

FN-251 0400

ONE-TURN EXTRACTION USING PINGERS

L. C. Teng

March 21, 1973

In the NAL terminology there are two types of devices for fast transverse deflection of the beam--the kicker and the pinger. A kicker is a superfast delay line type of device which can produce a square-wave deflection with a rise time in the range of tens of nanoseconds. A pinger is a not-so-fast resonant device which can only produce a sine-wave deflection with a period in the range of tens of microseconds and is, therefore, a much simpler and cheaper device. For one-turn extraction the most straightforward way is to use a kicker. We will show, here, that one-turn extraction can be accomplished quite well using a few (2 or 3) pingers with amplitudes and timing properly adjusted.

We shall assume that all the pingers are placed at locations with identical $\beta=\beta_{max}$ (hence $\alpha=0$) so that the betatron oscillation advances from pinger to pinger as a sinusoidal oscillation with the betatron phase advance as the argument. We also assume that the septum (negligible thickness) is properly located about a quarter wavelength downstream of the first pinger (P₁) with no other pinger in between P₁ and the septum such that the desired combined action of the pingers is a pure angle deflection at P₁ with zero position displacement. All pingers are assumed to have the same period and are crowbarred after the first half-oscillation.

The angle deflection caused by P_1 at P_1 may, then, be written as

sino

where ϕ is the pinger phase and where the amplitude is normalized to unity. One revolution around the accelerator corresponds to a pinger phase θ (Fig. 1). The pinger amplitude and period is so adjusted

that the shaded part \overline{AB} of the beam receiving the largest angle-deflection is kicked across the septum and extracted out of the machine during the first passage through P_1 . The remaining part $\overline{B'A}$ of the beam not having received a sufficiently large kick from P_1 will go around the ring and receive a second kick

$$sin(\phi + \theta)$$

from $P_{\mbox{\scriptsize l}}.$ In the meantime the first kick it received (sin $\varphi)$ from $P_{\mbox{\scriptsize l}}$ will have propagated in betatron oscillation to give an angle-displacement vector at $P_{\mbox{\scriptsize l}}$ of

$$e^{\text{i}2\pi\nu}~\text{sin}_{\varphi}$$

where, so written, the real part is the angle and the imaginary part is the displacement. The total of the two kicks received is, therefore, at P_1

$$e^{i2\pi\nu} \sin\phi + \sin(\phi+\theta)$$
. (1)

Generally, this does not give this part $\overline{B'A}$ of the beam the desired pure angle-deflection of adequate magnitude. This is fixed by additional pingers placed at proper betatron-phase from P_1 , turned on in succession at the proper time, and having the proper amplitude.

A. Two-Pinger Case

In this case the optimal arrangement is clearly for $\overline{B^{\,\prime}A}=\overline{AB}$ so that

$$\theta = \frac{2\pi}{3} .$$

The second pinger P_2 is turned on with amplitude A_2 when the point B' (the point on the beam which is at P_1 when P_1 is turned on) arrives at P_2 . The betatron-phase advance from P_2 to P_1 is denoted by δ_2 . The additional angle-displacement vector at P_1 due to P_2 is, hence

$$A_2 e^{i\delta_2} \sin \phi \tag{2}$$

The total angle-displacement vector of beam $\overline{B'A}$ at P_1 on the second turn is the sum of (1) and (2), namely

In order that this be a pure angle kick with unit amplitude centered in the middle of $\overline{B'A}$ we must have

$$A_2 \sin \delta_2 + \sin 2\pi \nu = 0 \tag{3}$$

and

$$(A_2 \cos \delta_2 + \cos 2\pi v + \cos \theta) \sin \phi + \sin \theta \cos \phi = \sin \left(\phi + \frac{\theta}{2}\right)$$

or

$$\begin{cases} 1 = (A_2 \cos \delta_2 + \cos 2\pi \nu + \cos \theta)^2 + \sin^2 \theta \\ = 1 + (A_2 \cos \delta_2 + \cos 2\pi \nu) (A_2 \cos \delta_2 + \cos 2\pi \nu + 2 \cos \theta) \end{cases}$$

$$\begin{cases} \tan \frac{\theta}{2} = \frac{\sin \theta}{A_2 \cos \delta_2 + \cos 2\pi \nu + \cos \theta} \end{cases}$$
(4)

Eq. (4) gives either

$$\begin{cases} A_2 \cos \delta_2 + \cos 2\pi \nu = 0 \\ \tan \frac{\theta}{2} = \tan \theta \end{cases}$$

which is not a useful solution, or

$$\begin{cases} A_2 \cos \delta_2 + \cos 2\pi v = -2 \cos \theta \\ \tan \frac{\theta}{2} = -\tan \theta \quad \text{or} \quad \frac{\theta}{2} = \pi - \theta \quad \text{or} \quad \theta = \frac{2\pi}{3} \end{cases}$$
 (5)

which is the solution we want. With $\theta=\frac{2\pi}{3}$, Eq. (3) and the first of Eq. (5) give

$$\begin{cases} A_2 \sin \delta_2 + \sin 2\pi \nu = 0 \\ A_2 \cos \delta_2 + \cos 2\pi \nu = 1 \end{cases}$$

or

$$A_2 = 2 \sin \pi v$$
 $\delta_2 = \pi \left(v - \frac{1}{2}\right) + 2n\pi$ (n = integer)

 $\left[\delta_2 = \pi \left(v - \frac{1}{2} \right) + n\pi \text{ if the kick by P}_2 \text{ can have opposite sign.} \right]$ With $v = 20\frac{1}{4}$ we have

$$A_2 = \sqrt{2} \qquad \qquad \delta_2 = 2n\pi - \frac{\pi}{4}$$

and with $v = 20\frac{1}{2}$ we have

$$A_2 = 2 \qquad \delta_2 = 2n\pi$$

The recipe is, now, as follows:

Pinger half-period = $\frac{3}{2}$ (beam revolution time). Betatron phase from P₂ to P₁ = $\pi(\nu-\frac{1}{2})$ + $n\pi$. Amplitude of P₁ adjusted so that a kick of $\cos\frac{\pi}{6}$ (amplitude) displaces the beam by its full width at the septum. Amplitude of P₂ = $2 \sin \pi \nu$ (amplitude of P₁). P₂ turn-on is delayed from P₁ turn-on by the beam transit time from P₁ to P₂.

The angle-deflection of the entire beam at P_1 now looks like (Fig. 2)

The relative deflection ripple over the entire beam is

$$\frac{1}{\cos\frac{\pi}{6}} - 1 = 15\%.$$

Of course, the beam comes out in the order

B. Three Pinger Case

In this case the optimum is for $\overline{B^{\, \prime}A} \, = \, 2\overline{A}\overline{B}$ so that $\theta \, = \, \frac{3\pi}{5} \ .$

The second pinger should be so adjusted that

$$A_2 \sin \delta_2 + \sin 2\pi \nu = 0 \tag{6}$$

and

$$(A_2 \cos \delta_2 + \cos 2\pi \nu + \cos \theta) \sin \phi + \sin \theta \cos \phi = \sin \left(\phi + \frac{2\theta}{3}\right)$$

or

$$\begin{cases} 1 = 1 + (A_2 \cos \delta_2 + \cos 2\pi \nu) (A_2 \cos \delta_2 + \cos 2\pi \nu + 2 \cos \theta) \\ \tan \frac{2\theta}{3} = \frac{\sin \theta}{A_2 \cos \delta_2 + \cos 2\pi \nu + \cos \theta} \end{cases}$$
 (7)

The solution of Eq. (7) which we want is

$$\begin{cases} A_2 \cos \delta_2 + \cos 2\pi \nu = -2\cos \theta \\ \tan \frac{2\theta}{3} = -\tan \theta & \text{or } \frac{2\theta}{3} = \pi - \theta & \text{or } \theta = \frac{3\pi}{5} \end{cases}$$
 (8)

Eq. (6) and the first of Eq. (8) give

$$\begin{cases} A_2 \sin \delta_2 + \sin 2\pi \nu = 0 \\ A_2 \cos \delta_2 + \cos 2\pi \nu = -2\cos \frac{3\pi}{5} = \frac{\sqrt{5}-1}{2} \end{cases}$$

or

$$\begin{cases} A_2 = \sqrt{(\sqrt{5}-1)\left(\frac{\sqrt{5}}{2} - \cos 2\pi \nu\right)} \\ \tan \delta_2 = \frac{\sin 2\pi \nu}{\cos 2\pi \nu - \frac{\sqrt{5}-1}{2}} \end{cases}$$

With $v = 20\frac{1}{4}$ we have

$$\begin{cases} A_2 = \sqrt{(\sqrt{5}-1)\sqrt{5}/2} = 1.1756 \\ \tan \delta_2 = -\frac{2}{\sqrt{5}-1} & \text{or} \qquad \delta_2 = 2n\pi - 1.0172 \end{cases}$$

The third pinger P_3 should be turned on with amplitude A_3 when the midpoint C between B' and A (Fig. 3) arrives at P_3 . Since the

combination of the 2 kicks by P_1 and the kick by P_2 already produces a pure angle deflection at P_1 the betatron-phase from P_3 to P_1 should be an integral multiple of 2π (or π if the kick by P_3 can have opposite sign). The kick by P_3 will, then, produce a pure angle-deflection at P_1 of

$$A_3 \sin(\phi - \phi_3)$$

which when combined with that produced by P₁ and P₂, namely $\sin\left(\phi+\frac{2\theta}{3}\right)$, should give $\sin\left(\phi+\frac{\theta}{3}\right)$. This condition gives

$$A_{3} \sin(\phi - \phi_{3}) = \sin(\phi + \frac{\theta}{3}) - \sin(\phi + \frac{2\theta}{3})$$

$$= \sin(\phi + \frac{\theta}{2} - \frac{\theta}{6}) - \sin(\phi + \frac{\theta}{2} + \frac{\theta}{6})$$

$$= -2 \sin\frac{\theta}{6} \cos(\phi + \frac{\theta}{2})$$

$$= 2 \sin\frac{\theta}{6} \sin(\phi + \frac{\theta - \pi}{2}).$$

For $\theta = \frac{3\pi}{5}$ we have

$$\begin{cases} A_3 = 2 \sin \frac{\pi}{10} = 0.6180 \\ \phi_3 = -\frac{\pi}{5} \text{ (showing that P}_3 \text{ should be turned on when point C} \\ & \text{arrives at P}_3) \end{cases}$$

The recipe is, now, as follows:

Pinger half-period = $\frac{5}{3}$ (beam revolution time). Betatron phase from P₂ to P₁ = $\tan^{-1} \frac{\sin 2\pi v}{\cos 2\pi v - \frac{\sqrt{5}-1}{2}}$

Betatron phase from P_3 to $P_1 = n\pi$.

Amplitude of P₁ adjusted so that a kick of $\cos\frac{\pi}{10} \text{ (amplitude) displaces the beam by its}$ full width at the septum.

Amplitude of $P_2 = \sqrt{(\sqrt{5}-1)\left(\frac{\sqrt{5}}{2} - \cos 2\pi v\right)}$ (amplitude of P_1). Amplitude of $P_3 = 2 \sin \frac{\pi}{10}$ (amplitude of P_1).

 P_2 delayed from P_1 by beam transit time from P_1 to P_2 .

 ${\rm P}_3$ delayed from ${\rm P}_1$ by beam transit time from ${\rm P}_1$ to ${\rm P}_3$ plus $\frac{1}{3}$ (beam revolution time).

The relative deflection ripple over the beam is

$$\frac{1}{\cos \frac{\pi}{10}} - 1 = 5\%.$$

The beam comes out in the order

The generalization to 4 or more pinger cases is obvious. But further improvement in reducing the relative deflection ripple over the beam is rather minor and unnecessary.