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ABSTRACT

It is shown explicitly that for finite~range two-body forces which contribute
significant interactions in only L + 1 orbital angular momentum states, the
Faddeev equations for the three-body T matrix with total angular momentum
J can be reduced to well -defined integral equations for functions of two continuous
variables with 3(L + 1) X min(2J + 1, 2L + 1) components. Hence numerical
calculation for realistic interactions, and analytic investigation of the dependence
on two-body dyﬁamics (which is explicitly separated from the geometrical part

of the problem), become possible.




Although the non-relativistic three-body problem has been given a well-defined

1 and reduced from six to three variables by

mathematical structure by Faddeev
Omnes, 2 the resulting equations are still so formidable that no one has yet attemp-
\ ted an exact solution for any specific problem using local two-particle interactions.
We will show in what follows that for the case of interest for strong interactions,
in which the finite range of the two-particle (pairwise) interactions insures the
dominance of a finite number of two-particle angular momentum states, these .
equations can be reduced to coupled integral equations in two variables. These
equations have a sufficiently simple structure to offer a reasonable prospect of
numerical solution in physically interesting cases. Further, the reduction explic-
itly separates the geometrical (kinematical) part of the problem from that part
which depends on two-body dynamics, and provides a useful starting point for dis-
cussions of the analytic structure of the dynamical part of the three-body problem.
The original Faddeev equations give the three-~body transition matrix T for
the' transition from a state i)'i to a state f)’i (i=1,2,3) as the sum of three terms
T(i) expressed in terms of integrals over two-body transition matrices t(i) in
the same 9-dimensional Hilbert space. Omnes has shown that by changing variables
to the three enei‘gies w; = 13'12/2mi, the total momentum P = ?1—)’1 =0 = 13', the
total angular momentum J 2 , its projection on a space-fixed axis, M I and its
z-component along a body-fixed axis in the plane of the momentum triangle, M,
the J component of these operators can be written in the four-dimensional space

of &= (wl, Wos w3), and M, (-J < M < J). By taking matrix elements of these

operators in this space, he finds that
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The physical transition matrix is to be obtained by solving these equations and
taking the limit z— E +i0 with E = wl.+ Wo + wg = w'l + w'z + wy =E'.
Although the 6-functions in the kernels remove one of the integrations, these form
a set of 3(2J+1) coupled integral equations in three continuous variables, as will
become rapidly apparent to anyone who attempts to set them up for numerical
computation; so far as we can see, this exceeds the capacity of any existing computer.
In order to reduce the problem further, we assume that the two-body (off-
sheil) transition matrix t(i) for the interaction between the jk pair contains
significant interactions in only L + 1 orbital angular momentum states. We
make use of the addition theorem for spherical harmonics to express the dependence
on the angle between the initial center-of;mass momentum ajk and the final
momentum a]'k , in terms of the angle Y between ajk and 31 , the angle o,
between ﬁi and any arbitrarily chosen body -fixed axis in the plane of the triangle,
and the similarly defined angles 'y{ and ai for the final state. The azimuthal
integration over the angle u defined by Omnes can then be performed, and we

find
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Here t(l)(q ik / Zka, ik / 2;1Jk, k / 2u, k) are the usual partial wave transition

id

amplitudes normalized to reduce to e %t sin 62 /k on-shell. We write the

arguments of tél) in terms of the energy variables in order to emphasize the

kinematic fact that t(l\l/},M(&J", @) depends on &' only through the combination

E'=w]+wyt wy , and the energy of the noninteracting particle w{ . Aside

from trival factors, t( ), , @) is both the kernel and the inhomogeneous term

M@’

of the Faddeevequations. As a result the solution, T(l), , @), depends only

CH

on the pairs of variables E, w; and E', wi . Furthermore the dependence on
the magnetic quantum numbers M and M', occurs only through geometrically

known separate factors. We exhibit this behavior explicitly by defining
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' The index P in the amplitude, F ,(1.) E', w , i8 written to remind us that it will
| 2'A

depend parametrically on z, f’ =0,Jd, M

I’ M and & through the inhomogeneous

term and (as we will see) on z only through the kernel. Our reduction to two

variables will now be complete, provided only we can find an appropriate trans-

| formation of variables in the integrations.




The change of variables must be made with some care; the variable E' is

common to each of the three equations, but the variable w; is different in each.
However, this different variable on the left is precisely the variable “’j or wy,
which must be used differently in the two integrations on the right if we are to
preserve consistency. Again making use of the kinematics, we note that the
variable orthogonal to E, wj is the angular function cos 'yj defined above, while
for the k term we require E, wys COS V) « Explicitly, the transformations in

the ith equation are
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for the term with s =j. The variable transformation for the term with s =k

can be obtained by letting i—j, j—~ k , and k — i on both sides of Eq. .(4).

The range of eJ!' is still from 0 to « if rJ.eJ!' < E' < e, while cosyJ!' can

vary from -1 to 1 independent of the energies. However, the argument of the

6—functipn does not necessarily lie in this range, which puts further obvious

kinematic limits on the E'' integration. With this caution, the substitution of

Egs. (2) and (3) in Eq. (1) can now be carried through, and we find that
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where there are two 6 -functions in the kernel which further restrict the E"
integration. We note that the amplitudes depend parametrically on @ and M
through known geometric functions in the inhomogeneous term and that the sum

over M" has disappeared. Explicitly
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where s'=k if s=j, ors'=j if s =Lk. Doing the integration over the delta

function and the sum over M'" gives
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where cos I‘S is the value of cos 'yg determined by the delta function in Eq. (6)

and is given by
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for s =j and the negative of this expression for s =k. Although we have carried
through the algebra here only for the spinless case, it is obvious that the proof
can be carried through imn;ediately for arbitrarsr spin and isospin by introducing
the appropriate spin-angular functions in the decomposition of the two-body t-
matrices, the only effect being to complicate the parametric structure of the
inhomogeneous term and the purely geometric kernel K. We believe this is
better done for specific caées where the spin and isospin symmetries of the inter-
actions can be directly utilized to simplify the geometric structure at an earlier

stage, and do not attempt to give a general formula here.
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We wish to emphasize that these are now well-defined integral equations in
two continuous variables with a maximum of 3(L+1) X min(2J+1,2L+1) components,
and that the dynamical singularities‘ of the two-body interactions have been explic~
itly separated, in so far as is physically allowable, from the purely geometrical
coupling between the three interacting subsystems. L

We have benefitted greatly from several critical comments and discussions

with colleagues at the Linear Accelerator Center, and in particular from continuing

advice and criticism by M. Bander and J. Gillespie.
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