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We present the fully up-to-date calculation of the γZ-box correction which needs to be taken into account
to determine the weak mixing angle at low energies from parity-violating electron proton scattering. We
make use of neutrino and antineutrino inclusive scattering data to predict the parity-violating structure

function FγZ
3 by isospin symmetry. Our new analysis confirms previous results for the axial contribution to

the γZ-box graph and reduces the uncertainty by a factor of 2. In addition, we note that the presence of
parity-violating photon-hadron interactions induces an additional contribution via Fγγ

3 . Using experimental
and theoretical constraints on the nucleon anapole moment we are able to estimate the uncertainty
associated with this contribution. We point out that future measurements are expected to significantly
reduce this latter uncertainty.
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I. INTRODUCTION

The precision measurement of s2W ≡ sin2 θW , where θW
is the Standard Model (SM) weak mixing angle, in parity-
violating (PV) electron scattering serves as a powerful tool
to test the SM and search for physics beyond it. Since the
energy dependence of s2W is very precisely predicted within
the SM [1], any significant deviation from it would be an
indication of beyond Standard Model (BSM) physics.
Polarized elastic ep scattering in the limit of vanishing
beam energy E and momentum transfer t probes the
so-called weak charge of the proton:

Qp
W ¼ − lim

jtj→0

4
ffiffiffi
2

p
πα

GFjtj
dσþ − dσ−
dσþ þ dσ−

����
E¼0

: ð1Þ

Here, α is the fine structure constant and GF the Fermi
constant. dσ� are the differential cross sections for scatter-
ing with right-handed and left-handed polarized electrons,
respectively. At tree level this quantity is given by 1 − 4s2W,
which is accidentally suppressed. This effectively leads to
an enhancement in the sensitivity to s2W ,

Δs2W
s2W

≈ 0.08
ΔQp

W

Qp
W

; ð2Þ

which also implies an enhanced sensitivity to BSM effects
that may enter the running of s2W . As a concrete example,
the upcoming P2 experiment at the Mainz Energy-
Recovering Superconducting Accelerator (MESA), that
plans for a measurement of the proton weak charge to
1.4% with a beam energy of E ¼ 155 MeV, will lead to a
determination of s2W to 0.15% precision [2].
Due to its accidental suppression at tree level, one needs

to carefully account for all the SM higher-order effects
to Qp

W in order to properly translate the high-precision
experimental measurements into a determination of the
weak mixing angle and constraints on BSM parameters.
Including one-loop electroweak radiative corrections, the
proton weak charge reads [3]
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Qp
W ¼ ð1þ Δρþ ΔeÞð1 − 4s2Wð0Þ þ Δ0

eÞ
þ□WW þ□ZZ þ□γZð0Þ: ð3Þ

Among them, the quantity □γZ which denotes the con-
tribution from the γZ box diagram (see Fig. 1) contains
sensitivity to physics at the hadronic scale where perturba-
tive calculations are unreliable, inducing a large theoretical
uncertainty. It is in general a function of E and can be split
into two terms:

□γZðEÞ ¼ □
V
γZðEÞ þ□

A
γZðEÞ; ð4Þ

where the superscript VðAÞ denotes the contribution from
the vector (axial-vector) weak neutral current on the hadron
side. The axial box is nonzero at E ¼ 0 but suppressed by
the small electron weak vector coupling ve ¼ −ð1 − 4s2WÞ.
On the other hand, the vector box is not suppressed by any
small coefficient but is exactly zero at E ¼ 0.
Earlier studies of □γZ [4–6] assume small E and hence

are sensitive only to the axial box. However, a reanalysis in
2009 based on a dispersion relation [7] revealed a steep
energy dependence in □

V
γZðEÞ which was not previously

accounted for. This finding stimulated a large number of
follow-up studies on the vector γZ box [8–14] as the latter
was found to play a dominant role in the extraction of
the proton weak charge in the Qweak experiment which
took data at E ¼ 1.165 GeV [15]. These studies consis-
tently concluded that the theoretical uncertainty in □

V
γZðEÞ

increases with E, which also motivated future measure-
ments of Qp

W (specifically, the P2 experiment) to be
performed with lower beam energy.
Unlike its vector counterpart, there are much fewer

follow-up theoretical studies of□A
γZðEÞ [12,16–18], despite

its becoming increasingly important at small E. In particu-
lar, no attempt was made so far to relate the contributions
from multihadron intermediate states at small momentum
transfers below about 1 GeV2 to experimental data, and all
existing studies of these contributions are based on ad hoc
models where a systematic uncertainty analysis is difficult
or impossible.
In this paper we present an updated study of the axial γZ

box by adopting a Regge parameterization of the multi-
hadron contributions with parameters fitted to inclusive
νp=ν̄p scattering data. This technique was recently

introduced in the treatment of the axial γW box diagram
in neutron and nuclear β decay [19,20]. We will show that
by employing the neutrino data one is able to further reduce
the uncertainty in □A

γZ quoted in Ref. [16] by a factor of 2.
Within the same theoretical framework, we further discuss
a contribution which arises from the parity-odd component
in the γγ box. It possesses the same theoretical structure
as □A

γZ and is therefore inseparable from the latter. Using
the current constraints on the nucleon anapole moment, we
provide an estimate on the additional theory uncertainty
induced by this term.

II. DISPERSIVE REPRESENTATION OF □A
γZ

We start from the dispersive representation of □
A
γZ

derived in Ref. [16] for the case of electron scattering in
the forward direction:

□
A
γZðEÞ ¼

2

π

Z
∞

0

dQ2
veðQ2ÞαðQ2Þ

Q2ð1þQ2=M2
ZÞ

×
Z

1

0

dxFγZ
3 ðx;Q2Þfðr; t0Þ; ð5Þ

where

fðr; t0Þ ¼ 1

t02
Re

�
ln

�
1 −

t02

r2

�
þ 2t0tanh−1

�
t0

r

��
ð6Þ

with x¼Q2=ðW2−M2þQ2Þ, r ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p
,

t0 ¼ 4MEx=Q2, and M the nucleon mass. We will take
into account that in the MS scheme both s2W and α are
running, i.e., scale-dependent parameters. We calculate
them as described in Refs. [1,21], respectively. The spin-
independent, parity-odd structure function FγZ

3 is defined
through the hadronic tensor

1

4π

Z
d4xeiq·xhpðpÞj½JμemðxÞ; ðJνZð0ÞÞA�jpðpÞi

¼ −
iεμναβqαpβ

2p · q
FγZ
3 ðx;Q2Þ; ð7Þ

where p is the 4-momentum of the incoming proton, q the
4-momentum transfer with q2 ¼ −Q2, and ε0123 ¼ −1. The
electromagnetic and weak neutral currents read

Jμem ¼
X
q

eqq̄γμq; JμZ ¼ ðJμZÞV þ ðJμZÞA;

ðJμZÞV ¼
X
q

gqVq̄γ
μq; ðJμZÞA ¼

X
q

gqAq̄γ
μγ5q; ð8Þ

with eu ¼ 2=3, ed ¼ es ¼ −1=3, gqV ¼ 2ðIq3;L − 2eqs2WÞ,
and gqA ¼ −2Iq3;L. In particular, when E ¼ 0 one finds
the simplification [20]

FIG. 1. The γZ box diagrams. Not shown are the two remaining
diagrams with γ and Z interchanged.
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□
A
γZð0Þ¼

3

2π

Z
∞

0

dQ2

Q2

veðQ2ÞαðQ2Þ
1þQ2=M2

Z
MγZ

3 ð1;Q2Þ; ð9Þ

where

MγZ
3 ð1; Q2Þ ¼ 4

3

Z
1

0

dx
2r − 1

r2
FγZ
3 ðx;Q2Þ ð10Þ

is the first Nachtmann moment of FγZ
3 [22,23].

It is important to identify the dominant contributions
to the structure function FγZ

3 at different Q2 and W2 ¼
ðpþ qÞ2, as we summarize in Fig. 2. One can write

FγZ
3 ¼ FγZ

3;el þ FγZ
3;inel; ð11Þ

separating the elastic (sometimes called Born) contribution
that represents an isolated peak at W2 ¼ M2 and all the
inelastic contributions that start to emerge above the single-
pion production thresholdW2 ¼ ðM þmπÞ2. The latter can
be further subdivided in Q2:

FγZ
3;inel ¼

�FγZ
3;πN þ FγZ

3;res þ FγZ
3;R ðQ2 < 2 GeV2Þ

FγZ
3;DIS ðQ2 > 2 GeV2Þ:

ð12Þ

First, above Q2 ≃ 2 GeV2, in the deep-inelastic scattering
(DIS) regime, the structure functions are well described by
the parton model including corrections from perturbative
quantum chromodynamics (pQCD). This is corroborated
by the observation that the pQCD-corrected Gross–
Llewellyn-Smith (GLS) sum rule [24] is well satisfied at
Q2 > 2 GeV2 in νp=ν̄p scattering experiments [25,26].
In contrast, at lower Q2 the effective degrees of freedom

are hadrons. It was pointed out recently that nonperturba-
tive contributions can in principle be obtained from lattice
QCD [27], but before such calculations are carried out and
the respective uncertainties are well understood, we have to
rely on a model constrained by the experimental input.

The lowest inelastic hadronic state, the Nπ continuum,
starts contributing above its production threshold. In the
range 1.5 GeV2 < W2 < 5 GeV2 one observes nucleon
resonances. Above the two-pion threshold at ðMþ2mπÞ2
multihadron states emerge which become dominant at
large W2. The Regge exchange picture provides an eco-
nomical description of these contributions which we
smoothly continue down to the two-pion threshold, as
described in the following. We furthermore use the vector
meson dominance (VMD) picture to extend the Regge
description to moderate values of Q2. We label this
contribution by the subscript “R.” Correspondingly, we
obtain the γZ-box correction as a sum of five contributions:

□
A
γZðEÞ ¼

X
i

□
A;i
γZ ðEÞ; ð13Þ

with i ¼ el, πN, res, R, and DIS. Each contribution is
computed by inserting the corresponding FγZ

3;i into Eq. (5)
and integrating over its support in W and Q2.
The elastic contribution is given in terms of the proton

magnetic Sachs form factor Gp
M and the axial form

factor GA:

FγZ
3;elðx;Q2Þ ¼ −Gp

MðQ2ÞGAðQ2Þδð1 − xÞ: ð14Þ

In the numerical evaluation of this part we adopt recent data
on these form factors as given in Refs. [28,29].
The DIS region contribution to the box diagram can be

represented as an infinite sum of odd Mellin moments of
FγZ
3 upon expanding the function fðr; t0Þ in Eqs. (5) and (6)

in powers of x2M2=Q2 [16]. None of the even Mellin
moments of FγZ

3 appear due to the symmetry of the
integrands in x. The result is almost E independent.
Furthermore, the size of contributions from the third and
higher moments to □A

γZ is about 10−5. It is 2 orders
of magnitude below that from the first Mellin moment
and has little impact on the final result. The first Mellin
moment is independent of the details of the parton
distribution functions and its pQCD correction has pre-
viously been considered up toOðαsÞ. For completeness, we
include here the full Oðα4sÞ expression [30,31]:

Z
1

0

dxFγZ
3;DISðx;Q2Þ

¼ 5

3

�
1 −

αs
π
− c2

α2s
π2

− c3
α3s
π3

− c4
α4s
π4

�
−
3

2

α3s
π3

�
s3 þ s4

αs
π

�
:

ð15Þ

The first term on the right-hand side [30] represents the
isosinglet piece satisfying the polarized Bjorken sum rule
[32]. It receives only contributions from nonsinglet (con-
nected) diagrams. The second term [31] contributes only to

FIG. 2. Dominant physics that enter FγZ
3 in different regions in

the W2 −Q2 plane.
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the isotriplet piece by singlet (disconnected) diagrams and
enters the GLS [24] sum rule. The coefficients in numerical
form are given by [30,31]

c2 ¼ 4.583 − 0.333nf;

c3 ¼ 41.44 − 7.607nf þ 0.177n2f;

c4 ¼ 479.4 − 123.4nf þ 7.697n2f − 0.1037n3f;

s3 ¼ −0.413nf;

s4 ¼ −5.802nf þ 0.2332n2f: ð16Þ

In the numerical evaluation, we use the running strong
coupling constant αs provided by the Mathematica code
RunDec [33] with αsðMZÞ ¼ 0.118, and values for the
number of flavors, nf, changing by one unit at quark mass
thresholds as implemented in RunDec. Integrating this
expression with Q2

min ¼ 2 GeV2 in Eq. (5) results in a
contribution of 30.4 × 10−4 to□A

γZ. We note that ourOðα4sÞ
result differs from the OðαsÞ result by only about 2%. We
have also checked that usingQ2

min ¼ 1 GeV2 and theOðαsÞ
expression we obtain 32.9 × 10−4 in good agreement with
Ref. [16].
Higher twist (HT) effects represent a source of the

possible uncertainty in the lower Q2 part of the DIS region,
2 GeV2 < Q2 < 5 GeV2. Since we have experimental data
to compare with the pQCD prediction, we assume that the
uncertainty due to HT contributions should not exceed that
of the data, which is ∼5%. This uncertainty would be a
systematical one, and we will use as the estimate 5% of the
integral of the DIS contribution over this Q2 range.
Numerically, it amounts to 1.3 × 10−5, which we include
in the total error.
The Nπ contribution is calculated within the framework

of chiral perturbation theory but with pointlike electroweak
vertex couplings replaced by the Dirac and axial nucleon
form factors, which suppresses their high-Q2 contribution.
Details of this calculation are described in Ref. [20]. We
assign a generous 30% uncertainty due to higher chiral
orders. This uncertainty, however, does not affect the total
error budget.
As for the resonances, our treatment is the same as in

Ref. [16].Theonlynumericallyrelevantcontributionisdueto
the Δ resonance, which we calculate using the parameter-
ization inRef. [34].As there are no assigneduncertainties for
the values of the parameters, it is not possible to provide an
errorestimate for theΔcontribution to□A

γZ.Thiscontribution
is small, at the level of the overall uncertainty, and even a
conservative 30%uncertainty hardlymodifies the total error.
Moreover, we note here that the resonance and multihadron
contributions are anticorrelated, as it is their sum that is
constrained by measured experimental cross sections. A
significant increase inonewill have tobe compensated for by
areductionintheother,sothat theoveralleffect issmaller than

if this anticorrelationwasnaïvelyneglected.We thereforeopt
to exclude the resonance uncertainty from the total error.
The treatment of multihadron intermediate states

requires more care. Following Refs. [19,20], we establish
the correspondence between FγZ

3 and its charged current
counterpart Fνpþν̄p

3 by isospin symmetry. The electromag-
netic current can be decomposed into isosinglet and
isotriplet components:

Jμem ¼ Jμð0Þem þ Jμð1Þem : ð17Þ

Likewise, we can also separate the structure function FγZ
3

into isosinglet and isotriplet parts, FγZ
3 ¼ FγZ

3ð0Þ þ FγZ
3ð1Þ,

where the axial part of the Z current is purely isovector.
Upon neglecting strange quarks, we find through an isospin
rotation that the ðI ¼ 1Þ ⊗ ðI ¼ 1Þ isospin channel FγZ

3ð1Þ
equals half of the structure function Fνpþν̄p

3 that accounts
for the difference of the cross sections for inclusive νp and
ν̄p scattering [35]. We thus obtain the model-independent
expression

FγZ
3 ¼ 1

2
Fνpþν̄p
3 þ FγZ

3ð0Þ: ð18Þ

There are two advantages in doing so, as (a) data exist
for Fνpþν̄p

3 at moderate Q2 where a first-principle theory
description is not available, and (b) Jμem is predominantly
isovector, so that the contribution from FγZ

3ð0Þ is small.

Therefore, utilizing neutrino data, one obtains a model-
independent determination of the dominant isotriplet piece,
limiting the model dependence to the small isosinglet piece.
Apart from the use of isospin symmetry, our treatment
differs from that in Ref. [16] in that we account for
continuous backgrounds already starting at the two-pion
threshold W2 ¼ ðM þ 2mπÞ2.
Our parameterization is based on the leading Regge

trajectory exchange picture introduced in Refs. [19,20],
where the reader can find more details. The respective
diagrams are shown in Fig. 3. In this picture and making
use of the nearly exact degeneracy between the ω and ρ
mesons, the isosinglet and isovector pieces are related to
each other and to their charged current counterpart in a
simple way:

FγZ
3;Rð0Þ ¼

fth
18

CWW
m2

ω

m2
ω þQ2

m2
a1

m2
a1 þQ2

�
ν

ν0

�
α0
; ð19Þ

FγZ
3;Rð1Þ ¼

fth
2
CWW

m2
ρ

m2
ρ þQ2

m2
a1

m2
a1 þQ2

�
ν

ν0

�
α0

¼ 1

2
Fνpþν̄p
3;R ; ð20Þ
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with α0 ≈ 0.477 the intercept of the ω=ρ trajectory,
ν ¼ Q2=2Mx, and ν0 ¼ 1 GeV a typical hadronic scale.
The threshold function that suppresses the small-W2 con-
tribution was chosen in the form

fth ¼ ΘðW2 −W2
thÞð1 − eðW2

th−W
2Þ=Λ2

thÞ; ð21Þ

where Λth ¼ 1 GeV and W2
th ¼ ðM þ 2mπÞ2 is the two-

pion threshold. As in Ref. [19], we assume that it is

sufficient to take CWW ¼ CWWðQ2Þ as linear, CWW¼
AWWð1þBWWQ2Þ. The parameter values AWW¼5.2�1.5
and BWW ¼ 1.08þ0.48

−0.28 GeV−2 [19] have been obtained from
a fit of the first Nachtmann moment of Fνpþν̄p

3 using
data from CCFR [25,26], BEBC/Gargamelle [36] and
WA25 [37], after subtracting the elastic, Nπ, and resonance
pieces. Using Eqs. (19) and (20) in Eq. (5) gives the Regge
contribution to □

A
γZ.

Our results for the □A
γZ are shown as function of energy

in Fig. 4. The upper panel displays all non-DIS contribu-
tions separately, while the lower panel shows their sum, the
DIS contribution, and the total, as well as a comparison
with the previous evaluation of Ref. [16]. A significant
overlap of the uncertainty bands indicates an excellent
agreement between the two calculations. In our analysis the
uncertainty is reduced by a factor of almost 2.
We visualize the source of this uncertainty reduction in

Fig. 5, where we display our Regge contribution to the first

Nachtmann moment Mð1Þ
3 ðQ2Þ=Q2 in comparison with the

result of the approach of Ref. [16]. That reference assumed
no uncertainty beyond Q2 ¼ 1 GeV2 where the dashed red
curve is matched to DIS. Instead, we match the Regge
parametrization to DIS at Q2 ¼ 2 GeV2. The total uncer-
tainty of the□A

γZ associated with each approach is obtained
by integrating the respective uncertainty band in the
displayed range. We see that the use of data to determine
the uncertainty of the dispersive calculation allows one to
halve the associated theoretical error. The observed close
agreement between the solid blue and dashed red curves in
the range 1 GeV2 < Q2 < 2 GeV2 demonstrates that there
is almost no sensitivity to the exact matching point in this

FIG. 3. Regge exchange diagrams giving rise to the isosinglet,
FγZ
3;Rð0Þ, and isotriplet, FγZ

3;Rð1Þ, parts of F
γZ
3;R, respectively.

FIG. 4. Upper panel: Summary of all non-DIS contributions to
□

A
γZ. Elastic (blue shaded region with dashed central line),

resonance (orange solid line), Nπ (green dashed line) and Regge
(red shaded region with solid central line) contributions. Lower
panel: The DIS contribution (orange line), the sum of all other
contributions (red shaded region with solid central line), and the
total (blue shaded region with dashed central line). The result
of Ref. [16] with its uncertainty band is shown for comparison
(green shaded area).

FIG. 5. Our Regge-VMD model result for the first Nachtmann
moment of the structure function FγZ

3 as a function of Q2 (solid
blue curve for the central value and the shaded area around it for
the uncertainty). For comparison, the low-Q2 DIS contribution of
Ref. [16] is shown for Q2 < 1 GeV2 (dashed red curve for the
central value and red shaded area around for the uncertainty).
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range, and the respective error is contained in the shaded
blue band.
In Table I we list the individual contributions for the

kinematics of the two relevant experiments, P2 at MESA
with a beam energy of E ¼ 155 MeV, and QWeak at JLab
with E ¼ 1.165 GeV. Our updated analysis provides
predictions for the axial γZ box with an uncertainty at
the level of 5%. For completeness, we quote here the
previous evaluation by Ref. [16]: □A

γZðE ¼ 0Þ ¼ 44ð4Þ ×
10−4 and □

A
γZðE ¼ 1.165 GeVÞ ¼ 37ð4Þ × 10−4.

III. PARITY-VIOLATING PHOTON-HADRON
INTERACTION

In the previous sections we computed the hadronic
structure-dependent one-loop corrections due to the
exchange of a γ and a Z boson between the electron and
the proton. This calculation requires information on the PV
structure function FγZ

3 which we obtained by relating it to
its charged current partner FWW

3 by isospin symmetry.
Since isospin-breaking effects can be expected to be small,
the uncertainty in this calculation is dominantly experi-
mental. Together with □

V
γZ [7–14] and other one-loop

corrections [1] this completes the one-loop analysis for
the parity-violating part of the cross section.
To go beyond this result, one will need to perform

challenging calculations of two-loop effects. The situation
is expected to be particularly complicated when addressing
nonperturbative contributions. It is not evident how a
complete two-loop calculation at the hadronic level will
be viable since it will involve the analysis of time-ordered
products of three currents. While these hadronic effects are
not enhanced by large electroweak logarithms, they may
still be of importance at the 10−3 − 10−4 level which is the
goal of the present analysis. Since it may not be possible to
directly calculate these corrections, we aim at estimating
the uncertainty which they may induce, together with the
shift in the central value of Qp

W .
Of particular interest is a subclass of two-loop hadronic

corrections associated with the exchange of two bosons

between the electron and proton, and another boson
exchanged within the hadronic state. Since the loop
integration is dominated by momenta of a typical hadronic
scale, l≲Λh∼1GeV, one can conclude that the exchange
of two heavy bosons, W or Z, will lead to corrections of
OðαGFΛ2

hÞ which are negligible. Furthermore, purely
electromagnetic effects, i.e., diagrams with the exchange
of photons only, cannot lead to a PV signature. Thus, only
diagrams with at least one Z boson need to be considered.
Among these, the only significantly new contribution arises
from the exchange of two photons between the electron and
the hadronic system, with parity violation within the latter.
Such PVeffects may arise due to mixing of hadronic states
of equal spin and opposite parity. The parity-odd effect in
2γ exchange thus induces a parity-odd structure function
Fγγ
3 in the γγ box. Its effect should be added to □A

γZ as it is
indistinguishable experimentally.
In order to estimate this effect we use the picture in

which gauge bosons mix with vector and axial-vector
mesons. The photon mixes mostly with the vector mesons
ρ, ω, and ϕ. Hadronic PV interactions can induce a1-ρ
mixing, effectively leading to a1-γ mixing (left panel of
Fig. 6). Similarly, PV state mixing in the isoscalar channel,
such as h1-ω, gives rise to h1-γ mixing. But due to isovector
dominance its numerical impact should be marginal (at the
10% level) and we disregard it. The Lagrangian describing
the PV a1-γ interaction can be written as

La1γ ¼
e
2
ga1γFμνa

μν
1 ; ð22Þ

where Fμν and aμν1 are the field strength tensors of the
photon and the a1, respectively, and ga1γ is the PV coupling
constant.
To study the elastic component of Fγγ

3 , we first recall that
(neglecting strangeness and the isoscalar axial coupling)
the nucleon matrix element of the axial weak neutral
current takes the form

hNjðJμZÞAjNi ¼ gAūNγμγ5τ3uN; ð23Þ

where gA ¼ −1.27641ð56Þ has been measured precisely in
neutron beta decay [38,39]. The inclusion of the so-called
nucleon anapole moment effectively shifts the apparent
value of the nucleon axial charge seen in PV electron

TABLE I. Individual contributions to □A
γZðEÞ and associated

uncertainties for the P2 and QWeak experiments in units of 10−4.
The star at the resonance contribution indicates that it is 100%
anticorrelated with the Regge contribution; see the discussion of
the uncertainties in the text.

Contribution E ¼ 155 MeV E ¼ 1.165 GeV

Elastic 4.7(3) 0.56(6)
DIS 30.4(1) 30.4(1)
Nπ 0.6(2) 0.7(2)
Resonances 2.3(7)* 1.0(3)*
Regge 6.6(2.1) 7.0(2.2)

Total 44.6(2.1) 39.7(2.2)

FIG. 6. Left: Effective description of the nucleon anapole
moment. Right: Regge model description of PV in the forward
γ�p Compton scattering amplitude.
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scattering with respect to that in reactions involving
charged current interactions, gA→ gAþδgepA . Calculations
based on hadronic parity violation in the framework of
SUð3Þ chiral perturbation theory [40] yield the result
δgepA ¼ 0.26ð43Þ [41]. On the other hand, a global fit to
PV electron scattering data not using theory constraints
returns an even higher value: δgepA ¼ 0.66ð63Þ [42,43].
These results are consistent with each other, as well as with
zero, but have large uncertainties impacting the error of the
parity-violating asymmetry. In the picture where the ana-
pole moment arises due to the effective a1-γ mixing, as
depicted in the left diagram of Fig. 6, the mixing strength
ga1γ is directly related to the value of δgepA . The elastic
contribution to Fγγ

3 is then obtained as [44]

Fγγ
3;el ¼

δgepA
gA

FγZ
3;el ¼ −ð0.20� 0.34ÞFγZ

3;el; ð24Þ

where the numerical estimate is based on the theory
result [41].
Here we note an analogous relation for the correction to

the Regge contribution discussed in the previous section:

Fγγ
3;R ¼ δgepA

gA
FγZ
3;R; ð25Þ

which can be shown straightforwardly. This corresponds to
a parity-odd effect which can be visualized by the right
diagram of Fig. 6, where a photon mixes with an a1 through
Eq. (22) and then interacts with the nucleon through the
exchange of a ρ=ω trajectory. Combining these two effects,
we find an effective shift of □A

γZ at P2 energies given by

□
PV
γγ ¼ −ð0.20� 0.34Þð□A

γZ;el þ□
A
γZ;RÞ

¼ −2.3ð3.8Þ × 10−4: ð26Þ

One should keep in mind that further hadronic contribu-
tions not related to the anapole moment are possible, but
their impact on the central value and the respective
uncertainty is well below the target accuracy [44].

IV. SUMMARY AND CONCLUSIONS

We provided a thorough update of the □A
γZ correction to

PV electron-proton scattering. This calculation entails
gathering all available information on the interference
PV structure function FγZ

3 and its first Nachtmann moment
over the full range of Q2. The limiting cases of low and
high Q2 are governed by the elastic and DIS contributions,
respectively. While these two contributions are known with
good precision, the interpolation between them requires
modeling inclusive hadronic contributions in the nonper-
turbative regime. This interpolation is the source of the
uncertainty of the calculation. Luckily, the contributions

from the intermediateQ2 range are rather small, making the
resulting model dependence not critical. In the past, the
interpolation was performed by an essentially ad hoc
procedure. In this work we invoke the isospin symmetry
that is known to hold to a good extent and relate the neutral
current interference structure function FγZ

3 to its charged
current counterpart FWW

3 for which experimental data from
inclusive neutrino and antineutrino scattering are available.
Even though these data are not very precise, this procedure
allowed us to better constrain the interpolation between the
low- and high-Q2 regimes, leading to a factor 2 reduction in
the resulting uncertainty. In particular, for the P2 beam
energy of E ¼ 155 MeV we obtain from Table I

□A
γZ ¼ ð44.6� 2.1Þ × 10−4; ð27Þ

which is in good agreement with Ref. [16] but with the
uncertainty reduced by a factor of about 2. Including our
result for γγ exchange with hadronic PV results in the total
correction,

□
A
γZ þ□

PV
γγ ¼ ð42.3� 4.3Þ × 10−4: ð28Þ

This uncertainty is significantly larger than the one in
Eq. (27). We note, however, that the P2 experiment [2] will
in any case aim at reducing the uncertainty of the proton’s
anapole moment δgepA by a factor of 4 via a dedicated
backward angle measurement. The relevant uncertainty will
then be the one in Eq. (27), while the small remaining one
due to the induced PV photon-hadron interaction is 100%
correlated with, and needs to be added linearly to, the tree-
level gA effect in the PV asymmetry.
Our calculation of the hadronic structure-dependent one-

loop corrections due to the exchange of a γ and a Z boson
between the electron and the proton has to be combined
with other already known one-loop corrections [1,7–14].
This completes the one-loop analysis for the parity-violating
part of the cross section.
Until a complete two-loop calculation is performed, one

should try to identify the leading two-loop effects. We have
done this for hadronic PV effects entering through γγ
exchange. Our result shows that two-loop contributions
to the PV asymmetry in electron proton scattering are
numerically relevant. It seems less important now to work
on further improvements of the one-loop results; instead,
theoretical efforts should shift to the calculation of two-
loop effects.
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