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Abstract. In this work we shall explore the identification and use of effective degrees of
freedom, for the description of the non-perturbative regime of QCD. The starting Hamiltonian
is the effective Coulomb plus linear potential. In order to build the spectrum of effective quark
degrees of freedom, starting from arbitrary chosen quark masses, we shall pre-diagonalized
the Hamiltonian. Then, we shall include quark-pair correlations and treat them by applying
Bogoliubov transformations. The resulting quasiparticle excitations are then used to construct
non-interacting two quasi-quark states with energies up to 2 GeV, which are compared to the
observed meson-like states in the same energy domain.

1. Introduction

The Quantum Chromodynamics (QCD) is the theory of strong interactions [1, 2, 3], its
low energy regime is non-perturbative and in consequence one is forced to apply certain
approximations in order to describe hadronic states. Thus the efforts focus in the construction
of effective, low-energy approximations to QCD and to find out methods to describe its non-
perturbative domain. In this work we investigate the properties of a phenomenological model
inspired by the canonical approach to QCD in the physical, Coulomb gauge quantization.

The underlying interactions in Coulomb gauge are dominated by the Instantaneous Color
Coulomb Interaction (ICCI) acting between color charges. It has been shown in [4, 5, 6, 7] that
the ICCI becomes confining, i.e., proportional to the distance between the external color charges.
Beyond the effective quark and antiquark spectrum, the correlations between quark-antiquark
pairs lead to meson-like excitations which may be treated as a many-body problem.

In hadronic models, such approximations are driven by phenomenological considerations
rather than by QCD itself. Examples of these are the bag model [8, 9], the algebraic models
[10, 11, 12, 13] and the constituent-quark model [14]. For these models a number of experimental
data points should be considered in order to fit their parameters.
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The QCD Hamiltonian in the Coulomb gauge, is a good starting point for the application
of many body techniques [15, 16]. The harmonic oscillator basis allows not only to obtain
analytic expressions for matrix elements, as shown in [17, 18], but also helps to reduce the size
of the matrix to be diagonalized. A cut-off in the harmonic oscillator basis is related to the
maximal number of oscillator quanta included in the calculations. The use of the oscillator basis
introduces a new way to describe hadrons as a combination of discrete states. This new approach
requires another way of performing the renormalization of running constituent quark masses and
of the interaction constant. By looking at correlations between pairs of quarks which may result
in a superfluid low energy regime, the observed spectrum of hadrons could be interpreted in
terms of quasiparticle excitations. This is the purpose of the present work.

In Section 2, we proceed gradually by treating the QCD Hamiltonian in the Coulomb gauge in
order to construct the effective quark spectrum. In Section 3, we apply the BCS transformations
and solve the corresponding flavor dependent equations, in order to get the relevant parameters
of the model, that is the up/down and strange quasi-quark energies and gaps. In Section 4, we
present the dependence of the solutions in terms of the dimension of the basis. The conclusions
are drawn in Section 5.

2. Quarks and antiquarks as effective degrees of freedom.

The first step for the implementation of the BCS method consists in the definition of the
single particle field. In the case of QCD the literature is rich in the description of such fields
[19, 20, 21, 22, 23, 24, 25, 17].

2.1. The QCD Hamiltonian in the Coulomb gauge.
We start from the QCD Hamiltonian in its canonical Coulomb gauge representation [3, 2],

HQCD _— /{;[‘7111’”-jH“‘+B-B]—w(—iv-V+m)¢—g¢7~Aw}dx
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which has been widely studied in the past for the description of several properties of QCD at low
energy [4, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32]. The last term in the Hamiltonian of Eq. (1) includes
the relevant interactions between quarks and gluons i.e., the QCD Instantaneous color-Coulomb
Interaction (QCD-IcCI). At low energy the effects of dynamical gluons in the QCD-IcCI can
be represented by the interaction V(|x —y|) = _‘x‘/_icyl + Vi|x — y|, which is obtained from a
self-consistent treatment of the interaction between color charge-densities [5, 6].

Here, we have analysed the quark sector of the Hamiltonian of Eq. (1) and taken the effective
confining interaction V(|x — y|) to describe the low energy interaction between color charge
densities. We write

Hep” = / {W(X)(_ia "V 5m)¢<x)} dx — % /Pc(X)V(!X —yDrt(y)dxdy
= K+ Hcou , (2)

where p¢(x) = 9T (x)T)(x) is the quark and antiquark charge-density and 7°(7,) are the SU(3)
color generators, because of the non-abelian structure of QCD. The first term in Eq. (2) is the
kinetic energy, and the second term is the QCD-IcCI in its simplified form. The fermion field
YT(x), whose quantization is expanded in terms of creation and annihilation operators in the
harmonic oscillator basis
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with z = |x| and Ry;(x) = Nnjexp(— BOJ” )z lLN l(Boar: ), where L) is an associated Laguerre

polynomial and (v/Bg)~! is the oscillator length. The index 7 denotes upper (7 = %) and
lower (17 = —%) components of the Dirac spinors in the Dirac-Pauli representation of the Dirac
matrices, and o, C, F' denote spin, color and flavor intrinsic degrees of freedom, respectively.
The use of the harmonic oscillator basis requires the diagonalization of the kinetic term (2),
which is performed by using the total spin J = [ + %, for a given maximal number of quanta

N = N¢yt. For this, we introduce a general transformation to a basis of effective operators,

T _ JT T
4 (Nysmycr = 2 ( Qr(N), )nrk) Q)kaMJCF 5,“(71)%7#1 . (4)
yiy
where the value A = +1 5 will refer to effective quarks and the value A = —5 to effective antiquarks,
: T
e Qi n,or 7 bwaC(YT) My Moy 804 Q. wkJM;CF d“kJC(YT) MM Mr:

With the use of the harmonic oscillator basis and the pre.-diagonalization of the kinetic term,
we have identified effective quarks and antiquarks as a linear combinations of the bare quarks and
antiquarks. In terms of these effective quarks and antiquarks, the kinetic energy term acquires
the following structure

K- ZEIWWZ( kﬂwbimw dkwwﬂdlﬂ’yu) : (5)
kmy
The indices indicate the principal number (k = 1,2,...) which run over all orbital states

and the parity (7 = 4) while =, p are short hand notation for the particle spin, color and
flavor hypercharge and isospin representations v = {J, C, (Y, T)} and their magnetic projections
w={Myjy, Mc, Mr}, respectively.

The QCD-IcCI term, in its simplified form (H coyl), rewritten in terms of effective quarks
and antiquarks operators is given by [18]
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where we have compacted the single particle orbital number, parity and irreps into the
short-hand notation q; = k;my,, and use for the (flavor-less) quantum numbers of the
intermediate coupling in the interaction vz, = {L(11)(0,0)} and for their magnetic projections
s, = {Mr, Mc,0}. The conjugate representations satisfy 75, = ¢, and fif, = {—Mp, M¢c,0}.
For the total couplings (upper index) and magnetic numbers (lower index) of the interaction,
we have used 79 = {0, (00),(0,0)} and po = {0,0,0} respectively. The operators F and G are
given by

’on
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In this basis, and using the above introduced states, the matrix elements of the interaction
are given by

VL _ § : VL ot o 212 o313 a1
{Nimik; Y3 T3} {Nili Ji} Zr (N1l A,k 2 (Nala), Ao ke~ 73(N3ls),A3,m3,k3 " 74 (Nals),Aa,ma,kg
X 57'17'257'37'4 5ﬂ_1’(_1)%771+l1 5W2’(_1)%772+126W37(_1)%773+l357r47(_1)%7‘r4+l4

1, Y V2T +1 1, Y3 V215 +1
X (—1)‘}”+ ? +TI#5T2T15YQY1 (-1)s7F 23+T3%6T4T36Y4Y3- (8)

The matrix elements in the harmonic oscillator basis (V{%V L J_}) are analytic and actually easy
to compute.

3. Bogoliubov Transformation and the BCS method.

Here, starting form the effective quark and antiquarks basis, we apply the Bogoliubov
Transformation [15, 16], in order to approximately diagonalize part of the effective QCD
interaction, Eq. (2).

Herewith we shall apply the transformations for each quark-flavor, separately. Thus, the
reference (ground state) state will be a quark condensate with a definite flavor. Then, the
Hamiltonian of Eq.(2) is written in terms of quasi-quark operators and the standard conditions
of the BCS theory are applied to it by asking the one-quasiparticle term (H1) to be diagonal, the
pairs terms (Hag+ Ho2) to vanish. A crucial step in the treatment, leading to the transformation
between ordinary particles (in this case fermions like the quarks and antiquarks) to quasiparticles
is the replacement of the ordinary vacuum |0) by the BCS vacuum |BC'S),

70
BCS) ~ 100+ 37 2humon [bhyryy © Az, | 10) (9)
kimim
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and the quasiparticle excitation DLm_ it
antiquark, being B};_ —— and DL . the creation operators for quasi-quarks and quasi-anti-
quarks, respectively.

At the same time the following conditions:

The quasiparticle excitation B |BC'S) operator has the quantum numbers of the quark,

|BC'S) operator has the quantum numbers of the

Y Vili

BT BOS) = Dy, i BCS) = 0, (10)
kimiyipe gt = kjmivits | —
{B b ’Bkmmua‘} B {Dki”im’”’DT ™ %M} = % (1)
and
{Bkimmm’ DTkjov’Yij} = {Bki”i’%m, chim,'yim} =0 (12)

should be obeyed.

The next step in our derivation consists of taking normal order respect to the quasiparticle
vacuum and collecting the different contributions to the Hamiltonian with constant terms Hyy,
one creation-one annihilations terms Hyi, two-quasiparticle terms Hog and Hys.

The value of the gap is extracted, for each channel, by solving the set of BCS equations (see
Section 3.1) and the remanent of the transformed Hamiltonian may be treated in the RPA basis
to describe correlations between pairs of quasiparticles [33].
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3.1. BCS equations.
The terms Hy1 and Hog + Hgo can be ordered in terms of the following variables

X, = uil—vil
Yi, = 2up,vk (13)

which depend only on the quasiparticle operator indices, k;. Here, we are using a short-

hand notation k; = k;m;,~;. The interaction terms are also ordered in terms of the structures

(ui2 — 1}]%2) and (quUkQ), being ks an internal index. The parameters u; and vy are determined

self-consistently.
The resulting equations are the well known BCS-equations

Elekl + Ak1Yk1 = Ek1 (14)

—Apy Xpy + Zp, Y, =0 (15)
where X, , Ag, and the quasiparticle energy Ej, are given by

Ek‘l = 6k»'l + ‘_/k‘zﬂi:zkzlﬁ (uzz - v’%‘z) (16)

IS 7 AN
Akl - Vk1k‘2k‘2k1 (uk2vk2)

Ek1 = \/Ezl + Ail (17)

with
172 =
kimiJJiY1Th, komeJoYoTo, komaJoYoTn, kimiJ1YiT1 —
1 ZZ 1\ /8(2L + 1) (—1)E+/2=N
2 2 9 2J1 +1
Y 1+
L J1, Ty J2,To J3, T3 J4, Ty
X{ Z V{Nilz'Jz‘}aTl(Nlll),M,Tfl,kla7'2(N212),>\277r2,k2aTs(N3ls),>\3,7r3,k3aT4(N4l4),)\4,7T47k4
X 57’17'257'37'4 57r17(_1)%—r1+l1 57r2,(—1)%_72+125#3,(—1)%_73“357r47(—1)%_7'4+l4}
X (571‘171'4 ) (5k2k3 57T2ﬂ'3 ) (5J2 J3 5J1 Ja ) (5T1T2 5T2T3 5T3T4 ) (5Y1Y2 6Y2Y3 5Y3Y4)
X(5A1+§5A2+§5A3+%5A4+§ - 5A1—§5A2+§5A3+§5A4—§)aVel“age (18)
and

_ A B
Vk1ﬂ'1J1Y1T1, koma JoYoTo, komoJoYoTs, kimiiY1T1 —

1 1 8(2L + 1) (=1)Lt2—N
_2%:§: <2>\/( +1) (-1)

9 2J1 +1

L J1, Ty J2, T J3,T3 Ja, Ty
X{ Z V{NiliJi}aﬁ(N1l1),>\1,7r1,k‘1aT2(N212),>\2,7F2,k2aT3(N313),>\377T37k3a7'4(N4l4)7)\4,7r4,k4

X Oryry0rymy 571_17(1)%71+115ﬂ27(1)%7'2‘5’12571.3’(1)%T3+l36ﬂ_47(1)%7'4+l4}

X (57T17r4)(6k2k357T27T3)(5J2J35J1J4)(5T1T2 5T2T3 5T3T4>(5Y1Y2 5Y2Y3 5Y3Y4)
X2(5)\1+%6)\2+%6)\37%5)\47% + 6)\17%5A2+%5>\37%5)\4+%) ’ (19)



44th Symposium on Nuclear Physics Cocoyoc IOP Publishing
Journal of Physics: Conference Series 2619(2023) 012018  doi:10.1088/1742-6596/2619/1/012018

where the summation on the internal indices is performed.

These non-linear equations are then solved for each of the quark-flavors and they are known
as state depended BCS-equations [15, 16|, because X, and Ay, depend on the flavor.

The procedure to obtain the solutions of Egs. (14) and (15) consist of the variation of the
quantities uy, and vy, such that the iteration stop when the correlation energy Fj, reaches
stability.

4. Results and Discussions.

In this section we shall present the results of our calculations. We have considered the effects
associated to the renormalization of the parameters, i.e., the quarks masses and the Coulomb
and linear interactions. At the same time we have studied the effects of a correlated vacuum and
the presence of a gap for each quark flavor by comparing the spectrum of the pre-diagonalization
energies with the quasiparticle energies, as a function of the cut-off parameter (Ny;). At the end
of this section, we have constructed the uncorrelated two-quasiparticle spectrum and compared
it to the experimental ones [34]. The main aspect of the comparison between calculations and
data will focus on the density of states, for which we shall investigate if the space of uncorrelated
two-quasiparticle states is dense enough to establish connections with data.

4.1. Remormalization of the parameters.

The renormalization implemented takes into account a cut-off in the number of oscillator quanta
Neyt, such a truncation is similar to a momentum cut-off regularization, but in a discrete basis.
The aim of the renormalization procedure is to keep at least the lowest eigenvalue of the BCS
equations Fj, unchanged, for each quark flavor. Thus, we present the renormalization results
which, in fact, does succeed in keeping the low-energy meson-like spectrum approximately cut-
off-independent.

We shall proceed by studying the dependence of the parameters which enter into the definition
of the interaction, which are Vo and Vi, . Fig. 1 shows the dependence of the parameters V¢
and V7, upon the value of the cutoff, N, of the radial basis. In doing so we have varied both
Vo and V, such that the resulting values of the gaps remain constant.

In Fig. 1, it is seen that the strength of the renormalized Coulomb interaction increases
as a function of N.,. This change is faster than the decrease observed in the strength of the
renormalized linear interaction.

0.06 0.06
201 120 0.05} 10.05
157 S 0.04f 10.04
(&) [}
> o
1.0¢ < 0.03 0.03
0.5} 0.02} 10.02
0.01 ‘ : : ‘ 0.01
0.0, 2 4 6 8 10 12
Ncut Ncut

Figure 1: Renormalization of the Coulomb V¢ (left) and linear interaction interaction V7, (right):
dependence of the parameters upon the size of the radial basis (Ngy). The actual values are
represented by dots, the line is to guide the eye. We are using natural units trough the text.

For the renormalization of the up/down quark mass m,, we have used a starting value of
mg = 0.050GeV. In the case of the strange quark mass, we have used the highest value for
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which a gap in the strange sector is not zero, this is at about ms = 0.140GeV, for higher values
than this, there is no gap in the strange quark sector.

4.2. Quasiparticle spectrum.

Proceeding in the same manner, with the couplings of the previous subsection, we have
diagonalized the one quasiparticle sector of the Hamiltonian and solved the BCS equations
(14) and (15). The results for the up/down quarks 7' = 3 and strange quark 7 = 0 are shown
in Figure 2.
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Figure 2: Prediagonalization energies (symbols) for T' = 1 (left) and T = 0 (right) states and
Quasiparticle (solid lines) energies versus Ney;.

From the comparison between the energies obtained by diagonalizing the one particle sector
of the Hamiltonian and those corresponding to the quasiparticles, we may conclude that in both
cases the spectrum reaches a harmonic limit for large values of N.,:. The constancy of the gap
for the up/down and strange quarks is well illustrated by the results shown in Figure 2, where
the gap in the case of T' = % states is A & 0.2 GeV and for T'= 0 its value is A ~ 0.15 GeV .

2.0 2.0

Energy[GeV]

0.5 <10.5

N=3 N=5 N=7 N=9 N=11

Figure 3: Two-Quasiparticle meson-like spectrum, for pairs of up and down quasiquarks, isospin
T = 0,1 states, vs Neys.

4.2.1. Two quasiparticle spectrum as a function of Nq,: Meson states, of positive and negative
parities, are described as two-quasiparticle states. In Figure 3 the spectrum of two-quasiparticles,
for the subspace T'= 0, 1, is shown as a function of N.;. The density of states increases as the
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Figure 4: Experimental meson spectrum for isospin 7' = 0,1, up to 2 Gev.

number of states in the basis increases. The density observed for Ng,; = 9, 11 seems to be similar
to that observed in the experimental spectrum shown in Figure 4. The figure is not meant to
be compared with data but rather show the gross features of the spectrum. Considering that
the theoretical results have been obtained at the quasiparticle level, that is without including
residual interactions between pairs of quasiparticles, the overall tendency of them follows that
of the experiment. This is particularly true for the sector of medium and high energies. This
is encouraging because the addition of the residual terms of the interaction between pairs of
quasiparticles, when treated in the context of non-perturbative linearization method, like the
RPA approach, could certainly improve the agreement.

5. Conclusions.
In this work we have treated the Coulomb plus linear QCD Hamiltonian by applying non-
perturbative techniques like the BCS method. A renormalization of the mass and interaction
parameters was performed. The stability of the results was tested by increasing the dimension of
the radial basis used in the calculations. We have calculated the gaps and quasiparticle energies
for up/down and strange sectors. The two-quasiparticle spectrum for T' = % and T = 0, that is
mesons and kaons like states, show features similar to those exhibited by the experiments.

It is expected that by including interactions between pairs of quasiparticles, would allow for a
more detailed correspondence between theoretical and experimental results. Work is in progress
about the use of the RPA methods in this context.
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