, 
÷ ÷ ÷ ÷ 

and ~ • p is self-adjoint and bounded. Hence, for each p, ~ • p + BM is self- 
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adjoint. Hence, (8.9) may be regarded as an eigenvalue equation for the self- 

adjoint operator ~ • p + SM, i.e., P0 is any point in the spectrum of ~ • p 

+ ~M. 

since P0 

2 ~ p2. The condition that there be no p2 < 0 orbits is that P0 

i s  any  p o i n t  i n  t h e  s p e c t r u m  o f  a • p + BM, t h i s  i m p l i e s  t h a t  

or, since ~2 = i, 

But 

• p + ~M)2 ~ p2 , (8.10) 

-> -> 

p " [~,BM]+ + (BM) 2 > 0 

But since p 

if 

[~,~M]+ = o , 

which on account of the anti-commutativity of ~ and 

It,M] = 0 

But since 

(8.11) 

varies over the whole Euclidean 3-space, this is possible if and only 

( INk) = ~, ~ x O~ ~, 

this means that p2 ~ 0 is possible if and only if 

B, reduces to 

(8.12) 

(8.13) 

[o,M] = 0 , (8.14) 

where ~(p) 

into 

~(x) = ~ d~(p){eip'Xa(p)~(p) + e-ip'xbt(p)~(p)} , (8.16) 

transforms like ~(p). The locality difficulties can be subdivided 

~(p) and a(p) a quantized field in the standard way, etc., and construct from 

namely, 

i.e., if and only if M is a Dirac invariant, in which case equation (8.7) can be 

reduced to a direct sum of Dirac equations with M = constant. 

Thus, the AGN equation, like the Majorana, is either trivial or contains 

unphysical orbits #~ < 0 and, once again, it can be checked that local inter- 

actions couple the physical orbits to unphysical ones. 

Note that the p2 < 0 difficulties arise whether or not the wavefunc- 

tion ~(p) is quantized. If the field is quantized, then there are the further 

difficulties (b) concerning locality. To illustrate the point, consider an infin- 

ite component wavefunction ~(p) which has not yet been quantized, introduce a 

set of creation and destruction operators for particles satisfying Bose-Einstein or 

Fermi-Dirac statistics on a Hilbert space ~, i.e., satisfying 

[a(p),a+(p r)]± = d(p _ P') , (8.15) 
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a) locality proper 

b) spin-statistics 

c) CPT-invariance 

d) analyticity. 

Locality proper is the question whether the commutator 

[ ~ ( x ) , ~ ( x ' ) ]  , (8.17) 

vanishes for (x - xP)2 < 0. In the finite-dimensional case, the commutator does 

vanish for suitable choice of ± in (8.16). In the infinite dimensional case, 

however, in general no choice of sign in (8.15) and no simple modification will 

make (8.17) vanish. The possibilities for evading this difficulty have been inves- 

tigated in some detail in the recent literature E4], but with no particularly 

attractive solution. 

The spin-statistics difficulty is an extension of the problem: In the 

finite-dimensional cases, (8.17) vanishes for ± in (8.15), but the choice of ± 

is not arbitrary. It must be (+) (Fermi-Dirac statistics) if the field carries 

half-odd-integer spin and (-) (Bose-Einstein statistics) if the field carries 

integer spin, a correlation which is verified experimentally and is regarded as one 

of the most fundamental results of quantum field theory. But in the infinite 

dimensional case, since (8.17) does not vanish for either choice of sign, the spin- 

statistics correlation gets lost. (In the cases that (8.17) can be made to vanish, 

it can be made to vanish for either choice of sign, so the correlation becomes, at 

best, arbitrary.) 

The other two difficulties, CPT invariance and analyticity, are special 

cases of the general result that for finite-dimensional spin groups, the Lorentz 

transformations can be continued to any complex values of the parameters whereas 

for infinite dimensional spin representations, this is not the case. (Infinite- 

dimensional representations of SL(2,C) have dense sets of analytic vectors, but 

no entire vectors.) As a result, the EM form factors and the scattering matrix 

S have different analytic properties (as functions of the inner products of the 

momenta) in the finite and infinite-dimensional cases, and the analytic properties 

in the infinite-dimensional case do not seem to be the most desirable. 

All models so far constructed using infinite-dimensional representations 

of SL(2,C) have been found to be unsatisfactory in at least some of the above 

ways. This suggests that it might be possible to rule out infinite component 

fields on quite general grounds and, thus, restrict oneself to the finite- 

dimensional spin representations without any real loss in generality. 

One such general set of conditions was found recently by Streater and 

Grodsky [5]. Their argument is as follows: 
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Let ~(o,x) be an infinite component field operating on a physical 

Hilbert space X with vacuum state h, and carrying a continuous bounded irreduc- 

ible infinite dimensional spin group, SX. Rather than specify precisely how 

~(o,x) is quantized, they assume only that it has been quantized in such a way 

that the vacuum expectation value 

F(~,~',x,x I) = (0,~¢(o,x)~(~1,xg0) , (8.18) 

with unique vacuum state 0), has the following properties: 

a) Translational invariance: F.(o,or,x,x t) = F(~,~r,x - x r) 

b) Reasonable spectrum: ~(~,o',p) = 0 for p2 < 0, where ~ denotes 

Fourier transform 

c) Causality (locality): F(o,orx) = 0 for x 2 < 0 

d) Temperedness: F(o,o~,x) is a tempered distribution in x for all 

0 , 0  w 

e) F i n i t e  degeneracy o f  the l owes t  i s o l a t e d  m a s s - h y p e r b o l o i d .  

These are a l l  assumpt ions t h a t  are  made n o r m a l l y  i n  quantum f i e l d  t h e o r y .  

The temperedness assumption is a strengthening of locality (it implies that 

f(o,o',x) is not too singular on the light cone) and, although this assumption 

can be relaxed, it cannot be relaxed very much if the correct analyticity proper- 

ties are to be obtained for the S-matrix. 

Grodsky and Streater now claim that these assumptions are incompatible. 

To prove this, they make use of a theorem due to Bogoliubov and Vladimirov [6] 

which states that if f(x) is a tempered distribution with f(x) = 0 for x 2 < 0 

and the Fourier transform ~(p) = 0 for p2 < 0, then ~(p) is a finite covarian~ 

i.e., ~(p) has the representation 

n n 
~(P) =[!]C[n]P00...p33~ dm2P[n](m2)~(P2 - m 2) , (8.19) 

where the sum is finite, [n] = [nln2n3n0] and Pin] is tempered. Applying this 

theorem to F(o,or,x), which obviously satisfies the conditions, and smearing with 

a test function f(x)~(p) with support only in the neighborhood of the lowest 

mass-hyperboloid in p-space, one obtains 

n n 
(0,~#(~,f)~(or,f)0) = Const. ~(pr _ p) ~ C[n](~,~,)p00...p33 

In] . 

But since the spin-representation is assumed to be continuous, C[n](G,or ) is con- 
L J 

tinuous in o and or. Hence, C[nq(O,or ) is the matrix element of a bounded 

linear operator in spin space V. Hence, for fixed ~r, C[,](o,or ) may be re- 

garded as a vector in V and since there are only a finite number of C[n], the 

linear span 

~]C[n ] • n3 (~,~ ,)p~0 "'P3 ' (8.20) 
[ 
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for all p0...p3 and fixed o I, is finite dimensional. It follows that the expres- 

sion (8.20) vanishes for an infinite number of values of o. Referring back to 

(8.18), we see that there are, therefore, an infinite number of states ~(o,f)0) 

in ~, orthogonal to the state ~(~rf)O) for all p and ~t. Furthermore, since 

the spin group is irreducible, ~(o,f)0) vanishes if and only if ~(ot,f)0) van- 

ishes. It follows that the orthogonal states are not zero. Thus, the lowest mass- 

hyperboloid is infinitely degenerate. This is the result of Grodsky and Streater. 

A corollary to their result, which has been pointed out by Grodsky and 

Streater, is that since any field ~(x) which is obtained by quantizing in the 

usual manner (8.16), a wavefunction ~ (p) whose support is in p2 > 0 and whose 

SL(2,C)-space projection on P0 > 0 is polynomially bounded in p, will be auto- 

matically tempered and causal, it must belong to a finite dimensional represen- 

tation of SL(2,C). 

What does this result mean physically? It means that if we use infinite- 

dimensional representations of SL(2,C) one of two things must happen. Either the 

subsidiary conditions imposed on the wavefunctions are too weak, in which case 

there is an infinite number of spin states on each mass-hyperboloid (in gross 

contradiction to experiment), or else the subsidiary conditions are too strong (as 

in the Majorana and AGN cases discussed above). In that case, there is no spin 

degeneracy but the wavefunction cannot be quantized so as to describe a tempered 

local field with p2 > 0. 

Note that the temperedness of the distribution plays a critical role in 

the above arguments. It leads directly to the finiteness of the expansion (8.19), 

which leads in turn to the finiteness of the linear span (8.20) and hence to the 

infiniteness of the orthogonal complement. (Note added in proof: a generalization 

of the GS theorem which allows more general distributions, including Jaffe distri- 

butions, is now available [7].) 

Perhaps the best way to summarize the results of this chapter is to say 

that while there are no group-theoretical reasons for excluding infinite spin 

groups, there appear to be other reasons to exclude them, namely, mass-spectrum, 

locality, and finite-spin degeneracy considerations, Thus, one can return, (with 

some relief!) to the finite dimensional spin representations. 

9. LITTLE GROUP DECOMPOSITION OF THE SCATTERING AMPLITUDE 

+ and its In the last couple of chapters we saw how the Poincar~ group P+ 

little group for p2 ~ 0 could be used to characterize relativistic particles. In 

+ and its little group can be this chapter I should like to mention briefly how P+ 

used to analyze scattering processes. One of the interesting features will be that, 

in spite of the spectral condition, the SU(I,I) little group for the orbits 

p2 < 0 will also be relevant. 
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To put the role of the little groups into perspective, we consider the 

scattering amplitude (Figure 9.1) for 2-particles scattering into 2 particles (not 

necessarily the same), e.g. ~N ÷ EK. The probability of the particles 1 and 2 

P2 P4 N 

K 

FIGURE 9.1. SCATTERING IN S-CHANNEL 

with momenta Pl and P2 scattering into particles 3 and 4 with momenta P3 and 

P4 is given by 

where T 

amplitude 

a function of two invariant variables, s and t 

(p3P4, T plP2 ) = F(s,t) 

P(plP2 + p3p4 ) = l(p3P4 , T plP2)l 2 , (9.1) 

is the scattering matrix. Because of Poincar4 invariance, the scattering 

(pSp4 , T plP2 ) is (apart from some kinematical factors, which we omit) 

, (9.2) 

where 

s = (Pl + P2 )2 ' t = (Pl - P3 )2 (9.3) 

For symmetry we can also define u = (Pl - P4 )2' but u is not an independent 
4 

variable. In fact u + s + t = ~ m~, where m are the masses. (In general, the 
~=i 

scattering amplitude for 2 particles into n-2 particles depends on 3n - i0 invar- 

iant variables, the 3n variables being the n 3-momenta of the n particles 

involved, the ten constraints coming from the conservation of the ten generators of 

P:.) If the four particles involved in the scattering of Figure 9.1 are spinless 

(as we shall assume for simplicity) then F is a scalar function. 
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Now consider the process of Figure 9.2, namely the scattering of particles 

3 

/ p2 \p4 

FIGURE 9.2. 

Z 

SCATTERING IN S-CHANNEL 

i and 3 with momenta Pl and P3 into particles 2 and 4 with momenta P2 and P4 

(e.g. ~K ÷ NE). The probability for this scattering is given by 

where 

and 

P(plP3 + p2p4) = I (p2p4,T plP3)l 2 , (9.4) 

(pZp4,T plP3 ) = F'(s',t') (9.5) 

s' = (Pl - P2 )2 ' t' = (Pl + P3 )2 (9.6) 

One of the most basic and fruitful ideas to emerge in particle physics during the 

fifties was that the two scattering amplitudes F(s,t) and F'(s',t') are not only 

related, but are in fact the same analytic function [i]. That is to say, if one 

considered s' to be the analytic continuation of s = (Pl + P2 )2 to P2 ÷ -P2 

and t' the analytic continuation of t = (Pl - P3 )2 to P3 ÷ -P3' then 

F(s,t) = F'(s,t) (9.7) 

The process of Figure 9.1, for which s > O, is called the s-channel and that of 

Figure 9.2, for which t > 0, the t-channel. The hypothesis (9.7) is based upon an 

analysis of Feynman diagrams and of axiomatic field theory [2]. It is related to 

the spectral condition, causality and the temperedness of the field-distributions. 

Returning to the s-channel, an alternative pair of variables to (s,t) 

are (s, cos 0), 

F(s,t) = f(s, cos 6) , (9.8) 
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where e is the angle between the three-momenta and P2 in the center of 

mass frame of Pl and P2 (Figure 9.3). The relationship between t and cos 9 

is 

S(t - u) + (m~ _ m4)(m12 2 _ ml ) 
cos e = (9.9) 

1 
{Is - (m I - m2)2][s - (m I + m2)2][s - (m 3 - m4)2][s - (m 3 + m4)2]}~ 

This looks complicated unless the masses are equal. However, the important point 

is that cos O is linear in t. In the analyses of scattering data it is usual [3] 

to make a "partial wave decomposition" of f(s, cos 0) i.e., to expand f(s, cos 0) 

in terms of Legendre functions 

f(s, cos 8) = [ (2£ + l)a£(s)Pz(cos 8) (9.10) 

FIGURE 9.3. 

Pl P3 

SCATTERING IN CM SYSTEM IN S-CHANNEL IN 3-SPACE 

This is done for two reasons. (a) The unitary condition, which says that the 

total probability for scattering is unity, is diagonal in the P% basis. In fact, 

it reads 

a~(s) = sin ~(s) exp i6~(s) 

where ~(s) is real, and a scattering analysis is normally an analysis of the 

"phase-shifts" ~%(s). (b) For low-energies, s ~ (m I + m2)2, the low values of 

~(~ = 0,1,2) dominate. (One can see this intuitively by noting that for low 

energy we have low relative angular momentum of the two particles, and as we shall 

see later, ~ is the relative angular momentum.) 

Regge Theory 

One of the problems of scattering theory was how to combine the analyti- 

city (9.7) with the expansion (9.10). As we go from the s channel, where t < 0 

and Icose I ~ i, to the t-channel, where t > (m I + m2)2 and Icos 9 1 ~ i, the 

expansion (9.10) diverges. To overcome this difficulty, Regge [4] showed that, at 
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least for a class of non-relativistic potential scattering theories, the way to con- 

tinue cos 0 was to express the expansion (9.10) in integral form. First, one 

writes 

i I (2~ + l)d£ aZ(s)P£(cos G) f(s, cos 8) = 2--~i C sin w£ , (9. ii) 

where C is the contour of Figure 9.4, then divides the integrand into + and - 

signature parts 

+ I J [ (2£ + l)dZ ai(s)[p (cos e) ± Pi(-cos f-(s, cos 0) = 2-~ C sin ~ 0)] (9.12) 

which have independent physical properties, and then, because each converges sepa- 

rately on the circle at infinity, opens up the contour to L, which is the furthest 

iA I 
L 

A 

I| 

C 
< 

1 2 3 4 > Z > 

FIGURE 9.4. THE CONTOURS OF C AND L 

line to the left allowed by the Pz(cos O). On the way, one picks up the poles of 
+ 

a~(s), which for the class of potentials considered is a meromorphic function of 
+ 

to the right of L, and obtains (simplifying for clarity to the case when a~(s) 

has only one pole to the right of L) 

+ B±(s) [P (cos 8) + P (-cos 8)] f-(s, cos 8) = (2~±(s) + i) + + _ 
sin ~-(s) a-(s) e±(s) 

i I (2~ + l)d£ ± 
+ ~ L sin ~ a£(s)[Pz(cos e) 

± P~(-cos e)] , (9.13) 

+ ± 
where a-(s) is the position of the pole, and ~i(s) the residue of a~(s) at 

the pole. The expression (9.13) can now be continued in cos 8 into the t-channel, 

and indeed to t N cos 8 ÷ ~. 

~fhat is the relevance of all this to relativistic scattering? The point 

is that one now makes the hypothesis [5] that although relativistic scattering may 

be quite different from non-relativistic scattering, it retains at least one fea- 

ture of it, namely, the fact that aZ(s) is meromorphic to the right of L. 
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This is quite an assumption, and indeed, has had to be modified. But it 

is at least within the general philosophy that nature is simple if looked at the 

right way--and here the postulate is that the right way to look at f(s, cos 0) is 

from the point of view of its properties in the %-plane to the right of L! In any 

case, let us investigate [6] the physical implications of (9.13). 

The physical implications of (9.13) are best seen by noting that the pole 

~(s) is not fixed, but varies with s, and drawing the path of its real part as a 

function of s (Figure 9.5). There is good reason to believe, as we shall see in 

5 

4 ̧  

R~ ~(s~i 

FIGURE 9.5. REGGE TRAJECTORIES 

a moment, that its path is as in this figure. 

two-fold: 

(i) for t ~ cos e ÷ ~, s < 0, we have from (9.13) 

The physical implications are then 

+ )~±(s) + 
f-(s, cos O) + 2a-(s) + 1 Bi(s)(cos 0 

+ 

sin ~- (s) 

This means that in the t-channel, as t ÷ ~, 

+ ± 
f±(s,t) ÷ A-(s)t ~ (s) 

(9.14) 

, (9.15) 

i.e., we have an explicit statement about the behavior of the 

scattering amplitude as a function of the energy (t) for high 

energy. This is a result which could not be obtained experimentally 

and was not obtained theoretically before the advent of Regge 

theory. What was known theoretically before was that, because of 

the unitary condition for T, f(s,t) was bounded, and probably 

decreased, as a function of t for t ÷ ~. This is why R1 ~-+(s) 

is assumed to be less than 1 for s < 0 in Figure 9.5. But the 

explicit t-dependence was first obtained in Regge theory, and is 

clearly controlled by the Regge-pole at ~ = ~+(s). 
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(ii) 
+ + + 

If Im a-(s) is small, then when RI a-(s) = integer, i/sin ~-(s) 

is large. Hence, remembering the factor Pa-(s) ÷ (cos 6) i Pei(s) 

+ 
(-cos 0), which is small for R1 a-(s) = even/odd integer, we see 

+ + 
that f-(s, cos 0) is large for RI a-(s) = even/odd integer. 

Returning to the s-channel, s > (m I + m2)2 , we see that the s- 

channel amplitude therefore becomes large, or resonates, whenever 
+ 

RI a-(s) = even/odd integer. Furthermore, a simple analysis of how 

the amplitude resonates near ~±(s) = even/odd integer, shows that 

it behaves as if it were the contribution to the s-channel scattering 

of an unstable bound state particle or resonance of mass = ~ss, 

spin = R1 ~-+(s), and life time =[Im ~+-(s)] -I, Figure 9.5. This 
+ 

result clearly suggests that the R1 ~-(s) = even/odd integer points 

on the Regge-trajectory of Figure 9.5 should be interpreted as un- 

stable particles of increasing mass and spin. And indeed, if one 

examines Figure 5.1a, one sees that the baryons for which it can be 

checked do indeed lie on Regge trajectories. The mesons do not have 

sufficiently well-determined spins and parities for a direct check 

but other considerations support the conjecture that they also lie on 

Regge trajectories. A typical conjecture [ii] is shown in Figure 

9.6. 

67 _- U ( 2 ~ .  a3 

T(2200)~ 1 1 .-I bL 

s (193 1uJ~ 
4 --~ 

J R 1 (1660) I " I" ~ 

A (1286) ~" " ~ 0  
2-- ~2 ~ 1  ~ ( 1 7 4 0 ) ~  ) 

i- 1.0 v 2.0 3.0 4.0 5 0 6.0 7 

t(GeV) 2 

FIGURE 9.6. 
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The most beautiful part of the results (i) and (ii) lies in their combina- 

tion. By combining them we see that the resonant stateS, or unstable particles, 

which are produced in the s-channel, dictate the high-energy behavior in the t- 

channel (and, of course, conversely). This unexpected relationship between these 

hitherto unconnected phenomena is a result that is almost certain to survive, no 

matter how the details of the Regge theory may have been modified. 

A further beauty of the result is that it simultaneously solves a long- 

standing puzzle in scattering theory, namely, that if one were to continue the con- 

tribution to F(s,t) of a particle with a fixed high spin (therefore high powers of 

cos 8, therefore high powers of t) from the s-channel to the t-channel, this con- 

tribution alone would violate the unitary condition for large t. The Regge result 
+ 

solves the problem by showing that the spin is really R1 a-(s), and hence is not 

fixed, but varies with s and becomes less than 1 for s < 0 in the t-channel. 

After the above rather lengthy description of the background, let us turn 

at last to the little groups. 

Consider first the two-particle state IplP2 > in the s-channel. This 

state can equally well be described by IP,q> where P = Pl + P2' q = Pl - P2" 

2 = m~, 2 = m 2 Since Pl P2 2' if we consider P as 4 independent variables there are 

two constraints on q. As a result, we can write IP,q> as IP,R(OI¢I)q0 > = Is 

= p2, p, R(81¢l)q0> ' where q0 is a fixed vector and R(OI¢ I) is a rotation be- 

longing to the little group SO(3) of P. (The angle (@i~i) is the angle between 

a fixed z-axis and the Pl - P2 line in the 3-dimensional diagram of Figure 9.3.) 

In a similar way the state Ip3p4 > can be written as Is, = p,2, ~,, R(02¢2)q0> ' 

where P' = P3 + P4, R(62~2) is an element of the little group S0(3) of P', and 

(@2~2) is the angle between the fixed z-axis and q~ = P3 - P4" However, from 

energy momentum conservation we have 

' ~ P' (9.16) S = S  , = 

Hence R(81¢I) and R(@2¢ 2) are elements of the same little group, namely that of 

P = P'. For the scattering amplitude, which is Pofncar~, and therefore rotation- 

ally invariant, we then have 

<p3P41TlplP2> : <s,P,R(O2¢2)q01TIs,P,R(81*I)q0> 

= <s,~,q01rls,P,R-l(e2¢2)R(61¢l)q0 > 

: <s,P,q01Tls,P,R(o3,~3)q£ , (9.17) 

where (83,¢3) = 8 is the angle between the lines Pl" - P2 and P2 - P4 in 

Figure 9.3. Hence 

f(s, cos 8) = <p3P41rlplP2 > = <s,~,q01rls,P,R(8)q0> (9.18) 
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But since R(e) is an element of the little group S0(3) of P, this means that 

as a function of 0, f(s, cos e) is a function over the $ittle group S0(3). 

Hence the expansion 

f(s, cos 0) = ~ (2~ + l)a~(s)p~(cos 6) , (9.19) 

emerges as nothing but the expansion of the scattering amplitude as a function over 

the little group SO(3) in terms of the irreducible representations of SO(d) [7]. 

Once it is realized that the partial wave decomposition (9.19) which is 

restricted to the part of the s - t plane which belongs to the s-channel, s > 0, 

is nothing but an expansion over the little group S0(3) of P = Pl + P2' a method 

for extending the expansion to other channels immediately suggests itself, namely, 

to make a little group expansion in the same variable in the other channel also. 

In the other channel, s = p2 < 0, since P = Pl + P2 with p~ < 0. Hence the 

little group is S0(2,1). 

However, there is a snag. The snag is that whereas in the s-channel the 

unitary condition guarantees that f(s, cos 0) will be square integrable over the 

little group SO(3), in the other channels there is no guarantee that it will be 

square-integrable over S0(2,1), and in gemeral it is not. 

At this point, however, one can return to Regge theory. Looking at the 

Regge expansion (9.13) one sees at once that the background integral is nothing but 

the expansion of the scattering amplitude in terms of the principal series of 

S0(2,1). Thus what Regge theory says is that, although the full scattering ampli- 

tude is not square-integrable over S0(2,1), when one removes the contribution of 

the Regge poles, the remainder i__sssquare-integrable. Thus equation (9.13) can be 

looked at from two points of view. From the Regge, or physical, point of view, the 

pole term is the important term and the integral just an incidental background term. 

From the group theoretical point of view, the integral is the interesting group ex- 

pansion term, and the pole term just an incidental subtraction term to make the 

integral converge. 

One may ask why only the principal series appears in the Regge formula. 

First there is a theorem due to Bargmann [8] which states that any square-integra- 

ble function over SO(2,1) can be expanded in terms of the principal series and 
1 

the discrete series with g > - ~. This theorem explains why the supplementary, 
1 

D±( -- ~) representations do not appear. Secondly, the discrete series trivial and 
1 

with g > - ~ do not appear in our case because we have left out the spin of the 

particles [9]. 

In conclusion, I should mention that the further generalization to an ex- 

pansion of f(s, cos 6) in terms of the Lorentz group S0(3,1) (to include SO(2,1) 

for t N cos es, and SO(3) for s) has been considered. The S0(3,1) expansion 

becomes particularly interesting and illuminating at the point s = 0 in the 
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continuation of s from the s to the t-channel, because we can choose ~ = 0 as 

our reference frame, and then, for s = 0, P = 0, in which case S0(3,1) is itself 

the little group. The fact that at s = 0 the little group expands to S0(3,1) 

has physical consequences, notably that to every Regge trajectory crossing the line 

s = 0 in Figure 9.5 there is a family of trajectories with values ~(0), e(0) - i, 

~(0) - 2 .... corresponding to the representations J = J0' J0 + i, ... of S0(3) 

occurring in an irreducible representation of S0(3,1) [i0]. 

i0. INTERNAL SYMMETRIES 

In the previous three chapters, we have considered the space time pro- 

perties of relativistic Hilbert space in general, and of 1-particle states in 

particular. In the present lecture, we should like to consider some properties of 

the particles which are independent of space-time. Because they are independent of 

space-time, these properties, or symmetries, are called internal symmetries [i]. 

The first internal symmetries came to light when the structure of the 

atomic nucleus began to be investigated in the early thirties. The nucleus was 

found to consist of protons and neutrons (each about 2,000 times the mass of the 

electron, i.e., each about 10 -25 grs.) and investigation of the forces that held 

them together (the nuclear forces) showed that 

i) they were much stronger than the electromagnetic forces (they are 

the strong forces mentioned in Section 5) and 

2) they were charge-independent. That is to say, apart from statistics, 

they did not distinguish between protons and neutrons--the force 

between two protons was the same as the force between two neutrons or 

the force between a proton and neutron. (This is in marked contrast 

to the electromagnetic forces which distinguish clearly between the 

proton and neutron, since the proton is charged and the neutron is 

not.) 

To formulate charge-independence, it was convenient to introduce on the 

physical Hilbert space, an abstract invariance group. The group used was the 

SU(2) group (isotopic spin group) and the idea was to assign the proton and the 

neutron, respectively, to two orthogonal vectors IP) and In) in the 2-dimen- 

sional representation of SU(2) and then to demand the invariance of the nuclear 

Hamiltonian H N under the SU(2) group 

[SU(2),H N] = 0 (i0.i) 
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The generator I of SU(2) for which 

1 -i 
I[p)= ~ IP) , I[n) = --~ In) , (10.2) 

is called by convention 13 or the third component of isospin. For many-nucleon 

states (nucleon = proton, neutron), one uses tensor products of the states [p), 

In) in conjunction with (10.1). 

The mathematics of the isospin group is the same as for the ordinary 

electron spin group SU(2), but the physics is quite different. First, every vec- 

tor in the ordinary 2-dimensional spin space is realizable in nature, but only [p) 

and In) in isotopic spin space are realizable. (Nobody has ever succeeded in 

constructing a state which is a linear superposition alp) + b[n)ab # 0.) Secondly, 

the operators in spin space transform non-trivially under space rotations, whereas 

the operators in isospace are independent of space-time. 

Later in the investigation of nuclear structure, it was found that the 

nuclear forces between protons and neutrons were mediated by T-mesons, of which 

there are three, T 0 and T ±, the index referring to the charge. It turned out 

that the T's could be incorporated into the isospin scheme by assigning them to 

the 3-dimensional representation of SU(2) with 

13 IT ±) = ± [~±) I3[T0) = 0 (10.3) 

Once higher (relativistic) energies became available, and the bombardment 

of nuclei with protons and neutrons of high energy resulted in the production of 
i 

new particles, it was found that the forces producing the new particles were 

a) of the same order of strength as the nuclear forces 

b) still charge independent. 

These forces are, therefore, called generically "strong" forces, and the associated 

Hamilton±an the strong Hamilton±an H . 
s 

From the charge independence of the strong interactions and the assign- 

ment of the creating particles (p,n) and (~±0) denoted by N and ~, respec- 

tively, to irreducible representations of SU(2), it follows that the created 

particles should also belong to irreducible representations of SU(2). And this 
+ + 

turns out to be the case. In fact, the metastable hadrons K 0, ~0, q, A, E ±0, E 0, 

and ~- are found to belong to the 2,2,1,1,3,2 and 1-dimensional representations 

of SU(2) and, hence, are denoted by K, K, n, A, E, E, and g, respectively. 

For the unstable hadrons, the same results are found. All can be 

assigned to irreducible representations of SU(2) with 

[SU(2),Hs] = 0 , (10.4) 

and, indeed, the number of unstable hadrons is now so large that one no longer 

refers to them individually but refers only to the isospin multiplets to which they 

belong. This method of referrin~ to them has been anticipated in Table 5, in which 
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i (the total isospin) labels the representation of SU(2) to which the particles 

belong (dimension = 2I + i). Note that all particles in the same SU(2) multiplet 

have the same mass (up to electromagnetic and weak interaction corrections) and the 

same spin, indeed have the same space-time properties in general. This is because 

the internal invariance group 

pendent, i.e., 

[SU(2),P:] = 0 

In the production of new particles from 

SU(2) and the space-time Poincar~ group are inde- 

(10.5) 

N,N,~, a new invariance law 

became evident, namely, that when new particles are produced from N,N and 

they come only in certain combinations. The simplest description of the allowed 

combinations is obtained by introducing a new operator Y on ~, assigning the 

SU(2) multiplets to integer eigenvalues of Y and demanding that 

[Y,Hs ] = 0 , (10.6) 

i.e., that Y be conserved in the strong interactions. Because of its analogy to 

the electric charge, Q, which takes integer values on the particle states and is 

conserved in interactions, Y is called the hypercharge. Note, however, that 

whereas Q is conserved in all interactions, Y (like SU(2)) is conserved only 

in the strong ones. The hypercharges of ~,K,K,~ and N,A,~,H,~ are (0,I,-i,0) 

and (1,0,0,-1,-2), respectively. In general, we have also the relation 

1 
Q = 13 + ~ Y , (10.7) 

which was first discovered by Gell-Mann and Nishijima. 

The strong interactions are found to be invariant, therefore, under 

SU(2) and Y, and hence under the group SU(2) x U(1) where U(1) is generated 

by Y. But, as Louis Michel has pointed out, the fact that Q in (10.7) is inte- 

ger, means that only those representations of SU(2) x U(1) occur, for which 

Y = D (modulo 2), where D is the dimension of the SU(2) representation. Since 

such representations of SU(2) x U(1) are exactly those which are representations 

of U(2), it follows that we can replace the invariance under SU(2) x U(1) by 

invariance under U(2). 

A glance at Figure 5.1 will show that U(2) is the maximal group with the 

property [U(2),P:] = 0, up to electromagnetic and weak corrections, since any 
i 

other transformations among the particles will not commute with the mass and spin. 

In spite of this, Figure 5.1 does suggest that one could go beyond U(2). 

The reason is that the different U(2) multiplets seem to fall into sets which, 

while they do not have the same mass, do have the same spin and have approximately 

the same mass. Examples of such sets are (~, K, K, n) and (N, A, E, Z). For 
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this reason, it has been proposed that U(2) be enlarged to a group SU(3). The 

original choice SU(3) rested primarily on two factors: 

i) SU(3) allows two and only two commuting generators, and two and only 

two additive operators (13 and Y) are necessary to label the 

particles. 

2) SU(3) has an irreducible representation (the 8-dimensional adjoint 

representation) which can accommodate the two sets of eight particles 

(~, K, K, ~) and (N, A, E, E) with the correct I, 13, and Y 

values. (I(I + l) = 121 + 122 + I~) See Figure 5.1. 

(Actually, the n was not known experimentally at the time SU(3) was proposed 

and was predicted by SU(3).) Having adopted SU(3), one tries to assign the othe$ 

unstable, particles to SU(3) multiplets. Success has already been achieved with 

the JP 3+ = ~ multiplet (N*, E* ~ Y*, ~*, ~) which is assigned to the 10-dimen- 

sional representation (decimet) of SU(3) (Figure 5.1) and the JP 3+ 5+ - = ~ ,~ ,i , and 

2 + multiplets which are assigned to the 8-dimensional representation (octet). The 

higher JP (spin-parity) multiplets look equally promising. The existence of ~, 

like ~, was actually predicted by the SU(3) assignment. 

Thus, for particle assisnmentsj SU(3) turns out to be as successful as 

the exact invariance group U(2) had been before it. Unlike U(2), however, SU(3) 

is not an invariance group, i.e., 

[x,H s] ~ 0 , (10.8) 

for those generators X of SU(3) which do not generate transformations within 

U(2). Indeed, if (10.8) were zero, SU(3) transformations would commute with the 

mass-operator and all the particles assigned to an SU(3) multiplet would have to 

have the same mass, which is manifestly not the case. 

One might then ask: Of what use is SU(3) apart from classifying and 

predicting particles? The answer is that although SU(3) is not an invariance 

group, it is approximately an invariance group, and by stating how certain oper- 

ators transform with respect to it, one can obtain physical predictions, correct to 

within the approximation (N20%). 

The operators whose transformation properties are of most interest are 

i) the Hamiltonian H 
s 

2) the mass operator M 

3) the electric current j~(x) 

4) the weak current of the hadrons 3~(x) 

The transformation properties of these operators are assigned on physical grounds 

and amount to a statement about the tensor character of the operators. The physi- 

cal predictions are then extracted by using the WE theorem. Let us consider the 

operators i) to 4) briefly: 
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i) The Hamiltonians: one usually assumes that 

2) 

H = H (0)  + H (1)  , 
S S S 

where H (0) is SU(3) invariant and about five times as large as 
S 

H ( 1 ) .  Hence ,  t o  w i t h i n  20%, H can be  r e g a r d e d  as  SU(3) i n v a r J -  
S S 

ant. This allows us to obtain 20% estimates for the relations 

between strong decay processes such as 

N* ÷ Nw 

÷ AT 

~ ÷  'IT 

for example, 

N* ÷ N~ ,. p_ (N*'HsN~) -- O (N*'H~ 0)N~) 

~* + AT o (Z*,HsA~) o (E,,H(0)N~) 
S 

p N* ~ , ~ 0 

Cg, ~ s 2 0J 
,H(0) l -  ? 

1088 
p CN* N ~ 

d CI 0 8 8 
E*A~ 

(10.9) 

where 0, a are kinematical phase-space factors, depending only on 

the masses (see Equation (10.15) below), the C's are Clebsch-Gordan 

13- .(0)l coefficients, and L~ '~s ~ vj is a WE reduced matrix element. In a 

similar way, one can relate scattering processes such as 

~N ~ ~N 

÷ KZ 

÷KA 

[N÷~Z 

m~ 

etc., for particles (~,K,K) and (N,I,A,E) in the same SU(3) 

multiplets. 

The Mass Operator M, like H , is assumed to be of the form 
S 

M = M (°) + M (I) , 

where M (0) is SU(3)-invariant and M (I) is not. However, in the 
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case of the mass, one goes further and also makes a positive state- 

ment about M (I) namely, M (I) transforms as the Y-component of the 

eight-dimensional representation of SU(3). 

Using the WE theorem or general tensor techniques, it is 

then possible to show that operating on the space of an irreducible 

representation of SU(3), 

1 
M = ~ + BY + y[I(I + i) - ~ y2] , (i0.i0) 

where I(I + i) = I~ + I~ + I~ is the total isotopic spin and ~, B 

and ~ are SU(3) scalars. Thus, for any SU(3) multiplet, we have 

the mass-formula (i0.i0), where ~ is the mean value of M for the 

multiplet. 

This formula agrees with experiment to within 4% for the 

3- 
metastable baryon octet, to within 0.5% for the ~ baryon decimet 

~or which it makes two predictions, one of which is the prediction of 

the ~ at exactly the right mass value) and it agrees reasonably well 

(with some "representation mixing" modifications) for the remaining 

SU(3) multiplets. 

At this point, we make a digression and use the SU(3) mass 

operator to illustrate the following point concerning tensor operators 

in finite-dimensional spaces. (There is a generalization to infinite 

dimensional spaces but it is more complicated in several respects.) 

Let ~ be a finite-dimensional Hilbert space, G a group implemented 

by unitary transformations on ~, and L(A) the space of linear 

operators on A. Then L(A) is itself a representation space for 

G. Hence any given operator A E L(A) can be expanded in terms of 

G. But this means that amy . operator is a tensor operator in the 

sense that it can be expanded as a series of irreducible tensor oper- 

ators. Thus, the real content of the statement that an operator is 

a "tensor" is that in its expansion, one (or a few) irreducible ten- 

sor components dominate. For example, in the case of the mass oper- 

ator M restricted to the octet space, M must be one of the 64 

possible linear independent operators A on this space. With 

respect to SU(3), however, this 64-dimensional space (L(A)) splits 

into irreducible subspace of dimension 1,8,8,27,10,10 with respect 

to SU(3). Hence, a p~o~, M is limited to be 

M = M I + M 8 + M 8 + M I0 + M I0 + M 27 (i0.ii) 

In addition, the direction of M within each irreducible subspace 

is completely determined by the condition that M be a U(2) invar- 

iant 

[U(2),M] = 0 , (10.12) 
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and, in fact, this condition kills i0 and i0, and constrains M 

to be 

M M1 + + + (10.13) 
0 

where Y is the direction Qf the hypercharge. Thus, the only 

assumption that goes into the mass formula (i0.i0) which is not 

already implied by general considerations is that in (10.13) the 

component of M in the 27 is suppressed. This assumption is made 

for other tensor operators also (see below), in which case it is 

called explicitly "octet dominance". Incidentally, it might be worth 

1 remarking that the analogue of (10.13) for the decimet is M = M 0 

+ ~ + ~? + ~, so that the octet dominance assumption kills two 

parameters (27 and 64) in this case. This is why the mass-formula 

yields two predictions for the decimet. 

The strong decay rates and the mass formulae provide strin- 

gent cross-checks on the SU(3) particle assignments. In fact, 

since the mass of a particle is usually known experimentally long 

before its spin-parity, in practice one assigns according to the 

mass formula first and checks with spin-parity afterwards. 

An interesting feature emerges in the case of the mesons 

0-, i-, and 2 + . These come not in octets but in nonets and, to fit 

the mass formula, one must assume that the two U(2) scalar 

particles (~,n*),(~,~) and (f,f*), respectivel~ which occur in the 

nonets, do not have definite SU(3) properties; rather, the linear 

combinations 

q8 = cos 8 n + sin 8 ~* 

(10.14) 
q0 = cos @ ~* - sin @ n 

etc., belong to the SU(3) octet and scalar representations, res- 

pectively. This phenomenon is called "representation mixing" and 

it robs the mass formula of its direct predictions for these parti- 

cles by adding the new unknown parameter 0. The best that the mass- 

formula can do is determine the various @'s. (They turn out to be 

80 -~ i00' 61- ~ 600, 02+ ~ 300") The interesting point, however, is 

that in spite of this, the mass formula is not empty. One can get 

indirect predictions, and indeed one of the most remarkable features 

of the decay rate analyses is that in two cases in which the experi- 

mental decay rates are in complete contradiction with phase space and 

SU(3) without mixing, the use of mixing accounts for the discrep- 

ancy. For example, experimentally 
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f ÷ 2--------!~ = 50 , f* ÷ 2__~ ~ i 
f ÷ KK f* ÷ KK ~ ' (10.15) 

whereas, on account of the much smaller mass of the pion, phase space 

would predict the ratio ~ 1 in both cases. With mixing, SU(3) 

predicts, using the WE theorem, 

[c°s O <7782 sO 8> 8> + sin 0 /@IS08~ 8~12 
f "->" 2"rr _- p 2 , k f o I  I~/1~I| 

o so 8 8 0 8 S0 8 8 0 0 

888s 
~ __c°s 02C8 

o 888s 

L COS @2CKK8 

88ol2 
+ a sin 02C0 | 

I 
+ a sin @ C880l 

2 KKOJ 

where S O 

3(2a sin @ 2 + cos @ )2 
= p__ 2 , (i0.16) 

o 4(a sin @ 2 - cos @2 )2 

is the scalar approximation to the S-matrix S, 

<~ : <011s°1t88> 

<811s°tl88> 

and the phase space factor p/a is given by 

~= [~I 2~+I = Imf(l - 4m2im.~)i/2] 5 

[(1 4 (500)21 (1250)2)-i/2 ] S [I S . . . .  15 , (10.17) 

where m denotes mass, p and q are the final state ~ and K 

three-momenta, respectively, and ~ = 2 is the final state orbital 

angular momentum. Similarly, 

r ]2 - sin O 2 
f* ÷ 27T p, • 3 2~ eos e2 + s~ "07 ] ' (10.18) 
f* ÷ KK O t ~ L ~ e~ e2 

where 

l-'Fmf*(l - Am21m 2 ]I/215 p' -"'~ '"'f*" / 
~T = [.Imf,(1 4m 2 ~2 ~1/21 

K '"f*" d 

[(i - 4(500)2[(1500)2)-i/2] 5 = I~] 5 = 4.5 
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3) 

The values of e and e can be calculated from the mass formula 
2 

and from ~ and A 2 decays, respectively. The values calculated 

in this way yield 

2~ = tan 82 

and from (10.18) and (10.16) we see at once that this is exactly what 

is required to explain (10.15). Note that if there were no mixing 

(sin e 2 = 0), SU(3) would predict 

f* ÷ 27 3 pr 

f*÷KK ~T , 

which is evenworse than phase space alone. 

The Electromagnetic Current: Here one takes a lead from the charge. 

From the Gell-Mann-Nishijima result 

i 
Q = 13 + ~ Y , (10.19) 

we see that the charge is actually a generator of SU(3). Hence, it 

transforms like a component of an 8-tensor (octet). We call this the 

Q-component of the octet. Since the charge is constructed from the 

current according to 

Q = ~ Jo(X) d3x , 

it is then natural to assume that the current 

(10.20) 

j (x) transforms in 

the same way, i.e., as the Q-component of an octet of currents. The 

assumption is not binding unless one uses other principles such as 

locality and minimal principle, but it is a good Ansatz. Algebra- 

ically, the Ansatz may be written 

[J%,j~(x)] = if%~dj~(x) , %,p,d = 1...8 , (10.21) 

where 7 % are the generators of SU(3) and the EM current is the 

"%(x). As an application of the Q-component of the octet tensor ]~ 

Ansatz, one can consider the magnetic moments of the stable baryons. 

The magnetic moment operator is a linear function of the current so 

that if the current transforms like the Q-component of an octet, so 

does the magnetic moment operator ~. Now for any octet member ~, 

we have from the WE theorem 

= C a Q (8,~,8) c + d Q 8(8,~,8) d , (10.22) 

where the c and d are Clebsch-Gordan coefficients and (8,~,8) c -  
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4) 

Q 

and (8,~,8) d the corresponding reduced matrix elements. (The 

appearance of two reduced matrix elements is due to the fact that 

the 8 8 8 representation Of SU(3) happens to contain the 8 

twice.) From (10.22), it follows that all eight of the magnetic 

moments of the octet can be predicted from two of them. The two 

used as input are p(p) and p(n), which are well-known. The only 

predicted one which has been measured with good accuracy so far is 

p(E +) and the result agrees quite well with the prediction. 

Similar considerations can be applied to the electromag- 
i+ 

netic mass differences of the ~ baryons, which are of order 

(e/hc) 2, and the prediction obtained 

m(H-) - m(Z 0) = m(E-) - m(E +) + m(p) - m(n) , 

agrees extremely well with experiment. 

"~(x) of the Metastable Hadrons: 3~ (x) isassumedto The Weak Current 3p 

determine their leptonic (e.g., A ÷ p + e + ~) and non-leptonic 

(e.g., A + p + 7) decays through the Hamiltonians 

Hint : ~ d3xj~(x)j~(x) , ~ d3xj~(x)jW(x)p P , (10.23) 

where j~(x) is the leptonic current. (Note the respectively, 

analogy between these interactions and the interaction 

j' d3xj (x)A (x) , (10.24) 

between the EM current j (x) and the EM field A (x).) 

The weak current is actually a linear combination of a 

true vector current v (x) and an axial (or pseudo) vector current 

a (x) 

j Ix) = v Ix) + a (x) , (10.25) 
P P 

and v (x) and a (x), in turn, consist of parts that change the 
p P 

hypercharge eigenvalues by 0 and i units, respectively, 

= vO(x) + vL(x) + aO(x)  + al(x) (i0.26) 

We have already seen that the EM current is assumed to be the 
i Q = 13 + ~ Y component of an SU(3) octet. It is now assumed that 

v0(x) and vl(x) are the I+ and AY = ±i members of the same EM 
P - 

octet as j (x). (The identity of the octet means that v~(x) and 

the EM j (x) have the same reduced matrix elements.) The a0(X)p 

and al(x) are assumed to be the I+ and AY = ±i components of a 
p 

new SU(3) Octet. They cannot be components of the same octet as 

v and j since they have different space-time properties. 



220 

Using these transformation properties of j~(x) in the 

Hamiltonians (10.23), one can apply the WE theorem and obtain selec- 

tion rules for the decays. One obtains the empirically observed 
1 

AS ~ A(Y + B) = AQ and AI = ~ rules for leptonic decays and (if 

one invokes also octet dominance, i.e., suppression of the 27-dimen- 

sional representation in (8 8 8lymmetric= = 1 + 8 + 27), the empiri- 
1 

cally observed rules AS ~ 2, AS = AQ, and AI = ~ rules for non- 

leptonic decays. 

In sum, therefore, SU(3) is a group which is useful not only for classi- 

fying the elementary particles, but for predicting mass relationships between them 

and, because it is an approximate invariance group, it can be used for obtaining 

20% estimates on the scattering, electromagnetic, and decay processes of the parti- 

cles. The estimates are, of course, only on relative matrix elements. The dynami- 

cal content of the theory is hidden in the reduced matrix elements, which cancel 

out in the ratios. 

At present, the origins of SU(3) symmetry and the 20% SU(3) symmetry- 

breaking are unexplained. Both are empirical discoveries which one has learned how 

to handle, but not to explain. 

ii. BEYOND SU(3) 

It is natural to try to go beyond SU(3) and see if 

i) the elementary particles have any further regularities 

2) the SU(3) properties have any relation to space-time. 

One regularity the particles certainly possess is the "Regge recurrence" mentioned 

in Section 9, namely, the property that each SU(3) multiplet of spin parity JP 

reoccurs at higher masses with spin parity (J + 2n) P for n = 1,2,3... 

Attempts to describe the Regge families (J + 2n) P, n = 1,2,3,..., with infinite 

component wavefunctions do not seem successful, as we saw earlier. 

Apart from the Regge recurrences and SU(3), the particles do not have 

any obvious regularities. However, the search for new regularities and the at- 

tempts to relate SU(3) to space-time have led to some interesting ideas. One of 

these is the use of new particles called quarks which are perhaps worth discussing 

The idea behind the quarks [i] is that the fundamental, 3-dimensional 

representation of SU(3) should, like the 8- and lO-dimensional representation, 

describe real particles (the quarks), and that since the 3-dimensional represen- 

tation is fundamental, all the other particles should be bound states of the 

quarks. In particular, the 0- and i- mesons should be bound states qq of 
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1 quark and 1 anti-quark, and the 

qqq of 3 quarks. 

tions, 

1 + 3 + and ~ baryons should be bound states 

This would certainly be compatible with the SU(3) decomposi- 

~x3=i+8 , 

3 x 3 x 3 = i+ 8+ 8+i0 
(11.1) 

On the other hand, the charges and hypercharges of the particles are additive quan- 

tum numbers because the corresponding operators are generators of SU(3). Hence, 

the charges and hypercharges of the component quarks would have to add up to those 

of the composite mesons and baryons, and one can check that for this to be true the 
1 

charges and hypercharges of the quarks would have to be ~ integer (the charge of 

the proton having been normalized to i). This means that physically the quarks 

would be rather unusual objects. 

Much experimental effort has been devoted to finding quarks, but so far 

without success. Nevertheless, the quark idea is used extensively. The reason is 

that even if the quarks are only fictitious, they provide a basis for making edu- 

cated guesses about the real particles. Their use also simplifies many mathematical 

calculations. 

The existence of quarks would pot explain SU(3) itself, since an SU(3) 

triplet of quarks is assumed from the outset. But their existence would go far to 

explain the existence and mass-spin values of the JP multiplets which are 

observed with ever increasing mass and spin. 

_ 1 + 3 + 
In particular, for the lower multiplets 0-, 1 , ~ , and ~ one has 

even been able to go beyond SU(3) to a larger group SU(6) [2] by using the quark 
1 

model. The procedure is the following: The quarks are assumed to be spin 

particles. Hence, in their rest frames their wavefunctions f~(x) are labeled 

by two sets of indices, i = 1,2,3 referring to SU(3) and ~ = 1,2 referring to 

ordinary spin. One can now consider the group SU(6) of all unitary unimodular 

x-independent transformations on the 6-dimensional space f~(x). This group con- 

tains SU(3) and the spin group SU(2) as subgroups in direct product form. If 

we now make the physical assumption that when the quarks bind together to form the 

1 + 3 + 
0 , 1 , ~ , and ~ particle~, the binding is in some sense SU(6) invariant, 

then we see that the bound state particles should belong to the 6 x 6 and 

6 x 6 x 6 representations of SU(6), respectively. To see whether this prediction 

agrees with experiment, one makes the SU(6) decompositions: 

x 6 = i + 35 
(ll.2) 

6 x 6 x 6 = 70 + 56 + 20 

and asks whether any of the irreducible representations obtained have the correct 
1 + 3 + 

SU(3) and spin content to accommodate the observed 0-, i-, 2 ' 2 multiplets. 

The answer is yes. Indeed, if one makes the SU(3) x SU(2) decompositions of the 
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SU(6) 35 and 56, one finds 

35 = (1,1) + (8,1) + (8,0) 

56 = (10, 3 ) + (8,1 ) , 

where the first figure refers to the dimension of the 

the second to the spin. This means that the 35 and 

(11.3) 

SU(3) representation and 

56 of SU(6) can accom- 
_ _ 3 + 1 + 

modate the mesons 0 and 1 and the baryons ~ and ~ , respectively. Thus, 

for the lower lying SU(3) multiplets, the assumption of SU(6) invariant binding 

for the quarks leads to the correct SU(3)-spin relationships. Attempts to extend 

the hypothesis of SU(6) invariant binding to the higher multiplets does not seem 

to work (presumably because the orbital angular momentum as well as the spin must 

be taken into account). For these, one falls back on more explicit dynamical quark 

models. 

Having discovered that the lower lying SU(3) multiplets are predicted 

by SU(6) it is of interest to see whether SU(6) could be exploited farther. 

The investigation takes two forms, practical and principle. The practical investi- 

gations ask whether, following SU(3), we can make postulates about the SU(6) 

transformation character of Hs, M, j~(x) and j:(x) and obtain useful predic- 
i 

tions. 

For Hs, the answer is no. Although the quark-binding appears to be 

SU(6) invariant, the scattering matrix certainly is not. With the mass operator, 

one does a little better. By assuming that the mass breaking is additive with 

respect to SU(3) and spin, one can predict with 10% accuracy the mass spacing 
+ 

• 3 - . 
within the two higher SU(3) multlplets (~- and 1 ) ~n terms of the mass 

1 + ~- _ 
spacing within the two lower ones (~ and 0 ), respectively. 

For the electric current jp(x), only the magnetic moment is considered, 

and this is assumed to transform like a member of an SU(6) 35. The matrix ele- 
~6 35 56\ 

ments to be calculated are then of the form ~B y/, where ~ and y refer 
3 + i + to members of the 56, i.e., ~ and ~ particles, and B refers to the magnetic 

moment member of the 35. But since for SU(6), 56 x 35(= 56 + 70 + 300 + 1134) 

contains the 56 only once, there is only one reduced matrix element 

<56 35 56' C56 35 6(5 56) , PB Y/ = ~ B $ 6'~35 

to be inserted in the WE theorem, and we obtain very strong predictions. 

cular, using the proton magnetic moment ~(p) as input for the reduced matrix 

element, one obtains the SU(3) independent predictions 

2 
p(n) = - ~ p(p) , 

~(I0) = q~(p) , (11.4) 

2/~ 
PN*÷N+y = 3 P (p) ' 

In patti- 
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where p(n) is the magnetic moment of the neutron, p(10) the magnetic moment, 
3 + 

and q the charge, of any member of the ~ decimet, and PN*÷N+y the magnetic 

moment contribution (which is the largest contribution) to the EM decay N* ÷ Ny 

The first equation is in unbelievably good agreement with experiment (N3%), the 

p(10) have not yet been measured, and the third equation is in reasonable agree- 

ment with experiment (N30%). Thus, the assignment of SU(6) properties to the 

magnetic moment seems to be quite successful. 

Finally, for the weak current, SU(6) has the advantage of being able to 

carry the vector and axial vector currents in the same representation. This is 

because in the SU(6) limit, which is assumed to be non-relativistic, v (x) 
÷ 

÷ v0(x) which is spin 0, a (x) ÷ a(x) which is spin i, and we already know from 

the meson classification that the 35 of SU(6) has exactly the right content to 
÷ 

carry spin 0 and 1 SU(3) octets. Assigning v 0 and a to the 35, one can 

make some interesting predictions, and they agree reasonably well with experiment. 

In brief, therefore, the attempt to push SU(6) beyond a mere classi- 

fication group for the particles, while not spectacularly successful, is not un- 

successful. It is only when SU(6) invariance is demanded for the scattering 

matrix that we get a complete breakdown. 

The other kind of investigation into SU(6) is more a question of prin- 

ciple. The relationship between the space-time symmetries of particles and the 

internal SU(2),SU(3) symmetries has never been properly understood, and with the 

advent of SU(6), in which SU(3) and the spin group are simultaneously embedded, 

it looked as if one might have a handle on this problem. The question also arises 

as to how SU(6), whose formulation is completely non-relativistic, should be made 

relativistic. These two questions are related and hinge on the question as to how 

the spin group SU(2) in SU(6) is to be interpreted. Three possibilities sug- 

gest themselves 

a) as the little group of p = e for p2 > 0 

b) as a subgroup of SL(2,C) in the manifestly covariant Lorentz 

transformations 

~(x) ÷ S(A)9(A-Ix) , i E SL(2,C) 

+ 
c) as a subgroup of P+. 

Each of these possibilities suggest a way of making SU(6) relativistic. 

In Case a), it is simply a question of expressing the SU(6) theory in 

a manifestly covariant formalism and this has been done explicitly in Ref. [3]. 

There are no new predictions. 

In Case b), one takes the quark wavefunetions 

fi A,a i -I ~(x) ÷ S $(A)f~(i (x - a)) , 

where a is now a Dirac index and S B(i) the Dirac representation of 

and considers the pseudo-unitary unimodular x-independent group SU(6,6) 

index space (B,i) [4]. This group contains SU(3) and SL(2,C) 

(11.5) 

SL(2,C) , 

on the 

as subgroups in 
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direct product form, and thus replaces SU(6) directly. Using SU(6,6), one can 

proceed exactly as with SU(6). But one obtains very few new good predictions, 

and encounters a lot of trouble [5]. 

The difficulty stems from the fact that to relate the manifestly co- 

variant wavefunctions to the physical particles, one must eliminate the auxiliary 

parts of the wavefunctions. This is done by means of the manifestly invariant 

projection operators 

i 
(T~p~ - m) , (11.6) 

2-~ 

etc., discussed in Section 7. But while the operators (11.6) are manifestly 

Poincar4 invariant, they are not SL(2,C) invariant (p~ is an SL(2,C) scalar) 

and, hence, certainly not SU(6,6) invariant. Hence, the auxiliary components of 

the wavefunction cannot be eliminated in a way which is simultaneously SU(6,6) 
+ 

and P+ invariant. 

The problem becomes particularly acute in connection with probability 

conservation in scattering theory. Probability conservation is expressed through 

S$S = SS $ = 1 , 

for the scattering matrix. Now consider this equation in matrix notation, 

(i,SSn)(n,Sj) = S . 
n 13 

If in the sum ~ we put in all the SU(6,6) states, then we have SU(6,6) invari- 
n 

ance, but we do not have true probability conservation since the sum is not over 

the physical states. If, on the other hand, we include in the ~ only the physi- 
n 

cal states, then we have true probability conservation, but we do not have SU(6,6) 

invariance since the projections on the physical states, as we have just seen, are 

not SU(6,6) invariant. Thus, for the scattering matrix, physical unitary and 

SU(6,6) invariance are mutually incompatible. 

Of course, one might legitimately ask: Why should the S-matrix be 

SU(6,6) invariant? After all, it is not SU(6) invariant. The point is that by 

making SU(6) relativistic one had hoped to overcome the defect that SU(6) was 

not an invariance group. The failure to overcome that defect is a serious setback 

for SU(6,6), and together with the failure of SU(6,6) to provide useful new pre- 

dictions, it has led to its abandonment. 

The third attempt (c)) to make SU(6) relativistic is, in a sense, more 

ambitious than b). It rests on the observation that SU(3) cannot be completely 

independent of the space-time coordinates x since it does not commute with the 

space-time mass operator. So the attempt is to combine SU(3) and the full 

the unitarity condition 
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+ 
Poincar4 group P+ in a larger group G. Of course, for the combination to be 

useful, some restrictions must be placed on G. (The group of all possible unitary 

transformations on Fock space Obviously contains both SU(3) and P$, but this 

observation contains no useful information.) The two main restrictions which have 

been suggested for G are: 

i) In the limit of SU(3)-symmetry, G is an invariance group for the 

S-matrix. 

2) Whether or not it is an invariance group, G is a Lie group. 

Unfortunately, both suggestions run into trouble. In Case i), one can show [6] 
+ 

that under very general conditions either S = 1 (no scattering) or G = P+ ® GO, 

where ® denotes direct product and G O contains SU(3), i.e., either S = 1 or 

the combination is trivial. In Case 2), one can show that in any irreducible repre- 

+ has no gaps [7]. Hence, G would be sentation of G the mass spectrum of P+ 

unsuitable for classifying the hadrons. Even apart from this kind of trouble, the 

difficulties of combining SU(3) and p+ in a larger group G can be seen by con- + 
+ 

sidering the action of G on P+ and SU(3) space respectively. One can see 

that the action cannot make much physical sense unless the combination is trivial 

[8]. 

The failure of attempts b) and c) to make SU(6) relativistic make it 

appear that if SU(6) is to be regarded as anything other than a nonrelativistic 

accident, one must look elsewhere for a framework in which to embed it. Such a 

framework is provided by current algebra, which we shall discuss in the next 

chapter. 

12. CURRENT ALGEBRA 

In the last two sections, we saw that the elementary particles exhibit 

regularities or symmetries other than those demanded by Poincar4 invariance. How- 

ever, none of the symmetries is exact. U(2) symmetry becomes exact only in the 

limit that weak and electromagnetic interactions are neglected, SU(3) symmetry is 

broken to within about 20% by even the strong interactions, and SU(6) symmetry 

works at best in a haphazard and empirical way. The question is: Could one find 

a framework within which the U(2), SU(3), and SU(6) results could be understood 

in a coherent fashion? We have already seen that the idea of putting SU(3) and 

SU(6) into larger groups is rather unsuccessful. In the present lecture, we wish 

to discuss a more successful approach, namely, current a]gebra [I]. 

The starting point for the introduction of current algebra is the idea 

that the fundamental objects for strong interaction physics are not the fields 

~(x) but the currents 

j~(x) (12.1) 
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(which in a field theory would be constructed out of the fields). The role of the 

currents is to mediate the interactions. For example, the electromagnetic inter- 

actions of all the particles (strongly interacting or not) are assumed to take 

place via an interaction Hamiltonian of the form 

He = e ~ d3xj (x)Ap(x) , (12.2) 

where e is the electric charge, jp(x) the electric current, and Ap(x) the 

electromagnetic potential. Similarly, the leptonic and non-leptonic weak decays of 

the (otherwise) strongly interacting particles are assumed to take place via inter- 

action Hamiltonians of the form 

Hn% = G J '  d3xj~(x)J: (x) ' H~ = G i d3xj~(x)J~ (x) ' (12.3) 

where G is the weak coupling constant, j~(x) is the weak current of the strongly 

and j~(x) is the weak current of the leptons. interacting particles, 

From the currents j~(x), we can define charges 

X(t) = ~ d3xj~(x) (12.4) 

What current algebra assumes is that independent of the form or even the existence 

of an underlying field theory, the charges and currents satisfy simple algebraic 

relations among themselves (analogous to [X,P] = i~ in quantum mechanics). The 

postulated relations are 

charge-charge algebra [X,Y] = iZ , ~ (12.5a) 

charge-current algebra [X,j~(x)] = ij~(x) , At (12.5b) 

X Y . Z r) , equal 
current-current algebra [J0(x),J0(xr)] = lJ0(x)6(x - x (12.5c) 

times 

X ÷ Y  ÷ Z  
[J0(x),j (x')] = ij (X)~(X - x') + S(X,X') (12.5d) 

J 

where the structure constants of the algebra in question are in practice those of 

SU(2), SU(3), SU(2) x SU(2), SU(3) x SU(3) (and, with a modification to be dis- 

cussed later, SU(6) x SU(6)). "At equal times" means that the time variable in 

X, Y and Z, etc., has the same value. The term S(x,x r) in the last equation 

is called a Schwinger term [2]. It is inserted because it can be shown that with- 

out it the equation would not be consistent. S(x,x r) is unknown, but it is 

usually assumed to be purely symmetric in X and Y, so that at least the anti- 

syrmnetric part of the lasD equation is not empty. 

Note particularly that since the algebraic relations (12.5) are non- 

linear, they normalize the currents and hence make it meaningful to say that the 

coupling constants in (12.2), (12.3) are small, large, universal, etc. In fact, 
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the need to normalize the weak currents was one of the motivations for current- 

algebra [3]. 

In general, it is not assumed that the charges are time independent. 

However, we have the equivalence relations 

dX(t)at = 0~ [H,X(t)] ~ ~ j~(x) = 0~ X(t) i0> = 0 , (12.6) 

where H is the Hamiltonian under consideration and !0> is the vacuum state. 

The first two relations are fairly obvious. The last follows from a theorem due to 

Colemen [4]. 

The question now is: How are physical consequences to be extracted from 

this formal algebra? 

Let us first consider the exact symmetry limit, e.g., SU(2) with weak 

and electromagnetic interactions neglected or SU(3) with the 20% SU(3) breaking 

interaction neglected. In that limit (12.6) holds for all the charges and the 

charge × charge algebra becomes the usual SU(2) or SU(3) symmetry algebra, with 

the charges as generators. In particular, if the physical Hilbert ~ is decom- 

posed with respect to the charge algebra (12.5a), the mass degenerate particles 

can be, and are, assigned to irreducible subspaces of the algebra. We then obtain 

the usual SU(2) or SU(3) theory. In particular, the charge × current algebra 

(12.5b) then becomes the assignment of tensor properties to the current as des- 

cribed in the last two chapters. 

The real advantage of the current algebra appears when the symmetry is 

not exact. In that case, it is assumed that the current algebra relations (12.5) 

are exact, but that (12.6) does not hold and, hence, that the assignment of parti- 

cles to SU(3) subspaces of ~ is incorrect. However, it is assumed that there 

is at least a subalgebra of the charge algebra which is exact and is large enough 

to locate the particles in ~ relative to the algebra. (The subalgebra is that of 

U(2) for SU(3) and that of U(1) for SU(2).) 

Having placed the particles relative to the algebra, the physical infor- 

mation is then extracted as follows: Consider the charge × charge relation IX,Y] 

= iZ. The presently measurable matrix elements of X, Y, Z are their values 

between 1-particle states. It is, therefore, suggestive to sandwich the equation 

[X,Y] = iZ between 1-particle states. Let us denote 1-particle states by (n) 

and 2-or-more-particle states by (c). We obtain 

(n, X nr)(n r, Y n rt) + ~ (n, X c)(c, Y n It) - X~ =~ Y = i(n, Z n tr) , (12.7) 
n r c 

where the sum ~ runs over all the 1-particle states and ~ over all the many- 
n r c 

particle states. Now if 

(n, X c)(c, Y n rl) = 0 , (12.8) 
c 

we would be in a strong position with regard to experiment, since we would have a 
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direct algebraic statement about the measurable quantities (n, X n'). However, 

in general, (12.8) is not true. Indeed, (12.8) is true essentially only in the 

exact symmetry limit since (12.8) implies that at least one of X and Y leaves 

the 1-particle states invariant and, in general, this can only happen if they leave 

the vacuum invariant as well. 

Thus, in general one cannot omit the c-summation in (12.7), and one must 

proceed otherwise. How one proceeds depends on the matrix elements to be calcu- 

lated. We shall mention here only two well-known examples: 

i) Adler-Weisberger calculation [5]: One uses SU(2) x SU(2) algebra, 

namely one assumes that the isospin charges T. and the charges A. 
1 1 A 

belonging to the axial vector current j<(x) satisfy the relations 

[Ti,T j] = iEijkT k , 

[Ti,Aj] = i~ijk~ , i = i, 2, 3 (12.5a) r 

[Ai,Aj] = icijkT k 

Then one chooses n = n" = proton, and X, Y = A t = (A 1 ± iA2)/2. It 

follows that Z = 13 and n' = neutron. If 

gA = (n A + p) , 

denotes the weak coupling constant between the neutron and proton, 

(12.7) reduces to 

IgA 12 + ~ (pA+c)(cA-p) - (pA-c)(cA+p) = i (12.10) 
C 

Thus, we would have a prediction for IgA 12 if we could evaluate [. 
C 

(In particular, I gA 12 would be 1 if [ were zero.) To evaluate 
C 

I, one makes the so-called PCAC (partially conserved axial current) 
c 
hypothesis, namely, that 

~ A~(x) = <gAff(x) , (12.11) 

+ 
where ~±(x) is the field of the n--meson, and the constant K is 

determined from the decays n + p + leptons and ~ ÷ leptons. Inte- 

grating (12.11) to 

1 d Af(t) ~ d3x ~+(x) (12 12) 
dt = <gA _ ' 

and inserting the result into [, one obtains 
C 

[gA]211 (12.13) + K~ ! (p$c) (c~-p) - (Sc)(cSp) I : I 
(E c - Ep) 2 
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The point now is that the E-termcan be directly related to the cross- 
c 

sections o±(c) for ~±p scattering. Inserting the observed values 

for o±(c), one obtains IgA 12 = 1.18, in excellent agreement with 

experiment. Note that the entire departure of IgA 12 from unity 

comes from the non-conservation of A±(t) (Equation (12.12)). 

2) The second example [6] uses SU(6) x SU(6) algebra, or at least that 

part of it in which 

[A,A] = T + ~ , (12.14) 

where T is the isospin charge (generator of the isospin group) and 

is the spatial charge 

~(t) = ~ d3x ~(x) , (12.15) 

where a(x) is the space-part of the SU(3) axial vector current. 

The use of the spatial charge is peculiar to SU(6) x SU(6). Only the 

time-component charges (12.4) are used for SU(2), SU(3), SU(2) xSU(2), 
i + 3 + 

and SU(3) x SU(3). Inserting Equation (12.14) between ~ and 

states, denoted by N, we obtain 

(N A[~ n)(n + ! c)(~A r N) - ~ ~' = (N, T+ ~I, N) (12.16) 

If one now makes the approximation of replacing the sum over n and 

c by a sum over N only, i.e., 

I n)(n + ~ c)(c ÷ ~ N)(N , (12.17) 
n c N 

in (12.16), one obtains 

~ r(N,%Nr)(Nr,~rN) _ ~ <==> ~t = (N,T + ~) , (12.18) 

and by choosing appropriate members of N and A, one can derive 

from (12.18) practically all the interesting SU(6) results. Thus, 

SU(6) can be simply understood as a combination of the charge-algebra 

(12.14) and the saturation assumption (12.17). It should be empha- 

sized that the masses of the particles N are not assumed to be the 

same and the charges ~(t) are not assumed to be time-independent. 

These examples and other applications of the charge algebra support the 

view that the correct way to understand SU(3), SU(3) @ SU(3), etc., is not as 

exact symmetry groups, but as exact charge algebras. Any approximations to be made 

are made in the saturation of the algebra (the sum over intermediate states). 

So far, we have discussed only the charge x charge algebras (when the 

symmetry is not exact). However, the charge x current algebras can be similarly 

handled, and in recent years most of what is called current algebra theory has been 

devoted to systematically (and very successfully) exploiting the charge × current 

al~ebras. 
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Let us sketch very briefly the kind of idea involved for one of the most 

important applications [i] of current algebra, namely, the derivation of what are 

called low energy theorems. For an interaction involving an external q-meson, the 

matrix element of interest can be written as 

M = (a,T ~ eipx+qy'''~(x)~0(y)...d4(xy...),b) , (12.19) 

where a and b are initial and final states, pp is the meson 4-momentum, ~(x) 

is the meson field, ~0(y) any other typical field or current (possibly another 

q-meson field), and T is the time ordering operator (T(~(x)~0(y)) = q0(y)~(x), 

~(x)~0(y) for x0 < Y0' x0 > Y0 )" 

Replacing ~(x) by ~pAp(x) according to (12.11), we obtain 

M = (a,T ~ ...2 A (x)...b) 
P 

= pp(a,r J' ...A (x)b) - I (a, Tt ~ '''[A0(x),~0(Y)]ET -..b) (12.20) p 

where the second term comes from the fact that the time derivative does not commute 

with the time-ordering T. The non-commutativity of 20 and T can be expressed 
d 

in the form ¥~ @(t) = ~(t) and hence leads to equal-time commutators such as the 

commutator [A0(x),q0(Y)]ET exhibited, together with a residual time ordering T ~ 

for the remaining unequal times. 

Now because the mass of the pion is small, for processes for which the 

pion 3-momentum is small, it is legitimate to. let pp + 0. Then the first term in 

(12.20) vanishes and in the second term ~ emPXd3x A0(x) ÷ I' d3x A0(x) = A0 where 

A 0 is the axial charge. Hence, in the'~oft-pion limit" pp + 0, M is dominated by 

the second term in (12.20), and the second term, in turn, is determined by the 

equal time charge x current commutator [A0,~0(y)] of the charge x current algebra. 

In this way the charge x current algebra determines the low energy or soft pion 

limit of ~-meson processes. The argument generalizes, of course, to processes 

with more than one ~, e.g., ~ - p scattering (Figure 12.1). 

FIGURE 12.1. ELASTIC AND q-PRODUCING ~-p SCATTERING 

The success achieved with charge x charge and charge x current algebra 

tempts one to go farther and assume the current x current algebra. The current 
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× current algebra has not yet been severely tested experimentally, but its simpli- 

city is appealing, as is the fact that it yields the charge x current and charge 

x charge algebras on integration. Note that neither the charge x current nor the 

current x current algebra is a Lie algebra, and a mathematical problem of some 

interest at present is to find all the unitary irreducible representations of an 

algebra of this form, i.e., an algebra of the form 

[X (x),X6(y) ] = f ~yXy(x)6(x - y) , (12.21) 

where the f~BY are the structure constants of a simple Lie group and x E R 3. 

An algebra of the form (12.21) would be particularly useful if the sum 

over all intermediate states to be inserted between the operators on the left hand 

side of (12.21) could be approximated (saturated) by a sum over a number of 1 

particle states (not necessarily a finite number). This is because a saturation 

with 1-particle states would clearly yield algebraic relations for quantities of 

the form 

(1-particle, X (x) 1-particle> , (12.22) 

and such quantities have the property that their Fourier transforms with respect 

to x are the form-factors for the particles and so are within reach of experi- 

ment. Unfortunately, the saturation with 1-particle states raises some diffi- 

culties of principle. One can show, for example, that unless the current j~(x) 

is trivial, the current x current algebra (12.21) cannot be even approximately 

saturated with 1-particle states (even if an infinite number of 1-particle states 

are used) unless the masses are degenerate. However, it has been conjectured [7] 

that in the limit that Pz' the third component of the total momentum of all the 

states, becomes infinite, the saturation with 1-particle states may become exact 

and lead to predictions for the mass-spectrum and the form factors, or at least to 

correlations between the two. This conjecture, which is based on experience with 

the free-Dirac equation and the charge x current algebra, is still open. Prelim- 

inary investigations, using, for simplicity, the special case of a factored current 

j0(x) = ~ j0(x) , 

[~,~6] = is By~ Y , (12.23) 

j0(x)j0(y) = j0(x)6(x - y) , 

show that in the factored case the solutions can be written as infinite component 

wave equations. This result furnishes another link between conventional physics and 

infinite component wave equations, but since, as we have seen in Lecture 8, infinite 

component equations have some undesirable physical properties, the result may only 

be an indication that the factorization hypothesis (12.23) is too strong. 
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