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Cyclotron Resonance Masers (CRM)

9.1 General Principles

From the viewpoint of principles of the stimulated radiation emission, any of
the systems that emit radiation and contain an electron beam may be called
free—electron lasers or masers. This implies that emitting elements are not
bound in atoms or in a crystal lattice.

We now accentuate the general properties, inherent in all beam systems
with distributed parameters. Classifying these systems by the resonance con-
ditions (the conditions of synchronism), one can divide them into the two large
classes. The systems, the operation of which is based on Cherenkov mecha-
nism for the field—particle interaction, belong to the first class. To the second
one belong the beam systems where charged particles are oscillators. In this
case, the oscillators, moving with a relativistic velocity, can emit radiation at
very high frequencies due to Doppler effect.

For operation of Cherenkov systems, electrodynamic structures that can
slow down electromagnetic waves are required. Therefore, the mechanism for
Cherenkov radiation emission is effective only when oscillations are excited at
relatively low frequencies. Surely, the quasi-Cherenkov effects (e.g., Smith—
Parcel radiation emission) can be used for stimulating the radiation emission
within the optical range. However, the transverse size of the active area of the
field—particle interaction is very small (I; a2 \).

The beam systems of the second class are much better adapted for stim-
ulating the short-range radiation emission (up to the x—ray band). In the
systems of this type, no slow—wave structures are required. Electromagnetic
waves are free (either completely or almost completely). Cyclotron resonance
masers and free electron lasers (in the traditional sense of these terms) belong
to this class.

In the given section, we are to investigate CRM. For providing the radia-
tion emission in CRM, oscillators serve as an energy source. These oscillators
are produced by injecting the beam electrons into an external constant homo-
geneous magnetic field at a certain angle. As it is known, the condition for the
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prolonged synchronism between the field and oscillators (the cyclotron reso-
nance conditions) have the form: w—kv+ 2/~ = 0, where £2y = ¢B/mec. This
condition indicates that excitation and amplification of fast waves (Spn > 3)
is possible at the two frequencies:

2
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Here the sign “4” describes the low—frequency counterbeam propagating
wave. The sign “—” determines the copropagating high—frequency wave. The
energy of intrinsic waves of a passive electrodynamic structure is positive. At
the same time, beam cyclotron waves can possess negative energy. It is the
interaction between the positive—energy waves and the beam waves, charac-
terized by negative energy, that is the origin of the development of cyclotron
instabilities. In dispersion diagrams, parameters of the interacting waves are
determined by the points of intersection of the corresponding partial branches.
In Fig. 9.1, dispersion of the beam cyclotron waves and fast electromagnetic
waves is plotted.

(9.1)

Fig. 9.1. Dispersion of the electromagnetic waves (I) and the beam cyclotron ones
(II). Crossing point “1” corresponds to interaction of the beam waves with the back-
ward low-frequency electromagnetic wave; the point “2” — with the high frequency
wave; the point “3” — to the case of a gyrotron

There one can see the dispersion branch of fast electromagnetic waves
w? = k%c? + w?, propagating in a regular waveguide with a finite cutoff
frequency we.o.. The branch of the beam cyclotron wave, which corresponds
to the Doppler normal effect (w = kv 4+ wg/7), is depicted there as well.

The first point of the intersection corresponds to the excitation of the low—
frequency wave moving opposite the beam. The second point corresponds to
the excitation of a high—frequency wave, copropagating with the beam.

As regards more or less compact microwave devices, the relativism of the
beam particles is rather low so that, in fact, there does not exist any essential
Doppler heightening of the frequency. The case £ = 0 is of a special inter-
est. In the first approximation, the frequency of operation is independent of
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the particle longitudinal velocity. This makes an advantage of CRM over the
systems with Cherenkov interaction, where the longitudinal velocity of the
beam particles must be maintained to a high precision. This scheme of CRM,
suggested in the early sixties, has been called the gyrotron (see [47]).

The choice of kK = 0 means that the electric field of the high—frequency
wave is homogeneous all over along the beam at any moment. The waveguide,
where the beam particles interact with the field, operates at the standing
mode as a cavity. The cavity output edge can be made in the form of a
corrugated structure, which is a Bragg mirror. This construction of the elec-
trodynamic structure provides the mode selection. It also permits to heighten
essentially the system output power. It is worth mentioning that the internal
field strength in the cavity is /@ times higher than the output field strength
(here @ is the cavity quality factor). This permits to increase the efficiency of
CRM operation. Really, the CRM efficiency is inversely proportional to the
number of revolutions N, performed by the particle within the interaction
region. At the end of the interaction path saturation of the amplitude of the
wave is desirable. Therefore, by increasing the field strength in the interac-
tion area, one can reduce its geometrical size. Respectively, this provides for
diminution of the number of the particle revolutions and increases the system
efficiency.

Besides, the condition £ = 0 permits to diminish essentially the Doppler
broadening A (kv) of the cyclotron resonance line if there exists the spread in
values of the forward velocity of electrons Awv.

The second point of intersection corresponds to the excitation of waves at
higher frequencies. However, to realize this type of interaction between elec-
tromagnetic and cyclotron beam waves, one needs the values of «y, essentially
higher than the ones mentioned above. It is worth mentioning that the wave
autoresonance excitation (w = 2o/~ (1 — 3)) is possible within this pattern.
As it is known [28, 29|, the conditions for the cyclotron autoresonance are
independent of changes in the particle energy values. In principle, there arises
the possibility of the unlimited resonance acceleration of charged particles and
of the complete transfer of the particle energy to the wave field. The operation
of cyclotron autoresonance masers (CARM) is based on this principle.

Stimulation of the radiation emission in the millimeter—submillimeter wave
ranges (or in a band of shorter wavelengths) and on heightening the power
level of the oscillations excited has an essential feature. The point is that in
CRM charged particles can interact not only with a single spatial mode but
with a large number of these modes as well. And what is more, the particles
can interact with a single spatial mode when there simultaneously exist several
cyclotron resonances. There occurs the interaction of this type when the field
strength of the wave excited reaches a value, sufficient for overlap of nonlinear
cyclotron resonances. In all these cases, the particle motion becomes chaotic.
There are both drawbacks and advantages inherent in this regime of exciting
oscillations. On the one hand, a disadvantage is that the level of fluctuations
in the characteristics of the field excited becomes higher. There also arises
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a broadening of the field spectrum. On the other hand, one can control the
oscillation spectrum width, which is a rather attractive point. Besides, in this
regime, the particle motion is not restricted within a single isolated cyclotron
resonance. In principle, this holds out prospects for heightening effectiveness
of the wave—particle energy interchange. This mechanism for the microwave
excitation has been investigated in [48].

9.2 CRM in Small-Signal Approximation

In fact, the theory of CRM in the small-signal approximation has been pre-
sented in Sect. 7. And what is more, it has been proved that the kinetic
theory must be applied for describing the process of the instability develop-
ment in CRM. Within the framework of the fluid dynamics approximation, it
is impossible to correctly describe the process of the electron beam instability
development in an external magnetic field. However, in Sect. 7, the principal
attention has been paid to solving the paradox of the absence of the beam
instability within the framework of the fluid description approximation. Be-
sides, we have grounded the fact that the use of the kinetic theory is necessary.
We have also dwelled on applicability of the notion of Landau damping. At
the same time, as a matter of fact, the process of development of the radiative
instability has not been investigated yet. In addition, in Sect. 7 an unlimited
homogeneous beam of electrons was considered. In the given subsection, we
are going in detail to dwell on development of the radiative instability in the
limited beam. The simplest model of the beam of this type is to be studied.
That is, we now investigate a two—dimensional model, where a ribbon beam
of electrons is propagating in parallel to an external homogeneous constant
magnetic field. The area of the beam—field interaction is restricted by two ide-
ally conducting planes, located at £ = 4+a. The point is that the parameters
of the beam and those of the electrodynamic system are independent of y—
coordinate. Hence, in the simplest case, we will regard all physical processes
as independent of y—axis. Longitudinal and transverse velocities of all of the
beam particles are regarded as equal to one another. This model of CRM has
been examined in [49, 50].

9.2.1 Dispersion Equation for Ribbon Beams

In discussing the CRM theory, our starting point is Maxwell’s equations for
the fields and Vlasov kinetic equation for the distribution function of the beam
electrons (e.g., see (8.42)). The distribution function fy describes stationary
undisturbed states of the beam particles. In general, it is an arbitrary function
of the characteristics of Vlasov equation. In the presence of just a constant
external homogeneous magnetic field, these characteristics take the form:

v = const ; P, = const ;
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z — vt = const ; 2ox — px = const ; (9.2)

arctan (px/py) — “04 — const .
Y

Here py,y,, are corresponding momentum projections in mc units and v is a
particle energy in mc? units. It is easy to see that these characteristics are
the solutions to the equation of motion of charged particles in a constant
external homogeneous magnetic field. As we deal with a ribbon beam, the
undisturbed distribution function is independent of the y coordinate. Conse-
quently, it also does not depend on the azimuthal angle in the momentum
space ¢ = arctan (px/py), for example, 9f,/0¢ = 0. Besides, we consider the
beam density to be low so that beam stationary fields (electric and magnetic)
are negligible. We also neglect the beam permeability.

In the electrodynamic system, formed by two parallel perfectly conducting
planes, the waves of both the F— and H-types can be excited. We now choose
the temporal and longitudinal-coordinate dependencies of these waves in the
form exp [i (kz — wt)]. As well as the field undisturbed distribution function,
the fields are independent of y—coordinate. For simplicity, we limit ourselves
to the case of excitation just of H—waves. The components of these waves are
Ey, By, B,. And what is more, by making use of Maxwell’s equations, one can
express the components via the wave electric field Ey. As a result, expressions
for all the components can be written as

E, = E (z) exp[i (kz — wt)] ;

k
B, = —;CE (x) exp[i(kz — wt)] ; (9.3)
oF
To determine F\, one has to use the wave equation:
d’E, w? 4w Oj
= -k ) By =—=22 . 9.4
a2 (02 ) Yo ot (0.4)

On the RHS of (9.4), the current density j, drives the field Ey. This vari-
able can be found by solving the linearized Vlasov equation. For the function
f (r,p,t), which represents a small deviation from the stationary distribution
function fj, this equation can be presented as

df _ 9fo
dt op
Substituting the expression for the fields (9.3) into (9.5), we shall use a

cylindrical coordinate system in the momentum space (px = p, cos¥, py, =
py sind). Thus, (9.5) can be rewritten as

Af g [, . 0  kpicof
dt  mcw {(w kv)@pL—'_ ~ 6pz]

[qE + % [VB]] (9.5)

x E(z)sind exp[i (kz — wt)] . (9.6)
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The general solution of (9.6) can be found by direct integration:

Ofo  kpic Ofo
dt— — kv) =— +
U / [ v) Op1 v Op,

x E (x)sind exp[i (kz — wt)] . (9.7)

n (9.7), the integral must be taken along the characteristics (9.2). There-
fore, one may make transition from integrating over t to integrating over
another variable (e.g., over 9):

of ke 0fo
f= /dﬂmcwﬁo{ —kv) 3p¢+ v Op,

x FE(z)sind exp[i (kz — wt)] . (9.8)

We now suppose that Larmor radius and the ribbon beam thickness (a) are
much smaller than the wavelength. Consequently, the electric field strength
E(z) in the integrand of (9.8) may be changed for the value E (zg) at the
median plane of the beam and taken out from the integral. After that the
integral in (9.8) can be easily calculated:

qE (o) 9fo kpicdfo
2mew {(w kv )6]& * Y Op,

exp (—i¥) exp (i)
w—kv—2/y w—kv+ /Yy

=

] expli(kz —wt)] . (9.9)

In the cylindrical system of axes, the expression for the current density in
the momentum space can be submitted as

Jy = 7% /fsinﬁpl dp.dp,dd . (9.10)

We now suppose that the equilibrium distribution function may be pre-
sented in the form of a product of several functions. One of them depends
only on momenta, another one determines the beam structure along r—axis.
Besides, we consider the beam to be cold and its thickness to be much shorter
than the wavelength of the oscillations excited. In this case, the equilibrium
distribution function may be presented in the form:

d (pz *Pz,o) d (pl *pl,o)
27p1 0

fo = n02d6 (z — 1‘0) s (911)
Here ng is the beam equilibrium density; d is the beam half-width; =z = xg
determine the location of the plane of the beam axis (see Fig 9.2).

Making use of the distribution function (9.11), we integrate over ¥, p,, and
p1 . After simple but bulky calculations, one gets the following expression for
the disturbed component of the beam current:
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Fig. 9.2. Scheme of CRM with flat beam
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Jj= ™ E (29)0 (x — x9) exp[i (kz — wt)] G (w, k) , (9.12)

Here

1 1 1
=z { {(W — kvgz0 = $20/7) - (w = kvg0 + 90/7)]
X (w — kv, )

Jrvf_ki 1 n 1 '
2 | (w=kvoo— 20/7)°  (w—Fkv.o+ 2/7)°

We consider the beam narrow and its density sufficiently low. In a zeroth
approximation over the beam density, one may not take into account the in-
fluence of this parameter on the field structure of the intrinsic wave of the
electrodynamic system. All over the space where the beam is absent, we sup-
pose that the field structure is the same as in the absence of the beam. The
presence of the beam indicates itself by a jump of the microwave magnetic
field component, tangential to the beam (H,). There takes place this jump at
the area where the beam is located. The magnitude of the jump can be found
by integrating (9.4) over the beam small cross section:

OF, (0B,
8:5 r=x0+€ a‘r Tr=x0—E

rwid
= —2dk* E — b
1Ly (7o) yew

By (20) G . (9.13)

In addition, one must keep in mind that the electric field on conductive
surfaces goes to zero: Ey (z = +a) = 0. As it follows from (9.13), there is
a discontinuity in the derivative of the wave electric field component with
respect to the transverse coordinate. Therefore, all over the areas where the
beam is absent, one can look for the solution to (9.4) in the form:
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Ey_{Csin[/@_ (x—a)], a > >To; (9.14)

Dsinlk, (x +a)], —a<z<uzg,

Here C and D denote constants; &k, ,, = mn/2a.

The solution (9.14) satisfies the boundary condition on metallic planes
(Ey (x = £a) = 0). The constants C and D are related to one another by the
continuity condition for the electric field (9.14) when z = . Substituting
the solution (9.14) into the boundary conditions (9.13) and excluding the
constants, one gets the following dispersion relation:

kL sin (2k a)
L=— —
2 Linkl (r —a)sink, (x—i—a)} kid
2
L wid _ 1
T e {(” Fs0) [(w ~ k0 — 20/7)
n ! }
(w - kvz,O + QO/’Y)
kzﬂ)i,o 1
2 (W — kv,0 — 20/7)°
1
n L (9.15)
(w—kv, 0 +wn/7v)

If the thickness and density of the beam go to zero (wp — 0, d — 0),
(9.15) describes intrinsic waves of the electrodynamic structure, formed by
two conductive parallel planes. In addition, k, = mn/2a.

The beam exerts a substantial influence on the waveguide modes under the
resonance conditions (the conditions of synchronism): w — kv, o £ £29/y = 0.
This relation describes the beam cyclotron modes. Thus, one can see that
there takes place an effective energy interchange between the beam and elec-
tromagnetic modes at the points of intersection of the dispersion branches (see
Fig. 9.1). The frequency values, under which the branch intersection becomes
possible, are prescribed by the expression:

2 V7,0 k3 242 V2
wiog=—-——-—|[1£—2 1-— 1——= , 9.16
b2y (1—02o/c?) c 22 c? (9.16)

Here k| c is the minimum frequency that can propagate in the waveguide (the
cutoff frequency).

As regards (9.15), it describes the relation of the system intrinsic fre-
quencies to the intrinsic wave numbers. Generally speaking, this dispersion
relation is transcendental, and it is difficult to give analysis to it. However, in
the majority of the cases that are of practical interest, the analysis is possible.
This equation can be solved with respect both to the frequency and to the
wave numbers. Below we will investigate the three cases of the corresponding
analysis. We consider them to be the most typical and interesting.
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The First Case

Let us determine the conditions for the increase in the spatial disturbances
when the waveguide intrinsic waves are synchronous with the beam cyclotron
waves. Let us present the longitudinal wave number in the form & = kg + h
(here ko = (w = 2y) /v,0 = tw/vpn; Vpn = twv, 0/ (w £ 2y) the magnitude
h is a small disturbance of the wave number). In the expression for vpy, the
signs “+” determine the copropagating and contrary waves, respectively. For
simplicity, let us suppose that the beam central plane is located in xy = 0.
We now substitute the expression for the wave number into the dispersion
relation (9.15). Furthermore, we expand the terms in h. The beam density is
regarded as small. We also take into account that the left-hand side of (9.15)
goes to zero in a zeroth approximation with respect to the beam density
(L (ko) = 0). Thus, one gets the following algebraic equation of the third
degree for determining amendments to the wave number:

Ok 1 wid [ (20 Kol ol
L’(ah>h3—27b(32 (700— 7, h+ 202, =0.  (9.17)

As regards the general case, in (9.17), we have preserved the terms of the
same order of smallness. However, if the transverse velocity of the beam par-
ticles and the transverse wave number k, are high enough, the second term in
the square brackets in (9.17) substantially exceeds the first one. Respectively,
one gets the following equation for determining h:

2 71.2 2
5 wWdkivi g

= — . 9.18
2karycvy (9.18)
Here it is taken into account that if n is odd, L' (0k./ 0k) = ka.
As it follows from (9.18), under the conditions in question, there always
occurs amplification of the microwave, the coefficient of amplification reaching
its maximum:

1/3
3 | widk? v?
Imh:—¢[b Lol (9.19)

2 | 2kayc®vy

Otherwise, the beam transverse velocity and the transverse wave number
can take values, not too high so that the first term in the square brackets
in (9.17) exceeds the second one. At the same time, if the beam transverse
velocity is high enough to provide fulfillment of the inequality (vi /v2) >
(£20/~vkv), there also takes place the microwave amplification. However, the
coefficient of amplification is smaller:

2 2
. wid kv 2
= L Ty 2
h 1\/4kfya02 ( v yo? (9:20)

On the other hand, if the beam transverse velocity is so low that the inverse
inequality is true (v3 /v?) < (£20/7kv), it is easy to see that there does not
take place any amplification.
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The Second Case

One can be interested in tracing out the field amplitude evolution not only in
space but also in time. For this purpose, the dispersion relation (9.15) must be
solved not with respect to the wave number but with respect to the frequency
w. On the analogy of solving this equation with respect to k, we also suppose
that the beam density is a small parameter. In (9.15), it is convenient to
present the frequency w in the form: w = wg+J. The undisturbed value of the
frequency wg corresponds to the point of intersection of the waveguide beam
modes with the cyclotron ones; i.e., it is one of the frequencies, determined
by (9.16); J is a small disturbance of the frequency. Let us substitute this
expression for w into (9.15). It should be taken into account that the function
L' (wo) (Ok1/0w) is equal to —ka if n is odd. The equation for ¢ can be
written as

w%wgdﬁoé n wiwidk? v?

63
2ay? dary

=0. (9.21)

Equation (9.21) indicates the following. If the beam transverse velocity is
sufficiently high so that the inequality v3 > § 2wy /vk? holds, the increment
of the instability development reaches its maximum, equal to

V3 (%dkiﬁ ) 1/3 |

Imé =—
m daywg

5 (9.22)

Otherwise, if the transverse velocity is low so that the opposite inequality
vf_ < 520/ 'ykf_ is true, there does not occur the instability development.
One could be interested in investigating the oscillations for which k£ — 0.
These waves are excited in gyrotrons. We now substitute & = 0 into (9.22).
It should be taken into account that k? = (Qg / 7202). Hence, one gets the
following expression for the maximum increment:
2 2\ 1/3
V3 (”bdn@vl> . (9.23)

Imé = —
m 2 day?c?

The Third Case

In the beam system examined, there can develop instabilities which are not
related to the synchronism of waveguide and beam modes. This occurs if the
dispersion equation (9.15) describes only the beam modes — that is, when,
under the condition that wy, — 0, d — 0, the left—hand side of (9.15) does not
go to zero, which means that k; # 7n/2a. In this case (under small values
of the beam density), the solution to the dispersion equation (9.15) is located
in the neighborhood of the point w = kv + £2y/7 = wy. As above, let us
substitute the solution in the form w = wy + § into (9.15). For determining
a small frequency addition J, an algebraic equation of the second order has
been derived. The solution to this equation can be written in the form:
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5:—wl2’d90 " wgdﬂg wgd B k% v? ' (9.24)
8vc2L 2~v2c2L \ 32¢2L 22

As it follows from (9.24), there does not take place any instability if L > 0.
Otherwise, if L < 0, the instability is developing under a sufficiently high value
of the beam transverse velocity v > (w?22d/32k3 c*|L]).

It is worth tracing back to the physical reasons that induce the first and
second terms in the round brackets under the root of (9.24). The first one
is conditioned by the presence of the power bunching of the particles. In its
turn, there arises the second term due to the inertial bunching. As one can
see, the two mechanisms for bunching act in antiphase. If the beam density
is rather low, the inertial bunching prevails. The bunching of this type causes
the instability development, the instability increment being proportional to
the square root of the beam density. As the beam density is increasing, the
instability increment value is becoming higher as well. At the same time, the
influence of the power bunching becomes more and more essential in this
process. When w? = (32|L|c?k3 v} /df23 ), the two mechanisms for bunching
start to compensate one another, which results in the instability derangement.
If the beam density is wi = (16|L|c2kiv2l /dQS), the increment reaches its
maximum. The instability in question has the same nature as “the negative
— mass effect,” known in the theory of accelerators [51, 52]. There arises this
effect as a result of bunching of nonisochronous oscillators, interacting with
one another via the microwave field of the beam mode.

9.2.2 Bunching of Particles in CRM

They usually call two mechanisms of bunching of particles during the beam in-
stability development in CRM: they are the forced and inertial ones. However,
these notions are rather conditional. Actually, bunching is always conditioned
by the reaction of the excited field on dynamics of the particles. The notion of
the forced bunching implies the field direct influence on particle phases with
respect to the wave. Let us go back to the system (9.30). There, in the second
equation, which describes dynamics of the wave phase, the forced bunching is
due to the terms proportional to the wave strength parameter (g). The inertial
bunching is stimulated by the wave field influence on the particle energy and
its longitudinal and transverse momenta. Respectively, this causes changes in
the resonance conditions. In the overwhelming majority of cases, the inertial
bunching prevails over the forced one. So, one may retain only the terms that
determine the inertial bunching in the third equation of the system (9.33) (in
the resonance phase equation).

We now focus on the physical mechanism of the inertial bunching. It is
conditioned by the nonisochronous motion of electrons in the homogeneous
magnetic field. The notion of nonisochronous motion implies the dependence
of the rotational frequency on the electron energy. Suppose that electron mo-
tion around the field lines of the external constant magnetic field is purely
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Fig. 9.3. Grouping of electrons into a bunch. (A) ¢t = 0; Ex = Epcoswt; (B) the
case of the exact resonance w = 2/ ~; (C) the case w > 2/~

circular. We also suppose that the electrons are of the same energy (of the
same Larmor radius), being uniformly distributed along the same circumfer-
ence at the initial moment. The field of an external electromagnetic wave is
switched on at this very moment. Besides, let Larmor radius be much smaller
than the wavelength. In addition, we suppose that the electric field strength
of the wave is directed along x—axis (see Fig. 9.3a).

As this graph indicates, the electrons, located in the half-space y < 0,
are being decelerated by the wave field. At the same time, the electrons, lo-
cated above the x—axis (i.e., where y > 0), are being accelerated by the same
field. As the magnitude of Larmor radius depends on the particle energy
(r, = yv1/ £2y), the particles under deceleration pass over to a circumference
of a smaller radius. The rotational frequency of these electrons is increasing.
Respectively, the electrons under acceleration pass to a circumference of a
larger radius, and their rotational frequency decreases. Thus, the electrons
under deceleration come on in azimuthal direction to the electrons that have
gained in energy. As a result, a bunch of electrons is formed. If w = ¢/,
the bunch is rotating synchronously with the electric field of the external
electromagnetic wave. Under the condition w = (2y/~, the number of the
decelerated electrons is approximately equal to the number of the acceler-
ated ones. If w > 29/, the wave slips with respect to the particles. So the
bunch gets into the wave decelerating phase; that is, the particles of the bunch
transfer in the average their energy to the wave. This mechanism of bunching
typical for cyclic accelerators is illustrated in Fig. 9.3.

As regards beams used in microwave devices, most often a somewhat dif-
ferent pattern of the particle bunching is realized. It is rather not bunching
but phasing of rotation. Actually, the bunch geometrical sizes usually exceed
Larmor radii of the electron rotation in the external magnetic field. In this
case, each electron rotates with respect to its driving center. If no special con-
ditions are prescribed, phases of rotation of the electrons are arbitrary (see
Fig. 7.4). Therefore, the total current equals to zero because there always
exists an electron rotating in antiphase.
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We now suppose that, in addition to the external constant magnetic field,
in the system also exists the field of an electromagnetic wave. In this case,
electrons behave as it has been described above. That is, the rotation of the
electrons that got into the accelerating phase is slowing down. On the contrary,
the electrons in the decelerating phase rotate faster. This results in phasing
of rotation of all electrons. As a consequence, there arises some nonzero total
current (see Fig. 7.4). Exactly as in the previous case, to provide the total
current energy transfer to the wave, the wave frequency has to be somewhat
higher than the relativistic frequency of electron rotation in the magnetic field.

Generally speaking, electrons in real microwave devices, in addition to the
rotational velocity, possess a longitudinal velocity. The resonance frequency
(w=kv+ 29/~) depends not only on the energy and transverse velocity of
the particles but on their longitudinal velocity as well. Under such conditions,
there occurs the particle bunching both in the azimuthal direction, examined
above, and in the longitudinal one. The process of bunching just slightly dif-
fers from the corresponding physical pattern, already described. However, one
should take into account the existence of the longitudinal bunching, which can
change the sign of the phase relations of the wave to the particle. In particular,
it is evident that a certain condition exists, under which the wave frequency
must be smaller than the particle rotational frequency in the magnetic field
(w < 29/ ~), which would provide the particle energy extraction. That is, the
condition of particles bunching can change its sign (see Chap. 7).

9.3 Particle Interaction with Large Amplitude Wave

In what follows we discuss certain general features of the wave—particle inter-
action in a uniform magnetic field which are of importance for different types
of CRM as well as for particle acceleration by a high-frequency field.

9.3.1 Averaged Equations of Motion

Let us consider a charged particle moving in an external constant magnetic
field By directed along the z—axis. In addition, the particle is influenced by
the wave field of an arbitrary polarization:

Eexp (ikr —iwt) ; B = — [kE]exp (ikr — iwt) . (9.25)

€0

Not losing generality, one can suppose that only two components of the
vector k (k, and k = k,) are nonzero. In what follows we measure time in
units of w™!, the velocity in units of ¢, the wave numbers in units of w/c,
and the momentum in units of mec. We also introduce the dimensionless field
g = gE/mcw. Respectively, the equations of the particle motion are reduced
to
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, Kk _ 0, k .
p= (1 - Vp> Re (gexpiv) + 70 [pe] + ;Re (pg) exp it ;

E=Pp/7; (9.26)
¢ =kp/y—-1.

Here e = B/ By, 20 = ¢By/ mecw, ¥ = kr — t.

The point to be made is that the field dimensionless amplitude g coincides
with wave strength parameter [53]. They also call this value “the parameter
of nonlinearity” or “the wave acceleration parameter.” By the order of magni-
tude, this parameter is equal to the ratio of the work performed by the wave
on the particle within the distance equal to the wavelength to the particle
rest energy. Being small, it is also equal to the ratio of the particle oscillation
velocity in the wave field to the velocity of light.

We now multiply the first equation in (9.26) by p, also taking into account
that p? = 2 —1. Thus, one gets the following equation for the particle energy:

4 =Re (vg)expity . (9.27)
Then (9.26) yields the integral of motion:
p — Re (igexp i) + 2 [re] — ky = const . (9.28)

The integral of motion (9.28) represents the generalized form of the inte-
gral, derived in [28, 29]. the direction between k and the external magnetic
field is arbitrary and the field strength parameter g is taken into account.

For the further calculations, it is convenient to make transition to the new
variables py, p|, ¥, £, and, n. They are related to the former ones as

Px =p1 cosV ;

Py = pisind ;

P2 =D|; (9.29)
T=£&— %sinﬂ;

y:n—%cosﬁ.

Taking into account the integral (9.26), one can rewrite (9.28) in the new
variables:

pL = (1 —kv) Z <gXZJ" - gyJ;l> cos ¥y, + kyvg, Z gjn cosVy, ;

: 20  (1—kv) ( , n ) .
I=—-—Ft xJ), — gy—Jn | sintd,
v pL 29 W

kXUL . ka .
o gy Zn: J, sind,, + p—J_gZ Zn: J) sind,, ; (9.30)

n

+
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: n
P = Zcosﬁn (g2 + (kv1 gz — kxv19s)] ;Jn —kvigyd, ;
f——iZJ sin 9 { (l—kv)—i—ﬁkv ] ;

QO . n n |9y 1 xV18Gy| ;3

n
A= Zcos Uy {Jn (ngxM + U9z> - ULgyJ;z:| ;
n
Z=w.

In deriving (9.30), the use is made of the expansion:

cos (x — psind) = i I (@) cos (z —ndd) . (9.31)

n—=—oo

Let us investigate the case of small amplitudes of the electromagnetic wave
(g < 1). Respectively, the particle effectively interacts with the wave if one
of the resonance conditions takes place:

A, (fy)zkv—l—s%—lzo. (9.32)

Regarding (9.32) as fulfilled, we also introduce the resonance phase ¥4 = s9—t.
After averaging, the system (9.30) yields the following equations of motion:

1
pL = — (1 — kv) Wsgcos s ;
pL
1
P, = ;k;ng cosVy ;

2

Dy =Ay=kv+s— —1; (9.33)
gl
g = gVVS cos Vs .
¥

Here s
W= axpy o - aypLJL + agp.Js

where ay y , are the components of the wave polarization unit vector. In (9.33,
the last equation follows from the other ones. In deriving (9.33)), the terms
proportional to Agzg have been neglected.

It is worth to note that the system (9.33) is derived after averaging over
varying quickly phases (nonresonant ones). Resonances at various harmonics
of the cyclotron frequency can take place depending on the wave and particle
parameters. That is, generally speaking, s can be an arbitrary integer num-
ber. However, if the wave is propagating strictly along the constant external
magnetic field, one can neglect its transverse structure and one should put
ky — ky — 0. Respectively, u — 0. Consequently, only the terms that describe
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the resonances s = 0, &1 remain nonzero. They correspond to Cherenkov res-
onance and also to resonances with normal and anomalous Doppler effect.
Thus, the cyclotron frequency harmonics are driven by the transverse inho-
mogeneity of the wave.

9.3.2 Qualitative Analysis

Giving analysis to the above-derived equations, which describe dynamics of
the particle motion even in the simplified form (see (9.33)), is rather hampered.
However, some information can be obtained by examining the integrals of
motion (9.28) and the resonance conditions (9.32). Besides, in practice, the
dimensionless amplitudes of the waves excited are usually small. Therefore,
there exists the possibility of some substantial energy interchange between
the wave and particles only under the conditions of their rather prolonged
synchronous interaction. In this case, a particle phase 95 = sy —t with respect
to the wave is of the main interest. Actually, the phase relations, integrals
of motion and resonance conditions are depicted by rather simple algebraic
expressions.
The starting point is that in the space (’y,p”, P J_) the particle can move
only in the surface
V¥ =pi+pl+1, (9-34)

which is a rotational hyperboloid. One should keep in mind that the particles
cannot get into all areas of the surface and stay out of the areas, limited by
the inequalities v < 0 and p, < 0.

Integrals of Motion

The integral (9.28) is presented in the vector form. In reality, one deals with
three algebraic relations, that is, with the projections of the integral (9.28)
on to the axes of Cartesian system (z,y, z). During the wave—particle interac-
tion, these projections keep on being constant (i.e, they are integrals as well).
As regards these integrals, the third one is of especial importance (it is the
projection of the integral (9.28) on to z—axis). It can be essentially simpli-
fied if we consider an electromagnetic wave propagating strictly along z—axis
(kz = ky = 0, ki = 0). Besides, averaging over the fast phase ¢ = kr — ¢,
simplifies this integral as well. In both the cases, the integral takes the form:

p| —k =pj0—ky =C = const . (9.35)

In (9.35) the subscript “0” designates the initial values of the longitudinal
momentum and energy of the particle.

It is worth mentioning that (9.35) follows from the laws of conservation
of energy and momentum at emission of a wave quantum. Really, these laws
may be presented in the form:



9.3 Particle Interaction with Large Amplitude Wave 189

Ay =9 — vy = hw/mc? ;
Ap = po — p = ehw/mcuvpy, -

As it is easy to see, if the quantum is emitted along z—axis, one can derive
the integral (9.35) by substituting Aiw from the first equation of this system
into the second one. Note that the relation obtained does not contain Planck
constant, that is, it is classic.

On the plane (y,p”), the integral (9.35) takes the form of an equation of
parallel straight lines. They differ from one another in values of the constant
C. Several of these lines are plotted in Fig. 9.4.

C=3
c=2
C=1
C=0

p
I
Fig. 9.4. Integral’s straight lines in the plane (fy,p”) for the case k > 0

Inclination of these lines of integrals with respect to p—axis, prescribed by
the longitudinal wave number k, is equal to arctan k~!'. Running ahead, the
resonances in the plane (v, pH) also are represented by straight lines. The angle
of their inclination with respect to p—axis is equal to arctan k. It is easy to see
that for a wave propagating strictly along a constant external magnetic field
in vacuum, k£ = 1. Respectively, the straight lines that depict these integrals
are parallel to the resonance straight lines. In addition, if C' = sf2y, these
straight lines coincide. These particular specificities make the conditions for
autoresonance, which is of considerable independent interest.

It is worth depicting the integrals in the space (v, pj,p.). One should take
into account that in this space the particle can move only over the surface of
the rotational hyperboloid. Therefore, the integrals (9.35) can be presented
in the form of a line of intersection of this plane with the hyperboloid. If the
wave phase velocity along z—axis is lower than the velocity of light (k > 1),
this curve of intersection takes the form of an ellipse (see Fig. 9.5).
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V4

A

Fig. 9.5. Specific section of the hyperboloid v? = 1 + pﬁ + p2 by the resonant
condition plane for the case k£ > 1. The same shape has the section of the hyperboloid
by the integral plane for a fast wave (k < 1)

¥

R

Fig. 9.6. Specific intersection of the hyperboloid (9.34) with a resonant condition
plane for the case of particles interacting with a fast wave (k < 1). The same shape
has the intersection of the hyperboloid with the integral planes for the case £ > 1
(slow wave)

Otherwise (k < 1) the curve of intersection takes the form of a hyperbola
(see Fig. 9.6). Even by examining the two plots, one can come to important
physical conclusions. In particular, if the particle interacts with the fast wave
(k < 1), the particle energy, not restricted by the integrals, can reach arbitrary
positive values. This is the case when there principally exists the possibility of
unlimited acceleration of charged particles. Transfer of a substantial amount
of the particle energy to the wave also becomes possible. Surely, the problem
of realization of the energy interchange of this type remains open. Below we
will consider certain methods to do that. It should be noted that if the slow
wave (k > 1) is interacting with the particle, the energy interchange is limited
by the ellipse characteristics.

Let us examine the projections of the curves, located in the hyperboloid
surface, on to the plane (v,p,). As it is easy to see, such projection is a
second-order curve. Is is presented by the equation:
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2
p (=)

E—’— J2E =1. (9.36)
Here o2 o2 N
2 _ . 2 _ —k41 _
=g = (k2 —1)> =0T

If A2 > 0 and B? > 0, (9.36) is an equation of an ellipse with its center
being located at the point p; = 0, v = .. In particular, this case is realized
if the particle interacts with a slow wave (k > 1). One can be interested in
determining the conditions under which the particle could transfer its total
energy to the wave. If so, v — 1, p; — 0, and C' = —k. In this case, the
following relation of the particle longitudinal momentum to the particle initial
energy has to take place: pj g = k(70 — 1). While the particle is transferring
its energy to the wave, the particle transverse momentum increasing at the
beginning then reaches its maximum, equal to 1/vk? — 1. After that, it goes
to zero.

If the particle interacts with a fast wave (k < 1), the curve of intersection
of the integral with the hyperboloid is a hyperbola. In this case, the parameter
A? in (9.36) is negative. The particle energy transfer to the wave is accompa-
nied by the monotonous decrease in the particle transverse momentum. There
occurs the total transfer of the particle energy to the wave (v — 1) under the
same initial conditions, under which the particle interacts with the slow wave;
that is, when C' = —k (pj 0 = (70 — 1) k).

As regards the wave—particle energy interchange, the dependence of the
particle longitudinal momentum on the transverse one is of interest. Consid-
ering the case k # 1, one can use the equation of the hyperboloid (9.34) and
the expression (9.35) for the integral. Correspondingly, this dependence can
be presented as

o (b -p)
a2 + ;= 1, (9.37)

where

2 2 2
k2 —1 (k2 — 1) k2 —1

If k < 1, (9.37) is the equation of a hyperbola. In this case the particle en-
ergy transfer to the wave is accompanied by the simultaneous and monotonous
decrease in both the longitudinal and transverse momenta of the particle.

If the particle interacts with a slow wave (k > 1), (9.37) takes the form
of an ellipse. In this case, the particle energy transfer to the wave can be
accompanied by an initial increase in the particle transverse momentum, but
after that its magnitude goes to zero.

It is also worth mentioning that the integral (9.35) takes the form of unlim-
ited rays in the plane (’y,pH) if the particle interacts with a fast wave (k < 1).
Otherwise, if the particle interacts with a slow wave (k > 1), this process is
depicted by limited segments of straight lines.
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Resonances

In the plane (’y,pH), the resonance conditions (9.32) as well as the integrals
(9.34), take the form of the equations of straight lines (see Fig. 9.4). In this
plot, the inclination angle prescribed by the longitudinal wave number £ is
equal to arctan (k). In contrast to the integral straight lines, the resonance
lines take the form of rays if & > 1. If the particle is interacting with the fast
wave (k < 1), the resonance lines take the form of limited segments of straight
lines.

It is worth investigating the resonance conditions in the space (7, pj,pL)-
There the resonance lines are the curves of intersection of the hyperboloid
(9.34) with the planes of the resonances (9.35). In their typical form, these
curves are analogous with the curves of intersection of the hyperboloid with
the integrals. The difference is the following: if the particle interacts with the
fast wave, they take the form of ellipses (it should be noted that if the hyper-
boloid intersects the integrals, they are hyperbolas). Otherwise, if the particle
interacts with a slow wave, the curves are hyperbolas (if the hyperboloid in-
tersects with the integrals, they are ellipses).

The analytical expression for the projection of these curves of intersection
on to the plane (pj_,pH) is analogous with (9.37):

2 . 2
%+(P\|Bf*),:1, k#1, 05 #1-k*;
ksf2 1°
pi+n2ﬂg{p|—ls_k?2] =0, 202 =1-k*. (9.38)
Here
292
A2:n 0_1,
k2 —1 ’
202
2 n= {2 2\ .
B:(kQ_l—l)/(l—k),
:k/’nﬂo
Pe= 182

For k < 1, the first equation in the system (9.38) represents an ellipse.
If £ > 1, this is a hyperbola. If the particle interacts with a fast wave
(k < 1), the frequency of which exceeds the particle Larmor frequency
(22 < 1), there exists a certain resonance number s < s. = V1 —k2/(2,
which would correspond to a negative value of the denominator of the first
term in left-hand side of (9.38). That is, the resonance conditions (9.32) can-
not be satisfied under any values of the particle momentum. One can choose
certain values of the cyclotron frequency and the wave vector longitudinal
component so that the parameter s. would be an integer number. In this
case, the plane of the resonance conditions (9.32) becomes tangential with
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respect to the hyperboloid if s = s.. This case is described by the second
equation in the system (9.38).

The analytical expression for the projection of the lines of the hyperboloid
intersection with the resonances in the plane (,p, ) can be presented in the
form: )

(v—)” P
where ( 2) ( 5 ) ) )
1-k s+ kT—1)k
2 _ 42 ) 2 _ 0
B =A"—F—+; A® = "y
(1—k2)

2

The particle moves along the integral curves. As it is known, if the amplitude
of the wave that interacts with the particle is small (g < 1), there takes
place an effective energy interchange between the wave and the particle under
the condition of synchronism, that is, under the resonance conditions (9.32).
Therefore, it is worth examining a graph where the resonance and integral
curves are presented simultaneously (see Fig. 9.7).

i

Fig. 9.7. Resonant conditions and the integral in plane (fy,pu) for the case k > 1

For distinctness, this graph illustrates the case of the particle interac-
tion with a fast wave. In this plot are the resonance curves, calculated for
s = 0,41,£2 43, and an integral of the system (9.28). In this very figure,
the hyperboloid (9.34) is projected on to the plane (’y,p”) under the suppo-
sition that p; = 0 (the corresponding curve is denoted by 7). In particular,
Fig. 9.7 indicates that under the given conditions the wave—particle resonance
interaction is possible just in the case when s = 0, +1, £2.

Suppose that at an initial moment of time the particle is located at the
point 0 and then moves along the integral curve (9.35). As one can see, the area
of the wave—particle resonance interaction (i.e., the area where the integral
intersects the resonances) is small within the framework of the approximation
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of an isolated resonance. And what is more, Fig. 9.7 does not permit deter-
mining sizes of this area because there takes place intersection of the integral
with the resonances at one point. However, in fact, if one takes into account
nonlinearity, the resonances are characterized by a certain width (see below)
proportional to /g. It should be mentioned that in the averaged integral (9.35)
we have neglected the term proportional to g. The nonlinear resonance width
is much larger (\/g > g). Therefore, to determine this width, one can make
use of the averaged integral (9.35). These simple qualitative arguments indi-
cate that the synchronous (resonance) interaction between charged particles
and the wave is possible only in a limited area of the plane (’y, pH). Suppose
that at the initial moment the particle is in a cyclotron resonance with the
wave. As a result of the particle-wave interaction, the particle, moving along
the integral curve, quickly leaves this resonance. Under such conditions, any
substantial energy interchange between the wave and the particle is hardly
possible. However, there exist exceptions: these are the cases of the autores-
onance and of the stochastic wave—particle energy interchange. These cases
will be investigated below.

Phase Relations

Let us suppose that particle dynamics is restricted by an isolated nonlinear
resonance. As it has been demonstrated above, there occurs the synchronous
wave—particle interaction in a relatively small area where the integral inter-
sects the resonance. Here we are going to estimate qualitatively effectiveness
of this interaction.

To provide the long—term synchronism between the wave and the parti-
cle, the resonance condition (9.35) has to be fulfilled. In fact, there occurs
the wave-particle interaction in a limited area of the characteristic size L
during a limited time interval T ~ L/v. The sign of the particle energy
transfer to the wave (and v.v.) keeps on being the same all over the inter-
action area if the phase shift of the rotating electron with respect to the wave
A= (w—Fkv—5s8/v)T is smaller than 27:

|Al < 27 (9.40)
One can single out the two factors that cause the phase shift.

1. The phase shift can be conditioned by some initial deviation of the wave
frequency from the frequency of the precise synchronism w, = kv+s 20/ .
They call this a kinematic phase shift. It is easy to determine its value:

(w—wy) .

Ax = 27 Ns (9.41)

Wr
In (9.41), the parameter N = 2T~/27 is introduced. It determines the
number of revolutions, performed by the particle during its interaction with
the field. Naturally, under the condition of the long—term synchronism this
magnitude is large (N > 1).
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2. Besides, the phase shift can be stimulated by the wave influence on the
particle motion. The phase shift, conditioned by this effect, is called a
dynamic phase shift. Under the influence of the wave, the velocity and
energy of the particle change their values. Thus, there takes place deviation
from the resonance conditions. As one can readily see, the shift magnitude
is

Ag=k(v,—v)+s2 (v, =~ . (9.42)

Making use of (9.35), one can relate the deviation of the particle velocity

to the deviation of its energy. Respectively, the dynamic phase shift (9.42)

may be rewritten as

2 2
Ag = 27N C 7 %n (9.43)
YUph Uph — Ur

In particular, if the wave phase velocity is equal to the velocity of light
(vph = ¢), then Aq = 0, that is, there takes place a total compensation of the
phase shift. This is the case of the autoresonance. If at the initial moment
the resonance conditions are precisely satisfied (i.e., there does not occur any
kinematic phase shift), under the condition of the autoresonance there takes
place no phase shift at all.

Knowing the magnitude of the dynamic phase shift and making use of the
inequality (9.40), it is easy to determine the admissible change in the particle
energy:

47 _ v v =,

. 9.44
v sN 2 —v2y (9.44)

It is worth mentioning that in some devices (e.g., in a gyrotron), the wave
phase velocity substantially exceeds the velocity of light. Respectively, as it
follows from (9.44), just small changes in the particle energy are possible [54].
At the same time, the wave phase velocity can be close to the velocity of light
(i-e., the conditions are close to the conditions of the autoresonance). In this
case, this very formula (9.44) indicates that one can essentially change the
particle energy (Avy = v).

To characterize effectiveness of the wave—particle energy interchange, let
us introduce a parameter of efficiency:

Ay
y—1’
which is equal to the relative change in the electron kinetic energy. In practice,
field interacts with a large number of charged particles, so one has to substitute
(A~) for A7y in (9.45). Here the angular brackets designate averaging over the
initial phases of the particles at the entrance to the interaction space. The
magnitude 7, determined in this way, is called a single—particle efficiency.

Making use of the equation of the rotational hyperboloid (9.34) and of
the integrals (9.35), one can derive the following relation of the change in the
particle energy to the change in the particle transverse momentum:

n= (9.45)
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o 1 Uph Api

Ay (9.46)

2 vpp — v '

In the optimal regime of the wave-particle energy interchange, a particle
should lose completely its transverse momentum, that is, p; — 0. Then,
by substituting (9.46) into (9.45), one gets the following expression for the
maximum available efficiency of a microwave device based on the emission of
magnetic bremsstrahlung:

2
U] Uph?Y
max — . 9.47
n (oo — ) (9.47)

The maximum effectiveness of the particle energy transfer to the wave
requires a certain value of the wave field strength. Really, passing through
the region of interaction with the field, the particle gives away the maximum
amount of its energy just when its dynamic shift (9.43) is of the order of
27. If the field strength is lower than the optimal value, the dynamic shift
is smaller than 27 and the energy transfer is small. Otherwise, if the field
strength exceeds the optimal value, the particle is shifted from the phase of
deceleration to the phase of acceleration. Thus, it starts to absorb the wave
energy. To estimate the field strength optimal value, one can make use of
the fact that the work performed by the wave field on the particle in the
interaction region has to be equal to the optimal losses of the particle energy:
A= eE (2nr,N) ~ mc? Ay, where 7y, is Larmor radius. Substituting Ay from
(9.44) into this relation, one can evaluate the optimal field strength:

— Bon (Bon — B)
Jopt = 9aN2B, (Bon — 1)

(9.48)

If there takes place the wave—particle interaction in vacuum and the wave
propagates strictly along the external magnetic field, then vy, — c. In this
case, the straight lines of the integrals (9.35) are parallel to the straight lines
of the resonances (9.32). Under certain initial conditions, these straight lines
coincide. Thus, infinitely long synchronous resonance interaction of the parti-
cles with the field becomes possible. Really, as (9.43) indicates, the magnitude
of the dynamic phase shift goes to zero. Therefore, if the initial conditions are
chosen to keep the kinematic phase shift, the total phase shift during the
whole time of the wave—particle interaction is equal to zero as well.

9.3.3 Stochastic Regime

At present, microwave electronics tends toward heightening the power of the
oscillations excited and toward shortening the wavelength of the waves gen-
erated. The two tendencies inevitably result in certain complications of the
described processes. Particles interact not with a singled—out mode of the elec-
tromagnetic field but with a large number of modes. Really, the equation of
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balance between the power of the microwave losses in the cavity and the power
transferred to the field in the cavity by the electron beam can be written as

w _
0"

Here E represents the microwave electric field strength in the cavity; @ and
V' denote the quality factor and volume of the cavity, respectively; j is the
beam current density; 7 is the electron efficiency; the voltage is labeled by U;
S reads the beam cross section. As this expression indicates, the increase in
the microwave power is achievable in the two ways: either by heightening the
current density of the beam or by enlarging the beam cross section.

As we have seen above (see (9.48)), the maximum efficiency is achievable
only under certain optimal values of the field strength. Therefore, if one in-
tends to rise the microwave oscillation power by heightening either the current
density or the voltage of the beam, this inevitably causes an increase in the
wave field strength in the area of the wave—particle interaction. However, this
inevitably results in regrouping of the particles and in diminution of the elec-
tron efficiency. To avoid these phenomena, one has to heighten the microwave
power by enlarging the geometrical sizes of the interaction area (V and S).
However, if one enlarges the transverse sizes of the interaction area under a
fixed value of the wave frequency, the beam particles interact with high spatial
modes of the electromagnetic field. The field structure of the spatial modes,
located close to one another, hardly distinguish from the field structure of
the desirable wave. Therefore, these modes can be excited as well. Dynamics
of the particle in the field of several waves essentially differ from the particle
dynamics in the field of a single wave.

There also exists a qualitative difference in dynamics of charged particles if
the conditions for several cyclotron resonances can be realized simultaneously.
This happens under conditions when the field strength of the wave excited
reaches a certain value high enough. As (9.48) indicates, the field strength
can be heightened, for instance, when the wave phase velocity is approaching
the velocity of light (8pn — 1). Below it will be proved that an increase in the
field strength value can cause overlapping of nonlinear cyclotron resonances.
Then in the field of a single regular wave, the particle dynamics is determined
by a large number of the resonances and becomes chaotic. This fact can play
either a positive role or negative role. The advantage is that changes in the
particle energy become unrestricted by the width of one resonance. Thus, in
principle, there arises the possibility of a substantial heightening of the amount
of the particle energy that could be transferred to the wave (in comparison
with the case of interaction with an isolated resonance). However, chaotic
particle dynamics causes phase scattering with respect to the wave. In its
turn, this circumstance can be an additional factor of power stabilization of the
excited wave. It is a negative aspect of the interaction with a large number of
resonances. Besides, the spectrum of the excited oscillations becomes broader.

E*V njUS . (9.49)
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Now, we consider the conditions of overlapping of cyclotron resonances.
Suppose for the moment that the wave—particle interaction does not influence
essentially the particle energy: v = 79 + 7, ¥ < 1. Besides, the resonance
condition (9.32) is considered to be precisely satisfied for the particles of the
energy 7. In this case, after expanding A () in vicinity to -y, the last two
equations in the system (9.33) yield a closed system of two equations for 4
and ¥Y: )

] = EWS cos v, ; dv, = it 17y ) (9.50)
dt dt Yo

The system (9.34) describes a nonlinear mathematical pendulum. It yields
the nonlinear resonance width:

Ady =4/ (k2 = 1)gW, /42 . (9.51)
It is handy to present this parameter in energy units:

Ay =4/ gW, J(k> — 1) . (9.52)

To determine a distance between resonances, let us write the resonance
conditions (9.32) and the averaged energy conservation law (9.28) for two
neighboring resonances:

kpsyr1+(s+1) 20 —vs+1 =0, Y541 — ps+1/k=C;
kszrSQo*’Ys:O, 'Ys*ps/k:C-
One should keep in mind that the value of the constant C is the same for

both resonances. Making use of these conditions, one gets the following value
of the distance between the resonances:

6y =10 /(1-Fk) . (9.53)
The expressions (9.52) and (9.53) indicate the following. If the inequality
9> %
4 (Ve + /W) (1 - £2)

holds, the sum of half-widths of the nonlinear resonances (A% + Ads41)/2 is
larger than the distance between the resonances §7. In this case, there occurs
overlapping of the resonances.

For practical applications, it could be convenient to rewrite (9.52), (9.53),
and (9.54) in dimensional units:

(9.54)

qEW, )
me (w2 — k2¢2)
5y = w2y [(w? — k*c?) ;
mew 23

4q (w? — k2c?) (VW + \/Wsﬂ)2 7

Ay, =4

E>
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where

_ QixSP | QypP1 4 _ kp1
W= (—5PL ) g — J () p= .
: (mcﬁazpz /mc) ) = 2L ) = 2

The expression (9.52) for the nonlinear resonance width and the condition
(9.54) for the emergence of the particle motion stochastic instability are rather
general. They describe the most important cases of the wave—particle resonant
interaction. Really, (9.52) yields the nonlinear resonance width in the cases of
the field—particle Cherenkov interaction (s = 0), for the cyclotron resonances
(k; = 0) and for nonlinear resonances Doppler normal (s > 0) and anomalous
(s < 0) effect taken into account. Respectively, (9.54) describes the condition
for the emergence of the stochastic instability, conditioned by overlapping of
the corresponding nonlinear resonances.
We dwell now on certain specific cases.

1. Let us consider first of all the charged particle interaction with the longitu-
dinal wave in a constant magnetic field. Under such conditions, a criterion
of emergence of chaotic motion is determined in [55, 56, 57]. Corresponding
expressions can be derived from (9.54). Surely, using (9.33) in the case of
the longitudinal wave (o = kx/ k, oy = 0, a, = ky/ k) and taking into ac-
count the resonance conditions (s{29 + kp, = 7y) one gets Wy = ~v.J5(u)/ k.
Under the supposition that p > 1, (9.54) yields the following condition
for emergence of the stochastic instability, stimulated by overlapping of
the Cherenkov resonance (s = 0) with the neighboring Doppler-shifted

resonances: (22
N
9> 1 =5 (9.55)

2. Consider now a transverse electromagnetic wave propagating perpendicu-
larly to the external magnetic field. In this case, overlapping of resonances
is conditioned by relativistic effects only.

For an E—wave with polarization {a} = (0, 1,0)), the criterion of over-
lapping is
16p.1 JL (1)

Note that it is independent of the longitudinal velocity.
For an H-wave ({a} = (0,0,1)), (9.54) takes the form:

(9.56)

2
16p,Js (1)

In contrast to the case of the E—wave, the value of the amplitude, required
for the development of the stochastic instability, essentially depends on the
magnitude of the particle longitudinal momentum.

9> (9.57)
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3. Let us stay now on the condition (9.54) considering the particle motion in
the field of a plane—polarized wave, propagating at the angle ¢ with respect
to the external magnetic field in a medium, characterized by a dielectric
constant € > 1.

As regards overlapping of Cherenkov resonance (s = 0) with neigh-
boring cyclotron resonances in the E—wave field {a} = (cos ¢, 0, sin ¢), the
condition (9.54) takes the form:

‘QOUZ

> . 9.58
9> T6d () (1 — D) e (9.:58)
In the case of the H-wave field (9.54) looks as
[9) 2
0% . (9.59)

>
97960, () pr (1—02)

The formulae (9.58) and (9.59) indicate that an increase in the particle
longitudinal velocity heightens the amplitude sufficient for overlapping of
resonances.

4. Particular attention should be given to the case of a longitudinal wave
propagating in vacuum. Here k£ = 1, and there is no stochastic instability
within the framework of the given approximation. The resonance condition
now coincides with the integral of motion (see (9.53b)). Changes in the
particle energy, which result from the wave—particle interaction, do not
cause any violation of the resonance condition. That is, the conditions of
autoresonance [48, 49] are realized. So, one may state that the stochastic
instability of the particle motion does not develop under the conditions of
autoresonance.

5. From the viewpoint of stochastic acceleration, one could be interested in
the case of a high—energy particle (v > 1) interacting with a plane E-wave
({a} = (0,1,0)) propagating perpendicularly to the external magnetic field
(k = 0). For simplicity, the particle longitudinal velocity is considered zero
(p. = 0). Besides, we suppose that there takes place the wave—particle
interaction at high cyclotron resonances (s > 1). The last condition corre-
sponds to the case of the particle stochastic acceleration in the wave field,
the frequency of which substantially exceeds the cyclotron one (w > 2).
Here the resonance condition has the form: 29 = s/v. As pis = 7, one
gets = s > 1. Consequently, the use can be made of the Bessel function
asymptotic J, (1) ~ 0.44 /s'/3. Then (9.54) yields

g > 028253 . (9.60)

As it follows from (9.60), the wave amplitude, necessary for overlap-
ping of resonances, increases with an increase in the resonance number.
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9.4 Nonlinear Regime of Operation

In the previous section, we have demonstrated that if the wave amplitude is
high enough so that there takes place overlapping of nonlinear resonances,
the motion of charged particles becomes stochastic. One can expect that the
amplitude of the excited field can reach this level as a result of the collective
instability development. In this case, the motion of charged particles becomes
stochastically unstable. Consequently, the system passes on to the regime of
exciting stochastic oscillations. Besides, it is quite possible that the noncorre-
lated chaotic motion of the particles could hamper the instability development.
That is, the mechanism for the stochastic instability development could play
the role of a mechanism stabilizing the output power level.

To consider the subject, our starting point will be the self-consistent non-
linear problem of exciting microwave oscillations by a system of “cold” in-
phase rotators in the coordinate frame where their longitudinal momentum is
equal to zero. Besides, at the initial moment, the oscillators possess just the
transverse component of their momentum. As above, z—axis is directed along
the strength line of a homogeneous constant external magnetic field.

So, the distribution function may be presented as

f= 1%“1& —p10) 0(ps) 6 (0 =10+ Qot/7), (9.61)

where o denotes the density.

The complete self—consistent system of Eq. (9.61) describes the electromag-
netic radiation emission by the particles. It contains the equations of particles
motion and Maxwell’s equations for the electromagnetic field proportional to
exp (ikz):

dp q dr P

P_E+r L pBrB); S =P .

a1 + mey [p(B+Bo)] ; dt  mey’

aa—]tg =—ick x E] ; 86—];: =iclkk xB]; kE,=—4mo. (9.62)

Here E and B denote the electric and magnetic field strengths; o is the charge
density; ¢ and m designate the charge and rest mass of particles, respectively.
Note that the temporal dependence of the field is not singled out as a har-
monic one in (9.62). This approach permits to describe temporal evolution of
the fields and the motion of charged particles in the stochastic regime (i.e.,
when the excited fields are characterized by a broad frequency spectrum). The
system (9.62) takes into account excitation of a longitudinal electric field, that
is, the collective Coulomb field of charged particles.

Regarding the field strengths as harmonic functions of time, one deals with
the problem of motion in a prescribed electromagnetic field. If o — 0, there
arises the problem of motion of a single charged particle in the external con-
stant magnetic field and in the field of an electromagnetic wave of a prescribed



202 9 Cyclotron Resonance Masers (CRM)

amplitude. This problem has been considered in the previous subsection. In
particular, we have determined the conditions of appearance of a stochastic
instability in the particles motion (9.54). The complete self—consistent system
of Eq. (9.62) can be investigated only by numerical simulations. That has been
carried out in [48]. Below we will briefly describe the most important results
of this analysis.

The system (9.62) has been analyzed by numerical simulations under vari-
ous values of the plasma frequency and fixed values of the cyclotron frequency
20/~ = 0.5. In this case, the resonance condition is fulfilled for s = 4. The
field evolution in time, spectra of the excited fields, correlation functions, and
evolution of the particles energy distribution have been displayed.

The result of the numerical analysis shows that the most important char-
acteristics of particle dynamics and fields in a self-consistent system can be
forecasted analyzing the single-particle dynamics in external electromagnetic
fields.

If the density of charged particles is low (wp = 0.1), the transverse compo-
nent of the electric field is mainly excited. At the initial stage of the instability
development, there takes place an exponential increase in the transverse elec-
tric field amplitude. Further, the amplitude heightening gives way to slow
oscillations. These oscillations are stimulated by phase oscillations of particle
bunches trapped in the wave field (see Fig. 9.8).

Amplitude (a.u.)

Distance (a.u.)

Fig. 9.8. Evolution of the envelope of the microwave transverse field amplitude. The
resonances are not overlapping. The dashed line shows the threshold of stochastic
instability

In this graph, the dash line designates the field power level, necessary
for overlapping of the nonlinear resonances. In the electric field transverse
component spectrum, there is a narrow peak at the basic frequency of the
oscillations. In addition, there exist two satellites located on both sides of the
peak (Fig. 9.9).

The presence of the satellites is conditioned by the wave modulation by
phase oscillations of the bunches in the wave field. The correlation function
of the transverse electric field oscillates with a slowly decreasing amplitude.
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Amplitude (a.u.)

1 L

Frequency (a.u.)

Fig. 9.9. Spectrum of the excited field. The case of an isolated resonance

The temporal dependence of the longitudinal electric field is somewhat
more complicated. This is conditioned by superposition of the gyrofrequency
harmonics. However, even in this case, there occurs an exponential increase
in the wave field amplitude at the initial stage of the instability. Later on, the
amplitude starts to oscillate at the frequency of the phase oscillations in the
transverse wave field. In the longitudinal electric field spectrum, there exist
several narrow peaks at the cyclotron frequency harmonics. The correlation
function of the longitudinal field is a slowly decreasing periodic function of
the frequency.

Thus, a beam of low density excites regular oscillations, characterized by
a discrete spectrum. It is easy to see that the maximal amplitude of the
transverse field is smaller than the field strength, necessary for overlapping
of the resonances (9.54). Therefore, the particles are locked in an isolated
resonance with the wave and their motion is practically regular. Analysis of
the function of the particle distribution in energy indicates that the excitation
of oscillations is accompanied by a broadening in the distribution function.
However, this broadening remains within the limits of the nonlinear resonance
width; that is, the particles keep on moving in an isolated cyclotron resonance,
not passing on to the neighboring ones.

It is worth mentioning that the system efficiency, determined by the rela-
tion

n=(1BI* /47) 4/ oyme® (0 - 1) ,

turns out to be rather high. Under conditions above, it reaches 37%.

If one heightens the particle density up to the values that correspond to
the condition of nonlinear resonances overlapping, the instability development
substantially changes. At the beginning of the process occurs an exponential
increase in the transverse electric field amplitude as in the case of an isolated
resonance. This increase is limited by trapping of particles by the field of the
excited field (see Fig. 9.10; ¢ < 50).
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Amplitude (a.u.)

Distance (a.u.)

Fig. 9.10. Evolution of the transverse field amplitude envelope. The resonances are
overlapping

Amplitude (a.u.)

Frequency (a.u.)

Fig. 9.11. Spectrum of the excited transverse field. The resonances are overlapping

The field power level is approximately twice as high as the level necessary
for resonances overlapping. In consequence, the motion becomes chaotic. In its
turn, the chaotic motion results in a chaotic modulation of the transverse field
amplitude (50 < ¢t < 200) and in appearance of a chaotic longitudinal field.
The difference in a degree of their chaos can be explained in the following way.
According to (9.62), the temporal evolution of the longitudinal Coulomb field
is completely determined by the motion of charged particles. Respectively,
the chaotic character of motion causes the self-consistent Coulomb field. The
transverse electromagnetic field evolution is described by the inhomogeneous
wave equation. Therefore, the beam chaotic current on the right—hand side
of this equation can cause only irregular modulations of the transverse field
complex amplitude.

The spectrum of the excited oscillations and the evolution of the
distribution function correspond to this scenario of the instability develop-
ment. Although the transverse field spectrum has a maximum at the basic
frequency w = 1, it is substantially broadened. In contrast to the case of
a low—density beam, the field correlation function quickly decreases in time.
The longitudinal field spectrum is continuous, and it is much broader than the
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transverse field spectrum. The form of the distribution function indicates that
until the moment ¢ =~ 40 the instability behaves as in the case of an isolated
resonance. However, starting from ¢ =~ 80, the particle distribution function
seizes several resonances. In addition to the slowed—down particles, there ap-
pears a group of stochastically scattered ones. Then the distribution function
becomes more and more fuzzy. A number of the accelerated particles increases.
However, generally speaking, the decelerated particles predominate over ac-
celerated ones. This chaotic motion of oscillators accompanied by smearing of
the energy distribution function causes a limitation of the self—consistent field.
And what is more, starting from the moment t ~ 225, the field average am-
plitude corresponds to the value necessary for overlapping of the resonances.
This means, in the long run, that the level of the field saturation turns out to
be prescribed by the condition of overlapping rather then by trapping of the
particles.

It is worth mentioning that even if the beam density is low so that the
particles are under action of a single isolated resonance, their dynamics can
also become chaotic. Really, the resulting self-consistent field is the wave
field, the amplitude of which varies periodically in time. The particle mo-
tion in the field of this kind is equivalent to the motion in the field of three
waves, the frequencies of which differ by frequency value of the bounce oscilla-
tions of the trapped particles. The wave amplitude values are large enough to
provide nonlinear resonances of the three waves overlapping. Under these con-
ditions, dynamics of the particle motion has to be chaotic. In its turn, the
chaotic character of the particle motion has to cause smoothing down of the
amplitude of modulation of the wave excited. However, numerical simulations
indicate that the period of the wave modulation is much larger than the pe-
riod of bounce oscillations. The reason of such prolonged maintenance of the
regular modulation of the amplitude of the wave is the following. During the
process of bunching, the particles mainly become bunched in the area of the
phase space which corresponds to “an island” of stochastic stability of the
particle motion. Finally, their motion does become chaotic but the amplitude
of the excited oscillations decreases and is subjected just to small incidental
modulations.

The principal attention has been paid above to the description of the inter-
action of charged particles with electromagnetic waves under the conditions
of their cyclotron synchronism. No great attention has been paid to the op-
eration of real microwave devices, which is a subject of extensive literature.
Among them, gyrotrons and cyclotron autoresonance masers (CARMs) are
of a special interest. As regards gyrotrons, the straight lines of the integrals
are perpendicular to the resonance straight lines. As the particles move along
the integral curves, there does not take place any energy interchange between
the particles and waves within the framework of the small-signal approxima-
tion. The energy interchange is possible only when one regards finiteness of
amplitudes of the waves. Under the conditions of an isolated resonance, the
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maximum amount of the particle energy transferred to the wave is of the order
of magnitude of the nonlinear resonance width.

In CARMs, the resonance straight lines are parallel to the straight lines of
the integrals. There can take place the infinitely long resonant field—particle in-
teraction. Limitations on the magnitude of the energy transferred (either from
the particles to the wave field or v.v.) are prescribed by the two reasons. It
could be either depletion of an energy source or geometrical sizes of electrody-
namic structures, where the field—particle interaction occurs. Notwithstanding
the circumstance mentioned above, effectiveness of the gyrotron operation is
all the same rather high reaching in practice tens of percent.

The above-studied physical mechanism of the field—particle cyclotron in-
teraction permits to describe qualitatively new modes of CRM operation,
that is, the stochastic regimes. The stochastic mechanisms indicate themselves
more and more often while the power of the oscillations excited increases and
one is advancing into a range of shorter wavelengths. Besides, this very ap-
proach can be used for deeper understanding of various processes, that is,
particle acceleration and mechanisms of stochastic heating of an ensemble of
charged particles [48]. In particular, not long ago, by making use of the above—
described mechanisms, plasma heating up to high temperatures (=~ 1.5 MeV)
has become possible, the effectiveness being rather high (~ 50%) [58, 59].
Probably, there exists no alternative to the described mechanism of stochas-
tic heating. Really, there occurs a direct transformation of the regular wave
energy to the energy of the particles chaotic motion without any intermediate
stages.

An important conclusion, which can be made from the above-presented
results, consists in the fact that, considering the dynamics of a single parti-
cle, one can describe correctly the entire physical picture of interaction of a
flow of charged particles with the electromagnetic waves. That is, within the
framework of the single—particle model, the levels of excited oscillations can be
determined as well as thresholds for appearing the chaotic particle dynamics.
Determined in this way the thresholds and levels are in fairy good agree-
ment with the results of numerical simulation. In addition, having considered
the case of an isolated resonance shows certain modulation at the bounce
frequency. This modulation taken in mind, one can conclude that the analy-
sis of single—particle dynamics produces not only correct qualitative results
but also quantitative esteems of transition from the regular particle dynamics
into the chaotic one. This enables one to determine the amplitude saturation
level of the wave, the shape of the energy distribution function, and the main
statistical characteristics of the excited field (spectra, correlation functions,
dispersion, etc.).



