

First γ -Ray Spectroscopy of an sd -Shell Hypernucleus, ${}_{\Lambda}^{19}\text{F}$

Seongbae YANG¹, Jung Keun AHN¹, Yuya AKAZAWA², Kanae AOKI³, Nobuyuki CHIGA², Hiroyuki EKAWA⁴, Petr EVTOKHOVITCH⁵, Alessandro FELICIELLO⁶, Manami FUJITA², Shoichi HASEGAWA⁷, Shuhei HAYAKAWA⁸, Tomonari HAYAKAWA⁸, Ryotaro HONDA², Kenji HOSOMI⁷, Sanghoon HWANG⁹, Natsumi ICHIGE², Yudai ICHIKAWA⁷, Michihiko IKEDA², Ken'ichi IMAI⁷, Shigeru ISHIMOTO³, Shunsuke KANATSUKI⁴, Shin Hyung KIM¹, Shinji KINBARA¹⁰, Kazuya KOBAYASHI⁸, Takeshi KOIKE², Jaeyong LEE¹¹, Koji MIWA², Taejin MOON¹¹, Tomofumi NAGAE⁴, Yoshiyuki NAKADA⁸, Manami NAKAGAWA⁸, Yu OGURA², Atsushi SAKAGUCHI⁸, Hiroyuki SAKO⁷, Yuki SASAKI², Susumu SATO⁷, Kotaro SHIOTORI¹², Hitoshi SUGIMURA⁶, Sadami SUTO², Shoji SUZUKI³, Yoshiyuki TAKAHASHI³, Hirokazu TAMURA², Kiyoshi TANIDA⁷, Yuichi TOGAWA², Zviadi TSAMALADZE⁵, Mifuyu UKAI³, Taofeng WANG¹³, and Takeshi O. YAMAMOTO⁷

(The J-PARC E13 Collaboration)

¹Department of Physics, Korea University, Seoul 02841, Korea

²Department of Physics, Tohoku University, Sendai 980-8578, Japan

³Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁵Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

⁶INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy

⁷Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan

⁸Department of Physics, Osaka University, Toyonaka 560-0043, Japan

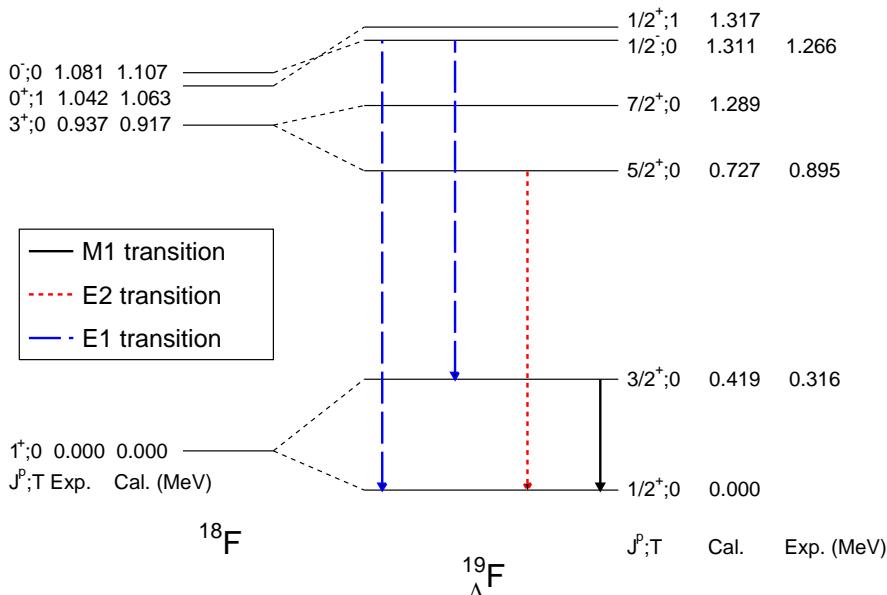
⁹Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea

¹⁰Faculty of Education, Gifu University, Gifu 501-1193, Japan

¹¹Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

¹²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

¹³Research Center of Nuclear Science and Technology (RCNST) and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China


E-mail: sbyang@korea.ac.kr

(Received February 13, 2019)

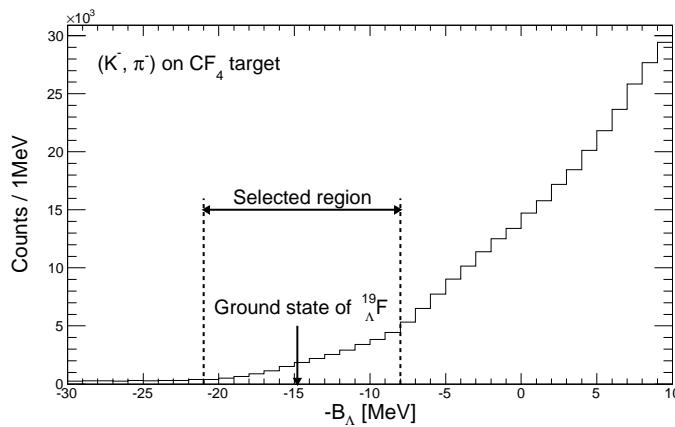
We performed a gamma-ray spectroscopy of ${}_{\Lambda}^{19}\text{F}$ at J-PARC Hadron Experimental Facility in 2015. It is the first measurement of γ rays emitted from sd -shell hypernuclei. In this experiment, we determined the energy spacing between the ground state spin doublet, $3/2^+$ and $1/2^+$ states, as 316 keV. The excitation energies of $5/2^+$ and $1/2^+$ states are also determined to be 895 keV and 1266 keV, respectively. The energy spacing is found to be well reproduced by shell-model calculations which describe s - and p -shell Λ hypernuclei well. The results show that the present theories of the ΛN interaction describe not only the light hypernuclei but also a heavier hypernucleus.

KEYWORDS: J-PARC, Λ hypernucleus, ΛN interaction, Hyperball-J, Germanium detector, γ -ray spectroscopy

Fig. 1. Low-lying energy level scheme of $^{19}_{\Lambda}\text{F}$. The arrows represent the γ transitions measured at this time. The “Exp.” of $^{19}_{\Lambda}\text{F}$ means the measured value in this experiment and the “Calc.” of $^{19}_{\Lambda}\text{F}$ is the calculated value by Umeya and Motoba [10].

1. Introduction

In the nuclear physics world, the Λ hypernucleus consisting of nucleons and a Λ has played an important role in extending our knowledge of the nucleus. In particular, energy level structures obtained through γ -ray spectroscopy of Λ hypernuclei extracted information on the spin-dependent ΛN interaction [1–8]. However, the experimental data of γ -ray measurement has been limited to light hypernuclei only due to the limited experimental environment such as low intensity of K^- beam. It is a very interesting question whether our knowledge of the ΛN interaction can be also applied to heavier hypernuclei.

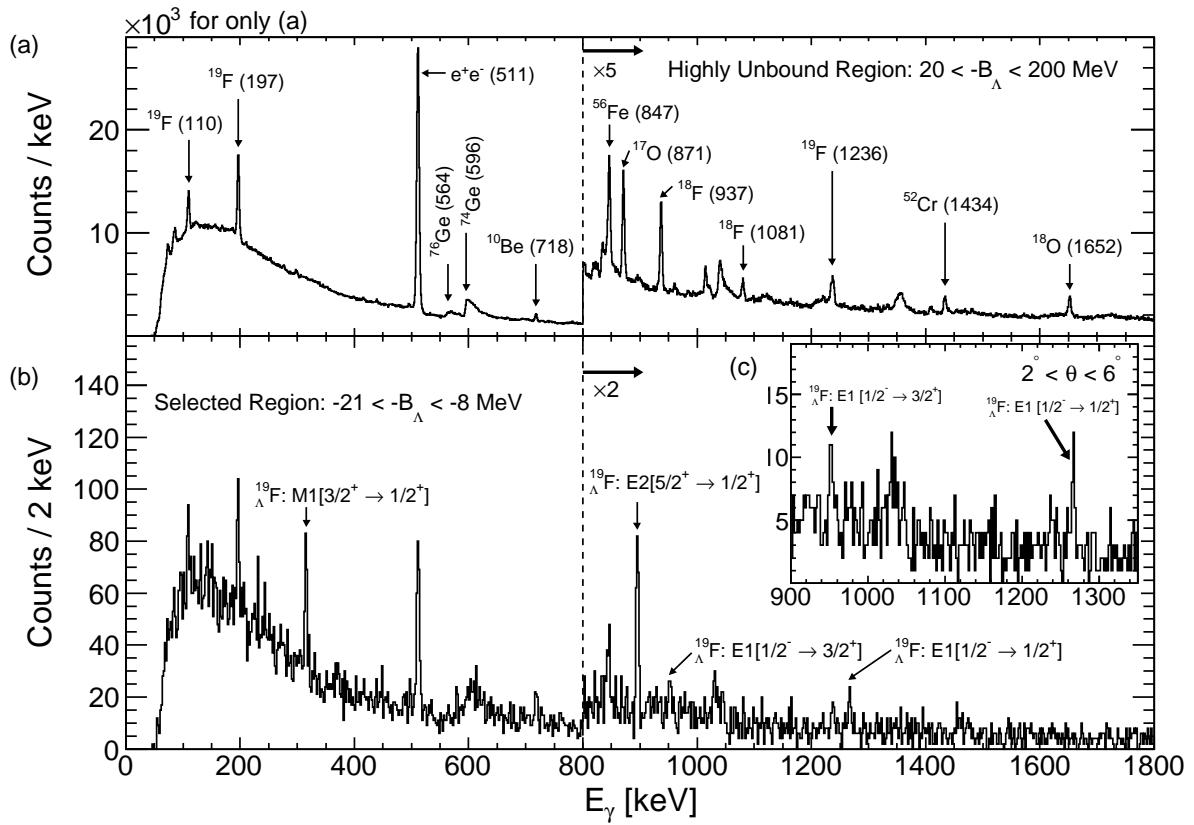

The γ -ray spectroscopy experiment of $^{19}_{\Lambda}\text{F}$ (J-PARC E13 [9]) is the first attempt to determine the fine structure of an *sd*-shell hypernucleus. We chose $^{19}_{\Lambda}\text{F}$ as the first target of heavier hypernuclei beyond *s*- and *p*-shell hypernuclei because it is suitable to study the effective spin-spin ΛN interaction. As shown in Fig. 1, the ground state of ^{18}F ($J^P = 1^+$) is split by the spin of the added Λ , and the energy spacing is dominantly determined by the effective spin-spin ΛN interaction. Because $^{19}_{\Lambda}\text{F}$ has a structure similar to already well-known $^7_{\Lambda}\text{Li}$, we can know how the effective spin-spin interaction changes in the *sd*-shell hypernuclei by directly comparing the energy spacing with those which were already measured in *s*- and *p*-shell hypernuclei.

2. Experiment

We performed J-PARC E13 at the K1.8 beamline in the J-PARC Hadron Experimental Facility. It was γ -ray spectroscopy of $^4_{\Lambda}\text{He}$ as well as $^{19}_{\Lambda}\text{F}$, and both results have already been reported [11, 12]. The $^{19}_{\Lambda}\text{F}$ hypernuclei were produced through the (K^-, π^-) reaction with a beam momentum of 1.8 GeV/c and a 20 g/cm² thick liquid CF₄ target. The momenta of the K^- beam and scattered π^- were measured by the beam line spectrometer and Superconducting Kaon Spectrometer (SKS) [13],

respectively. At the same time, γ rays emitted from the ${}_{\Lambda}^{19}\text{F}$ were detected by using a new array of Germanium (Ge) detectors, Hyperball-J [14]. Detailed experimental methods and analysis procedures can be found in Refs. [11, 12, 15].

3. Results


Fig. 2. Λ -binding energy distribution. At least one hit in the Ge detectors was required. The marked “selected region” indicates the low-lying states region of ${}_{\Lambda}^{19}\text{F}$ chosen for seeing a γ -ray spectrum of ${}_{\Lambda}^{19}\text{F}$.

The Λ -binding energy (B_{Λ}) of ${}_{\Lambda}^{19}\text{F}$ was calculated by a missing mass technique. In Fig. 2, we could not see any peaks corresponding to energy states of ${}_{\Lambda}^{19}\text{F}$ due to insufficient missing mass resolution. However, there are enough events around the ground state to measure γ rays from low-lying states of ${}_{\Lambda}^{19}\text{F}$. We selected a reaction angle (θ) range from 2° to 12° to avoid high background from K^- beam decays and low production cross-section of ${}_{\Lambda}^{19}\text{F}$.

As shown in Fig. 3(a), several γ -ray peaks from normal nuclei inside of the target and other materials are seen regardless of B_{Λ} range. After selecting the $-B_{\Lambda}$ range from -21 to -8 MeV, four γ -ray peaks of ${}_{\Lambda}^{19}\text{F}$ appear at 316 keV, 895 keV, 953 keV, and 1266 keV. The γ -ray peak of 316 keV is assigned to the $M1(3/2^+ \rightarrow 1/2^+)$ transition in Fig. 1 because the expected yields of the $M1$ transition are more than 10 times larger than the other transitions in the energy range from 100 keV to 500 keV [10, 16]. The 895 keV γ ray can be attributed to the $E2(5/2^+ \rightarrow 1/2^+)$ transition. The $E1(1/2^- \rightarrow 3/2^+)$ transition is possible in this energy range, but the $E1$ transition is rejected because a γ -ray peak from another $E1(1/2^- \rightarrow 1/2^+)$ transition is not seen at 1.21 MeV. The remaining 953 keV and 1266 keV peaks appear clearer at the forward reaction angle, $2^{\circ} - 6^{\circ}$, as shown in Fig. 3(c). This is because the two γ -ray peaks are the $E1(1/2^- \rightarrow 3/2^+)$ and $E1(1/2^- \rightarrow 1/2^+)$ transitions and the $1/2^-$ state has a large cross-section at the forward reaction angle [10]. The energy difference between these two $E1$ transitions is 312 keV, which is consistent with the $M1$ transition energy.

4. Discussion and Conclusion

The measured energy spacing, 316 keV, of the ground state doublet ($3/2^+$ and $1/2^+$) are consistent with the phenomenological calculation result, 305 keV, based on s - and p -shell hypernuclei data [17]. When we consider that the $\Lambda\Sigma$ coupling effect was not included in this calculation, it can be

Fig. 3. γ -ray energy spectra according to B_Λ energy region: (a) highly unbound region ($20 < -B_\Lambda < 200$ MeV) and (b) selected region ($-21 < -B_\Lambda < -8$ MeV). (c) is the reaction angle range changed to $2^\circ < \theta < 6^\circ$ in (b).

seen that this $\Lambda\Sigma$ coupling effect is negligible in the spin-spin doublet spacing of the *sd*-shell hypernuclei. On the other hand, the theoretical values based on the ΛN interaction of Nijmegen SC97e and SC97f models are 245 keV [16] and 419 keV [10], respectively. It is also consistent with the tendency that the ground-state doublet spacing of $^7_\Lambda\text{Li}$ (0.692 MeV [1]) is calculated as 0.348 MeV (SC97e) and 0.942 (SC97f) [16] from the Nijmegen models. Therefore, we can confirm that the theoretical frame describing *s*- and *p*-shell hypernuclei is well applied to *sd*-shell hypernuclei.

References

- [1] H. Tamura *et al.*, Phys. Rev. Lett. **84** (2000) 5963.
- [2] K. Tanida *et al.*, Phys. Rev. Lett. **86** (2001) 1982.
- [3] H. Akikawa *et al.*, Phys. Rev. Lett. **88** (2002) 082501.
- [4] M. Ukai *et al.*, Phys. Rev. Lett. **93** (2004) 232501.
- [5] H. Tamura *et al.*, Nucl. Phys. A **754** (2005) 58c.
- [6] Y. Miura *et al.*, Nucl. Phys. A **754** (2005) 75c.
- [7] M. Ukai *et al.*, Phys. Rev. C **73** (2006) 012501.
- [8] H. Tamura *et al.*, Nucl. Phys. A **881** (2012) 310.
- [9] H. Tamura *et al.*, J-PARC E13 Proposal.
- [10] A. Umeya and T. Motoba, Nucl. Phys. **A954** (2016) 242.
- [11] T.O. Yamamoto *et al.*, Phys. Rev. Lett. **115** (2015) 222501.
- [12] S.B. Yang *et al.*, Phys. Rev. Lett. **120** (2018) 132505.
- [13] T. Takahashi *et al.*, Prog. Theor. Exp. Phys. (2012) 02B010.

- [14] T. Koike *et al.*, in Proceedings of the IX International Conference on Hypernuclear and Strange Particle Physics, SIF and Springer-Verlag Berlin Heidelberg, 2007, ed. J. Pochodzalla and Th. Walcher, p. 25.
- [15] S.B Yang *et al.*, JPS Conf. Proc. **1** (2014) 013076.
- [16] A. Umeya and T. Motoba, private communication.
- [17] D.J. Millener, Nucl. Phys. **A914** (2013) 109.