
Comment on the Uniqueness of the Electroweak 
Group from the Anomalies Viewpoint 

Arguments for the uniqueness of the electroweak group and its representations 
are reexamined on the basis of freedom from the three known chiral gauge an­
omalies in four dimensions: the triangular chiral gauge anomaly, the global chiral 
gauge anomaly and the mixed chiral gauge-gravitational anomaly. While the stand­
ard chiral gauge group SU(3)c ® SU(2)L ® U(l)y gives rise to a unique minimal 
set of massless fermion representations of SU(3)c ® SU(2)L and their U(l)y charges 
that are in accord with experiment, it is shown that the unique minimal set of 
massless fermion representations of the gauge chiral group SU(3)c ® SU(3)L ® 
U(l)y-corresponding to the gauging of three light chiral quark flavors-does not 
yield a unique set of U(l)y charges. We argue that this helps to explain nature's 
choice of quark and lepton chiral doublets rather than triplets. 
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lt is a striking fact that the generational grouping of quarks and 
leptons is in terms of (left-handed) chiral doublets and not triplets, 
as might be expected from the existence of three (and not two) 
light quarks. lt will be recalled that the QCD symmetry group for 
n flavors of massless quarks is1: 

SU(3)c ® SU(n)L ® SU(n)R ® U(l)L ® U(l)R 

where SU(3)c is the gauged color group and the rest is the global 
chiral quark flavor symmetry group. The confining SU(3)c group 
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produces quark c ndensates (OjqqjO) :/= U that leave U(3) and 
U( 1 )L, R (baryon charge) unbroken while breaking SU(11)L ® 
S n) R down to the " diagonal sum ' (vector) group SU(n) +/ 
1 U(n)L ~ R is the global 4uark fl avor •roup SU(n) i:J; the color 
in tant ns break the axial (J)L- R group down to the ùiscrete 
group Z 211 •3 Putting aside the instanton effects, QCD with n flavors 
tells us that SU(3)c is unbroken by the quark condensates whereas 
SU(n)L ® SU(n)R is broken and gives rise to (n 2 

- 1) pseudoscalar 
Goldstone bosons ("pions" ). 

Since, in nature, we have a triplet of light quarks (mq < Aoco 
(Aoco is the QCD scale)- al! other quarks have mq >> A0 c0 ) , 

the largest global chiral quark flavor group that makes physical 
sense is SU(3)L ® SU(3)R· Indeed , the identification of the as­
sociated three chiral light quark flavor symmetry currents with the 
physical weak and electromagnetic currents explains the great suc­
cess of current algebra. By paying attention to chiral quark-lepton 
flavor universality , one might then expect that the construction of 
a successful gauge theory of the electroweak interaction would be 
based on gauging SU(3)L, rather than SU(2)L, chiral flavor. 

Nature has expressed a distinct preference for gauging two chiral 
quark flavors (the leptons must follow suit because of the anomaly­
free constraints) and it is interesting to inquire whether making 
full use of freedom from anomalies can give us any insight into 
this choice at the electroweak scale. In this Comment, we shall 
show that the application of the three known chiral gauge anomaly­
free conditions in four dimensions does distinguish between two 
and three chiral quark flavors and does lead to a unique minimal 
and empirically correct set of quantum numbers of the massless 
fermion (Weyl) representations for two chiral quark flavors but 
not for three. But first let us remind the reader of the three chiral 
gauge anomalies that are being considered : they éj.re (1) the tri­
angular (perturbative) chiral gauge anomaly,4 which must be can­
celled to avoid the breakdown of gauge invariance and, a fortiori, 
renormalizability of the theory; we call this triangular anomaly; 
(2) the global (non-perturbative) SU(2) chiral gauge anomaly,5 

which must be absent in order to define the fermion integral in a 
gauge invariant way; we call this the global anomaly; (3) the mixed 
(perturbative) chiral gauge-gravitational anomaly,6 which must be 
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cancelled in order to ensure general covariance of the theory; we 
call this the mixed anomal y. 

The basic question is whether the requirements of minimality 
and freedom from ail three chiral gauge anomalies for the candi­
date group yields a unique set of Weyl representations and their 
(hyper)charges that agree with experiment, i.e. , whether the uniquely 
determined set of Weyl representations - after the breaking of the 
electroweak group to U(l)EM-describes the observed quarks and 
leptons of one generation. We shall see that the standard group 
SU(3)c@SU(2)L@ U(l)y cornes through with flying colors whereas 
its generalization to three chiral quark flavors, i.e., SU(3)c @ 
SU(3)L @ U(l)y , does not. 

The standard mode! has been worked out elsewhere7 and here 
we simply summarize the main results. We begin by allowing an 
arbitrary8 number of (left-handed) Weyl representations under the 
standard group, i.e.: 

SU(3)c @ SU(2)L @ U(l)y 

3 2 Q; (i = 1, 2, ... 'j) 

3 1 Q; (i = 1, 2, ... 'k) 

3 1 Q; (i = 1, 2, ... ' l) 

3 2 Q; (i = 1, 2, .. . , m) 
(1) 

1 2 q; (i = 1, 2, ... , n) 

1 1 q; (i = 1, 2, ... 'p) 

where the integers j, k, l, m, n and p and the U(l)y charges are 
ail arbitrary. Freedom from the triangular anomalies then leads to 
the following equations: 
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j k I m 

(SU(3)]3 : 2:2 + L 1 - L 1 - L2 = 0, (2a) 
i=I i=l i=l i= 1 

j k I m 

(SU(3)]2U(l): 2 L Q; + L Q; + L Q; + 2 L Q; = 0, (2b) 
i=l i=l i = l i=l 

j m 11 

(SU(2)]2U(l): 3 LQ; + 3 LQ; + Lq; = 0, (2c) 
i=l i= 1 i=l 

j k I m 

u(1)3: 6 2:œ + 3 2: Q? + 3 2:œ + 6 2:Q? 
i=l i=l i= 1 i= 1 

Il p 

+ 2 2: qJ + 2: qJ = o. (2d) 
i= 1 i= 1 

The global anomaly-free condition is : 

3j + 3m + n = N (3) 

where N is an even integer . Finally, the mixed anomaly-free con­
dition is: 

Tr Y= O. (4) 

The requirements of minimality and the three anomaly-free con­
ditions (Eqs. (2)-(4)) lead to the values: j = 1, k = 0, l = 2, 
m = 1, n = 1, p = 1 and, in the obvious notation, to the four 
relations (note that there must be lepton as well as quark repre­
sentations): 

3Q1 + q 1 = 0 (Sb) 

2q1 + q1 = O. (6) 
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Equation (6) receives no contribution from SU(3) color triplets 
(quarks) because of the triangular anomaly-free condition (5a), so 
that, combining Eq. (6) with Eqs. (5), one gets: 

It is seen from Eq. (7) that ail the U(l)y charges are uniquely 
determined in terms of a single U(l)y charge, q1 ; choosing the 
normalization q 1 = -1-consistent with zero electric charge for 
the neutrino-the resulting Weyl representations of SU(3)c and 
SU(2)L and their U(l)y charges are those shown in Table 1, in 
agreement with the standard mode!. 

We thus find that the requirements of minimality and freedom 
from ail three chiral gauge anomalies Iead to a unique set of Weyl 
representations (and their U(l)y charges) of the standard group 
that correspond to the observed quarks and leptons of one family. 
Furthermore, the U(l)y charges of these quarks and leptons are 
quantized and correctly determined by adding the mixed anomaly­
free condition. Clearly, if one lifts the minimality requirement, it 

TABLE 1 

The quantum numbers of the (left-handed) Weyl representations under SU(3)c 
® SU(2)L ® U(l)v when ail three anomaly-free conditions are satisfied 

Particles 
(i = 1, 2, 3) SU(3)c@ SU(2)r_@ U(l)v 

ql = (~)~ 
3 2 1 -

3 

UL 3 4 

3 

dl 3 2 
-
3 

IL= (~)~ 
2 -1 

ë'L 2 
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is possible to obtain as many copies of a quark-lepton family with 
the proper quantum numbers as one wishes. 

lt should be noted that our demonstration-that ail three 
anomaly-free conditions are needed to determine the correct quan­
tum numbers of one family of Weyl fermions-is based on the 
acceptance of the standard groupas starti ng point. But the tandard 
group only ail ws for lcft-hanc.lcd neutrin s and the s itua tion changes 
if f r exarnple, th tandmd gauge group is enlarged l th left­
right-. ymrnetric (LRS) gaug group SU(3 . ® SU(2)1 ® SU(2)R 
® U(l)B - L· 9 Wilh this gr up (and in oking minirnality as wc did 
with th standard gr up), it is eas ily hown that rbe (left-handcd) 
Weyl representations are those shown in Table II. In deriving Table 
II, it is only necessary to impose the first two anomaly-free con­
ditions: the triangular and global anomaly-free conditions; the mixed 
anomaly-free condition is automatically satisfied in a manifestly 
left-right-!>ymmet1ic theory such as the LR mode!. 

We now repeal the argument utlined above when the SU(3)L 
chiral quark flavor gauge group replace U(2)v The simplest 
case- which il lu trates the problem-i the analog f the standard 
group, i.e., SU(3)c ® SU(3)L ® U(l)y. Instead of beginning the 

TABLE II 

The quantum numbers of the (left-handed) Weyl representations under 
SU(3)c ® SU(2)L ® SU(2)R ® U(l)e-L when the triangular and global 

SU(2) anomaly-free conditions are satisfied 

Particles 
(i = 1, 2, 3) SU(3)c ® SU(2)L ® SU(2)" ® U(l) 

ql = (~):_ 

-· (u.)' ql = d 
L 

IL= (~)~ 

ïL = (~) ~ 
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3 2 1 

3 

3 2 1 

3 

2 -1 

2 



TABLE III 

Minimal representations under SU(3)c ® SU(3)L ® U(l)v 

SU(3)c@ SU(3)L @ U(l) 
3 
3 
3 
3 
1 
1 
1 

3 
1 
1 
1 
3 
3 
3 

Q 
Q, 
Q2 
Q, 
q, 
q2 
q, 

demonstration with an arbitrary set of Weyl representations (the 
result is the same), we accept minimality from the outset and 
ascertain whether the use of the three anomaly-free conditions 
enable us to fix uniquely the U(l)y charges of the minimal rep­
resentations. We write down these minimal Weyl representations 
under SU(3)c @ SU(3)L @ U(l)y in Table III, but allow for 
arbitrary values of the U(l)y charges. 

The three triangular anomaly-free conditions become: 

3 

[SU(3)c]2U(l): 3Q + 2: Q; = 0 (8a) 
i= 1 

3 

[SU(3)L)2U(l): 3Q + 2;q; = 0 (8b) 
i=I 

The global anomaly-free condition is satisfied because the total 
number of zero modes of the 3 and 3 Weyl representations of 
SU(3)L -containing SU(2)L as a subgroup-is even. The mixed 
anomaly-free condition becomes: 

3 3 

9Q + 3 2: Q; + 3 2: q; = o. (9) 
i = l i=l 
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Use of Eqs. (8) and Eq. (9) requires Q = 0 and the following 
three independent equations: 

Qî + Q~ + m + qf + q~ + q~ = 0 ( lOc) 

lt is easily shown that Eqs. (10) have no unique solution, even 
with the minimality condition, so that the SU(3)c ® SU(3)L @ 
U(l)y mode! can not have its U(l)y charges uniquely fixed even 
with the use of the mixed anomaly-free condition. It is interesting 
to note that one of the solutions: Q1 = + 1, Q2 = -1, Q3 = 0; 
q1 = -1, q2 = 1, q3 = 0 cornes fro m the 27 fundamental) Weyl 
representation of 6 wben it break down to SU(3) . ® SU(3)L 
@ U(l)y through the maximal interm diate ubgr up [SU(3)p. 
However, neither this olution nor any tJ1er soluti n of Eqs. 10) 
yields the observed quark and lepton electric charges when SU(2)L 
@ U(l)y breaks down to U(l)EM. This means that E6 --? SU(3)c 
@ SU(3)L ® U(l)y is not a possible symmetry-breaking path for 
a viable E6 GUT theory. 10 

Our result for SU(3)c ® SU(3)L@ U(l)y differs markedly from 
the case of the standard group SU(3)c@ SU(2)L ® U(l)y, where 
the appli ati n of the thre anomaly-free conditions yields a unique 
set of U(.L) charge that, moreover, agree with experiment. We 
consider this result an argument against the gauging of three chiral 
quark flavors iostead of tw . hus. f r the first time, the anomalies 
vi ewp int has given us some inkling of why a gauge theory of the 
trong and electr weak interactions is natural within the frame­

work f a replica tion f families of quark and lepton doublets. 
However, it must be admitted that, thus far, the anomalies view­
point has given us no clue as to why the number of families is at 
least three and probably does not exceed four. 
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