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ABSTRACT 

It is shown explicitly that for finite-range two-body forces which contribute 

significant interactions in only L + 1 orbital angular momentum states, the 

Faddeev equations for the three-body T matrix with total angular momentum 

J can be reduced to well-defined integral equations for functions of two continuous 

variables with 3(L + 1) X min(2J + 1, 2L + 1) components. Hence numerical 

calculation for realistic interactions, and analytic investigation of the dependence 

on two-body dynamics (which is explicitly separated from the geometrical part 

of the problem), become possible. 
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Although ,the non-relativistic three-body problem has been given a well-defined 

mathematical structure by Faddeevl and reduced from six to three variables by 

omnos , 2 the resulting equations are still so formidable that no one has yet attemp- 

ted an exact solution for any specific problem using local two-particle interactions. 

, We will show in what follows that for the case of interest for strong interactions, 

in which the finite range of the two-particle (pairwise) interactions insures the 

dominance of a finite number of two-particle angular momentum states, these 

equations can be reduced to coupled integral equations in two variables. These 

equations have a sufficiently simple structure to offer a reasonable prospect of 

numerical solution in physically interesting cases. Further, the reduction explic- 

itly separates the geometrical (kinematical) part of the problem from that part 

which depends on two-body dynamics, and provides a useful starting point for dis- 

cussions of the analytic structure of the dynamical part of the three-body problem. 

The original Faddeev equations give the three-body transition matrix T for 

the transition from a state 4 to a state 6; (i=l, 2,3) as the sum of three terms 

Tti) expressed in terms of integrals over two-body transition matrices t (i) in 

the same g-dimensional Hilbert space. Omnes has shown that by changing variables 

to the three energies wi = $’ /2mi, the total momentum $ = I: si = 0 = St, the 
i 

total angular momentum J2 , its projection on a space-fixed axis, MJ , and its 

z-component along a body-fixed axis in the plane of the momentum triangle, M , 

the J component of these operators can be written in the four-dimensional space 

of rj = (u,, 02, w3), and M , (-J ( M 5 J). By taking matrix elements of these 

operators in this space, he finds that 

. 
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T(i) M,M@, ‘) 0) &LtJi-q tM’M(3’, “w) + 

c 
s=j,k 

co 

/ 

dw;’ 

0 

M”=J ,(i) 

,c 

M’M”(G’, 2’) 6(wj’ -cd;, 
z-“;l-w;-w; X T$,M(;I1, 2)): 

M"=-J 

(1) 
i, j ,k cyclic on 1,2,3. 

The physical transition matrix is to be obtained by solving these equations and 

taking the limit z - E+iO with E= w -to +w 1 2 3 = wi + wb + wg = E’ . 

Although the G-functions in the kernels remove one of the integrations, these form 

a set of 3(25-t-l) coupled integral equations in three continuous variables, as will 

become rapidly apparent to anyone who attempts to set them up for numerical 

computation; so far as we can see, this exceeds the capacity of any existing computer. 

In order to reduce the problem further, we assume that the two-body (off- 

shell) transition matrix t 0) for the interaction between the jk pair contains 

significant interactions in only L + 1 orbital angular momentum states. We 

make use of the addition theorem for spherical harmonics to express the dependence 

on the angle between the initial center-of-mass momentum $k and the final 

momentum {J 
3k ’ 

in terms of the angle -yi between <. 
3k 

and pi , the angle CY~ 

between si and any arbitrarily chosen body-fixed axis in the plane of the triangle, 

and the similarly defined angles 7; and o!f for the final state. The azimuthal 

integration over the angle u defined by Omnes can then be performed, and we 

find 
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min(J,1) 
X 

c w 4 th( -CI! {)Pt (COS 7’1) Pi (COS Yi) dJhM(QJ i) 9 
h=- min(J,B) l 

r i = (ml + m2 + m3)/(mj + mk) . (2) 

6) Here tn (qik 2/2~jk, qj2k /211jk; 
k2/2pjk) are the usual partial wave transition 

amplitudes normalized to reduce to e161 sin al/k on-shell. We write the 

(9 arguments of tn in terms of the energy variables in order to emphasize the 

kinematic fact that t$,M(C!’ , d) depends on w” & through the combination 

E’ = Wi + Wi + W$ 9 and the energy of the noninteracting particle w! . Aside 1 
0) from trival factors, tM,M(d’, w’) is both the kernel and the inhomogeneous term 

of the Faddeevequations. As a result the solution, Tti) ,,,(w”, w’), depends only 

on the pairs of variables E , wi and E’, wf . Furthermore the dependence on 

the magnetic quantum numbers M and M’ , occurs only through geometrically 

known separate factors. We exhibit this behavior explicitly by defining 

(i) TM,M(;‘, w’) = 2 mlF”) (U’+l) #$$ dJ .’ M,++$’ (cosyf) F;$Ef, w;) ; 

B’=o A’=-min(J, 1’) 

--- -hi ~- 
(3) : 

[The index P in the amplitude, Ff,h, (E’, w; ), is written to remind us that it will 

depend parametrically on z, 3 = 0, J, M J, M and w’ through the inhomogeneous 

j term and (as we will see) on z only through the kernel, Our reduction to two 
I / variables will now be complete, provided only we can find an appropriate trans- 
I 
; form.ation of variables in the integrations. 
I 
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The change of variables must be made with some care; the variable E’ is 

common to each of the three equations, but the variable wi is different in each. 

However, this different variable on the left is precisely the variable wj or wk 

which must be used differently in the two integrations on the right if we are to 

preserve consistency. Again making use of the kinematics, we note that the 

variable orthogonal to E, w. 
J 

is the angular function cos y. defined above, while 
J 

for the k term we require E, wk, cos rk . Explicitly, the transformations in 

the ith equation are 

‘1 = “k 
W. 

1 m +m k i 

I? - 
wj 

- e,‘j’ , 
’ 

m. 

wf: = 

1 

mi+m k 

E” + nQmi+ mk) 
( 

mimj 

(4) 

E” + 

for the term with s = j. The variable transformation for the term with s = k 

can be obtained by letting i - j , j - k , and k - i on both sides of Eq. (4). 

The range of e!’ 
I 

is still from 0 to 00 if r.e!’ < E” < 00, while cosy!’ can 
JJ- - J 

vary from -1 to 1 independent of the energies. However, the argument of the 

6-function does not necessarily lie in this range, which puts further obvious 

kinematic limits on the Err integration. With this caution, the substitution of 

Eqs. (2) and (3) in Eq. (1) can now be carried through, and we find that 
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. 

tjf)(E f - riui, E - rioi, z - wi) d(ei - wi) dJhlM(o! i) Pt”(cos yi) 

. . 

X 
c 

Ki$!pllk,, W ef ; E”, err) F$($ (El*, e”) 
, 

~‘1 All , , 

1 (5) 

where there are two 8 -functions in the kernel which further restrict the E” 

integration. We note that the amplitudes depend parametrically on w’ and M 

through known geometric functions in the inhomogeneous term and that the sum 

over M” has disappeared. Explicitly 

K~fA~&lAl,(E ‘, ef ;E”, e”) = (““‘~,~~(&“‘)! 
JvJ2pisl (E1’ -rSe”) 

mi+ m 
S’ 

1 
X 

J 
- w!, (E”, e”, cos yi )) 

-1 

XP t,’ y” (E”, e”, cos y; ) 
> 

Pt” tcos Y;) 

J 

’ X 
c 

dJ A’M” (E”, err, cos y;l)) dLllA,, (-c!~(Etf, e”, cos yi)) 
M"=-J 

where sf =k if s=j, ors’=j if s=k. Doing the integration over the delta 

function and the sum over M” gives 
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.(i,s) Pfh,.L,,A,,(Ef,ei; E”,e”) = , 

x pP+1 P-A” ! (ell~~ll)! ) Pi,’ 
( 
cosyi [~E”,e”,cosPs(el,E”, ell)l) 

XP A” 
I” E”,etl) > d~lhll (o!; -‘q t 

(7) 

where cos Ps is the value of cos yi determined by the delta function in Eq. (6) 

and is given by 

m -t-m s’ i ei - Et1 + r et1 + 
mims e” 

mS’ S 
cos rs(ei, Et’, err) = 

mst(mi+mst) 
/ m,m-e” 9 (8) 

2 1 s 
msl(mst+mi) 

,/Et’ - rSett 

~.__.. .--.~ 

for s = j and the negative of this expression for s = k. Although we have carried 

through the algebra here only for the spinless case, it is obvious that the proof 

can be carried through immediately for arbitrary spin and isospin by introducing 

the appropriate spin-angular functions in the decomposition of the two-body t- 

matrices, the only effect being to complicate the parametric structure of the 

inhomogeneous term and the purely geometric kernel K. We believe this is 

better done for specific cases where the spin and isospin symmetries of the inter- 

actions can be directly utilized to simplify the geometric structure at an earlier 

stage, and do not attempt to give a general formula here. 
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We wish to emphasize that these are now well-defined integral equations in 

two continuous variables with a maximum of 3(L+l) X min(2J+l, 2L+l) components, 

and that the dynamical singularities of the two-body interactions have been explia- 

itly separated, in so far as is physically allowable, from the purely geometrical 

coupling between the three interacting subsystems. 

We have benefitted greatly from several critical comments and discussions 

with colleagues at the Linear Accelerator Center, and in particular from continuing 

advice and criticism by M. Bander and J. Gillespie. 
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