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10.1 Introduction

Ben Lillie and John Terning

Recent developments in string theory have definitely had an impact of phenomenological model build-
ing. The possible existence of branes in large extra dimensions has opened up new classes of theo-
ries, especially in the area of electroweak symmetry breaking. The anti-de Sitter/conformal field theory
(AdS/CFT) correspondence led to the Randall-Sundrum (RS) model [1], see Section 9, which allows for
a new approach to the hierarchy problem. Thus discovering inverse TeV sized extra dimensions at the
LHC has become a tantalizing possibility.

The existence of inverse TeV sized dimensions themselves allow for a completely new way to
break electroweak symmetry: boundary conditions in the extra dimension [2]. Since this mechanism
is intrinsically extra dimensional it leads to a very different phenomenology from the standard Higgs
mechanism. In fact, the Dirichlet boundary condition required to break the gauge symmetry can be
thought of as arising through the limit of a Higgs with an infinite VEV. Since the Higgs mass is of the
order of its VEV, we see that boundary condition breaking is effectively a class of Higgsless models for
electroweak symmetry breaking.

At asymptotically high energies it can be shown that the terms in the WW scattering amplitude
that grow with energy are cancelled by the exchange of W Kaluza-Klein (KK) modes [2, 3]. Quark and
lepton masses can also arise through boundary conditions [4]. In a warped AdS background (like the RS
model) a custodial symmetry can ensure the correct ratio for the W and Z masses [5]. Most corrections
to precision electroweak measurements and Z ′ couplings can suppressed if the quarks and leptons are
approximately uniformly spread out in the extra dimension.

However not everything is rosy in Higgsless models. If the W ′ and Z ′ resonances are too heavy
(roughly > 1 TeV) then WW scattering becomes strongly coupled [6–8]. Also implementing a mecha-
nism to produce the top quark mass without messing up the Zbb̄ coupling is quite difficult.

The most obvious implication of this model for colliders is that no physical Higgs state will be
found. However, there are many new positive signals that can be searched for. In particular the Kaluza-
Klein states of the gauge bosons will be easily visible in the Drell-Yan and dijet channels [8], and analysis
of longitudinal gauge boson scattering can directly probe the Higgsless mechanism of electroweak sym-
metry breaking [9].

In the following we will review the requirements for maintaining perturbative unitarity, the con-
straints imposed by precision electroweak measurements, and the collider signatures.

10.1.1 KK mode couplings

We will mainly focus on the most interesting case of a warped extra dimension. We will use the confor-
mally flat metric

ds2 = h(z)2
(
ηµνdx

µdxν − dz2
)

(10.1)

where the extra spatial dimension z is on the interval [R,R′]. A flat extra dimension can be recovered
by taking h(z) = constant, while AdS is obtained by taking h(z) = R/z. If one is uncomfortable
with a non-renormalizable 5D theory, one can always deconstruct the theory [10, 11] which provides a
renormalizable 4D ultraviolet completion of the theory with the same low-energy (TeV) predictions.

The 5D gauge boson decomposes into a 4D gauge boson Aaµ and a 4D scalar Aa5 in the adjoint
representation. Since there is a quadratic term mixing Aµ and A5 we need to add a gauge fixing term
that eliminates this cross term. Thus (using

√−g = h5(z)) we write the action after gauge fixing in Rξ
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gauge as

S =

∫
d4x

∫ R′

R
dz h(z)

(
−1

4
F aµνF

aµν − 1

2
F a5νF

a5ν − 1

2ξ
(∂µA

aµ − ξ∂5A
a
5)2

)
, (10.2)

where F aMN = ∂MA
a
N −∂NAaM +g5f

abcAbMA
c
N , and the fabc’s are the structure constants of the gauge

group. The gauge fixing term is chosen such that (as usual) the cross terms between the 4D gauge fields
Aaµ and the 4D scalars Aa5 cancel (see also [12]). Taking ξ → ∞ will result in the unitary gauge, where
all the KK modes of the scalars fields Aa5 are unphysical (they become the longitudinal modes of the
4D gauge bosons), except if there is a zero mode for the A5’s. We will assume that every Aa5 mode is
massive, and thus that all the A5’s are eliminated in unitary gauge.

The variation of the action (10.2) leads, as usual after integration by parts, to the bulk equations of
motion as well as to boundary terms (we denote by [F ] the boundary quantity F (R ′)− F (R)):

δS =

∫
d4x dz

(
∂MhF

aMν − g5f
abchF bMνAcM +

h

ξ
∂ν∂σAaσ − h∂ν∂5A

a
5

)
δAaν

−
∫
d4x dz

(
h∂σF aσ5 − g5f

abchF bσ5A
cσ + ∂5h∂σA

aσ − ξ∂5h∂5A
a
5

)
δAa5

+

∫
d4x ([hF a5ν δA

aν ] + [h(∂σA
aσ − ξ∂5A

a
5)δAa5 ]) . (10.3)

The bulk terms will give rise to the usual bulk equations of motion:

∂MhF
aMν − g5f

abchF bMνAcM +
h

ξ
∂ν∂σAaσ − h∂ν∂5A

a
5 = 0,

h∂σF aσ5 − g5f
abchF bσ5A

cσ + ∂5h∂σA
aσ − ξ∂5h∂5A

a
5 = 0. (10.4)

However, one has to ensure that the variation of the boundary pieces vanish as well. This will lead to the
requirements

hF aν5 δA
aν |R,R′ = 0, (10.5)

h(∂σA
aσ − ξ∂5A

a
5)δAa5 |R,R′ = 0. (10.6)

The boundary conditions (BCs) have to be such that the above equations be satisfied.

For the case of a scalar (Higgs) with a VEV localized at the endpoint the generic form of the BC
for the gauge fields (in unitary gauge) will be of the form

∂5A
a
µ|R,R′ = V |abR,R′Abµh|R,R′ , (10.7)

where V |abR and V |abR′ are proportional to the VEV’s squared at R and R′. The BCs in (10.7) are mixed
BCs that still ensure the hermiticity (self-adjointness) of the Hamiltonian. In the limit V ab → 0 the
mixed BC reduces to a Neumann BC, while the limit V ab →∞ the mixed BC reduces to a Dirichlet BC.

Finding the KK decomposition of the gauge field reduces to solving a Sturm–Liouville problem
with Neumann or Dirichlet BCs, or in the case of boundary scalars with mixed BCs. Those general BCs
lead to a Kaluza–Klein expansion of the gauge fields of the form

Aaµ(x, z) =
∑

n

εµ ψ
a
n(z)eipnx, (10.8)

where p2
n = M2

n and εµ is a polarization vector. These wavefunctions then satisfy the equation:

h(z)ψan
′′(z) + h′(z)ψan

′(z) +Ma 2
n h(z)ψan(z) = 0, ψan

′|R,R′ = hV |abR,R′ ψbn|R,R′ . (10.9)
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The KK mode wavefunctions can be normalized by requiring

∫
dz h(z)(ψan(z))2 = 1 . (10.10)

The couplings between the different KK modes can then be obtained by substituting this expression into
the Lagrangian (10.2) and integrating over the extra dimension. The resulting couplings are then the
usual 4D Yang-Mills couplings, with the gauge coupling g4 in the cubic and gauge coupling square in
the quartic vertices replaced by the effective couplings involving the integrals of the wave functions of
the KK modes over the extra dimension:

gcubic → gabcmnk = g5

∫
dz h(z)ψam(z)ψbn(z)ψck(z), (10.11)

g2
quartic → g2 abcd

mnkl = g2
5

∫
dz h(z)ψam(z)ψbn(z)ψck(z)ψdl (z). (10.12)

Here a, b, c, d refer to the gauge index of the gauge bosons and m,n, k, l to the KK number.

10.1.2 The elastic scattering amplitude
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Fig. 10.1: Elastic scattering of longitudinal modes of KK gauge bosons, n + n → n + n, with the gauge index
structure a+ b→ c+ d.

We want to calculate the energy dependence of the amplitude of the elastic scattering of the
longitudinal modes of the KK gauge bosons n + n → n + n with gauge index structure a + b →
c + d (see Fig. 10.1), where this process involves both exchange of the k’th KK mode from the cu-
bic vertex, and the direct contribution from the quartic vertex. There are four diagrams as shown
in Fig. 10.2: the s, t and u-channel exchange of the KK modes, and the contribution of the quar-
tic vertex. The kinematics assumed for this elastic scattering is in the center of mass frame, where
the incoming momentum vectors are pµ = (E, 0, 0,±

√
E2 −M2

n), while the outgoing momenta are
(E,±

√
E2 −M2

n sin θ, 0,±
√
E2 −M2

n cos θ). E is the incoming energy, and θ the scattering angle
with forward scattering for θ = 0. The longitudinal polarization vectors are as usual εµ = ( |~p|M , EM

~p
|~p|)

and accordingly the contribution of each diagram can be as bad as E4/M4
n . It is straightforward to

evaluate the full scattering amplitude, and extract the leading behavior for large values energies of this
amplitude. The general structure of the expansion in energy contains three terms:

A = A(4) E
4

M4
n

+A(2) E
2

M2
n

+A(0). (10.13)

We would like to understand under what circumstances will A(4) and A(2) vanish, this does not
imply that the conventional unitarity bounds on the finite amplitudes have to be satisfied for all processes.
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Fig. 10.2: The four gauge diagrams contributing at tree level to the gauge boson elastic scattering amplitude.

The term growing with E4 depends only on the effective couplings and not on the mass spectrum.
The condition for cancelling the coefficient of this term is:

g2
nnnn =

∑

k

g2
nnk. (10.14)

Using this relation the condition for the E2 terms to cancel can be simplified to:

4g2
nnnnM

2
n = 3

∑

k

g2
nnkM

2
k . (10.15)

The goal of the remainder of this section is to examine under what circumstances the terms that
grow with energy actually cancel. Consider first the E4 term. According to (10.14) the requirement for
cancellation is

∫ R′

R
dz h(z)ψ4

n(z) =
∑

k

∫ R′

R
dy

∫ R′

R
dz h(y)h(z)ψ2

n(y)ψ2
n(z)ψk(y)ψk(z). (10.16)

One can easily see that this equation is in fact satisfied no matter what BC one is imposing, as long as
that BC still maintains hermiticity of the kinetic operator

h ∂2
z + (∂zh)∂z . (10.17)

In this case one can explicitly check that

∫ R′

R
hψ∗nψ

′
m
′
+ h′ψ∗nψ

′
m =

∫ R′

R
hψ∗n

′′ψm + h′ψ∗n
′ψm . (10.18)
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For such hermitian operators one is guaranteed to get an orthonormal complete set of solutions ψk(y),
thus from the completeness it follows that

∑

k

ψk(y)ψk(z) =
1

h(z)
δ(y − z), (10.19)

which immediately implies (10.16).

The condition for the cancellation of the E2 terms is as in (10.15)

3
∑

k

M2
k

∫ R′

R
dy

∫ R′

R
dz h(y)h(z)ψ2

n(y)ψ2
n(z)ψk(y)ψk(z) = 4M 2

n

∫ R′

R
dz h(z)ψ4

n(z). (10.20)

By integration by parts we find (we denote again by [F ] the boundary quantity F (R ′)− F (R))

∑

k

M2
k

(∫
dzh(z)ψ2

n(z)ψk(z)

)2

= 4
3M

2
n

∫
dzh(z)ψ4

n(z) − 2
3 [hψ3

nψ
′
n]

−
∑

k

[hψ2
nψ
′
k]

∫
dzh(z)ψ2

n(z)ψk(z) + 2
∑

k

[hψnψ
′
nψk]

∫
dzh(z)ψ2

n(z)ψk(z). (10.21)

Thus one can see that for arbitrary BCs the E2 terms do not cancel. However, if one has pure Dirichlet
or Neumann BCs for all modes then all the extra boundary terms will vanish, and thus the cancellation of
the E2 terms goes through [2]. The fact that in the absence of a Higgs VEV, or any other source of gauge
symmetry breaking, (i.e. the Neumann BC) there is no problem with unitarity is not really surprising.
It is somewhat surprising that with an infinite Higgs VEV (the Dirichlet BC) there is also no problem.
To understand what is happening it is useful to recall what actually happens in the general mixed case.
Even with mixed BCs there is no problem with unitary once one includes the diagrams corresponding
to the exchange of the Higgs on the boundary. These diagrams cancel the E2 terms just as they do in
4D. However in the limit that Higgs VEV is large the gauge boson wavefunctions are repelled from the
boundary since it costs a lot of energy to reside there. A simple calculation shows that the product of the
Higgs VEV times the gauge boson wavefunction squared evaluated on the boundary goes to zero in the
large VEV limit. Thus the Higgs decouples in the infinite VEV limit and unitarity is preserved without
any need for a physical Higgs boson.

10.1.3 Electroweak gauge bosons

We will now apply the Higgsless idea to electroweak symmetry breaking in a mostly realistic RS type
model. We denote by ARaM , ALaM and BM the gauge bosons of SU(2)R, SU(2)L and U(1)B−L respec-
tively; g5 is the gauge coupling of the two SU(2)’s and g̃5, the gauge coupling of U(1)B−L. We impose
the following BCs:

at z = R′ :
{
∂z(A

La
µ +ARaµ ) = 0, ALaµ −ARaµ = 0, ∂zBµ = 0,

(ALa5 +ARa5 ) = 0, ∂z(A
L a
5 −ARa5 ) = 0, B5 = 0.

(10.22)

at z = R :





∂5A
La
µ = 0, AR 1,2

µ = 0,

∂z(g5Bµ + g̃5A
R 3
µ ) = 0, g̃5Bµ − g5A

R 3
µ = 0,

ALa5 = 0, ARa5 = 0, B5 = 0.

(10.23)

The BCs break SU(2)R × U(1)B−L down to U(1)Y on the Planck brane (z = R) and break SU(2)L ×
SU(2)R down to a diagonal SU(2) on the TeV brane (z = R′).

The Euclidean bulk equation of motion satisfied by spin-1 fields in AdS space is

(∂2
z −

1

z
∂z + q2)ψ(z) = 0, (10.24)
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where the solutions in the bulk are assumed to be of the form Aµ(q)e−iqxψ(z). The KK mode expansion
is given by the solutions to this equation which are of the form

ψ
(A)
k (z) = z

(
a

(A)
k J1(qkz) + b

(A)
k Y1(qkz)

)
, (10.25)

where A labels the corresponding gauge boson.

To leading order in 1/R and for log (R′/R)� 1, the lightest solution for eigenvalue equation for
the mass of the W±’s is

M2
W =

1

R′2 log
(
R′
R

) , (10.26)

while the lowest mass in the Z tower is approximately given by

M2
Z =

g2
5 + 2g̃2

5

g2
5 + g̃2

5

1

R′2 log
(
R′
R

) . (10.27)

The correct mass ratios (a small T parameter) are guaranteed by the unbroken diagonal SU(2) symmetry
on the TeV brane which acts as a custodial symmetry [5].

From the expansion for small arguments of the Bessel functions appearing in (10.25), the wave-
function of a mode with mass M � 1/R′ can be written as [13]:

ψ(A)(z) ≈ c
(A)
0 +M2

Az
2

(
c
(A)
1 − c

(A)
0

2
log(z/R)

)
+O(M4

Az
4), (10.28)

with c(A)
0 at most of order one, c(A)

1 ∼ O(log(R′/R)), and M 2 ∼ O(1/ log(R′/R)).

The boundary conditions on the bulk gauge fields give the following results for the leading and
next-to-leading log terms in the wavefunction for the lightest charged gauge bosons

c
(L±)
0 = c± , c

(R±)
0 ≈ 0 , (10.29)

c
(L±)
1 ≈ 0 , c

(R±)
1 ≈ c±

2
log

(
R′

R

)
, (10.30)

while for the neutral gauge bosons we find in the same approximation

c
(L3)
0 ≈ c , c

(R3)
0 ≈ −c g̃2

5

g2
5 + g̃2

5

, c
(B)
0 ≈ −c g5 g̃5

g2
5 + g̃2

5

. (10.31)

To leading log order we also have:

c
(L3)
1 ≈ 0 , c

(R3)
1 ≈ c g2

5

2
(
g2

5 + g̃2
5

) log

(
R′

R

)
, c

(B)
1 ≈ −c g5 g̃5

2
(
g2

5 + g̃2
5

) log

(
R′

R

)
. (10.32)

10.1.4 Precision electroweak measurements

The simplest way to calculate the contributions to precision electroweak measurements is to use “equiv-
alent vacuum polarizations” that can be extracted from the gauge boson wavefunction renormalizations:

Zγ = 1 , ZW = 1− g2Π′11 , ZZ = 1− (g2 + g′ 2)Π′33 , (10.33)

Since the photon is massless it’s wavefunction is exactly flat, so requiring that the quarks and leptons
have the correct charge fixes Zγ = 1. For the W and Z however the wavefunctions have some nontrivial
shape so canonically normalizing the light quark and lepton modes and requiring that their overlaps with
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the W and Z reproduce the standard model couplings fixes ZW , ZZ 6= 1. Given these “equivalent
vacuum polarizations” it is straightforward to compute the S, T , and U parameters.

S ≡ 16π(Π′33 −Π′3Q),

T ≡ 4π

s2c2M2
Z

(Π11(0) −Π33(0)),

U ≡ 16π(Π′11 −Π′33), (10.34)

where Πii(0) is simply extracted from the gauge boson mass terms. For fermions localized on the Planck
brane the calculation can be perfomed analytically and we find there is a problem with S:

S ≈ 8πR′ 2M2
z

g2 + g′2
≈ 1.5 (10.35)

Such a large value is reminiscent of technicolor models.

However if we allow the quarks and leptons can have an arbitrary bulk mass then the lightest
modes can be localized with a wavefunction that is arbitrary power of z. Then since it is known that in
RS models with quarks and leptons on the TeV brane (at z = R′) S is large and negative [13], it is clear
that S will vanish for some intermediate localization. Indeed when the fermions are roughly uniformly
distributed through the bulk S goes through zero [10, 14–17]. The fact that S vanishes has a deeper
significance, since it follows from orthogonalilty of wavefunctions. If the currents that couple to the W
and Z have the same profile as the gauge bosons then the overlap of the current with all higher gauge
boson KK modes will be exactly zero. If the current and the gauge bosons have very similar profiles
in the extra dimension then the gauge boson coupling is still relatively enhanced while the coupling to
higher KK modes is suppressed. Thus in the region where the precision electroweak constraints are
satisfied (S ≈ 0) because the coupling to higher KK is suppressed, the bounds from the Tevatron and
LEP on such KK modes are relaxed down to a bound around 500 − 600 GeV.

The remaining problem with precision electroweak measurements is the compatibility of a large
top quark mass with the observed Zbb coupling. The large top mass requires the left-handed and right-
handed top quarks to have a profile which is localized toward the TeV brane. However if the left-
handed top (and thus the left-handed bottom) are too close to the TeV brane then the gauge couplings
of the bottom will be too different from the down and strange quarks. This problem may be avoided by
separating the physics which generates the top quark mass [17, 18] or by allowing the Higgs VEV to
extend slightly into the bulk [19].

10.1.5 Collider phenomenology

The most distinctive feature of the Higgsless models is, of course, the absence of a physical scalar
state in the spectrum. However, other models exist in which the Higgs is unobservable at the LHC.
For this reason, identification of this as the mechanism of electroweak symmetry breaking will require
examination of other sectors. There are two potential types of signals that will help to identify the
model: those that are related to the RS physics required to realize the Higgsless mechanism, and those
that directly probe this as the mechanism of symmetry breaking and unitarity restoration. In the first
class are observations of Kaluza-Klein of electroweak gauge bosons and gluons [8]. In the second class
are observations of resonances in the scattering of longitudinal electroweak bosons [20].

The easiest signal to see is the first gluon Kaluza-Klein (KK) resonance. This will show up as a
resonance in the dijet spectrum, as seen in Fig. 10.3. Like all low-lying KK resonances, this is localized
near the IR brane. In most RS models with fermions in the bulk the need to produce a large top mass
forces the right-handed top and third generation quark doublet to also be localized near the IR brane.
This means that the gluon resonances will generically couple more strongly to tops and bottoms than to
light quarks, and observation of this will be a clue that the model may be RS.
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Fig. 10.3: Dijet invariant mass spectrum at the LHC showing a prominent resonance due to the first gluon Kaluza-
Klein state.

Fig. 10.4: Event rate for Drell-Yan production of the first neutral KK gauge boson, as a function of the invariant
mass of the lepton pair. The dotted line is the SM background. The other histograms, from top to bottom, include
the resonance with width parameter c = (1, 2, 3, 5, 10, 25, 100).

More important for studies of electroweak symmetry breaking, of course, is the observation of
gauge boson KK resonances. The simplest place to look is in the Drell-Yan spectrum. The couplings of
these states to fermions depend on the fermion localization parameters, in particular the top localization.

Fig. 10.4 shows the Drell-Yan spectrum from a neutral KK at about 2.3 TeV. We can write the
width as Γ = cΓ0, where Γ0 is what the width of the state would be if all fermions were localized to the
Planck brane. The different curves in Fig. 10.4 correspond to different values of c, ranging from c = 1
to c = 100. Note that the state presented is at a high mass. In general, a successful Higgsless model is
expected to have lighter states, and hence they should be more easily discoverable at the LHC.

As shown in [20] searches for the process WZ → WZ can directly probe the Higgsless mecha-
nism for electroweak symmetry breaking. In particular, the sum rules that ensure unitarity can be directly
probed by measurements of the couplings of the gauge KKs to longitudinal gauge bosons. Fig. 10.5
shows the production of the first charged KK resonance in this channel. For comparison, two resonances
appearing in different technicolor-type models are also shown. As can be seen, the most striking feature
of the Higgsless model is the narrow width of the resonance. Note that these searches have the additional
advantage of being largely independent of the parameters in the fermion sector.
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Fig. 10.5: Event rate for production of 2j + 3`+ ν, corresponding to WZ production with fully leptonic decays.
From ref. [9].

10.2 Quark and lepton masses

Christophe Grojean

10.2.1 Chiral fermions from a 5D theory on an interval

In the SM, quarks and leptons acquire a mass, after EWSB, through their Yukawa couplings to the Higgs.
In absence of a Higgs, one cannot write any Yukawa coupling and one should expect the fermions
to remain massless. However, as for the gauge fields, appropriate boundary conditions will force the
fermions to acquire a momentum along the extra dimension and this is how they will become massive
from the 4D point of view. We are now going to review this construction [4].

The SM fermions cannot be completely localized on the UV boundary: since the unbroken gauge
group on that boundary coincides with the SM SU(2)L × U(1)Y symmetry, the theory on that brane
would be chiral and there is no way for the chiral zero mode fermions to acquire a mass. The SM
fermions cannot live on the IR brane either since the unbroken SU(2)D gauge symmetry will impose an
isospin invariant spectrum and the up-type and down-type quarks will be degenerate. The only possibility
is thus to embed the SM fermions into 5D fields living in the bulk and feeling the gauge symmetry
breakings on both boundaries. Since the irreducible spin-1/2 representations of the 5D Lorentz group
correspond to 4-component Dirac spinor, extra fermionic degrees of freedom are needed to complete the
SM chiral spinors to 5D Dirac spinors and we are back to a vector-like spectrum. However, as it is well
known, orbifold like projections (or equivalently appropriate boundary conditions) can get rid of half of
the spectrum at the lowest KK level to actually provide a 4D effective chiral theory. This way we can
embed the SM quarks and leptons into 5D Dirac spinors following Table 10.1.

10.2.2 Fermions in AdS background

In principle when one is dealing with fermions in a non-trivial background, one needs to work with the
“square-root” of the metric also known as vielbeins and to introduce the spin connection to covariantize
derivatives. Fortunately, in an AdS background, the spin connection drops out from the spin-1/2 action
that simply reads

S =

∫
d5x

R4

z4

(
−iχ̄σ̄µ∂µχ− iψσµ∂µψ̄ + (ψ

←→
∂5χ− χ̄

←→
∂5 ψ̄) +

c

z

(
ψχ+ χ̄ψ̄

))
(10.36)
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Table 10.1: Embedding of the SM fermions into 5D Dirac spinors. We have indicated the quantum numbers of the
different components under the bulk SU(2)L × SU(2)R × U(1)B−L symmetry, the subgroup SU(2)L × U(1)Y
that remains unbroken on the UV boundary, the subgroup SU(2)D × U(1)B−L unbroken on the IR brane and
finally the electric charge. The shaded spinors are the fields with the right quantum numbers to be identified as the
massless SM fermions while the other spinors correspond to partners needed to complete 5D Dirac spinors. The
latter become massive by the orbifold projection/boundary conditions. Through the Dirac mass added on the IR
boundary, there will be a mixing between the would be zero modes and some partners and at the end the guy that
would be identified as the SM uL is a mix of χuL and a small amount of χuR . Since this last field has wrong SM
quantum numbers, we would end up with deviations in the couplings of the fermions to the gauge bosons. These
deviations will be particularly sizable for the third generation due to the heaviness of the top.

where the coefficient c = mR is the bulk Dirac mass in units of the AdS curvature (and
←→
∂5 = (

−→
∂5 −←−

∂5)/2). The bulk equations of motion are:

−iσ̄µ∂µχ− ∂5ψ̄ +
c+ 2

z
ψ̄ = 0 − iσµ∂µψ̄ + ∂5χ+

c− 2

z
χ = 0. (10.37)

The KK decomposition is of the form

χ =
∑

n

gn(z)χn(x) and ψ̄ =
∑

n

fn(z) ψ̄n(x). (10.38)

and the 5D Dirac equation is equivalent to the coupled first order differential equations

f ′n +mngn −
c+ 2

z
fn = 0, g′n −mnfn +

c− 2

z
gn = 0, (10.39)

which can be combined into uncoupled second order differential equations

f ′′n − 4
zf
′
n + (m2

n − c2−c−6
z2 )fn = 0, g′′n − 4

z g
′
n + (m2

n − c2+c−6
z2 )gn = 0. (10.40)

The solutions are now linear combinations of Bessel functions, as opposed to sin and cos functions for
the flat case:

gn(z) = z
5
2

(
AnJc+ 1

2
(mnz) +BnYc+ 1

2
(mnz)

)
(10.41)

fn(z) = z
5
2

(
CnJc− 1

2
(mnz) +DnYc− 1

2
(mnz)

)
. (10.42)
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The first order bulk equations of motion (10.39) further impose that

An = Cn and Bn = Dn. (10.43)

The remaining undetermined coefficients are determined by the boundary conditions, and the wave func-
tion normalization.

Finally, when the boundary conditions permit, there can also be a zero mode. For instance, if
ψ|R,R′ = 0, the zero mode is given by

g0(z) = A0

( z
R

)2−c
, f = 0. (10.44)

The coefficient A0 is determined by the normalization condition

∫ R′

R
dz

(
R

z

)5 z

R
A2

0

( z
R

)4−2c
= A2

0

∫ R′

R

( z
R

)−2c
dz = 1. (10.45)

To understand from these equations where the fermions are localized, we study the behavior of this
integral as we vary the limits of integration. If we send R′ to infinity, we see that the integral remains
convergent if c > 1/2, and the fermion is then localized on the UV brane. If we send R to zero, the
integral is convergent if c < 1/2, and the fermion is localized on the IR brane. The value of the Dirac
mass determines whether the fermion is localized toward the UV or IR branes. We note that the opposite
choice of boundary conditions that yields a zero mode (χ|R,R′ = 0) results in a zero mode solution for ψ
with localization at the UV brane when c < −1/2, and at the IR brane when c > −1/2. The interesting
feature in the warped case is that the localization transition occurs not when the bulk mass passes through
zero, but at points where |c| = 1/2. This is due to the curvature effects of the extra dimension. The CFT
interpretation of the c parameter is an anomalous dimension that controls the amount of compositeness
of the fermion [21].

10.2.3 Higgsless fermions masses

We have already explained how to embed SM fermions into 5D Dirac spinors. To get the zero modes we
desire, the following boundary conditions have to be imposed




χuL
ψ̄uL
χdL
ψ̄dL




+ +
− −
+ +
− −




χuR
ψ̄uR
χdR
ψ̄dR




− −
+ +
− −
+ +

(10.46)

Where the + and − refer to Neumann and Dirichlet boundary conditions, the first/second sign denoting
the BC on the UV/IR brane respectively. These boundary conditions give massless chiral modes that
match the fermion content of the standard model. However, the uL, dL, uR, and dR are all massless
at this stage, and we need to lift the zero modes to achieve the standard model mass spectrum. While
simply giving certain boundary conditions for the fermions will enable us to lift these zero modes, in the
following discussion, we talk about boundary operators, and the boundary conditions that these operators
induce. There are some subtleties in dealing with boundary operators for fermions. These arise from the
fact that the fields themselves are not always continuous in the presence of a boundary operator. This
is due to the fact that the equations of motion for fermions are first order. The most straightforward
approach is to enforce the boundary conditions that give the zero modes as shown in Eq. (10.46) on the
real boundary at z = R,R′ while the boundary operators are added on a fictitious brane a distance ε
away from it. The new boundary condition is then obtained by taking the distance ε to be small. This
physical picture is quite helpful in understanding what the different boundary conditions will do. The
details can be found in [4].
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SU(2)D x U(1)B-L

SU(2)L x U(1)Y

IR

UV

vector-like mass
isospin splitting

−iκψdRσµ∂µψ̄dR R′MD (χuLψuR + χdLψdR + h.c.)

Fig. 10.6: Brane localized operators needed to lift up the masses of the SM fermions.

The IR brane being vector-like, we can now form an SU(2)D mass term that will mix the L and
R SM helicities. However, this Dirac mass term has to be the same for the up and the down quarks (the
mass term is isospin invariant). Fortunately, the SU(2)R invariance is broken on the UV brane and there
we can introduce operators that will distinguish between uR and dR. Technically, the effects of the brane
localized operators is to modified the BCs. Explicitly, the IR Dirac mass affect the BCs as follows

χL +
ψL −
χR −
ψR +

ψL|IR = 0

χR|IR = 0
MD

=⇒
discontinuities

in
χL &ψR

ψL|IR = −MDR
′ ψR|IR

χR|IR = MDR
′ χL|IR

In the same way, the UV brane operator will modify the BCs as follows

χuR −
ψuR +

χuR |UV = 0
κ

=⇒
discontinuity

in
ψuR

χuR |UV = κmψuR |UV

It is now easy to enforce these modified boundary conditions using the general form of the wavefunc-
tions (10.41)–(10.42) that satisfy the bulk equations of motion. For fermions localized toward the UV
brane (cL > 1/2 and cR < −1/2), we obtain the approximate expression

m ≈
√

2cL − 1√
κ2 − 1/(2cR + 1)

MD

(
R UV

RIR

)cL−cR−1

. (10.47)

10.2.4 Top mass and ZbLb̄L deviation

The spectrum of the light generations of quarks can be easily reproduced along these lines. The top mass
poses a difficulty, however. Indeed, increasing MD won’t arbitrarily increase the fermion mass which
will saturate: the situation is similar to what happens with a large Higgs vev localized on the boundary,
the gauge boson masses remain finite even when the vev is sent to infinity. The maximum value of the
fermion mass can be inferred by noticing that in the infinite MD limit, there is a chirality flip in the BCs
that become

χL +
ψL −
χR −
ψR +

ψL|IR = −MDR
′ ψR|IR

χR|IR = MDR
′ χL|IR

MD →∞
=⇒

ψR|IR = 0

χL|IR = 0

χL −
ψL +
χR +
ψR −
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and the corresponding mass is

m2 =
2

R′2 logR′/R
= 2M2

W . (10.48)

where in the last equality, we used the expression of the W mass in terms of R and R ′ and we have
assumed g5R = g5L. If we want to go above this saturated mass, one needs to localize the fermions
toward the IR brane. However, even in this case a sizable Dirac mass term on the TeV brane is needed to
obtain a heavy enough top quark. The consequence of this mass term is the boundary condition for the
bottom quarks

χbR = MDR
′ χbL. (10.49)

This implies that if MDR
′ ∼ 1 then the left handed bottom quark has a sizable component also living in

an SU(2)R multiplet, which however has a coupling to the Z that is different from the SM value. Thus
there will be a large deviation in the ZbLb̄L coupling. Note, that the same deviation will not appear in
the ZbRb̄R coupling, since the extra kinetic term introduced on the Planck brane to split top and bottom
will imply that the right handed b lives mostly in the induced fermion on the Planck brane which has the
correct coupling to the Z .

The only way of getting around this problem would be to raise the value of 1/R ′, and thus lower
the necessary mixing on the TeV brane needed to obtain a heavy top quark. One way of raising the value
of 1/R′ is by increasing the ratio g5R/g5L (at the price of also making the gauge KK modes heavier and
thus the theory more strongly coupled). Another possibility for raising the value of 1/R ′ is to separate
the physics responsible for electroweak symmetry breaking from that responsible for the generation of
the top mass. In technicolor models this is usually achieved by introducing a new strong interaction
called topcolor. In the extra dimensional setup this would correspond to adding two separate AdS5

bulks, which meet at the Planck brane [18]. One bulk would then be mostly responsible for electroweak
symmetry breaking, the other for generating the top mass. The details of such models have been worked
out in [18] (see also [22]). The main consequences of such models would be the necessary appearance of
an isotriplet pseudo-Goldstone boson called the top-pion, and depending on the detailed implementation
of the model there could also be a scalar particle (called the top-Higgs) appearing. This top-Higgs would
however not be playing a major role in the unitarization of the gauge boson scattering amplitudes, but
rather serve as the source for the top-mass only.

10.2.5 Fermion delocalization and EW precision tests

As already mentioned in earlier, the delocalization of SM fermions in the bulk is helpful in keeping the
oblique corrections under control. In order to quantify this statement, it is sufficient to consider a toy
model where all the three families of fermions are massless and have a universal delocalized profile in the
bulk. When the profile of the fermion wavefunction is almost flat, cL ≈ 1/2, the leading contributions to
S are:

S =
2π

g2 log R′
R

(
1 + (2cL − 1) log

R′

R
+O

(
(2cL − 1)2

))
. (10.50)

In the flat limit cL = 1/2, S is already suppressed by a factor of 3 with respect to the Planck brane
localization case. Moreover, the leading terms cancel out for:

cL =
1

2
− 1

2 log R′
R

≈ 0.487 . (10.51)

In Fig. 10.7 we have plotted the value of the NDA cut-off scale as well as the mass of the first
resonance in the (cL − R) plane. Increasing R also affects the oblique corrections. However, while it
is always possible to reduce S by delocalizing the fermions, T increases and puts a limit on how far R
can be raised. One can also see from Fig. 10.8 that in the region where |S| < 0.25, the coupling of
the first resonance with the light fermions is generically suppressed to less than 10% of the SM value.
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Fig. 10.7: Contour plots of ΛNDA (solid blue lines) and MZ(1) (dashed red lines) in the parameter space cL–R.
The shaded region is excluded by direct searches of light Z ′ at LEP.

This means that the LEP bound of 2 TeV for SM–like Z ′ is also decreased by a factor of 10 at least
(the correction to the differential cross section is roughly proportional to g2/M2

Z′). In the end, values of
R as large as 10−7 GeV−1 are allowed, where the resonance masses are around 600 GeV. So, even if,
following the analysis of [23], we take into account a factor of roughly 1/4 in the NDA scale, we see that
the appearance of strong coupling regime can be delayed up to 10 TeV.

It is fair to say that, to date, the major challenge facing Higgsless models is really the incorporation
of the third family of quarks while the oblique corrections can be kept under control, at a price of some
conspiracy in the localization of the SM quarks and leptons along the extra dimension.

10.3 Higgsless electroweak symmetry breaking from moose models

Stefania De Curtis and Daniele Dominici

Higgsless models, in their ”modern” version, are formulated as gauge theories in a five dimensional
space-time and symmetry breaking is realized by means of field boundary conditions in the fifth dimen-
sion [2]. One of the interesting features of these schemes is the possibility to delay the unitarity violation
scale via the exchange of massive (Kaluza Klein) KK modes [2, 3]. However, it is generally difficult to
reconcile a delayed unitarity with the electroweak (EW) constraints. For instance in the framework of
models with only ordinary fermions, it is possible to get a small or zero S parameter [24], at the expenses
of having a unitarity bound as in the Standard Model (SM) without the Higgs, that is of the order of 1
TeV. A recent solution to the problem, which does not spoil the unitarity requirement at low scales, has
been found by delocalizing the fermions in five dimensional theories [14, 25]. We will investigate this
possibility in the context of deconstructed gauge theories which come out when the extra dimension is
discretized [26]. Through discretization of the fifth dimension we get a finite set of four-dimensional
gauge theories each of them acting at a particular lattice site. In this construction, any connection field
along the fifth dimension, A5, goes naturally into the link variables Σi = e−iaA

i−1
5 realizing the parallel

transport between two lattice sites (here a is the lattice spacing). The link variables satisfy the condition
ΣΣ† = 1 and can be identified with chiral fields. In this way the discretized version of the original
5-dimensional gauge theory is substituted by a collection of four-dimensional gauge theories with gauge
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Fig. 10.8: In the left, the contours of S (red), for |S| = 0.25 (solid) and 0.5 (dashed) and T (blue), for |T | = 0.1

(dotted), 0.3 (solid) and 0.5 (dashed), as function of cL and R are shown. On the right, contours for the generic
suppression of fermion couplings to the first resonance with respect to the SM value can be seen. The region for
cL, allowed by S, is between 0.43± 0.5, where the couplings are suppressed at least by a factor of 10.

interacting chiral fields Σi, synthetically described by a moose diagram (an example is given in Fig. 10.9).
Here we consider the simplest linear moose model for the Higgsless breaking of the EW symmetry and
we delocalize fermions by introducing direct couplings between ordinary left-handed fermions and the
gauge vector bosons along the moose string [27].

Let us briefly review the linear moose model based on the SU(2) symmetry [24,27]. We consider
K + 1 non linear σ-model scalar fields Σi, i = 1, · · · ,K + 1, K gauge groups Gi, i = 1, · · · ,K and
a global symmetry GL ⊗ GR as shown in Fig. 10.9. A minimal model of EW symmetry breaking is

G1 G2

Σ1 Σ3Σ2

Uuuu

GL GR
.....

ΣK-1 KΣ K+1Σ

GK-1 KG

Fig. 10.9: The simplest moose diagram for the Higgsless breaking of the EW symmetry.

obtained by choosing Gi = SU(2), GL ⊗GR = SU(2)L ⊗ SU(2)R. The SM gauge group SU(2)L ×
U(1)Y is obtained by gauging a subgroup of GL ⊗ GR. The Σi fields can be parameterized as Σi =
exp [i/(2fi)~πi · ~τ ] where ~τ are the Pauli matrices and fi are K + 1 constants that we will call link
couplings. The Lagrangian of the linear moose model is given by

L =
K+1∑

i=1

f2
i Tr[DµΣ†iD

µΣi]−
1

2

K∑

i=1

Tr[(F iµν)2]− 1

2
Tr[(Fµν(W̃ ))2 − 1

2
Tr[(Fµν(Ỹ ))2], (10.52)

with the covariant derivatives defined as follows:

DµΣ1 = ∂µΣ1 − ig̃W̃µΣ1 + iΣ1g1V
1
µ (10.53)

DµΣi = ∂µΣi − igi−1V
i−1
µ Σi + iΣigiV

i
µ (i = 2, · · · ,K) (10.54)

DµΣK+1 = ∂µΣK+1 − igKV K
µ ΣK+1 + ig̃′ΣK+1Ỹµ (10.55)
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where V i
µ = V ia

µ τa/2, gi are the gauge fields and gauge coupling constants associated to the groups Gi,
i = 1, · · · ,K , and W̃µ = W̃ a

µ τ
a/2, Ỹµ = Ỹµτ3/2 are the gauge fields associated to SU(2)L and U(1)Y

respectively. Notice that, in the unitary gauge, all the Σi fields are eaten up by the gauge bosons which
acquire mass, except for the photon corresponding to the unbroken U(1)em. By identifying the lowest
mass eigenvalue in the charged sector with MW , we get at O(g̃2/g2

i ) a relation between the EW scale v
(≈ 250 GeV ) and the link couplings of the chain:

4

v2
≡ 1

f2
=

K+1∑

i=1

1

f2
i

. (10.56)

Concerning fermions, we will consider only the standard model ones, that is: left-handed fermions ψL
as SU(2)L doublets and singlet right-handed fermions ψR coupled to the SM gauge fields through the
groups SU(2)L and U(1)Y at the ends of the chain.

10.3.1 Constraints from perturbative unitarity and EW tests

The worst high-energy behavior of the moose models arises from the scattering of longitudinal vector
bosons whose calculation is simplified by using the equivalence theorem. This allows to evaluate these
amplitudes in terms of the corresponding Goldstone boson ones. However this theorem holds in the
approximation where the energy of the process is much higher than the mass of the vector bosons. Let
us evaluate the amplitude for the SM W scattering at energies MW � E � MVi . The unitary gauge
for the Vi bosons is given by the choice Σi = exp[if~π · ~τ/(2f 2

i )] with f given in Eq. (10.56) and ~π the
GB’s giving mass to W and Z . The resulting four-pion amplitude is

Aπ+π−→π+π− = −f
4u

4

K+1∑

i=1

1

f6
i

+
f4

4

K∑

i,j=1

Lij

(
(u− t)(s−M2)−1

ij + (u− s)(t−M2)−1
ij

)
, (10.57)

with (M2)ij the square mass matrix for the gauge fields, and

Lij = gigj(f
−2
i + f−2

i+1)(f−2
j + f−2

j+1) . (10.58)

Note that this amplitude grows linearly with the squared energy, for every choice of fi. This reflects the
fact that in the continuum limit the theory corresponds to a 5D gauge theory with boundary conditions
which are not simply Neumann or Dirichlet, see 10.3.3 and [2]. In the high-energy limit, where we
can neglect the second term in Eq. (10.57), the amplitude has a minimum for all the fi’s being equal
to a common value fc. As a consequence, the scale at which unitarity is violated by this single channel
contribution is delayed by a factor (K+1) with respect to the one in the SM without the Higgs: Λmoose =
(K + 1)ΛHSM .

However the moose model has many other longitudinal vector bosons with bad behaving scattering
amplitudes. For energies much higher than all the masses of the vector bosons, we can determine the
unitarity bounds by considering the eigenchannel amplitudes corresponding to all the possible four-
longitudinal vector bosons. Since in the unitary gauge for all the vector bosons Σi are given by Σi =
exp[i~π · ~τ/(2fi)], the amplitudes are diagonal, and the high-energy result is simply

Aπiπi→πiπi → −
u

4f2
i

. (10.59)

We see that, also in this case, the best unitarity limit is for all the link couplings being equal: f i = fc.
Then: ΛTOTmoose =

√
K + 1 ΛHSM (for similar results see ref. [23] in [27]). However, in order our

approximation to be correct, we have to require Mmax
Vi

� ΛTOTmoose. By using the explicit expression for
the highest mass eigenvalue, in the case of equal couplings gi = gc, we get an upper bound gc ∼ 5. As
we will see, this choice gives unacceptable large EW correction.
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In this class of models all the corrections from new physics are ”oblique” since they arise from the
mixing of the SM vector bosons with the moose vector fields (we are assuming the standard couplings
for the fermions to SU(2)L ⊗ U(1)). As well known, the oblique corrections are completely captured
by the parameters S, T and U or, equivalently by the parameters εi, i = 1, 2, 3. For the linear moose, the
existence of the custodial symmetry SU(2)V ensures that ε1 ≈ ε2 ≈ 0. On the contrary, the new physics
contribution to the EW parameter ε3 is sizeable and positive [24]:

ε3 = (g̃2/g2
i )

K∑

i=1

(1− yi)yi (10.60)

where yi =
∑i

j=1 f
2/f2

j . Since 0 ≤ yi ≤ 1 it follows ε3 ≥ 0 (see also [28–30]). As an example, let us
take equal couplings along the chain: fi = fc, gi = gc. Then ε3 = g̃2 K(K + 2)/(6 g2

c (K + 1)), which
grows with the number of sites of the moose. The requirement of satisfying the experimental constraints
( ε3 ≈ 10−3), already for K = 1 would imply gc ≥ 15.8g̃, leading to a strong interacting gauge theory in
the moose sector and unitarity violation. Notice also that, insisting on a weak gauge theory would imply
gc of the order of g̃, then the natural value of ε3 would be of the order 10−1 − 10−2, incompatible with
the experimental data.

10.3.2 Effects of fermion delocalization

A way to reconcile perturbative unitarity requirements with the EW bounds is to allow for delocalized
couplings of the SM fermions to the moose gauge fields and some amount of fine tuning [27]. In fact, by
generalizing the procedure in [31, 32], the SM fermions can be coupled to any of the gauge fields at the
lattice sites by means of Wilson lines.

Define χiL = Σ†iΣ
†
i−1 · · ·Σ

†
1ψL, for i = 1, · · · ,K . Since under a gauge transformation, χiL →

Uiχ
i
L, with Ui ∈ Gi, at each site we can introduce a gauge invariant coupling given by

biχ̄
i
Lγ

µ

(
∂µ + igiV

i
µ +

i

2
g̃′(B − L)Ỹµ

)
χiL, (10.61)

where B(L) is the barion(lepton) number and bi are dimensionless parameters. The new fermion in-
teractions give extra non-oblique contributions to the EW parameters. These are calculated in [27] by
decoupling the V i

µ fields and evaluating the corrections to the relevant physical quantities. To the first
order in bi and to O(g̃2/g2

i ), the εi parameters are modified as follows:

ε1 ≈ 0, ε2 ≈ 0, ε3 ≈
K∑

i=1

yi

(
g̃2

g2
i

(1− yi)− bi
)
. (10.62)

This final expression suggests that the introduction of the bi direct fermion couplings to Vi can compen-
sate for the contribution of the tower of gauge vectors to ε3. This would reconcile the Higgsless model
with the EW precision measurements by fine-tuning the direct fermion couplings.

As shown in the left panel of Fig. 10.10, in the simplest model with all fi = const = fc, gi =
const = gc and bi = const = bc, the experimental bounds from the ε3 parameter can be satisfied by
fine-tuning the direct fermion coupling bc along a strip in the plane (Kbc,

√
K/gc) (we have chosen these

parameters due to the scaling properties of gc and bc with K , see ref. [27] for details).

The expression for ε3 given in Eq. (10.62) suggests also the possibility of a site-by-site cancella-
tion, provided by:

bi = δ(g̃2/g2
i )(1 − yi). (10.63)

This choice, for small bi, gives ε3 ≈ 0 for δ = 1. Assuming again fi = fc, gi = gc, the allowed region
in the space (δ,

√
K/gc) is shown on the right panel of Fig. 10.10.
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Fig. 10.10: The 95% CL bounds on the plane (Kbc,
√
K/gc)-left panel, (δ,

√
K/gc)-right panel, from the experi-

mental value of ε3 for K = 1 (solid green lines), K = 10 (dash blue lines). The allowed regions are between the
corresponding lines.

In conclusion, by fine tuning every direct fermion coupling at each site to compensate the corre-
sponding contribution to ε3 from the moose gauge bosons (see also [15, 16]), it is possible to satisfy the
EW constraints and improve the unitarity bound of the Higgsless SM at the same time.

10.3.3 Continuum limit

We would like to discuss the continuum limit of the previously discussed moose model by takingK →∞
with the condition Ka = πR, where πR is the length of the segment in the fifth dimension and a→ 0 is
the lattice spacing. By defining

lim
a→0

af2
i = f2(y), lim

a→0
ag2
i = g2

5(y) (10.64)

the action obtained as the continuum limit of the Lagrangian (10.52), for flat metric g5(y) = g5 and
f(y) = f̄ , can be written as [11]

S = −1

4

∫
d4x

∫ πR

0
dy
[ 1

g2
5

(F aMN )2 +
1

g̃2
(F aµν)2δ(y) +

1

g̃′2
(F 3

µν)
2
δ(y − πR)

]
+ Sferm

where FMN is the tensor associated to the 5D field AN and the brane kinetic terms, arising from the left
and right ends of the moose chain, are the terms which modify the otherwise linear mass spectrum of KK
excitations of gauge bosons. These are necessary in order to avoid light KK excitations of the standard
gauge bosons.

In the continuum limit, left- and right-handed fermions live at the opposite ends of the extra-
dimension. However, in the discrete, we have introduced an interaction term invariant under all the
symmetries of the model which delocalizes the left-handed fermions in the continuum limit. In fact, we
have seen that the fermionic fields along the string are defined in terms of the operator

Σ1Σ2 · · ·Σi . (10.65)

In five-dimensions the fields Σ’s can be interpreted as the link variables along the fifth dimension. As
such they can be written in terms the fifth component of the gauge fields AN . As a consequence the
operator given in Eq. (10.65) becomes a Wilson line

Σ1Σ2 · · ·Σi → P

[
exp

(
−i
∫ y

0
dzA5(z)

)]
. (10.66)
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In this way the original fermionic fields acquire a non-local interaction induced by Wilson lines. The
fermion action in Eq. (10.65) is therefore given by

Sferm =

∫
d4x

∫ πR

0
dy
[
δ(y)iψ̄LD/ψL + δ(πR − y)iψ̄RD/ψR + b(y)iχ̄LD/χL

]
(10.67)

where

b(y) = lim
a→0

bi
a
, χL(y) = P

[
exp

(
−i
∫ y

0
dzA5(z)

)]
ψL (10.68)

and

D/ ψL =

(
∂/ + i

τa

2
A/ a(y) + iYLA/

3(πR)

)
ψL, D/ ψR =

(
∂/ + iYRA/

3(y)
)
ψR (10.69)

D/χL =

(
∂/ + i

τa

2
A/ a(y) + iYLA/

3(πR)

)
χL (10.70)

with YL,R the left and right hypercharges. Mass terms for the fermions can be generated by

λijψ̄iLP
[

exp(−i
∫ πR

0
dzA5(z))

]
ψjR.

The breaking of SU(2) to U(1)em is obtained by the following boundary conditions:

∂yA
1,2
µ −

g2
5

g̃2
A1,2
µ |y=0 = 0, A1,2

µ |y=πR = 0, (10.71)

∂yA
3
µ −

g2
5

g̃2
A3
µ|y=0 = 0, ∂yA

3
µ +

g2
5

g̃′2
A3
µ|y=πR = 0 (10.72)

We would like to discuss what is the continuum limit for the direct fermionic couplings when we
choose the bi’s according to the Eq. (10.63) with δ = 1 which corresponds to a site-by-site cancellation.
By assuming g5(y) = g5, with g5 constant, we get

b(y) =
g̃2

g2
5

∫ πR

y
dt

f2

f2(t)
, with

1

f2
=

∫ πR

0

dy

f2(y)
. (10.73)

From Eq. (10.73) we see that b(0) = g̃2/g2
5 , b(πR) = 0 . Therefore the direct fermionic coupling

decreases along the fifth dimension going from the brane located at y = 0 to the brane at y = πR. For
the case of constant f(y) = f̄ we find

b(y) =
g̃2

g2
5

(
1− y

πR

)
. (10.74)

With this choice the contribution from the new delocalized fermion interactions to ε3 is given by

ε3|ferm = − 1

πR

∫ πR

0
dy yb(y) = − g̃

2

g2
5

πR

6
(10.75)

which is just the opposite of the contribution to ε3 in the linear moose [11, 24].

Another interesting case corresponds to a Randall-Sundrum metric along the fifth dimension [1,
33]. It corresponds to

f(y) = f̄eky (10.76)
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and we find

b(y) =
g̃2

g2
5

e−2πkR − e−2ky

e−2πkR − 1
. (10.77)

In this case we get

ε3|ferm = −
∫ πR

0
dy

e−2ky − 1

e−2kπR − 1
b(y) = − g̃

2

g2
5

1

4k

e4kπR − 4kπRe2kπR − 1

(1− e2kπR)2
(10.78)

which is the opposite of the contribution from the gauge bosons derived in [24].

Therefore by allowing for a fine tuning obtained with a convenient delocalization of the fermion
couplings, the contribution to the S parameter coming from the gauge and fermion sectors vanishes. We
are currently investigating whether a geometrical mechanism can be found in order to guarantee such a
cancellation. Notice that in the previous formulation we do not assume the existence of bulk fermions;
under certain hypotheses these can generate the delocalization of the standard model fermionic couplings,
parameterized by b.
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