Comment on the Uniqueness of the Electroweak
Group from the Anomalies Viewpoint

Arguments for the uniqueness of the electroweak group and its representations
are reexamined on the basis of freedom from the three known chiral gauge an-
omalies in four dimensions: the triangular chiral gauge anomaly, the global chiral
gauge anomaly and the mixed chiral gauge-gravitational anomaly. While the stand-
ard chiral gauge group SU(3)c ® SU(2). & U(1)y gives rise to a unique minimal
set of massless fermion representations of SU(3) ® SU(2), and their U(1) charges
that are in accord with experiment, it is shown that the unique minimal set of
massless fermion representations of the gauge chiral group SU(3) ® SU(3). ®
U(1)y—-corresponding to the gauging of three light chiral quark flavors—does not
yield a unique set of U(1)y charges. We argue that this helps to explain nature’s
choice of quark and lepton chiral doublets rather than triplets.
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It is a striking fact that the generational grouping of quarks and
leptons is in terms of (left-handed) chiral doublets and not triplets,
as might be expected from the existence of three (and not two)
light quarks. It will be recalled that the QCD symmetry group for
n flavors of massless quarks is':

SUB)c ® SU(n). ® SU(n)r ® U(1). ® U(1)r

where SU(3)c is the gauged color group and the rest is the global
chiral quark flavor symmetry group. The confining SU(3) group
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produces quark condensates (0lgg|0) # 0 that leave SU(3). and
U(1), , g (baryon charge) unbroken while breaking SU(n), ®
SU(n)p down to the “diagonal sum™ (vector) group SU(n), ,*
[SU(n). ;o is the global quark flavor group SU(rn)g|; the color
instantons break the axial U(l); _, group down to the discrete
group Z,,,.> Putting aside the instanton effects, QCD with n flavors
tells us that SU(3) is unbroken by the quark condensates whereas
SU(n), ® SU(n)g is broken and gives rise to (n* — 1) pseudoscalar
Goldstone bosons (“‘pions’).

Since, in nature, we have a triplet of light quarks (m, < Agcp
(Aqep is the QCD scale)— all other quarks have m, >> Agep),
the largest global chiral quark flavor group that makes physical
sense is SU(3). & SU(3)r. Indeed, the identification of the as-
sociated three chiral light quark flavor symmetry currents with the
physical weak and electromagnetic currents explains the great suc-
cess of current algebra. By paying attention to chiral quark—lepton
flavor universality, one might then expect that the construction of
a successful gauge theory of the electroweak interaction would be
based on gauging SU(3),, rather than SU(2),, chiral flavor.

Nature has expressed a distinct preference for gauging two chiral
quark flavors (the leptons must follow suit because of the anomaly-
free constraints) and it is interesting to inquire whether making
full use of freedom from anomalies can give us any insight into
this choice at the electroweak scale. In this Comment, we shall
show that the application of the three known chiral gauge anomaly-
free conditions in four dimensions does distinguish between two
and three chiral quark flavors and does lead to a unique minimal
and empirically correct set of quantum numbers of the massless
fermion (Weyl) representations for two chiral quark flavors but
not for three. But first let us remind the reader of the three chiral
gauge anomalies that are being considered: they are (1) the tri-
angular (perturbative) chiral gauge anomaly,* which must be can-
celled to avoid the breakdown of gauge invariance and, a fortiori,
renormalizability of the theory; we call this triangular anomaly;
(2) the global (non-perturbative) SU(2) chiral gauge anomaly,’
which must be absent in order to define the fermion integral in a
gauge invariant way; we call this the global anomaly; (3) the mixed
(perturbative) chiral gauge-gravitational anomaly,® which must be
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cancelled in order to ensure general covariance of the theory; we
call this the mixed anomaly.

The basic question is whether the requirements of minimality
and freedom from all three chiral gauge anomalies for the candi-
date group yields a unique set of Weyl representations and their
(hyper)charges that agree with experiment, i.e., whether the uniquely
determined set of Weyl representations—after the breaking of the
electroweak group to U(1)gy—describes the observed quarks and
leptons of one generation. We shall see that the standard group
SU3)c ® SU(2). ® U(1)y comes through with flying colors whereas
its generalization to three chiral quark flavors, i.e., SU(3)c ®
SU3). ® U(1)y, does not.

The standard model has been worked out elsewhere’ and here
we simply summarize the main results. We begin by allowing an
arbitrary® number of (left-handed) Weyl representations under the
standard group, i.e.:

SUQR)c ® SUR)L ® U(l)y

3 2 Gili=1,200u.])
3 1 QIli=1,2, pou s K
3 1 0:.(=12...,D
3 2 0l (i=12...,m) )
1 2 G=1,2,...,n
1 1 726G=12,...,p)

where the integers j, k, [, m, n and p and the U(1)y charges are
all arbitrary. Freedom from the triangular anomalies then leads to
the following equations:
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k / n

[SUB)J: é}lz +21-21->2=0, (2a)

j k ] m
[SURFUQ): 220i+ 20/ + 20/ +2 2,0/ = 0, (2b)

[SUFUA): 33.0,+3 30+ Xa=0, (20)

=1

J k ! mn
U@y 620+3> 02 +320}+6>07
= 1= i=1 i=1

+2> g2+ 272 =0. (2d)

The global anomaly-free condition is:
3j+3m+n=N (3)

where N is an even integer. Finally, the mixed anomaly-free con-
dition is:

TrY = 0. )

The requirements of minimality and the three anomaly-free con-
ditions (Egs. (2)—(4)) lead to the values: j = 1, k = 0,/ = 2,
m = 1,n = 1, p = 1 and, in the obvious notation, to the four
relations (note that there must be lepton as well as quark repre-
sentations):

200+ 0, + 0, =0 (5a)
30, + g, =0 (5b)
607 + 303 + 303 + 2¢3 + 31 = 0 (5¢)
2q, + g, = 0. (6)
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Equation (6) receives no contribution from SU(3) color triplets
(quarks) because of the triangular anomaly-free condition (5a), so
that, combining Eq. (6) with Egs. (5), one gets:

1 — 4 - 2 _
0, = 5611, 0, = EQD O = _gq“ g = —2q, (7)

It is seen from Eq. (7) that all the U(1)y charges are uniquely
determined in terms of a single U(1)y charge, ¢,; choosing the
normalization g, = —1—consistent with zero electric charge for
the neutrino—the resulting Weyl representations of SU(3). and
SU(2),. and their U(1)y charges are those shown in Table I, in
agreement with the standard model.

We thus find that the requirements of minimality and freedom
from all three chiral gauge anomalies lead to a unique set of Weyl
representations (and their U(1)y charges) of the standard group
that correspond to the observed quarks and leptons of one family.
Furthermore, the U(1)y charges of these quarks and leptons are
quantized and correctly determined by adding the mixed anomaly-
free condition. Clearly, if one lifts the minimality requirement, it

TABLE 1

The quantum numbers of the (left-handed) Weyl representations under SU(3)
® SU(2),. ® U(1)y when all three anomaly-free conditions are satisfied

Particles

(i=1,2,3) SUB)c ® SUQ). ® U(l)y
() N
L d e 3
. 3 ! 4
3
dy 3 1 2
3
Oy 1 2 =1

L= e i

el 1 1 2
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is possible to obtain as many copies of a quark—lepton family with
the proper quantum numbers as one wishes.

It should be noted that our demonstration—that all three
anomaly-free conditions are needed to determine the correct quan-
tum numbers of one family of Weyl fermions—is based on the
acceptance of the standard group as starting point. But the standard
group only allows for left-handed neutrinos and the situation changes
if, for example, the standard gauge group is enlarged to the left-
right-symmetric (LRS) gauge group SU(3)¢ & SU(2);, ® SU(2),
& U(1)g_.” With this group (and invoking minimality, as we did
with the standard group), it is easily shown that the (left-handed)
Weyl representations are those shown in Table II. In deriving Table
IL, it is only necessary to impose the first two anomaly-free con-
ditions: the triangular and global anomaly-free conditions; the mixed
anomaly-free condition is automatically satisfied in a manifestly
left-right-symmetric theory such as the LRS model.

We now repeat the arguments outlined above when the SU(3),
chiral quark flavor gauge group replaces SU(2),. The simplest
case—which illustrates the problem—is the analog of the standard
group, i.e., SUB)c ® SU(3), ® U(1)y. Instead of beginning the

TABLE II

The quantum numbers of the (left-handed) Weyl representations under
SU3)c ® SU(2). ® SU(2)x ® U(1)s_, when the triangular and global
SU(2) anomaly-free conditions are satisfied

Particles
(i=1,2,3) SUB)e ® SUQ),. ® SU2), ® U(1)

1_“‘ 3 2 1 1
‘IL—dL 3
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TABLE III
Minimal representations under SU(3)c ® SU(3), ® U(1)y

SUB)c ® SUB)L ® U()
3 Q

Q,
0,
0,
Ua
92
qs

— e W
W= = =

demonstration with an arbitrary set of Weyl representations (the
result is the same), we accept minimality from the outset and
ascertain whether the use of the three anomaly-free conditions
enable us to fix uniquely the U(1)y charges of the minimal rep-
resentations. We write down these minimal Weyl representations
under SU(3)c & SU(3);. ® U(1)y in Table III, but allow for
arbitrary values of the U(1)y charges.
The three triangular anomaly-free conditions become:

[SUB)JPU(L): 30 + ;Q.- =1 (8a)
[SUB).JPU1): 30 + Eq =0 (8b)

[UP: 90° + 3(2 Q?) + 3(2 q?) =0 (30)

The global anomaly-free condition is satisfied because the total
number of zero modes of the 3 and 3 Weyl representations of
SU(3),.—containing SU(2), as a subgroup—is even. The mixed
anomaly-free condition becomes:

K 3
9Q+3;1 0 + 3;q,-=0. 9)
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Use of Egs. (8) and Eq. (9) requires O = 0 and the following
three independent equations:

O+ 0, +03=0 (10a)
g+ 4+ g3 =0 (10b)
R+ B+ AB+ga+a3+q¢3=0 (10c)

It is easily shown that Eqgs. (10) have no unique solution, even
with the minimality condition, so that the SU3) ® SU(3), ®
U(1)y model can not have its U(1)y charges uniquely fixed even
with the use of the mixed anomaly-free condition. It is interesting
to note that one of the solutions: O, = +1, 0, = —1, Q; = 0;
g = —1,q9, = 1, g, = 0 comes from the 27 (fundamental) Weyl
representation of E, when it breaks down to SU(3). &) SU(3),
® U(1)y through the maximal intermediate subgroup [SU(3)]*.
However, neither this solution nor any other solution of Eqs. (10)
yields the observed quark and lepton electric charges when SU(2)
® U(1)y breaks down to U(1)gy. This means that Eq — SU(3)c
® SU@B). ® U(1)y is not a possible symmetry-breaking path for
a viable E; GUT theory.!?

Our result for SU(3) ® SU(3). &® U(1)y differs markedly from
the case of the standard group SU(3): ® SU(2), ® U(1)y, where
the application of the three anomaly-free conditions yields a unique
set of U(1)y charges that, moreover, agree with experiment. We
consider this result an argument against the gauging of three chiral
quark flavors instead of two. Thus, for the first time, the anomalies
viewpoint has given us some inkling of why a gauge theory of the
strong and electroweak interactions is natural within the frame-
work of a replication of families of quark and lepton doublets.
However, it must be admitted that, thus far, the anomalies view-
point has given us no clue as to why the number of families is at
least three and probably does not exceed four.
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