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Abstract. By 2015, the advanced versions of the gravitational wave detectors Virgo and
LIGO will be online. They will collect data in coincidence with enough sensitivity to potentially
deliver multiple detections of gravitational waves from inspirals of compact-object binaries.
In a previous work, we have studied the effects introduced in the estimation of the physical
parameters of the source by uncertainties in the calibration of the interferometers. Our bias
estimator for parameter errors introduced by calibration uncertainties consisted of two terms: A
genuine bias due to the calibration errors, and a contribution coming from the limited number
of samples used to explore the parameter space. In this article, we have focused on this second
term, and we have shown how it is smaller than the former (about 10 times smaller), and how
it decreases as the signal-to-noise ratio increases.

1. Introduction
In a recent paper [1], we have shown that the bias introduced by realistic calibration errors
(CEs) in the parameter estimation process for gravitational wave (GW) signals are usually
smaller than the uncertainty due to the noise in the instruments. As parameters are estimated
using numerical algorithms, in our case, the Nested Sampling algorithm [2] as implemented and
described in [3], the biases we have found were really made up of two contributions: A real
bias, driven by the size and shape of the calibration errors, and an error coming from the finite
sampling of the parameter space. In the rest of this work, we have referred to the first term as
calibration bias and to the second as sampling errors. These are not related to CEs, and in
fact, have been presented in any results obtained using Monte Carlo or Nested Sampling based
algorithms. In this work, we have quantified the contribution of this term and we have shown
that (i) it is much smaller than the calibration bias, (ii) it should not affect in any important
way the parameter estimation (PE) process, and (iii) it is smaller for loud signals.

This article is organized as follows: In Section 2, we have described the method used to
estimate the bias, in Section 3, we have reported the main results and discussed them, and in
Section 4, we have summarized and concluded. We refer to [1] for the main methodology and
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results on calibration induced PE biases, to [2, 3] for the Nested Sampling methodology and
implementation, and to [6] for a description of the waveform and the parameters on which it
depends.

2. Method

In [1], we have estimated the bias introduced by mock, but realistic, calibration errors by running
a Nested Sampling algorithm on three catalogues of simulated GW signals. The analysis was
performed twice: A first time on the “exact” signals, and then on signals with added calibration
errors, while keeping fixed all the relevant parameters. The runs were set up to use two chains to
explore the parameter space in parallel to make optimal use of computer clustering, which were
then combined to provide a single estimate for the posterior distributions of the parameters and
the Bayes factor. Because of the randomness in the exploration of the parameter space, and the
finite sample size, running the code on the same stretch of data but starting the exploration from
a different point would result in finding slightly different posterior distributions. As mentioned
before, this effect is a general one, and is not related to the presence of calibration errors.

Note, however, that in our previous study, calibration errors were the cause for this
randomness to arise. In fact, adding calibration errors results in a slight change of the profile
of the likelihood function, which is the real driving engine of the Nested Sampling algorithm.
As a consequence, even if the two chains in the runs with CE started from the same point of
the parameter space as the two chain in the run without CE (which is, indeed, the case, as
we had kept all parameters and settings to be the same while adding calibration errors, and
that includes the seed for the generation of the chain) they would ultimately follow different
paths in their exploration of the parameter space. This effect has to be added to the genuine
bias (the calibration bias), which would be there even in the case of perfect sampling with an
infinite number of iterations, and its magnitude will depend on the particular setting of the run
(number of live points and MCMC iterations) and the GW event. Questions which were left
unanswered in [1] are: What can be told about the relative weight of these two biases? How does
the sampling errors depend on the signal-to-noise ratio (SNR) of the injected signals? In this
article, we have answered these questions by analysing in greater details the sampling errors,
their typical magnitude and shape.

In particular (a) Take the set of binary systems composed of one neutron star and one black
hole (BHNS) used in [1], limiting ourselves to the signals which had passed the SNR cut described
therein, (b) Analyse each signal using 12 parallel chains (each run used 1700 live points and 210
MCMC iterations, see [3] for details). These chains are then combined into pairs, always using
different chains, to yield 6 independent estimations of the source parameters, and (c) Calculate
the differences in the estimated parameters one obtains by using a pair of chains instead of
another one. To be more precise, for each event, we have calculated the quantity (somehow
similar to the one used in [1]) as:

a; — Qj

VA la(@0? +0u(0y)?

D , with 6> >j > 1 (1)

where @y, is the median of the parameter « as calculated by the k-th run (k = 1,2,..,6) and
on(ay) is the corresponding standard deviation. The advantage of normalizing by a symmetric
combination of the standard deviations is that ¥ will be a dimensionless quantity of the order
of 1 or less (while the various parameters on which the waveform depends have very different
ranges of variation as well as different units). Nevertheless, we have found occasionally useful
to work with the unweighted bias, for which we have used the symbol A% =q; — Q;.
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Figure 1. Left: The distribution of the standard deviation of the weighted bias among the
signals in the catalogue for the distance estimation. Right: A similar plot for the chirp mass
estimation

3. Results
For each event and each parameter, one can build a distribution of X7, with 6 > i > j > 1. Its
standard deviation can give an idea of the typical sampling errors one might get and we have
labelled it ¢[X]. One can then show how the width of the sampling errors distributions varies
by building an histogram of ¢[¥] for all the signals in the catalogue. This is shown in Figure 1
for the chirp mass and the distance (see [6] for a description of the waveform and parameters).
The results for all the parameters are summarized in Table 1, where we have given the mean
and standard deviation of o[¥] among the 167 events, as well as the 5th and 95th percentiles
(we have left out the statistics for the polarization and the coalescence phase as those are, in
practice, not estimable with Advanced LIGO and Virgo). In the last column, we have reported
the results we had found in [1] for the standard deviation of the weighted bias due to the joint

effect of calibration bias and sampling errors.

o[x] A{o[2]} 5th 95th o[¥] [CB+SE]
M 2.02:1072 | 2.96-107? | 7.02-:1073 | 3.36-10~2 1.02-1071
n 1.99-107% | 2.99-102 | 6.71-1073 | 3.67-10~2 1.28.1071
RA 5.84-1072 | 2.22:1071 | 2.15:1073 | 5.32-102 3.87-107 !
dec. 5.54-1072 | 1.88-10° T [ 4.60-1073 | 1.11-107T 4.49-107 1
to 5.68-1072 [ 2.07-10~T | 4.90-1073 | 5.74-10 2 4.05-107 1
D 2.75-1072 | 2.98-1072 | 8.81-1073 | 6.88-10~2 2.80-10 !
L 6.03-1072 | 1.40-10~ 1 | 8.99-1073 | 2.98-10~ ! 3.75-107 !

Table 1. The mean o[¥], standard deviation A{c[X]}, 5th and 95th percentiles of the standard
deviation of X for all the parameters. The last column shows the value of the standard deviation
that was found in [1], for the bias due to the joint effect of calibration errors and sampling errors.
These numbers take into account all 167 events.

On average, we can say that using a different pair of chains to explore the parameter space
has little effect on the estimated parameters. From Table 1, we have seen, in fact, that the
averaged o[X] is smaller than 6% of the noise error for all the parameters (and only ~ 2% for
the intrinsic parameters). Moreover, the distributions are quite compact: For the declination and
inclination angle, 90% of the times the standard deviation is contained in a region corresponding,
respectively to ~ 11% and 30% of the noise error; for the other parameters, this region is even
narrower (less than 7%). Moreover, comparing the first and last columns, we can say that the
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Figure 2. Left: The sampling errors in the estimation of the median of the chirp mass for all
the signals in our catalogue together with a best fit. Right: The width of the posterior for the
chirp mass against the SNR together with a best fit (see the text for more details).

sampling errors had a small weight in the biases we have found in [1]. Generally speaking, the
results of Table 1 are good as they confirm that the results found by parameter estimation codes
are robust against the particular pattern followed to explore the parameter space, at least with
the set up we have used.

We have briefly investigated the dependence of the sampling errors on the SNR of the
simulated signals. In the left panel of Figure 2, we have shown for each event the mean of
the bias AM = % Z62i>j21 AZ/}/‘ among the 15 combined runs plotted against the SNR. If
the samples used to build the posterior distributions are independent, we expect the errors to
go like ¢,,/v/N, where o, is the width of the posterior distribution (due to the noise), and N
is the number of samples in the chain. From Fisher Information studies [4, 5, 6], we expect
that at least for medium-high SNRs (> 15), 0, o« 1/SNR so that the bias we measure should
also depend on the inverse of SNR. The fit in the left panel of Figure 2 (blue line), shows,
instead, that the bias dependence on the SNR is more close to an inverse quadratic relationship,
and that there is a non-negligible scattering. On the other hand, the noise standard deviation

on[M] = 1= D 6sisi>1 \/% [0n(M;)? + 0, (M;)?] for the chirp mass is quite close to an inverse
relationship with the SNR, and the points are close to the best fit line. The reasons why the
bias seems not to follow the expected distribution, as well as a check on the dependence of the

Nested Sampling algorithm on the number of samples will be the subject of a forthcoming work.

4. Conclusions

In this work, we have investigated the typical contributions of statistical fluctuations due to
limited posterior sample size to the fluctuation of the mean estimator of posterior parameter
values, and we have compared it with the bias introduced by calibration errors, which we had
quantified in [1]. We have built a catalogue of 167 events, injected into simulated Advanced
LIGO/Virgo noise, and we have run the parameter estimation code using 12 parallel chains to
explore the parameter space. For each event, the chains were combined into 6 independent pairs,
and the results delivered by each pair were confronted with those of the others. We have found
that the code is robust against the statistical fluctuations arising from using a pair of chain than
another, the typical shifts in the estimated parameters being a tiny fraction of the random error
due to the noise in the instruments: For all parameters but inclination and declination, 90% of
the signals had a spread in the estimation smaller than 4% of the noise random error. We also
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have verified that these errors decrease as the SNR of the event increases, even though they do
not seem to follow the expected inverse relationship.

References
[1] Vitale S et al 2012 Phys. Rev. D 85 064034
[2] Skilling J 2004 in AIP Conf. Proc.: 24th International Workshop on Bayesian Inference and Mazimum
Entropy Methods in Science and Engineering 735 395
[3] Veitch J and Vecchio A 2010 Phys. Rev. D 81 (6) 062003 [gr-qc/0911.3820]
[4] Zanolin M, Vitale S and Makris N 2010 Phys. Rev. D 81 124048
[5] Vitale S and Zanolin M 2010 Phys. Rev. D 82 124065
[6] Vitale S and Zanolin M 2011 Phys. Rev. D 84 104020





