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Abstract

We review the recent developments of the loop-tree duality method, focussing our discussion on analysing the
singular behaviour of the loop integrand of the dual representation of one-loop integrals and scattering amplitudes.
We show that within the loop-tree duality method there is a partial cancellation of singularities at the integrand level
among the different components of the corresponding dual representation. The remaining threshold and infrared
singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta
and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
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1. Introduction

The recent discovery of the Higgs boson at the LHC
represents a great success of the Standard Model (SM)
of elementary particles. Although at the same time, the
absence so far of a clear signal of physics beyond the
SM during the first run of the LHC leaves a certain de-
gree of dissatisfaction. The high quality of data that the
LHC will provide in the next run will impose new the-
oretical and experimental challenges and will increase
even more the relevance of high-precision predictions
for the analysis of known phenomena and for finding
innovative strategies to achieve new discoveries.

The loop-tree duality method [1, 2, 3, 4, 5, 6, 7, 8, 9]
establishes that generic loop quantities (loop integrals
and scattering amplitudes) in any relativistic, local and
unitary field theory can be written as a sum of tree-level
objects obtained after making all possible cuts to the
internal lines of the corresponding Feynman diagrams,
with one single cut per loop and integrated over a mea-
sure that closely resembles the phase-space of the cor-
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responding real corrections. This duality relation is re-
alized by a modification of the customary +i0 prescrip-
tion of the Feynman propagators. At one-loop, the new
prescription compensates for the absence of multiple-
cut contributions that appear in the Feynman Tree The-
orem [10, 11]. The modified phase-space raises the
intriguing possibility that virtual and real corrections
can be brought together under a common integral and
treated with Monte Carlo techniques at the same time.
In this talk, we review the actual state of development
of the loop-tree duality method and focus our discus-
sion on analysing the singular behaviour of the loop in-
tegrand of the dual representation of one-loop integrals
and scattering amplitudes, as a necessary step towards a
numerical implementation for the calculation of physi-
cal cross-sections [9].

2. The loop-tree duality relation at one-loop

The loop-tree duality relation is obtained by directly
applying the Cauchy residue theorem to a general one-
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loop N-leg scalar integral

L(1)(p1, . . . , pN) =
∫
�

∏
i∈α1

GF(qi) ,

∫
�

• = −i
∫

dd�

(2π)d • , (1)

where

GF(qi) =
1

q2
i − m2

i + i0
(2)

are Feynman propagators that depend on the loop mo-
mentum �, which flows anti-clockwise, and the four-
momenta of the external legs pi, i ∈ α1 = {1, 2, . . .N},
which are taken as outgoing and are ordered clockwise.
We use dimensional regularization with d the number
of space-time dimensions. The momenta of the internal
lines qi,μ = (qi,0, qi), where qi,0 is the energy (time com-
ponent) and qi are the spacial components, are defined
as qi = � + ki with ki = p1 + . . . + pi, and kN = 0 by
momentum conservation. We also define k ji = q j − qi.

The dual representation of the scalar one-loop inte-
gral in Eq. (1) is thus the sum of N dual integrals [1, 3]:

L(1)(p1, . . . , pN)

= −
∑
i∈α1

∫
�

δ̃ (qi)
∏

j∈α1, j�i

GD(qi; q j) , (3)

where

GD(qi; q j) =
1

q2
j − m2

j − i0 η k ji
(4)

are the so-called dual propagators, as defined in Ref. [1],
with η a future-like vector, η2 ≥ 0, with positive definite
energy η0 > 0.

The delta function δ̃ (qi) ≡ 2π i θ(qi,0) δ(q2
i − m2

i ) sets
the internal lines on-shell by selecting the pole of the
propagators with positive energy qi,0 and negative imag-
inary part. The presence of the vector η is a conse-
quence of using the residue theorem and the fact that the
residues at each of the poles are not Lorentz-invariant
quantities. The Lorentz-invariance of the loop integral
is recovered after summing over all the residues.

3. Loop-tree duality relation at two-loops and be-

yond

The extension of the loop-tree duality theorem to
two-loops and beyond has been discussed in detail in

Ref. [3]. It is convenient to define the following func-
tions combining different Feynman and dual propaga-
tors:

GF(αk) =
∏
i∈αk

GF(qi) ,

GD(αk) =
∑
i∈αk

δ̃ (qi)
∏

j∈αk , j�i

GD(qi; q j) , (5)

where αk is used to denote any set of internal momenta
that depend on the same loop momentum or the sum
of several independent loop momenta. At two loops
we need three loop lines αk to label all the internal
momenta: α1, α2 and α3 for those momenta that de-
pend on �1, �2 and �1 + �2, respectively. By definition
GD(αk) = δ̃ (qi), when αk = {i} consists of a single four-
momentum. We also define:

GD(−αk) =
∑
i∈αk

δ̃ (−qi)
∏

j∈αk , j�i

GD(−qi;−q j) , (6)

where the sign in front of αk indicates that we have re-
versed the momentum flow of all the internal lines in the
loop line αk.

The key ingredient necessary to extend the loop-tree
duality theorem to higher orders is the following rela-
tionship relating the dual and Feynman functions of two
subsets:

GD(α1 ∪ α2) = GD(α1) GD(α2) +GD(α1) GF(α2)
+ GF(α1) GD(α2) , (7)

which can be generalized as well to the union of an ar-
bitrary number of loop lines [3]. The application of the
loop-tree duality theorem at higher orders proceeds in
a recursive way. For the two-loop case, one starts by
selecting one of the loops

L(2)(p1, . . . , pN) =
∫
�1

∫
�2

GF(α1 ∪ α2 ∪ α3)

= −
∫
�1

∫
�2

GF(α2) GD(α1 ∪ α3) . (8)

As the loop-tree duality theorem applies to Feynman
propagators only, we use Eq. (7) to re-express the dual
propagators entering the second loop as Feynman prop-
agators. The application of the loop-tree duality theo-
rem to the second loop with momentum �2 also requires
to reverse the momentum flow in some of the loop lines.
The final dual representation of a two-loop scalar inte-
gral reads:

L(2)(p1, . . . , pN) =
∫
�1

∫
�2

{−GD(α1) GF(α2) GD(α3)

+GD(α1) GD(α2 ∪ α3) +GD(−α1 ∪ α2) GD(α3)} , (9)

which is given by double cut contributions opening the
loop diagram to a tree-level object.
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4. The loop-tree duality relation for multiple poles

The appearance of identical propagators or powers of
propagators can be avoided at one-loop by a convenient
choice of the gauge [1], but not at higher orders. Iden-
tical propagators possess higher than single poles and
the loop-tree duality theorem discussed so far, which is
based on assuming single poles, must be extended to
accommodate for this new feature. Two different strate-
gies have been proposed in Ref. [5] to deal with this
problem. The first one consists of extending the loop-
tree duality theorem by using the Cauchy residue theo-
rem for higher order poles. The second one consists of
using Integration by Parts (IBP) [12, 13] to reduce inte-
grals with multiple poles to integrals with single poles
where the original loop-tree duality theorem can be ap-
plied directly. It is important to stress that in that case it
is not necessary to perform a full reduction to a partic-
ular integral basis. Explicit examples at two- and three-
loops have been presented in Ref. [5].

5. Cancellation of singularities among dual inte-

grands

Analysing the singular behaviour of the loop inte-
grand in the loop momentum space is an attractive ap-
proach because it allows a rather direct physical inter-
pretation of the singularities of the loop quantities [14].
This is particularly true for the case of the loop-tree du-
ality method. The loop integrand becomes singular in
regions of the loop momentum space in which subsets
of internal lines go on-shell. In Cartesian coordinates,
the Feynman propagator in Eq. (2) becomes singular
at hyperboloids with origin in −ki, where the minimal
distance between each hyperboloid and its origin is de-
termined by the internal mass mi. This is illustrated in
Fig. 1, where for simplicity we work in d = 2 space-
time dimensions. Figure 1 (up) shows a typical kine-
matical situation where two momenta, k1 and k2, are
separated by a time-like distance, k2

21 > 0, and a third
momentum, k3, is space-like separated with respect to
the other two, k2

31 < 0 and k2
32 < 0. The forward hyper-

boloids (qi,0 > 0) are represented in Fig. 1 by solid lines,
and the backward hyperboloids (qi,0 < 0) by dashed
lines. The loop-tree duality method is equivalent to per-
forming the loop integration along the forward hyper-
boloids. In the following, we take ημ = (1, 0), and thus
−i0 η k ji = −i0 k ji,0.

Two or more Feynman propagators become simul-
taneously singular where their respective hyperboloids
intersect. In most cases, these singularities, due to nor-
mal or anomalous thresholds [15, 16] of intermediate

-k1

-k2

-k3
m1

lz

l 0

-k1

-k2

-k3

co
llin

ea
r p 1

collinear p
2soft

lz

l 0

Figure 1: On-shell hyperboloids for three arbitrary propagators in
Cartesian coordinates in the (�0,�z) space (up). Kinematical configura-
tion with infrared singularities (down). In the latter case, the on-shell
hyperboloids degenerate to light-cones.

states, are integrable by contour deformation [17, 18].
However, if two massless propagators are separated by
a light-like distance, k2

ji = 0, then the hyperboloids de-
generate to light-cones and the overlap is tangential, as
illustrated in Fig. 1 (down), and leads to non-integrable
collinear singularities. In addition, massless propaga-
tors can generate soft singularities at qi = 0. In the
dual representation of the integrand, Eq. (3), at least one
propagator is already set on-shell, and we should anal-
yse the singularities of the dual propagators. A crucial
point of our discussion is the observation that dual prop-
agators can be rewritten as

δ̃ (qi) GD(qi; q j)

= i 2π
δ(qi,0 − q(+)

i,0 )

2q(+)
i,0

1

(q(+)
i,0 + k ji,0)2 − (q(+)

j,0 )2
, (10)
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where

q(+)
i,0 =

√
q2

i + m2
i − i0 (11)

is the loop energy measured along the on-shell hy-
perboloid with origin at −ki. By definition we have
Re(q(+)

i,0 ) ≥ 0. The factor 1/q(+)
i,0 can become singular

for mi = 0, but the integral
∫
�
δ(qi,0 − q(+)

i,0 )/q(+)
i,0 is still

convergent by two powers in the infrared. Soft singu-
larities require two dual propagators, where each of the
two dual propagators contributes with one power in the
infrared. From Eq. (10) it is obvious that dual propa-
gators become singular, G−1

D (qi; q j) = 0, if one of the
following conditions is fulfilled:

q(+)
i,0 + q(+)

j,0 + k ji,0 = 0 , (12)

q(+)
i,0 − q(+)

j,0 + k ji,0 = 0 . (13)

The first condition, Eq. (12), is satisfied if the forward
hyperboloid of −ki intersects with the backward hyper-
boloid of −k j:

k2
ji − (mj + mi)2 ≥ 0 , k ji,0 < 0 , (14)

The second condition, Eq. (13), is true when the two
forward hyperboloids intersect each other:

k2
ji − (mj − mi)2 ≤ 0 , (15)

One of the main properties and advantages of the
loop-tree duality method is that a partial cancellation of
singularities occurs among different dual integrands [7].
For a qualitative discussion, let’s go back to Fig. 1 (up)
where two of the Feynman propagators are separated by
a space-like distance, k2

31 < 0 (or more generally fulfill-
ing Eq. (15)). In the corresponding dual representation
one of these propagators is set on-shell while the other
becomes dual, and the integration occurs along the re-
spective forward hyperboloids. There, the two forward
hyperboloids of −k1 and −k3 intersect at a single point.
Integrating over �z along the forward hyperboloid of −k1
we find that the dual propagator GD(q1; q3), which is
negative below the intersection point where the inte-
grand becomes singular, changes sign above this point
as we move from outside to inside the on-shell hyper-
boloid of −k3. The opposite occurs if we set q3 on-shell;
GD(q3; q1) is positive below the intersection point, and
negative above. Notice that also the dual i0 prescription
changes sign. The change of sign leads to the cancel-
lation of the common singularity between the two dual
contributions. Similarly, three and four forward hyper-
boloids do not lead to any common singularity. For a
detailed analytic demonstration see Ref. [7]. If instead,
the separation is time-like (in the sense of Eq. (14)), as

is the case of k2 with respect to k1 in Fig. 1 (up), the
common singularities are met only by one of the two
forward hyperboloids. Then only one of the two dual in-
tegrands becomes singular, and the singularity remains
in the sum.

A similar qualitative analysis is extensible to
collinear singularities, occurring when two massless
propagators are separated by a light-like distance, e.g.
k2

31 = 0 in Fig. 1 (down). In that case, the corre-
sponding light-cones overlap tangentially along an in-
finite interval. The collinear singularity for �0 > −k3,0,
however, appears at the intersection of the two forward
light-cones, with the forward light-cone of −k3 located
inside the forward light-cone of −k1, equivalently with
the forward light-cone of −k1 located outside the for-
ward light-cone of −k3, and then the singularities can-
cel each other. For −k1,0 < �0 < −k3,0, instead, it
is the forward light-cone of −k1 that intersects tangen-
tially with the backward light-cone of −k3 according
to Eq. (12). The collinear divergences survive in this
energy strip, which indeed also limits the range of the
loop three-momentum. The soft singularity of the in-
tegrand at q(+)

i,0 = 0 leads to soft divergences only if
two other propagators, each one contributing with one
power in the infrared, are light-like separated from −ki.
In Fig. 1 (down) this condition is fulfilled at q(+)

1,0 = 0
only.

Figure 2: Factorization of the dual one-loop and tree-level squared
amplitudes in the collinear limit. The dashed line represents the mo-
mentum conservation cut.

6. Cancellation of infrared singularities with real

corrections

In the previous section we have seen that both thresh-
old and infrared singularities are constrained in the dual
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representation of the loop integrand to a finite region
of the loop three-momentum. Singularities outside this
region, occurring in the intersection of forward hyper-
boloids or light-cones, cancel in the sum of all the dual
contributions. The size of this region is of the order of
the external momenta, and can be mapped to the finite-
size phase-space of the real corrections. To discuss
the cancellation of infrared singularities with the real
corrections we make use of collinear factorization and
the splitting matrices, which encode the collinear singu-
lar behaviour of scattering amplitudes, as introduced in
Ref. [19] (see also Refs. [20, 21, 22]).

We consider the one-loop scattering amplitude M(1)
N

with the internal momenta qi on-shell and the limit
where pi and qi become collinear

|M(1)
N (p1, . . . , pN)〉 → |M(0)

N+2(. . . , pi,−qi, qi, . . .)〉
= Sp(0)(pi,−qi;−q̃i−1) |M(0)

N+1(. . . ,−q̃i−1, qi, . . .)〉
+ O(q2

i−1) , (16)

where the reduced matrix element M(0)
N+1 is obtained

by replacing the two collinear partons of M(0)
N+2 by a

single parent parton with light-like momentum q̃μi−1 =

qμi−1−
q2

i−1 nμ

2 nqi−1
, with n2 = 0. Its interference with the corre-

sponding N-parton tree-level scattering amplitudeM(0)
N ,

is integrated with the appropriate phase-space factor∫
dΦN(p1; p2, . . . , pN) θ(pi,0 − q(+)

i,0 )

=

⎛⎜⎜⎜⎜⎜⎝
N∏

i=2

∫
pi

δ̃ (pi)

⎞⎟⎟⎟⎟⎟⎠ δ(d)(
N∑

i=1

pi) θ(pi,0 − q(+)
i,0 ) , (17)

where we assume that only the external momentum p1
is incoming (p1,0 < 0). Notice that the loop energy in
Eq. (17) is restricted by the energy of the external par-
ticle pi because we have selected the infrared divergent
region. This restriction allows for the mapping with real
corrections, as illustrated in Fig. 2.

Similarly, we consider the N + 1 tree-level scattering
amplitude where the parton i radiates an extra parton r.
Besides the initial state momentum p1, we denote the
external momenta of the real corrections as primed mo-
menta because they are subject to the momentum con-
servation delta function. In the limit where p′i and p′r
become collinear, M(0)

N+1 factorizes as

〈M(0)
N+1(p1, . . . , p′N+1)| = 〈M(0)

N (. . . , p′i−1, p̃
′
ir, p

′
i+1, . . .)|

× Sp(0)†(p′i , p
′
r; p̃′ir) + O(s′ir) , (18)

where s′ir = p′2ir = (p′i + p′r)2, and p̃′μir = p′μir − s′ir nμ

2 np′ir
. As

Fig. 2 suggests the mapping between the four-momenta

of the virtual and real matrix elements should be such
that pi = p̃′ir, p j = p′j( j � i), −q̃i−1 = p′i and qi = p′r, in
the collinear limit. Correspondingly, soft singularities at
p′r → 0 can be treated consistently as the endpoint limit
of the collinear mapping. For more details see Ref. [7].

7. Conclusions and outlook

The loop-tree duality method presents quite attrac-
tive features for the calculation of multipartonic cross-
sections at higher orders. Integrand singularities occur-
ring in the intersection of on-shell forward hyperboloids
or light-cones cancel among dual integrals. The remain-
ing singularities, excluding UV divergences, are found
in the intersection of forward with backward hyper-
boloids or light-cones and are produced by dual prop-
agators that are time-like separated (or causally con-
nected) and less energetic than the internal propagator
that is set on-shell. Therefore, these singularities are re-
stricted to a finite region of the loop three-momentum
space, which is of the size of the external momenta. As
a result, a local mapping at the integrand level is pos-
sible between one-loop and tree-level matrix elements
to cancel soft and collinear divergences. One can an-
ticipate that a similar analysis at higher orders of the
loop-tree duality relation is expected to provide equally
interesting results.
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