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Abstract
Any experiment aiming to measure rare events, like Coherent Elastic neutrino-
Nucleus Scattering (CEνNS) or hypothetical Dark Matter scattering, via nuclear 
recoils in cryogenic detectors relies crucially on a precise detector calibration at 
sub-keV energies. The Crab collaboration developed a new calibration technique 
based on the capture of thermal neutrons inside the target crystal. Together with 
the Nucleus experiment, first measurements with a moderated 252 Cf neutron source 
and a cryogenic CaWO

4
 detector were taken. We observed for the first time the 

112eV peak caused by the 182W(n, γ)183 W capture reaction and subsequent nuclear 
recoils. Currently, Crab is preparing a precision measurement campaign based on 
a monochromatic flux of thermal neutrons from the 250-kW Triga-mark II nuclear 
reactor at TU Wien. In this contribution, we introduce the Crab technique, present 
the first measurement of the 112eV peak, report the preparations for the precision 
measurement campaign, and give an outlook on the impact on the field of cryogenic 
detectors.
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1  Introduction

Nuclear recoils are a versatile probe for a wide range of physics, including known 
processes like Coherent Elastic neutrino-Nucleus Scattering (CEνNS) but also hypo-
thetical processes like Dark Matter-nucleus scattering. In recent years, experiments 
lowered their detection threshold for nuclear recoils in cryogenic detectors down to 
the 10eV level, e.g., Nucleus aiming to detect CEν NS at the Chooz power plant [1] 
and Cresst searching for Dark Matter [2].

At this energy scale, the calibration of the used detectors is challenging: Sub-keV 
radiation from a radioactive source is easily blocked before it can reach the detector 
or endure a significant self-absorption by the detector, which makes a homogenous, 
position independent irradiation unlikely. Furthermore, the energy scale of nuclear 
recoils is quenched compared to the scale provided by β or γ calibration standards. 
As the quenching factor at these energies is poorly understood, see e.g., [3], a reli-
able calibration is difficult. To address these issues, the Crab (Calibrated nuclear 
Recoils for Accurate Bolometry) collaboration developed a new calibration standard 
that provides sub-keV signals and that is not quenched compared to nuclear recoils 
[4].

In Sect. 2 we introduce the Crab technique for nuclear recoil calibration, followed 
by summing up the first observation of a Crab peak in Sect. 3. We will then give an 
outlook on future developments in Sect. 4 before we conclude in Sect. 5.

2 � The Crab Technique

The Crab technique [4] is based on the radiative capture of thermal neutrons and the 
subsequent de-excitation of the created compound nucleus, as illustrated in Fig. 1: 
The kinetic energy of the thermal neutrons is ≈ 25 meV and negligible compared 
to the neutron binding energy S

n
 of O(10 MeV). Hence, the initial level of the com-

pound nucleus depends only on the target nucleus. Consequently, the excitation 
energy is precisely known. In case the de-excitation to the ground state happens via 

Fig. 1   a The Crab technique is based on the radiative capture of thermal neutrons nth by a target nucleus 
and the subsequently de-excitation of the resulting compound nucleus to its ground state. In case of a sin-
gle-γ transition, the resulting nuclear recoil can be exactly calculated. Multi-γ cascades are an intrinsic 
background. Figure adapted from [4]. b The expected, total signal (black curve) for 182W(n, �) 183W in a 
cryogenic CaWO4 detector with an energy resolution of 5eV based on Geant4 and Fifrelin simulations in 
comparison with the multi-γ background (red curve). For details, see text



103Journal of Low Temperature Physics (2025) 218:101–109	

a single-γ emission (green arrow in Fig. 1a), the decay kinematics are given by a 
two-body decay and the recoil energy of the de-excited nucleus can be accurately 
calculated. In this way, the Crab techniques overcome already two of the previously 
mentioned challenges for low-energy calibrations of nuclear recoil signals: Neutrons 
are not significantly blocked by typical detector modules, and they provide a homo-
geneous irradiation of the target. Also, the Crab calibration method does not suffer 
a quenching effect with respect to the searched for signal as both are nuclear recoils 
and hence directly comparable.

As we showed in [4], also the third challenge, i.e., providing a calibration signal 
at keV energies or below, is solvable for a wide range of common targets: Si, Ge, 
CaWO

4
 , Al

2
O

3
 all contain nuclides with a high capture cross section �

n,γ
 for thermal 

neutrons, a high natural abundance Y
ab

 , a sizeable branching ratio for single-γ transi-
tion Is

γ
 , and a value for S

n
 that results in nuclear recoils of ≲ 1keV.

Out of the studied nuclides, 182 W has the highest figure of merit �
n,γ

⋅ Y
ab
⋅ I

s

γ
 ; a 

simulation of the expected signal is shown in Fig. 1b. To improve the precision of 
the simulation, the used Geant4 code [5–7] was extended by a dedicated library [8] 
to read-in de-excitation cascades obtain with the nuclear reaction code Fifrelin [9]. 
Even after applying a realistic energy resolution of 5eV, the simulation predicts a 
clear peak at 112eV due to the 182W(n, �)183W reaction well above the intrinsic 
background (red curve in Fig.  1b). This background is caused by all compound 
nuclei that de-excite via multi-γ cascades (red arrow in Fig. 1a). Besides the promi-
nent 112eV peak, other peaks are expected at 160eV and 86eV, induced by neutron 
capture on 183 W and 186 W, respectively. The latter is sub-dominant to the multi-γ 
background but can be retrieved by γ tagging.

3 � First Observation of a Crab Peak

In cooperation with the Nucleus collaboration, we recently observed the predicted 
112eV peak due to 182W(n, �)183W in a cryogenic CaWO

4
 detector for the first time 

[10]; the used setup is shown in Fig. 2. We obtained a baseline resolution of 6 eV 
[10], well in agreement with the resolution assumed in the initial simulation (cf. 
Fig. 1b). Furthermore, we could reproduce the performance of Nucleus’ prototype 
measurement [1].

The first observation of a “Crab peak” is supported by two independent 
approaches [10], see Fig. 3: Firstly, in data obtained with a 252 Cf source present, a 
peak search favors a peak at the predicted 112eV by 3� significance, whereas with-
out the source no peak is observed (Fig. 3a). Secondly, a model based on the empiri-
cal observed background and the signal simulated with Geant4 and Fifrelin favors a 
182W(n, �) 183W signal by 6� (Fig. 3b). Furthermore, the existence of the peak was 
independently confirmed by the Cresst collaboration [11]. With these observations, 
the feasibility of the Crab technique is proven.
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Fig. 2   Setup used for the first observation of a Crab peak: A Nucleus detector (a) was placed inside a 
dry dilution refrigerator (Bluefors LD400, stabilized at 20 mK) (b) at TU Munich and irradiated with 
thermal neutrons. A 252 Cf source ( A252Cf = 3.54MBq ) inside a moderating box of graphite and poly-
ethylene was placed 80 cm away from the detector (c), resulting in a thermal neutron rate of ≈ 0.25s−1 
at the detector surface. The Nucleus detector consisted of a (5 mm)

3-cube of CaWO4 as target with a 
0.75g mass (d) and a Cresst-based W-thin film Transition Edge Sensor (TES) (e). As the TES is oper-
ated at the transition between the superconducting and normal conducting phase of W, small temperature 
changes, e.g., by nuclear recoils, result in a measurable change of the film resistance as illustrated in (f)

Fig. 3   Observation of a 112eV peak due to 182W(n, �)183W in a cryogenic CaWO4 detector: a Data 
obtained with the 252 Cf source present (light gray histogram) show a peak which is absent in the data 
obtained without the source (dark gray histogram), the curves show a fit to the background only (blue) 
and to background plus signal (red); b comparison of the data with source (black data points) to an 
empirical model of the background (blue histogram) and a model of empirical background and signal as 
simulated with Geant4 and Fifrelin (red histogram). Figures adapted from [10]



105Journal of Low Temperature Physics (2025) 218:101–109	

4 � Next Steps

After we demonstrated the feasibility of the Crab method, we plan to diversify 
the studied targets and improve the precision of our measurements.

In a second phase, we plan to increase the precision by moving the experiment 
to the 250-kW Triga-mark II nuclear research reactor at TU Wien, see Fig.  4. 
Currently, we are preparing a dedicated beam line with a monochromator, where 
we expect a thermal neutron flux of ≈ 100cm−2s−1 . In parallel, we arrange for the 
installation of a “wet” 3He/4 He dilution refrigerator on site to house future Crab 
targets. The setup will include a Pb shield against ambient γ background.

Straightforward science objectives could be the measurement of the 160eV 
peak from 183W(n, �) 184W in CaWO

4
 , which was not yet observed due to limited 

precision, as well as the 1.1 keV peak associated with 27 Al in an Al
2
O

3
 target.

In addition, tagging of the associated γ-rays increases the sensitivity of the 
Crab method and extends its application to other materials such as Ge or Si as 
well as quenching factor measurements. For this reason, the Crab phase 2 setup 
will feature a γ detector array around the cryostat that will consist out of 28 BaF

2
 

crystals scintillators.
So far, we assumed that the de-excitation happens instantaneous. Considering 

the finite lifetime of intermediate states in multi-γ cascades in Fifrelin simula-
tions, we found in [12] that the lifetimes of some states are with O(100 fs) longer 
than the stopping process of the recoiling nucleus as simulated with Iradina [13]. 
Consequently, these multi-γ cascades can be break up in a sequence of effective 
single-γ transitions, resulting in the prediction of till now missed peaks. This 
allows us to apply the Crab method also to Si at sub-keV energies, as shown in 
Fig. 5.

Fig. 4   The Triga-mark II nuclear research reactor at TU Wien (a), where a dedicated beamline (b) for 
Crab is currently under preparation
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5 � Conclusion

The Crab collaboration developed a novel, quenching-free calibration standard 
for ≲ 1 keV for nuclear recoil signals in cryogenic detectors based on the radia-
tive capturing of thermal neutrons and the subsequent single-γ de-excitation. We 
successfully demonstrated its feasibility with the first observation of a Crab peak 
at 112eV in a CaWO

4
 target. Currently, we prepare as next phase a high-precision 

data taking campaign at the Triga reactor at TU Wien. Furthermore, we plan to 
diversify the range of applicable targets by considering the timing information of 
multi-γ cascades and by applying γ tagging.
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