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Abstract

Particle-hole symmetry and chiral symmetry play a pivotal role in multiple areas of physics, yet
they remain unstudied in systems with nonlinear interactions whose nonlinear normal modes do
not exhibit U(1)-gauge symmetry. In this work, we establish particle-hole symmetry and chiral
symmetry in such systems. Chiral symmetry ensures the quantization of the Berry phase of
nonlinear normal modes and categorizes the topological phases of nonlinear dynamics. We show
topologically protected static boundary modes in chiral-symmetric nonlinear systems.
Furthermore, we demonstrate amplitude-induced nonlinear topological phase transition in
chiral-symmetric nonlinear dynamics. Our theoretical framework extends particle-hole and chiral
symmetries to nonlinear dynamics, whose nonlinear modes do not necessarily yield U(1)-gauge
symmetry.

1. Introduction

Non-spatial symmetries govern the fundamental principles of physics in multiple areas. In high-energy
physics, the combination of particle-hole, parity, and time-reversal symmetries dictate the existence of
anti-particles [1]. In quantum mechanics, time-reversal symmetry demands that eigenstates with
half-integer spins must be doubly degenerate, which is known as the Kramers’ degeneracy [2, 3]. In soft
matter and engineering physics, chiral symmetry reveals the chiral image of elastic floppy modes and states of
self-stress [4—7], governing the elastic failure and stability [8—11], respectively. Additionally, in condensed-
matter physics, time-reversal, particle-hole, and chiral symmetries classify topological phases of matter in a
‘ten-fold” way [12—15]. This classification enables fundamental understanding of symmetry-protected
topological phases with potential applications for quantum information technology [14, 16-20].

Non-spatial symmetries have been the subject of extensive study in both linear [21-24] and nonlinear
systems [25-37]. For instance, time-reversal and parity symmetries have been thoroughly explored in the
context of elastic, electrical and photonic structures [38—45], enabling novel designs of microcavities [46],
circuit metamaterials [47], and plasmonic waveguides [48]. Other non-spatial symmetries, such as
particle-hole symmetry and chiral symmetry, have been studied in linear systems and special nonlinear
systems, such as the Kerr and beyond-Kerr nonlinear interactions [49-52] that preserve U(1)-gauge
symmetry on the nonlinear wave functions [53, 54], and Rock-paper-Scissors cycles in zero-sum
games [55-59]. However, the rigorous definition and establishment of (anti-unitary) particle-hole symmetry
and (unitary) chiral symmetry have not been addressed in nonlinear systems that do not exhibit U(1)-gauge
symmetry in their nonlinear wave functions.

Nonlinear interactions are ubiquitous in nature, such as nonlinear elastic [38, 60—63] and electrical
structures 64, 65], circadian rhythms of living cells [66], and quantum fluids in optical lattices [67]. These
nonlinear mechanisms possess unique features that cannot be observed in linear systems, including soliton
propagation [68, 69], nonlinear localized modes [70], bifurcation [71], and chaos [72]. Given the significant
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influence of particle-hole symmetry and chiral symmetry on linear systems, it is intriguing to ask what
happens when these two symmetries encounter nonlinear dynamics.

In this work, we study the nonlinear dynamics using generalized nonlinear Schrodinger equations. We
extend the concept of particle-hole symmetry and chiral symmetry to nonlinear dynamics, where the
nonlinear modes do not necessarily possess U(1)-gauge symmetry. We investigate the nontrivial
consequences on nonlinear topological physics that are derived from particle-hole and chiral symmetries.
Our motivation derives from the history of linear topological insulators, where although extensive research
had been conducted in topological physics, there continued to be fundamental importance in the
‘non-spatial’ classification of symmetry-protected topological phases [12, 13]. Such a ‘ten-fold’
non-spatial-symmetry classification significantly enhances the potential application of topological physics,
such as topological quantum computation.

To explore the impact of particle-hole and chiral symmetries on nonlinear topological physics, we
investigate the geometric phase of nonlinear normal modes under the adiabatic evolution of system
parameters. We find that, interestingly, this adiabatic geometric phase can be quantized by chiral symmetry,
and defines the topologically trivial and non-trivial phases of the generalized nonlinear Schrodinger
equations. In the topologically non-trivial phase, nonlinear modes appear at the open boundaries of the
system. These modes possess ‘topological protection’ as they show resistance against disturbances to both the
modes themselves and the nonlinear interactions. Furthermore, due to chiral symmetry, the frequencies of
nonlinear boundary modes are pinned at zero. Consequently, these topologically robust modes are static in
time. We use a Lotka—Volterra model [73-75] to demonstrate the practical application of our results. The
Lotka—Volterra model, originally designed for biological cycles, has also demonstrated relevance in
understanding boson condensation within driven-dissipative systems [55, 76, 77]. Finally, we demonstrate
the amplitude-induced topological phase transition that is unique to nonlinear dynamics.

The organization of this paper is as follows. Section 2 defines the model, which is the generalized
nonlinear Schrodinger equations. Section 3 derives the adiabatic geometric phase in nonlinear normal
modes. This adiabatic phase is separated into two parts: the Berry phase of nonlinear normal modes, and the
component that is unique to nonlinear systems. In section 4, we discuss two types of non-spatial symmetries:
particle-hole symmetry and chiral symmetry. Notably, we demonstrate the quantization of the Berry phase
of nonlinear normal modes under chiral symmetry. Section 5 investigates the topological phases in both
linear and nonlinear regimes and discusses the nonlinear topological boundary modes. In section 6, we
extend our theoretical framework to a more general model, demonstrating an amplitude-induced nonlinear
topological phase transition within chiral-symmetric nonlinear systems. Section 7 raises several proposals of
the experimental realization for our theoretical framework.

2. The model

Nonlinear dynamics, including electrical structures [64], and nonlinear materials [78, 79], can be described
by generalized nonlinear Schrodinger equations. Unlike Bose—FEinstein condensates and Kerr-nonlinear
optics, nonlinear interactions in these classical structures do not possess U(1)-gauge symmetry in their
nonlinear normal modes [40, 70]. To establish particle-hole symmetry and chiral symmetry in generalized
nonlinear Schroédinger equations, we consider a two-dimensional square lattice with the primitive vectors e,
and e, as illustrated in figure 1. The unit cells are identified by two integers n, and n,, corresponding to their
positions r = n.é, + n,,. Within each unit cell, there exist two classical fields, namely \Ifﬁl) and \I’Sz). The
dynamics of these classical variables are governed by the following generalized nonlinear Schrodinger
equations,

latmgl) =+ Z U Wﬁ”,‘l’O )) ,

r/
(r'r),i’=1,2

g =— U(xp?),xyff')). (1)

(r'r),i’=1,2

Here, (r’,r) denotes the nearest-neighbor sites r and r’ in the square lattice. U(\Ilgi) , \Ilﬁl, )) is a real-coefficient

quadratic polynomial that describes the nonlinear interaction between the classical fields ‘Ilﬁi) and \Ifgi,/):
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Figure 1. The model of nonlinear dynamics. (a) The diatomic two-dimensional square lattice, with the primitive vectors e, and e,
represented by the black arrows. (b) Red and blue dots mark the 1 and 2 sites within the unit cell. The nonlinear interactions
within 1 or 2 sites (between 1 and 2 sites) are denoted by black solid lines (red dashed lines). We use the quadratic nonlinearity as
the example for our nonlinear topological physics. (c) The nonlinear band structure [80, 81] of the model with the quadratic
interactions specified in equation (2), where € = 0.001. g« = 0.9, g, = 0.1, and mode amplitudes A = 10e. (d) Enlarged nonlinear
band structure in (c) illustrates the relationships among time-reversal, particle-hole, and chiral partner modes.

U(\IJS"L\DSI)) = (e+\115")) \Ifff/) (e —ny) (1= dir)

| OnengOnmy + D gilm =] ) G | (2)

=%y

where € represents the linear on-site potential, and g; for j = x, y accounts for the nonlinear effects between
the nearest-neighbor classical fields. These constant parameters are positive and real numbers, with € < 1
utilized to emphasize the significance of nonlinear effects. This nonlinear interaction is pictorially
represented by the black solid and red dashed lines in figure 1(b).

This model is capable of describing a number of physical systems. When the amplitude of the classical
fields is much smaller than e, this classical model is in the linear regime. The topological boundary modes in
this linearized classical model can mimic the quantum fermionic edge states within the Bogoliubov—de
Gennes Hamiltonian of topological superconductors [82, 83]. When the mode amplitude becomes
comparable or greater than €, the model is highly nonlinear in the classical field variables. In this regime, the
static solutions of this nonlinear Schrodinger-type dynamics can mimic the static solutions of the
Lotka—Volterra model [73, 84, 85], which we elaborate later in section 5.

This nonlinear interaction, as represented by equation (2), yields the inequality:

U(ei"ms"),eiexpff >) = eiGU(qJSf),\IJEf )>, (3)

indicating that the U(1)-gauge symmetry in the nonlinear wave functions is broken. To further clarify this
statement, we denote the nonlinear wave function as the following form

m:(...,wﬁ“,wﬁ”,...)T. (4)

This is a column vector with 2N components, where N is the number of diatomic unit cells, and — p denotes
matrix transpose. In a concise representation, equation (1) can be written as

0, = H(T) (5)
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where H(P) is a nonlinear mapping of ¥, and is called the nonlinear Hamiltonian. It is a 2N x 1 column
vector with each element given by equation (2). Again, we emphasize that the nonlinear Hamiltonian does
not preserve the U(1)-gauge symmetry in the nonlinear modes by showing

H(ei‘g\ll) e H (). (6)

In section 4, we will demonstrate that the nonlinear model in equation (1) respects particle-hole
symmetry and chiral symmetry.

3. Adiabatic geometric phase of nonlinear normal modes

In this section, we derive the geometric phase that arises from the adiabatic evolution of nonlinear normal
modes in the model presented in equation (1). The adiabatic geometric phase is especially useful in
characterizing the topological phases and predicting the existence of topological boundary modes in
nonlinear dynamics.

When the amplitudes of classical fields are much smaller than ¢, the nonlinear Hamiltonian can be
linearized into a two-band matrix Hamiltonian Hj, [83]. This Hamiltonian describes the oscillation of
classical variables governed by the eigenfrequency w = w(k), where the wavevector k = (ky, k) resides in the
two-dimensional Brillouin zone.

Nonlinearities become increasingly important as mode amplitude rises, making nonlinear normal modes
significantly deviate from sinusoidal waves of linear systems [64, 70, 86, 87]. Specifically, nonlinear normal
modes with the plane-wave format satisfy the expression

o= () (ko r— ) 0 (kor -t +65)) 7

according to the nonlinear extension of the Bloch theorem [70, 88]. Here, \I/,((l) (9) and \I',(cz) (0) represent the
2m-periodic non-sinusoidal functions, while ¢ characterizes the relative phase between these wave
components. The frequencies of these nonlinear normal modes, denoted by w = w(k,A), are influenced by
both the wavevectors k and mode amplitudes A, deviating from their linear counterparts. It is worth
emphasizing that in nonlinear systems, the number of nonlinear modes can exceed the degrees of freedom,
allowing nonlinear localized modes [70, 89] and ‘looped band structures’ [51, 90-92] to emerge from the
effect of bifurcation. However, in this work, our scope is limited to the simple case that bifurcation does not
occur, and these additional excitations do not emerge from the nonlinear dynamics. Thus, plane-wave
nonlinear normal modes can be uniquely defined based on their amplitude, wavevector, and frequency;,
allowing the nonlinear system to be effectively described as a ‘two-band nonlinear model.

We adiabatically evolve the plane-wave nonlinear normal mode as the wavevector k = k(t) follows a
closed trajectory C in the Brillouin zone [3]. Based on the nonlinear extension of the adiabatic theorem [93,
94], at time t, the nonlinear normal mode follows the ansatz

v (- [ (R e 1), (®)

where () denotes the phase shift of the nonlinear normal mode during the adiabatic evolution. When the
wavevector k completes a closed-loop travel in the Brillouin zone, the wave function acquires a phase ¢,
known as the adiabatic geometric phase [95, 96].

As per the Whitham modulation theory [97-99], during the adiabatic evolution of the wavevector k in
reciprocal space, the mode amplitude A and relative phase ¢ (as defined in equation (7)) should change
slowly. Consequently, the adiabatic phase, denoted by ¢, can be separated into two components:

Yo = »yéB) + yéNL). The first term, 'yéB), is referred to as the Berry phase of nonlinear normal modes, which

originates from the change in the relative phase ¢x. On the other hand, the second term, ’yéNL), arises from
the change in the mode amplitude. In the upcoming discussion, we will examine fyéB) and fyéNL) individually.
As described in appendix A, the derivation of the Berry phase of nonlinear normal modes involves

computing the evolution of the relative phase ¢ as the wavevector k undergoes adiabatic changes:

> (zwlﬁ?vvm —iy ¢§:’*vkw§£>>
dk

(B) _ 1 i=1,2

)
A (THERAD

4
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Here, l(k’) = (27r)*1 fOZTr e*ile\Il,(:)dG is the Ith Fourier component of the nonlinear wave, \I/,(:), withi =1,2.
We emphasize that for Schrodinger equations with linear [3] or nonlinear interactions that exhibit
U(1)-gauge symmetry [91] in their eigenstates, the eigenmodes can be described using fundamental
harmonics only. This reduces equation (9) to the Berry phase in [95], ’yg?])in ar =1 Sﬁc dk - (U Vi|Tk) (see

)

appendix A for details). Usually, 'yéB is not quantized in systems without symmetry constraints. However,

'yéB) can be quantized if non-spatial symmetries are incorporated in the system, which we address in
section 4.3.

The Whitham modulation theory [97-99] also indicates that mode amplitude should change during
adiabatic evolution. This effect gives rise to an additional contribution to the adiabatic geometric phase [95],
denoted as VéNL). However, as we will demonstrate in section 4.3, chiral symmetry imposes a constraint that
causes the amplitudes of the two wave components of a nonlinear normal mode to be equal. This constraint
results in the mode amplitude staying unchanged, up to the normalization factor of the wave function.
Consequently, we have found that the adiabatic geometric phase 'yéNL) vanishes under such constraints. This
vanishing result is derived in [95] and in appendix A. As a result, the Berry phase of nonlinear normal modes,
'yéB), is the only contribution to the adiabatic geometric phase. Under the constraint of chiral symmetry, this

Berry phase takes quantized values and classifies the topological phases of the nonlinear dynamics.
4. Particle-hole symmetry, chiral symmetry, and topological index of nonlinear systems

In this section, we establish particle-hole symmetry and chiral symmetry for nonlinear dynamics. We show
that chiral symmetry can be used to quantize the Berry phase of nonlinear normal modes in the model
described by equation (1). This quantized index serves as a topological invariant and defines the
topologically trivial and non-trivial phases of the nonlinear dynamics.

We briefly review time-reversal symmetry that has been well-established in nonlinear dynamics [49, 70,
100, 101]. The nonlinear system is time-reversal invariant if the equations of motion remain unchanged
under the time-reversal transformation (\115” (1), g (1) — (\IIEI)* (—1), Sk (—t)). This invariance arises
from the real-coefficient polynomials of the nonlinear interactions in terms of the field variables. The formal
expression of time-reversal symmetry is 7H(V) — H(T V) = 0, where H(V) is the nonlinear Hamiltonian,
and the time-reversal operator, 7 = K; t — —t, involving complex conjugation and reversing the sign of
time. Here, H(7T ¥) means that we perform the time-reversal operation on the nonlinear wave ¥, and then
we operate on 7 ¥ using the nonlinear Hamiltonian (nonlinear mapping) H. This symmetry implies that for
a nonlinear wave Wy in a time-reversal symmetric model, there exists a time-reversed partner solution with
the wavevector —k, denoted as ¥ _; = T ¥y = (\I/,((l)* (k-r+wt), \I/,(cz)* (k-r+wt+ ¢k)) ", as pictorially
indicated by the red arrow and dot in figure 1(d).

The time-reversal operator satisfies 72 = 1 and is anti-unitary, aligning with the operator for linear
Schrodinger equation of spinless particles [2, 102]. In the linear regime, time-reversal symmetry simplifies to
the conventional form, TH 7 ' = H_y, where Hj represents the linearized Hamiltonian in reciprocal space.

4.1. Particle-hole symmetry of nonlinear dynamics
Here, we introduce the particle-hole operator and its corresponding symmetry for nonlinear systems.

In a particle-hole symmetric system, the motion equations in equation (1) remain unchanged under the
particle-hole transformation, (\IISI) , \IJSZ)) —( oy \IJSI)*). This invariance is equivalently captured by the
constraint,

CH(U)+H(CP)=0, C=Iy®0K, (10)

where C is the particle-hole operator, Iy is the N x N identity matrix, and o is the Pauli matrix. One
important characteristic of the particle-hole operator we have defined is its anti-unitary property, which
arises from the complex conjugation involved in the operator. This property, in turn, results in the reversal of
the frequency and momentum of the original nonlinear wave (see equation (7)) in the system under
particle-hole transformation. Therefore, for a nonlinear normal mode W with the wavevector k and
frequency w, the particle-hole-symmetric model has a corresponding nonlinear sister solution with a
wavevector —k and frequency —w, denoted as

-
g = CW = (U (ke r—wn), W (ker—wi— ) (11)

as depicted by the black arrow in figure 1(d). The particle-hole operator satisfies C*> = 1 and is anti-unitary,
aligning with the operator defined for linear systems [2, 83].

5



10P Publishing

New J. Phys. 26 (2024) 073009 D Zhou

These results, including the particle-hole symmetry presented in equation (10) and the particle-hole-
partner mode in equation (11), naturally apply to linear and nonlinear systems that respect the U(1)-gauge
symmetry. Furthermore, in these U(1)-symmetric systems, equation (10) can be reduced to the well-studied
format defined in reciprocal space, namely CHiC ™! = —H_y.

4.2. Chiral symmetry of nonlinear dynamics

Chiral symmetry naturally arises in nonlinear systems when both time-reversal and particle-hole symmetries
are present. The model described by equation (1) remains unchanged under the chiral transformation

( gV (1), g (1) — (\IJ£2) (—1), gV (—1)). Mathematically, chiral symmetry is expressed as the constraint on
the nonlinear Hamiltonian given by

SH(U)+H(S¥)=0, &S=T-C, (12)

where S = T - C represents the chiral symmetry operator that combines the effects of time-reversal and
particle-hole transformations. It is worth noting that the resulting chiral symmetry operator, which is a
combination of time-reversal and particle-hole symmetry operators expressed as S =7 - C, is unitary in
nature. This is due to the anti-unitary nature of both time-reversal and particle-hole symmetry operators,
which cancels out to produce a unitary chiral symmetry operator that is critical for characterizing the
topological properties of the nonlinear system, which we address in the following subsection. Thus, for a
nonlinear normal mode ¥y with frequency w, chiral symmetry predicts the existence of a partner solution
with frequency —w, denoted as

.
Uy =S¥ = (\pl(f) (k-r+wt),\IJ,E1) (k~r+wt—¢k)) . (13)

This relationship is depicted by the green arrow and dot in figure 1(d). This chiral operator is unitary and
yields §? = 1, agreeing perfectly with the chiral operator for linear topological insulators.

These results, including the chiral symmetry presented in equation (12) and the chiral-partner mode in
equation (13), naturally apply for linear and nonlinear systems that respect the U(1)-gauge symmetry.
Furthermore, in these U(1)-symmetric systems, equation (12) can be reduced to the well-studied
format [102-104] defined in reciprocal space, namely SHS ™' = —Hj. Finally, our study highlights an
important aspect of chiral-symmetric nonlinear systems. We find that the chiral-symmetric partner
nonlinear mode swaps the two wave components of a nonlinear normal mode. This swapping leads to a
result where the two wave components in a nonlinear normal mode share the same mode amplitude.

Our nonlinear model exhibits time-reversal, particle-hole, and chiral symmetries, which is the extension
of symmetry class BDI defined in the ten-fold classification of linear topological insulators [103].

4.3. Berry phase of nonlinear normal modes quantized by chiral symmetry

In a purely linear Schrodinger equation, the summation of Berry phases across all energy bands is always zero
due to the topological triviality of the fiber bundle [3] associated with a complete and orthogonal set of
eigenbasis in a matrix Hamiltonian [3]. Combined with chiral symmetry, this sum rule naturally results in
the quantization of linear Berry phase [105]. However, this conclusion does not hold for nonlinear dynamics,
because nonlinear normal modes do not necessarily have completeness and orthogonality when matrix
analysis fails. Therefore, the quantization of Berry phase of nonlinear normal modes in a chiral-symmetric
nonlinear system, as expressed in equation (9), remains an open question.

Here, we demonstrate that under chiral symmetry, the Berry phase of nonlinear normal modes still
remains quantized for nonlinear systems. Moreover, the quantization of the Berry phase of nonlinear normal
modes suggests that it can serve as a potential topological index for characterizing the topological phases of
the underlying nonlinear dynamics.

To demonstrate that chiral symmetry is still capable of quantizing the Berry phase of nonlinear normal
modes, we consider the nonlinear normal mode Wy _ = SWy, which is the chiral-partner mode of W;. We
perform an adiabatic evolution on this chiral-partner mode by slowly varying the wavevector k(t) along a
closed-loop trajectory C in the Brillouin zone. When we adiabatically evolve the chiral-symmetric partner
mode, Uy _, this mode can be considered as having a frequency of w but with the arrow of time reversed.
Consequently, the mode acquires a term y(#) in its phase variable, via

W (1) = Ug(p,— (/Otw(t’,k(t'))dt/ +7(t)> : (14)

Substituting this result into the nonlinear motion equations, namely i0, Wy, — = H(Wy(,— ), we can

compute the geometric phase when the wavevector k travels along the trajectory C. This adiabatic evolution

6
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allows the chiral-symmetric nonlinear mode to obtain the adiabatic geometric phase, y¢c = 'yéB) (note that

'yéNL) = 0 in chiral-symmetric systems, as shown in appendix A), from which the Berry phase of nonlinear

normal modes, 'yéB), is obtained:

(B) 1 i=1,2

A (THES A

> <Z|wf;>|2vk¢k+iz ¢§?*w§£>>
dk (15)

Since both equations (9) and (15) describe the same Berry phase of nonlinear normal modes under the same
evolution trajectory, we equate them, and obtain the result

1
véB)=5§5vk¢k-dk=m, n=0,1 (16)
C

This equation demonstrates the quantization of the Berry phase of nonlinear normal modes under the
constraint of chiral symmetry, which serves as the topological invariant of the considered nonlinear
dynamics. n = 0,1 correspond to the nonlinear topologically trivial and non-trivial phases, respectively. Due
to the quantized nature of this Berry phase, it cannot change continuously upon the variations of system
parameters, including the mode amplitudes and coupling parameters. Below, we leverage the invariance of
this topological number to investigate the corresponding nonlinear topological edge modes.

It is noteworthy that the Berry phase of nonlinear normal modes has been shown to take quantized
values when spatial reflection symmetry is present [88]. However, the model described by equation (1) lacks
this spatial symmetry, rendering spatial symmetries ineffective in quantizing the Berry phase. Instead, chiral
symmetry, a non-spatial symmetry, plays a crucial role in quantizing the Berry phase of nonlinear normal
modes.

5. Nonlinear topological phases and boundary modes

We have demonstrated the topological invariance of the Berry phase of nonlinear normal modes using chiral
symmetry. In this section, we exemplify the impact of this topological number on the nonlinear physics,
where the interactions are specified as the example in equation (2) with the quadratic nonlinearities.
Specifically, we investigate the topological phases and the corresponding boundary physics of the system in
both the linear and nonlinear regimes.

5.1. Topological phases and boundary modes in the linear regime

When the quadratic nonlinearities are small compared to the linear parts, the nonlinear system can be
approximated as linear Schrodinger equations. This regime is valid when mode amplitudes A < e. This
allows us to perform a momentum-space decomposition and simplify the linearized equations of motion
using the equation, 10, ¥y = I:IkM\Ilk, where the the linear wave function is represented as

Uy = (\I!,((l) , \I/,(Cz))—r, the matrix Hamiltonian, Hk,w reads

HkvaZEJySinkx-%—EUZ —1+22gjcoskj , (17)

J:x7y

where k = (ky, k,) is the wavevector within the two-dimensional Brillouin zone, and oy, , are Pauli matrices.
This Hamiltonian possesses chiral symmetry, namely a unitary chiral symmetry operator S = o,
anti-commutes with it [83, 102]: {ax,HkM} =0.

The Hamiltonian I:I;w has multiple phases. Specifically, when the interaction parameters are in the grey
region of figure 2(a) (i.e. the interaction parameters satisfy |g,| > |g. — 1/2|{J|g,| = |g: + 1/2]), the system
becomes gapless, as the linear band structures touch at a pair of zero-frequency points. As a result, the linear
Berry phase becomes singular and ill-defined when the integration trajectory passes through these gapless
points. When the linear bands touch at the gapless points, the corresponding static eigenstates are given by

U, (1) = (1,£1) " k)2, (18)

whose frequency and wavevector are w = 0 and =%k,,, respectively. For the parameters that lie in the region of
Igy| > |g« — 1/2], we have the wavevectors k,, = (0,arccos[(1 — 2gx)/2g,]). When the parameters are in the
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Figure 2. Topological phases and boundary modes. (a) Nonlinear topological phase diagram of the model with quadratic
nonlinearities. (b) Brillouin zone with the integration trajectories of Berry phases of nonlinear normal modes indicated. (c)
Disks’ size and color represent the spatial profile of the weakly nonlinear topological edge mode. (d) Spatial distribution of the
topological boundary mode in the highly nonlinear regime.

region |g,| > |g. + 1/2|, the wavevectors are given by k,, = (m,arccos[(1 + 2¢,)/2g,|). We note that the
zero-frequency nature of these gapless bulk states stems from the chiral symmetry [106].

On the other hand, in the blue region of figure 2(a) (the parameters yield [g,| < |g. — 1/2|(|g/| <
|g, + 1/2|), and in the red region of figure 2(a) (with the parameters that yield —g, 4+ 1/2 < g, < g«—
1/2Jgc+1/2 < g, < —g« — 1/2), the lattice is fully gapped and the linear Berry phase becomes
well-defined:

tim () (4) = k- (VI (19)
C

A—0

where C is the closed-loop trajectory for the adiabatic evolution of the wavevector k in the two-dimensional
Brillouin zone. Specifically, we define two types of closed-loop integration trajectories, C(k,) : ky = —m —
m;ky and C(ky) : k, = —m — 7;ky, which integrate over all k, for a given k, and all k, for a given k,,
respectively. These two integration trajectories correspond to the red and blue lines in figure 2(b),
respectively. The linear Berry phase corresponding to the horizontal trajectory C(k,) is denoted as y¢(x )
while that corresponding to the vertical trajectory C(k,) is denoted as ycx,)-

Due to the chiral symmetric nature of the linearized Hamiltonian [83], these Berry phases, namely v,
and 7¢(x,), are guaranteed to have integer multiples of . Moreover, due to the fully gapped nature of the
linear band structure, the Berry phases y¢(x,) and y¢(x,) remain unchanged for any k and k, ranging from
— to 7. To characterize the topological phases of the linearized model, we define the ‘2D polarization [107]
as a measure of the linear Berry phases averaged by the Brillouin zone,

lim Ry (4) = 2%2 /_ ] Lyg}) ygzy) (4) ke + lim Yoy () dkey | (20)
When the parameters are in the red region of figure 2(a), the topological polarization is given by
lims_,o Rr(A) = &,, indicating that the linear system is in the topological phase. On the other hand, when the
parameters are within the blue region of figure 2(a), the topological polarization becomes lim4_,q Rr(A) = 0,
indicating that the system is in the topologically trivial regime.

According to the principle of bulk-boundary correspondence in topological band theory, the behavior of
the system at the boundary is determined by the topological invariant derived from the bulk bands of the
lattice. In the red region of figure 2(a), the topological polarization vector takes the value lims_,o RT(A) = ¢&,,
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indicating the emergence of topologically protected boundary modes in the system. These boundary modes
can be analytically solved using the Jackiw—Rebbi-type solution,

(1) .
(30 )= (emtrmemtm (1)

where A is the mode amplitude, k, is the wave number in the transverse y-direction, and the spatial decay
rates £+ (k) yield s+ (k,) > 0. This edge mode is exponentially localized on the left open boundary of the
square lattice. In contrast, in the topologically trivial phase with the parameters that lie in the blue region of
figure 2(a), the topological polarization vector takes the trivial value of limy_,o Rt(A) = 0, indicating the
absence of topological boundary modes in this linear non-topological phase.

Chiral symmetry of the linearized Hamiltonian leads to an important property in the frequency
spectrum of the bulk modes. This ensures that the frequencies of the bulk modes arise in pairs of +w,
reflecting the chiral symmetry of the Hamiltonian. This property in the bulk mode frequencies has
significant implications for the frequencies of topological edge states in the system. In particular, the
frequency of the topological edge state is constrained to be pinned at zero. This is because, if the frequency of
the topological state, w, is nonzero, then a partner topological state with the frequency of —w must also arise
at the same boundary. These two boundary states can couple and open a band gap on the lattice boundary,
violating the topological protection of the edge states. Therefore, topological edge states must have zero
frequency and do not evolve in time, satisfying the static condition 8t\11£i) =0fori =1,2and forall . The
static nature of topological boundary modes remains valid for the nonlinear system as chiral symmetry
extends to the fully nonlinear regime.

5.2. Topological phases and boundary modes in the nonlinear regime
We now consider the topological phases and the corresponding boundary modes in the Schrédinger-type
equations in the nonlinear regime.

Intriguingly, even in the strongly nonlinear regime, the system remains gapless when the parameters are
in the grey-shaded regime of figure 2(a). This is because nonlinear zero-frequency bulk modes can still arise
in the nonlinear regime of the system, maintaining the system’s gapless nature. The nonlinear static bulk
modes can be analytically obtained by imposing the condition U =0 fori = 1,2 and for all r, because
chiral symmetry assures the frequency of the nonlinear gapless mode to stay at zero. The nonlinear mode in
the lattice system is described by equation (18), which is identical to that obtained from the linearized model.
The presence of zero-frequency nonlinear bulk modes in the parameter region defined by the grey regime of
figure 2(a) yields the closure of the nonlinear band gap, which we define as the ‘nonlinear gapless phase” of
the system.

The system with parameters in the blue and red regimes of figure 2(a) is in the nonlinear fully gapped
phase, because these phases are devoid of the previously discussed zero-frequency nonlinear bulk modes.
This property allows the topological numbers of the system to be well-defined and invariant as mode
amplitudes rise. Thus, we define the 2D topological polarization of the lattice in the fully nonlinear regime:

1 4 B « B o
N e @

where the integration trajectories, namely C(k,) and C(k,), are the same as those defined in the linear
topological regime and is pictorially depicted in figure 2(b). The red-shaded parameter regime shown in
figure 2(a) corresponds to the nonlinear topological phase of the system described by the nonlinear
Schrodinger equation in equation (1). In this regime, the topological polarization takes the form Ry (A) = ¢,
indicating the presence of nonlinear topological boundary modes at the edges of the lattice. We can calculate
the spatial profile of these boundary modes by imposing static boundary conditions and solving for the
corresponding eigenstates. The resulting static nonlinear mode is described by equation (21) and is
exponentially localized on the left open boundary of the lattice. In the blue-shaded regime of figure 2(a), the
system is in the nonlinear topologically trivial phase as described by the nonlinear Schrédinger equation in
equation (1). The topological polarization in this regime takes the form Rr(A) = 0, indicating that there are
no nonlinear topological boundary modes present at the edges of the lattice.

A remarkable feature of the system under consideration is its topological invariance under increasing
mode amplitudes in both the non-trivial and trivial phases. This phenomenon arises from the fact that mode
amplitudes have a global effect on the nonlinear dynamics of the system and do not alter the topological
properties of the lattice. This explains the invariance of the topological Berry phases and polarization for
growing mode amplitudes.
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5.3. Applications to the static modes in other nonlinear models

To further explore the implications of the previous results for nonlinear systems, we investigate the static
nonlinear modes in a different nonlinear model, namely the Lotka—Volterra network. Lotka—Volterra model
is especially useful in describing the boson condensation in driven-dissipative setups [55, 76, 77]. To this end,
we study the following nonlinear equations of motion with Lotka—Volterra-type nonlinear interactions,

at\llﬁl) — Z U(\Ilt(.l),(—l)iurl ‘IIS:/)) ;
r,i'=1,2
AISESSY U(—\IISZ),(—I)i/Jrl\IJEf )> : (23)

r,i'=1,2

Although the dynamical properties between the Lotka—Volterra model and the Schrédinger-type nonlinear
equations in equation (1) are significantly different [108], their static properties are remarkably similar,
thanks to the presence of chiral symmetry. The reason is as follows.

In the Schrodinger equation, chiral symmetry ensures that the frequencies of nonlinear normal modes
emerge in pairs of +w. Therefore, nonlinear topological mode must have zero-frequency, because if the
frequency of the topological mode were non-zero, a chiral-partner topological mode with the frequency of
—w must appear. These two topological modes can interfere and break their topological nature. As a result,
the nonlinear topological mode must be static. This static nonlinear topological mode is equivalent to setting
10,0 = 0 in the Schrodinger equation. On the other hand, the stationary solutions in the Lotka—Volterra
model are obtained by setting 8,0 = 0. This finding suggests that the (Schrédinger) static mode is very
much similar as the (Lotka—Volterra) static mode, because these two zero-frequency solutions are obtained
by substituting 10,0 =0and 0,0 = 0 in the Schrédinger and Lotka—Volterra models, respectively.

The notion of drawing a comparison between the static solution of the Lotka—Volterra and Schrédinger
models originates from seminal works [4—11, 109—112], which established an analogy between the static
properties of the elastic compatibility matrix and the static solutions in chiral-symmetric Schrodinger
equations. The topological properties of the elastic compatibility matrix are defined by introducing an
auxiliary chiral-symmetric Schrodinger equation, where we can compute the topological index of this
auxiliary Schrodinger equation. We then utilize this topological number of the auxiliary Schrédinger to
describe the topology of the static elastic modes in the elastic compatibility matrix, although the dynamical
features of these two systems differ significantly.

Building upon this notion, the static solutions for both the Schrédinger and Lotka—Volterra models can
be obtained by setting U =0fori = 1,2 and all . This analogy facilitates the derivation of the static
nonlinear boundary mode in equation (23). The phase diagram of the Lotka—Volterra-type model is depicted
by figure 2(a), comprising three distinct regions: the nonlinear gapless, topologically non-trivial, and trivial
phases, represented by the grey, red, and blue-shaded areas, respectively.

The Lotka—Volterra-type model exhibits topologically distinct boundary properties in the red and blue
areas of the phase diagram. In the red parameter region, the model exhibits the emergence of nonlinear static
edge modes from the boundary of the square lattice. These edge modes are in line with the derived nonlinear
topological polarization of Rr(A) = é,. It should be noted that the population of species must be real and
positive numbers, which imposes a constraint on our analysis. Under this constraint, we obtain the nonlinear
boundary mode

(4510 )-ememomony (1)

where A is the mode amplitude. The spatial decay rate satisfies £+ (k, = 0) > 0, and is explicitly expressed in
appendix B. This result indicates that the nonlinear boundary mode is exponentially localized on the left
open boundary of the system, confirming its topological nature. The spatial decay rate of the nonlinear
boundary mode is in perfect agreement with the decay properties of the topological edge modes in the linear
and nonlinear regimes of the Schrodinger-type equations in equation (1). Moreover, the nonlinear boundary
mode corresponds to the nonlinear topological polarization, Rt(A) = é, in the topologically non-trivial
phase. In contrast to the red region, the blue region of the phase diagram of the Lotka—Volterra-type model is
devoid of nonlinear topological static modes. This behavior is in line with the derived trivial nonlinear
topological polarization, Rt(A) = 0.

To validate the analytical results of the emergence of nonlinear topological boundary modes in the
Lotka—Volterra-type model, we perform numerical simulations and present the results in figures 2(c), (d)
and 3. The numerical simulations confirm the emergence of the nonlinear topological modes on the open
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Figure 3. The temporal evolutions of topologically protected boundary modes are shown in (a) and (b) for the weakly nonlinear
and fully nonlinear regimes, respectively. In both cases, the modes evolve for = 1007 and still maintain their stability. The
temporal profiles for the weakly nonlinear and fully nonlinear modes without introducing disturbances on the wave functions are
shown in (c) and (d), respectively.

boundary that cuts the topological polarization vector Rp(A) = é,, as predicted by the analytical results. This
topologically protected mode exhibits high stability in both temporal and spatial aspects, highlighting its
robustness against small perturbations or fluctuations. We initialize the mode with +10% spatial fluctuations
and +10% spatial variations in the nonlinear interactions, as shown by the bond lengths in figures 2(c) and
(d). The numerical simulations indicate that the nonlinear topological mode remains highly stable even after
t = 102T of self-oscillation, both in the weakly and strongly nonlinear regimes. The characteristic period of
the nonlinear normal mode in the fully nonlinear regime is T = 2. The stability of the nonlinear topological
mode confirms its robustness and reliability against small perturbations or fluctuations. To further verify the
temporal stability of the nonlinear topological mode, we initialize the nonlinear mode in a regular square
lattice without the random fluctuations in the spatial profile of the nonlinear topological mode and without
the fluctuations in the nonlinear interactions. As shown in figures 3(c) and (d), in both weakly and fully
nonlinear regimes, the mode remains free from oscillatory behavior and exhibits temporal stability.

Chiral symmetry has notable effects on these nonlinear topological boundary modes. Firstly, this
symmetry locks the frequencies of topological modes at zero, regardless of their amplitudes. These static
modes are distinct from spatial symmetry-induced topological modes, which are sensitive to amplitudes and
prone to losing nonlinear stability [38, 80]. Secondly, chiral symmetric nonlinear topological modes are
unaffected by the breakdown of spatial symmetries, as observed in figures 2(c) and (d). Conversely, spatial
symmetry-induced topological modes are quickly disrupted by spatial symmetry-breaking boundary
conditions.

6. Nonlinear topological index and boundary modes for more general models

Having previously established particle-hole symmetry and chiral symmetry in a diatomic square lattice, we
now explore whether the same nonlinear topological index and boundary modes persist in more general
nonlinear models. To address this, we turn our attention to a different lattice structure, namely the
honeycomb lattice, where each unit cell contains four sites. In our analysis, we delve into the implications of
chiral symmetry, the quantized Berry phase of nonlinear normal modes, and the existence of nonlinear
topological boundary modes. Notably, we investigate two distinct boundary conditions: one with a zigzag
open boundary (as depicted in figure 4), and the other with an armchair open boundary (illustrated in
figure 5).

The model under consideration is a four-site unit cell honeycomb lattice, where each site is labeled by
position vectors r4(n), rg(n), rc(n), and rp(n). Here, n = (n;,n,) denotes the unit cell indices in the
honeycomb lattice, with n; and n, representing the lattice indices. The position of the considered unit cell is
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Figure 4. The nonlinear topological honeycomb lattice exhibits chiral symmetry. The lattice is subject to a zigzag open boundary
condition along the lattice direction of a,, while a periodic boundary condition is chosen for a;. (a) In the lattice’s unit cell, there
are four sites labeled as A, B, C, and D. These sites are connected by nonlinear interacting bonds denoted as I; for

i =1,2,3,4,5,6. The primitive vectors, represented by black arrows a; and a,, define the lattice structure. (b) The nonlinear
topological phase diagram illustrates the different phases within the honeycomb lattice. (c) We observe a mode profile of the
nonlinear topological boundary mode localized on the left bottom boundary of the lattice. (d) This mode remains stable over
time, as shown in the temporal profile.

given by r(n) = n,a, + nya,, where a, = £(3v/3/2,3/2) and a, = £(—+/3/2,3/2) are the primitive vectors
for the honeycomb lattice. rx(n) = rx + 1,41 + n,a, marks the position for the site X = A, B, C, D. Within
this lattice, nonlinear bonds connect neighboring sites, denoted as Iy, I, I3, 14, Is, and I (as shown in

figure 4). The wave functions for the sites are represented by \Ilsi), where i = 1,2,3,4 corresponds to sites A,
B, C, and D. The nonlinear equations of motion for these sites take the form:

0,00 =3 f (quf),xpf,j )) (25)
()

where j = 1,2,3,4 denotes the sites within a unit cell, corresponding to the four sites A, B, C, and D. (r,r’)
represents nearest-neighbor connections. The nonlinear interaction function is given by:

fi(x,y)=ciy+d; {(Rey)3 +1i (Imy)3] . (26)

This minimal model is a suitable candidate that breaks the U(1)-gauge symmetry and exhibits nonlinear
topological phase transitions. The parameters ¢; and d; (fori =1,2,3,4,5,6) are real and constant. This
specific nonlinear interaction is adopted in [88] and can be realized in active topoelectrical circuits [86]. To
maintain chiral symmetry, we impose the condition:

ﬁ+3 (xvy) = _fl (xvy)v for i= 17273~ (27)

Under this constraint, the nonlinear Hamiltonian exhibits chiral symmetry. Specifically, the nonlinear
equations of motion can be expressed in the form of a nonlinear Schrodinger equation: i0,%, = H(¥,),
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Figure 5. Nonlinear boundary modes in the honeycomb lattice. The lattice is subjected to an armchair open boundary condition
in the lattice direction of a; and a periodic boundary condition in the lattice direction of ;. (a) The unit cell is enlarged to a
16-site unit cell, ensuring compatibility with the armchair boundary condition. (b) The temporal profile of the nonlinear
boundary mode. (c) The spatial profile of the nonlinear boundary mode under the armchair boundary condition.

where ¥, = (\IIEI) , o , \Ilss), g )T. This nonlinear Hamiltonian yields the chiral symmetry relationship as
expressed in equation (12), where the chiral operator now reads S = 0, ® L,. This symmetry property leads
to the quantization of the Berry phase of nonlinear normal modes and the emergence of sister nonlinear
normal modes, as mathematically demonstrated in appendix D. Notably, under the zigzag open boundary
condition, a nonlinear topological boundary mode arises when the mode amplitude remains below the
critical transition amplitude A, = \/ —(c1 4+ ¢ —¢3)/(dy + dy — d3). In our numerics, we choose the
parametersasc; =1,dy =4,c,=2,d, =1.5,c3=4,and ds = 1.

Figure 4 investigates the zigzag open boundary of the honeycomb lattice. Below this critical phase
transition amplitude (A < A.), nonlinear topological boundary modes can emerge along the zigzag lattice
boundary, and these modes remain static in time. However, for mode amplitudes A > A, such nonlinear
topological boundary modes cannot arise on the lattice boundary. The reason of nonlinear topological phase
transition lies in the behavior near the critical value: when the amplitudes of the nonlinear boundary mode
reach the critical value A = A, the static boundary mode evolves into a static nonlinear bulk mode. This
transition signifies the closing of the nonlinear band structure, corresponding to the nonlinear topological
phase transition. Consequently, the nonlinear Berry phase, quantized by the chiral symmetry, takes the value
of v(A < A,) = m for amplitudes below the transition point and v(A > A.) = 0 for amplitudes above it.

However, the behavior of the nonlinear lattice changes significantly when subjected to armchair open
boundary conditions. The honeycomb lattice, inherently incompatible with armchair boundaries, necessitates
an enlargement of the unit cell from a 4-site lattice to a 16-site lattice (as depicted in figure 5(a)). In this
modified configuration, nonlinear static boundary modes can still emerge along the open boundaries of the
lattice, provided that the mode amplitudes exceed the topological phase transition amplitude derived for the
original 4-site honeycomb lattice (denoted as A.). In summary, the existence of nonlinear boundary modes
(illustrated in figure 5(c)) highlights the dependence of nonlinear boundary mode emergence on the specific
choice of open boundary direction.
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7. Experimental proposals of chiral-symmetric nonlinear dynamics

Nonlinear Topological Photonics — Chiral-symmetric nonlinear topological physics has been widely studied
in photonic systems based on the framework of nonlinear Schrodinger equation [27, 49, 100]. This model
excludes second and third harmonic generations to maintain U(1)-symmetry. However, when higher-order
harmonics are considered, the topological properties of nonlinear photonics remains unexplored.

Our theory suggests that even with higher harmonics included, chiral symmetry persists in nonlinear
photonics. The nonlinear Berry phase remains quantized, and nonlinear topological boundary modes
persist. Therefore, chiral-symmetric nonlinear topological physics can be experimentally realized in photonic
structures. To achieve this, researchers can intentionally include second and third harmonic generation,
thereby breaking the U(1)-symmetry.

Active Electrical Circuit Systems—Recently, an independent experiment involving active electrical circuit
metamaterials [113] observed nonlinear topological boundary modes under chiral symmetry. Our work
provides theoretical demonstrations of the chiral symmetry and quantized nonlinear Berry phase that align
with this real-world experiment.

Bose—Einstein Condensates —[55] explored nonlinear topological physics using the Lotka—Volterra
model. This model is crucial for studying boson condensation in driven-dissipative setups [55, 76, 77]. By
placing bosons on a lattice structure, the probability distribution of bosons follows the Lotka—Volterra
nonlinear model. Such system can be realized experimentally in artificial quantum setups (e.g.
superconducting and optical circuits).

8. Conclusions and outlook

In this work, we extend the two non-spatial symmetries, including particle-hole symmetry and chiral
symmetry, to nonlinear dynamics whose nonlinear wave functions do not necessarily possess U(1)-gauge
symmetry. Chiral symmetry can quantize the Berry phase of nonlinear normal modes, determining their
topological phases, and facilitating the emergence of nonlinear topological boundary modes. These modes
have pinned frequencies at zero. They exhibit high stability against disruptions in spatial symmetries. Our
work enables the non-spatial classification of nonlinear systems, expanding the ten-fold classification of
linear topological insulators [103]. Our findings may suggest potential applications in nonlinear dynamics,
where the stability conferred by nonlinear topology could aid in resilience against parameter changes.
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Appendix A. Adiabatic geometric phases for nonlinear systems that break
U(1)-symmetry

In this section, we derive the adiabatic geometric phase of nonlinear normal modes. We consider the
nonlinear equations of motion in a translationally invariant lattice, with i0,¥ (t) = H(¥), in which the
plane-wave nonlinear normal mode reads Uy (k - r — wt). We consider an adiabatic evolution to the nonlinear
mode by slowly changing the wavevector k that follows a closed-loop trajectory in the Brillouin zone. Under
the evolution, the nonlinear wave takes the format of

U = < /tw(t/)dt/ 'y(t)) (A1)
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where (1) is the adiabatic geometric phase that arises from the temporal evolution. This mode should satisfy
the nonlinear equations of motion, which leads to

. (9\I/k dk OV

where 0¥ = ¥ — U} denotes mode change, and 6 = f ")dt’ + ~(t) denotes the phase variable of the
nonlinear mode. Since the shape of the nonlinear mode can vary during the process of adiabatic evolution,
the nonlinear Hamiltonian also changes in this adiabatic process, leading to the expansion of the nonlinear
Hamiltonian in terms of the mode variation d¥:

) . OH
H(U) = H(Ty) + (6\118\II+6\II 8\1}*)%. (A3)

Employing the relationship —iwdy ¥y = H(¥y), we combine equations (A2), (A3) and obtain the equations
of motion for the nonlinear mode, which read
3\I/k d’}/ 8\I’k dk < OH OH

20 ok & WV T 5w

- i8t5\11> ) (A4)

Wi

Equation (A4) contains two terms on the right-hand side. The first term corresponds to the Berry phase of
nonlinear normal modes in nonlinear normal modes. The second term arises from the change in the mode
shape and amplitude due to the adiabatic evolution, which can affect the nonlinear Hamiltonian of the
system. Together, these terms contribute to the overall adiabatic geometric phase of the nonlinear normal
modes.

To gain a more detailed understanding of the nonlinear normal mode, we express it in terms of a Fourier
series. Specifically, we write Wg(6) =, (w(l) wl(kz )ell¢’<) e, where wl(kl ) and wl(kz ) are the Fourier
components of the mode in the two wave components, respectively, and ¢y is the relative phase between the
two components. Thus, we obtain

OV D Q) e | gil6
S5 = 2 (v e ) e,
1

(1) @) T
% _ Z l&/’zk 7 <awlk +ilw(2)a¢k> eil¢,;| oo (A5)
1

ok ok ok koK
We now use equation (A5) to substitute results into equation (A4). We then multiply both sides of

equation (A4) by \I/,t ., and integrate over the phase variable 6 from 0 to 27. This procedure leads us to derive
the following relationship:

0 L0
Z\wlk dtZ 0y X Vi

m d9 OH OH
— * — A6
+/0 <5‘I’3q,+5‘1’ e H(qf)axp)w_% (A6)

where the relationship i0;0¥ = H(¥)d¥ has been adopted. Finally, we integrate over the time variable t and
obtain the Berry phase of nonlinear normal modes:

Yo =) 440, (A7)

In equation (A7), there are two contributions in the adiabatic geometric phase. The first term is the Berry
phase of nonlinear normal modes,

> (lf’¢*|wlk iy 2 )
dk .

(B)
Yc :¢ i (A8)
c SIS e
The second term
—1
; o, OH ... 0H
o fo ) [t B ) o
) j o
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is known as the ‘purely nonlinear’ contribution to the adiabatic geometric phase, as it arises solely from the
nonlinear interactions within the system. Specifically, it represents the change in the nonlinear Hamiltonian
with respect to the variation of the nonlinear normal mode, which arises due to the dependence of the
Hamiltonian on the mode amplitude. We emphasize that this term vanishes for the purely linear
Schodinger-type equations. The change in the wave function can be expressed in terms of the change in the
mode amplitude,

oV = (%A\I/, ov* = 6—A\I/* (A10)
where A = max(Re U) is the mode amplitude, and 8A is the change in the mode amplitude under adiabatic
evolutions. The change of wave function can be expressed in the form of equation (A10), is because that the
change in the wave function can stem from two sources: the change in the waveform, and the change in the
mode amplitude. The change of waveform has been addressed in equation (A5), where higher-order Fourier
series capture the change in the waveform. As a result, the change in the mode amplitude is captured by
equation (A10), which is manifested in the term 0A.

Because chiral symmetry demands that the mode amplitude should not change and stays invariant

during the entire process of adiabatic evolution, we have dA = 0, and the ‘purely nonlinear’ contribution to
the adiabatic geometric phase should vanish under the constraint of chiral symmetry.

Appendix B. Adiabatic geometric phases for nonlinear systems that respect
U(1)-symmetry

In this section, we use the results of the adiabatic geometric phases derived in equations (A8) and (A9) to
study the geometric phases for nonlinear systems that respect U(1)-symmetry. Our purpose is to verify that
our results are consistent with the precedented results derived from nonlinear dynamics that respect
U(1)-gauge symmetry. Therefore, we consider the Hamiltonian for the nonlinear Schrédinger equations that
respect the U(1)-gauge symmetry in the wave functions, which is given by

H(¥) = HyU +g| 0> 0. (B1)

Here, for the two-band model, such as the one discussed in equation (1) of the main text, Hyisa2 x 2
matrix, and g is the coefficient of the nonlinearity. In these systems, the nonlinear normal modes can be
represented by sinusoidal waves,

. oNT
0y (k p— wt) _ lI/ke1(k<r—out) _ (\I/’((l)’q}l(‘Z)euﬁk) e](k.r—wt). (B2)

Here, the normalization condition given by |\I'(1) >+ |\I'(2) |> = 1 has been adopted.

To simplify the Berry phase of nonlinear normal modes, ’y( )

the adiabatic geometric phase, ’yé b we employ the relationships given by the representation of nonlinear

normal modes as sinusoidal waves, as presented in equation (B2). In particular, we note that nonlinear plane
waves in these systems contain only the fundamental harmonic, which allows us to simplify the expressions
for wl(kl ) and wl(kz ) as zbl(kl ) = \P,((])éll and wl(kz) = \I/,(f)éll, respectively. Plugging these simplifications into 'yéB)
reduces the Berry phase of nonlinear normal modes as

, and the purely nonlinear contribution to

e
Z (ZQ/JI(kZ)Paa(ikJF Z w(]) ¢zk
+E — 515 dk-
© f 1 G12) 5
Zl' Z]'/ W)l/k | 1

vl
- i ()* 5 g _ g @2 _ (g g e
_yfcdk i > v 0w —i| v o _51§Cdk 1(% LU %e k)a ( W) ” )

j

on
J — Pk | WP+ s

= %dk . i<q/k|ak|\lik> ’Y((jBl)mear’ (B3)
C

where ¥y = (\IJ,(‘I) , \Il,(f)ei@)T is the eigenvector of the Hamiltonian, and ’yéBl)in <o denotes the conventional

form of Berry phase in linear systems. At this point, we have shown that the7Berry phase of nonlinear normal
modes, as expressed in equation (9), can be reduced to the conventional Berry phase when the nonlinear wave
functions yield U(1)-gauge symmetry. This result is in perfect agreement with the Berry phase derived in [3].
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When considering nonlinear interactions of the form
H(¥) = HyV +g| V|, (B4)
we can compute the contribution of nonlinear interactions to the adiabatic geometric phase, véNL). By using

the relationships OH(¥) /0¥ = Hy + 2g|¥|* and OH(V)/0¥* = g2, we can substitute into fyéNL) to obtain
the result

—1

(NL ()2 do t 871‘1 % OH .
/dt ZZZIMW /0 —U (5\1/6@%\1: ogs —H(L)ov .

o d0 . OH it st L 2
de | sulH | 5y —H(¥)0W :/dtg(\lf viowt +uwsw), . (B5)
Wi

ov ov*

This result is in line with the ‘purely nonlinear’ geometric phase derived in [95], where the nonlinear
interaction with U(1)-symmetry is specified.

Appendix C. Analytical results of nonlinear topological boundary modes

In this section, we analyze the decay rate of the nonlinear boundary mode by setting the static condition,
owt) /0t = 0, and simplifying the Schrédinger-type nonlinear equations of motion, as given by

B g (W0, 480, -8, e, o

r+é;
_X’)/
B - Y g (80, +92,) w40, = <
i=xy

We analyze the behavior of the nonlinear boundary mode, which is exponentially localized on the left open
boundary and takes the form of a plane wave in the transverse y direction. Using this ansatz, we derive the
wave amplitudes and substitute from the static motion equations given by equation (C1). The resulting
solution, as given by equation (21), provides an analytic expression for the spatial decay rates of the edge
mode, which are expressed as

5 —gcosk, + \/(% —gycosky)2 +1-¢g

C2
&+1 (€2)

K+ (k),) =—In

The analytical expression for the spatial decay rates of the nonlinear boundary mode, as given by

equation (C2), reveals important insights into the behavior of the mode at different values of the
nonlinearity parameters and the transverse wavevector. In particular, we find that within the red region of
parameter space in figure 2(a), where —g, +1/2 < g, < g —1/2{Jgc +1/2 < g, < —g — 1/2, the decay
rates are positive, indicating that the mode described by equation (21) is exponentially localized on the left
open boundary of the square lattice.

Appendix D. Nonlinear topological physics of honeycomb lattice

The model corresponds to a four-site unit cell honeycomb lattice, where each site is identified by position
vectors ra(n), rg(n), rc(n), and rp(n). The specific parameters are detailed in the main text. Subsequently,
the nonlinear equations of motion for these lattice sites are expressed as follows:

0.9}, = fi (‘I’gA)v rA+11> +h (‘I’S)’\I’SZA ) +h ( o rA)+13>

0,0 =fi (w20 )+ f (0D 0 )+ (w20

0,00 = £ (WD, 00, )+ A0 )+ 0,02 )

00 = (W) )+ A0 ) A ) ). (O
In order to have the chiral symmetry in this nonlinear model, we ask that the nonlinear interactions yield

fi+3 (x,y) = _ﬁ (x,y) i= 1,2,3. (DZ)
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Under the constraint of nonlinear interactions, the equations of motion for this nonlinear system remain
invariant under the chiral operator transformation. Specifically, when we express the plane-wave ansatz as
follows:

Uy = <\I/,((1) (k- r—wt— (1)> ,\I/,((Z) (k- r—wt— ,((2)> ,\I/,(f) (k-r—wt— ,((3)> ,
T
v (ker—we-g)) . (D3)
Then the nonlinear Hamiltonian, denoted as H(¥), remains invariant under the transformation,
SH(V)+H(SY) =0, S=0,1. (D4)
Furthermore, the nonlinear equations of motion remain invariant under the chiral transformation. In other

words, given a nonlinear normal mode described by equation (D3), chiral symmetry guarantees the existence
of a partner solution:

= 8We= (W (kertwr— o) 0 (kerswr— o) o (kerbwr— o),
v (ke rwe— ¢,§2>))T. (D5)

Next, we compute the Berry phase of nonlinear normal modes for this system. By adiabatically evolving
the initial nonlinear normal mode, we find the Berry phase of nonlinear normal modes as:

mod 27. (D6)

o - fa o (A i)
)P SN TRl

Then, we adiabatically evolve the chiral-partner mode, via the generalized nonlinear Schrédinger equation,
10, W, _ = H(Wy,— ). This evolution gives us the geometric phase: W(t) = W, _,, (fotw(t’, k(")) + v(t)).

After completing the closed-loop trajectory in reciprocal space, we have:

®) DI D341 (ZWI(]) |2Vk¢,((]) + iwl(;c)*vkwl(jf)>
A =~ dk- mod 27. (D7)
C

(")
2o L= p V0P
Because equations (D6) and (D8) represent the same geometric phase, we equate them, and obtain

'y(CB) =nm mod 2. (D8)
These quantized integer values indicate that the Berry phase of nonlinear normal modes serves as the
topological index of the nonlinear dynamics. Specifically, if there is a nonlinear edge mode localized on the
zigzag boundary of the honeycomb lattice and the mode remains static in time, then this mode must be
topologically protected. In what follows, we explore the nonlinear topological boundary modes for two
different boundary conditions in the honeycomb lattice: the zigzag open boundary condition and the armchair
open boundary condition.

D.1. Nonlinear topological modes for zigzag open boundary conditions
As depicted in figure 4, the zigzag boundary condition aligns seamlessly with the lattice configuration of the
honeycomb lattice. By imposing the static condition:

oV =0, X=ABCD, j=1234. (D9)

we obtain static nonlinear boundary modes. These modes are governed by the following nonlinear recursion
relations:

(2 _
fi (D w2 )+ (WD )+ (W0 w ) =) =0

) =i
f(\l,m \1,5;_1) +f( ’ r;)_lz)_ ( ) u®) 13) 5,9? =0

(00, ) (0,00, ) e w2, =) <o
AED D ppe® e ) (e W\If“) )= 16@4_0_ (D10)
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Additionally, we impose an open boundary condition:
fi(e2, e ) eh (w2, ) =i0w@ =0 for m =0, (D11)

In this context, we illustrate a specific nonlinear topological boundary mode in the nonlinear honeycomb
lattice, where we set Ut = \IISQ a,- Numerical solutions reveal the temporal stability of this nonlinear
boundary mode, which can persist indefinitely.

The emergence of nonlinear topological boundary modes in the honeycomb lattice hinges on a critical
condition related to the mode amplitude. Specifically, these modes cannot arise at the lattice boundary when

the mode amplitude, denoted as A = max(Re g ), exceeds the critical value

a+a—ao

A= i d (D12)
When the mode amplitude exceeds the critical value (such as (A > A.)), as indicated by the analytical
nonlinear recursion relation in equation (D10), the mode undergoes exponential growth into the lattice.
This nonlinear mode cannot be initialized and remains unlocalized on the open boundary. Importantly, at
this critical amplitude, the static nonlinear mode neither decays nor shrinks in space. Instead, it assumes the
character of a nonlinear bulk mode. When the mode amplitude drops below the critical value, a localized
nonlinear topological mode emerges on the lattice open boundary. This critical behavior corresponds to a
nonlinear topological phase transition. Specifically, for mode amplitudes below the critical threshold
(A < A.), the nonlinear topological index takes the value (y(A < A.) = 7). Conversely, for mode amplitudes
above the critical threshold (A > A,.), the nonlinear topological index becomes (y(A > A.) = 0). Conversely,
for mode amplitudes above the critical threshold (A > A,), the nonlinear topological index becomes
(v(A > A) = 0).

D.2. Nonlinear boundary modes for armchair open boundary condition

When we examine the armchair open boundary conditions, we encounter an incompatibility with the initial
definition of the honeycomb lattice. As illustrated in figure 5, the lattice structure necessitates redefinition,
resulting in an enlarged unit cell: expanding from the original four-site unit cell to a larger 16-site unit cell. In
this revised configuration, we label the sites within the unit cell as follows: A BO), ¢, and DY) with

j =0,1,2,3. The corresponding wave functions associated with these sites are denoted as: \IISI’j ), fo£2’f ), ‘I/$3’j ),
and U{* . This redefined lattice configuration introduces new primitive vectors, which we now define as

a; = —4l, + 2L + 21, = 6£(0,1), a, = =21, + 21, = 2V/3((1,0). (D13)

The position of the unit cell is given by r(n) = nya{ + mya;. For each site within the unit cell (labeled as
X0 = AW BW) ) DU, the site position becomes: ry(j (n) = nya] + na, + rg) for X=A,B,C,D and
j=0,1,2, 3. Now, let us delve into the equations of motion associated with this redefined lattice
configuration. For the AW sites,

0 = f (W0, WE0 )+ (10, WD) s (w0, 0D
iﬁtﬁlﬁl’l) :fl (\I/(l ,1) \Ij(l 1)) +f (\I/ (1,1) 22)) +f (‘1,5171),\11'(‘4,2))
iatlpgl,z) :fl (\I}(l ,2) \Ij(z 2)) +f ( (1,2) \I/(Z 3)) +f;5( \11(4)3))

10,01 = f (U, 02) 4 f (B, IO ) (R0 ) (D14)

r+a/ ’ T rtal—a)
for the B sites:
0, \1,(20 =/ <@(2,0)7@£1,0)>

9,0 = f; (W D gty )

)3 3,3
B (00, 00D) 1 g (00,00 )
f (lpﬁz,l)’\l,g,o)) +f5 ( (2,1) \11(3 0))
DD ¥, <\I/$272),\I]£1’2)) AU gD L (p 2),\1422/)

_|_
_|_
000 = fi(U>D, W) 4+ (0P, W) 4 f (02D, 0 ED); (D15)
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for the C1) sites:

O =i (W0 U0 ) f (W0 ) e (900 02 )
18\1131)— fi \11(31) \1141)) +f< (31),\I,£4,2)) +f6( ER) WEi?)
f:

(
0,002 = f, (W02, 01 +

(PR, w “))+f(\11(“ v

r+a
0,003 = f(UE) WD) L £ w0 W)+ (08D, w0, (D16)

for the DU) sites:

O = f (W R ) f (W05 ) o (w01

9,0 = f, (\1,(4 D w 1)) +fs ( ) g o)) s (\1154 DRIE ,o))

0,042 = f, (\11(4 2) g 2)) T (TED PO 4 (w2 pD)

i@,\PS4’3) _f (\I/(4 ,3) \11(3 3) )+f (\11(4 ,3) \11(3 2)) +f( 43) \Il(l 2)) (D17)

The armchair open boundary condition reads
19,0 ﬁ( )
19,02 ﬁ( )
i@wg”—f( “% ))

19,w (D ﬁ(

f (g(l 3) \I/Sj_zl _uz)
. <\IJ(2 3) \Il (1,2) )

+
+

(2,2)
(25
+

v, (D18)

The static condition of the nonlinear boundary mode is obtained by asking

mﬂ”)zm for j=1,2,3,4 j =0,1,2,3. (D19)

Within the framework of nonlinear equations of motion and under the armchair open boundary conditions,

a rich variety of nonlinear boundary static modes can emerge. Here, we focus on illustrating one such mode

by imposing the condition \I/(Jij ,) = g ) This choice leads us to the specific nonlinear boundary mode

depicted in figure 5. To explore its behavior, we turn to numerical simulations. Under the armchair boundary
condition, a critical amplitude arises:

—C0—0C

Al =072 ——F—— =,
¢ dy—dy, — ds

(D20)

The significance of this critical amplitude lies in the fundamental change the boundary condition introduces.
First, due to the incompatibility between the armchair open boundary condition and the honeycomb lattice,
we must enlarge the lattice’s unit cell from the original four-site configuration to a 16-site unit cell. Secondly,
the critical amplitude A/ marks a transition point. Below this threshold (A < A/), a nonlinear boundary
mode localizes on the open surface of the lattice. However, for A > A/, the nonlinear boundary mode
diverges in space when analytically initialized, rendering it forbidden.

Interestingly, the behavior of nonlinear boundary modes depends significantly on the choice of boundary
conditions. Under the zigzag boundary condition, the nonlinear topological boundary mode is not allowed
to exist when the mode amplitude exceeds a critical value (A > A.). However, for the armchair boundary
condition, the mode can exist even when the mode amplitude is above the topological phase transition
amplitude and is below a different critical value (A, < A < A/). This result can be analyzed by the parameters
used in figure 4, where c; =1, c; =2, ¢ =4, d; =4, d, = 1.5, and d; = 1. The topological transition
amplitude and the critical amplitude are given by A, = 0.471 and A/ = 1.826, respectively. When we choose
the mode amplitude as (A = 0.943), nonlinear boundary modes cannot exist for the zigzag boundary
condition, but nonlinear boundary modes can arise for the armchair boundary condition.
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