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Zusammenfassung

In dieser Arbeit wurde die elektromagnetische Pionproduktion unter der Annahme der Iso-
spinsymmetrie der starken Wechselwirkung im Rahmen der manifest Lorentz-invarianten
chiralen Stérungstheorie in einer Einschleifenrechnung bis zur Ordnung O(g*) untersucht.
Dazu wurden auf der Grundlage des Mathematica-Pakets FeynCalc Algorithmen zur Be-
rechnung der Pionproduktionsamplitude entwickelt. Bis einschlieklich der Ordnung O(q*)
tragen insgesamt 105 Feynmandiagramme bei, die sich in 20 Baumdiagramme und 85
Schleifendiagramme unterteilen lassen. Von den 20 Baumdiagrammen wiederum sind 16
als Polterme und vier als Kontaktgraphen zu klassifizieren; bei den Schleifendiagrammen
tragen 50 Diagramme ab der dritten Ordnung und 35 Diagramme ab der vierten Ordnung
bei.

In der Einphotonaustauschndherung ldsst sich die Pionproduktionsamplitude als ein Pro-
dukt des Polarisationsvektors des (virtuellen) Photons und des Ubergangsstrommatrixele-
ments parametrisieren, wobei letzteres alle Abhéngigkeiten der starken Wechselwirkung
beinhaltet und wo somit die chirale Stérungstheorie ihren Fingang findet. Der Polarisa-
tionsvektor hingegen héngt von dem leptonischen Vertex und dem Photonpropagator ab
und ist aus der QED bekannt. Weiterhin lisst sich das Ubergangsstrommatrixelement in
sechs eichinvariante Amplituden zerlegen, die sich im Rahmen der Isospinsymmetrie jeweils
wiederum in drei Isospinamplituden zerlegen lassen. Linearkombinationen dieser Isospin-
amplituden erlauben letztlich die Beschreibung der physikalischen Amplituden.

Die in dieser Rechnung auftretenden Einschleifenintegrale wurden numerisch mittels des
Programms LoopTools berechnet. Im Fall tensorieller Integrale erfolgte zunéchst eine Zer-
legung gemél der Methode von Passarino und Veltman. Da die somit erhaltenen Ergebnisse
jedoch i.a. noch nicht das chirale Zahlschema erfiillen, wurde die entsprechende Renormie-
rung mittels der reformulierten Infrarotregularisierung vorgenommen. Zu diesem Zweck
wurde ein Verfahren entwickelt, welches die Abzugsterme automatisiert bestimmt.

Die schlieflich erhaltenen Isospinamplituden wurden in das Programm MAID eingebaut. In
diesem Programm wurden als Test (Ergebnisse bis Ordnung O(¢?)) die s-Wellenmultipole
Eot und Lo+ in der Schwellenregion berechnet. Die Ergebnisse wurden sowohl mit Messda-
ten als auch mit den Resultaten des  klassischen* MAID verglichen, wobei sich i. a. gute
Ubereinstimmungen im Rahmen der Fehler ergaben.






Zusammenfassung

This thesis is concerned with electromagnetic pion production within manifestly Lorentz-
invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-
loop calculation up to the chiral order O(g*), 105 Feynman diagrams contribute, consisting
of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams
and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35
diagrams are of fourth order. To calculate the pion production amplitude algorithms are
developed on the basis of the Mathematica package FeynCalc.

The one-photon-exchange approximation allows one to parametrise the pion production
amplitude as the product of the polarisation vector of the (virtual) photon and the matrix
element of the transition current. The polarisation vector is related to the leptonic vertex
and the photon propagator and is well-known from QED. The dependence of the amplitude
on the strong interaction is contained in the matrix element of the transition current, and
we use chiral perturbation theory to describe this matrix element. The transition current
can be expressed in terms of six gauge invariant amplitudes, each of which can again be
decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow
us to describe the physical amplitudes.

The one-loop integrals appearing within this calculation are determined numerically by
the program LoopTools. In the case of tensorial integrals it is required to perform the
method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared
regularisation which ensures that the results fulfill the chiral power counting. For this
purpose algorithms are developed which determine the subtraction terms automatically.
The obtained isospin amplitudes are integrated in the program MAID. As tests the s-
wave multipoles Eoy and Loy (using results up to chiral order O(q?)) are calculated in the
threshold region. Within the estimated errors the results are, in general, in good agreement
with those of the classical MAID program and experimental data.






Die Dichter sagen, dass uns die Wissenschaft die Schonheit der Sterne
raube — iibrig blieben blok Haufen von Gasatomen. Nichts ist ,blof*“.
Auch ich kann in einer klaren Wiistennacht die Sterne sehen und auf
mich Wirken lassen, aber sehe ich etwa weniger oder mehr? Die Weite des
Sternenhimmels befliigelt meine Phantasie — an dieses Himmelskarussell
geheftet, kann mein kleines Auge Millionen Jahre altes Licht auffangen

Oder sie mit dem groken ,Auge”“ von Palomar betrachten, wie sie
alle auseinanderstreben von einem gemeinsamen Startpunkt, an dem sie
vielleicht einst alle versammelt waren. Welches Gesetz steckt dahinter,
was bedeutet das alles, oder warum ist das so? Es schadet dem Geheimnis
nicht, dariiber ein bisschen Bescheid zu wissen.

R.P. Feynman
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Kapitel 1

Einleitung

Am Anfang eines sich stetig verbessernden physikalischen Verstdndnisses des Mikrokosmos
steht das Jahr 1900. In diesem Jahr legte Max Planck mit der Erkldrung der Hohlraum-
strahlung und der damit verbundenen Einfiihrung des Planck’schen Wirkungsquantums
den Grundstein fiir eine sehr fruchtbare Entwicklung der modernen Physik hin zur Quan-
tenmechanik und zur Quantenfeldtheorie. Im Rahmen dieser neuen Quantentheorie erklarte
bereits fiinf Jahre spéater Albert Einstein den Photoeffekt und Erwin Schrodinger gelang es
spater — 1926 — mit der Entwicklung der Wellenmechanik das Wasserstoffatom in derselben
zu beschreiben. Max Born schlieflich lieferte mit seiner Wahrscheinlichkeitsinterpretation
die Grundlage fiir das Verstehen der Quantenprozesse.

Parallel dazu verbesserte sich auch stetig das Verstindnis iiber den Aufbau der Materie;
so entdeckte Ernest Rutherford 1903 den Atomkern sowie 1919 das Proton. James Chad-
wick komplettierte dieses Bild 1932 durch die Entdeckung des Neutrons. Daraus ergab
sich, dass ein Atom aus einem Kern — bestehend aus Protonen und Neutronen — und ei-
ner Elektronenhiille aufgebaut ist. Um nun die Kurzreichweitigkeit der Kernkréifte — also
der starken Wechselwirkung — zu verstehen, postulierte Hideki Yukawa 1935 die Pionen.
Diese wurden 1947 in den beiden geladenen Varianten (74 und m_) nachgewiesen. Drei
Jahre spiter erfolgte der Nachweis des neutralen Pions. Diese Erfolge der Theorie Yukawas
konnten allerdings nicht dariiber hinweg tduschen, dass bei hohen Energien das Pion die
Wechselwirkung zwischen Proton und Neutron nicht hinreichend gut beschreiben konnte.
Als dariiber hinaus in den 50er Jahren sowie in den frithen 60er Jahren die so genannten
seltsamen (strange) Teilchen entdeckt wurden, zeigte sich, dass Yukawas Theorie nicht die
gesuchte Theorie der starken Wechselwirkung sein konnte.

Zu Beginn der 60er Jahre entdeckten Murray Gell-Mann und Yuval Ne’eman die appro-
ximative SU(3)-Symmetrie der Hadronen. Die wichtigste Konsequenz dieser Entdeckung
stellte das 1964 von Gell-Mann und George Zweig vorgeschlagene Quarkmodell dar, in
welchem die Hadronen aus (Farbladungen tragenden) Quarks zusammengesetzte Teilchen
sind. Die Farbladung wiederum wurde durch Greenberg, Nambu und Han 1965 eingefiihrt;
sie erkldrte z.B., weshalb es moglich ist, dass das 27 aus drei scheinbar gleichen Quarks
bestehen kann, was dem Pauli-Prinzip widerspricht.

Die Quantenchromodynamik (QCD) als Theorie der starken Wechselwirkung wurde schliefs-
lich Anfang der 70er Jahre von Fritsch, Gell-Mann, Gross, Leutwyler, Weinberg sowie
Wilezek entwickelt. Dabei handelt es sich um eine nichtabelsche SU (3)-Eichtheorie, d.h.,
auch die acht, die Wechselwirkung vermittelnden Feldquanten mit Spin 1 — die Gluonen —
tragen eine Farbladung und koppeln somit nicht nur an die Quarks sondern auch unterein-
ander. Bei den Quarks handelt es sich um Materiefelder mit Spin 1/2, welche unabhéngig
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von ihren drei Farbladungen (rot, griin, blau) als sechs verschiedene flavours auftreten: up,
down, strange, charm, bottom und top. Dariiber hinaus tragen die unterschiedlichen Quarks
Bruchteile der Elementarladung (Tabelle 2.1]). Bisher konnten allerdings weder Quarks noch
Gluonen als freie Teilchen isoliert nachgewiesen werden, sondern lediglich farbneutrale Teil-
chen, d.h., Teilchen, welche aus diesen zusammengesetzt sind. Dieses Phinomen wird als
confinement bezeichnet. Seine Ursache wird in der starken Impulsabhéngigkeit der starken
Kopplungskonstante, welche bei kleiner werdenden Wechselwirkungsenergien grofer wird
und im Grenzfall verschwindender Wechselwirkungsenergien divergiert, vermutet. Bei dem
Versuch, zwei Quarks voneinander zu trennen, wird demnach die Kopplung stetig stirker,
so dass immer mehr Energie aufgewandt werden muss, bis schlieklich die Energie ausreicht,
um aus dem Vakuum ein Quark-Antiquark zu bilden.

Die Impulsabhéngigkeit der starken Kopplungskonstante bewirkt auch, dass die QCD in
zwei Bereiche unterteilt werden kann. Im so genannten perturbativen Bereich ist die Kopp-
lungskonstante klein und die Quarks und Gluonen wechselwirken relativ schwach mitein-
ander, d.h., innerhalb eines beschrinkten Gebiets bewegen sie sich als quasi freie Teilchen,
was als asymptotic freedom bezeichnet wird. Innerhalb dieses Bereichs ist es moglich, die
iiblichen Methoden der Stérungsrechnung anzuwenden, wohingegen dieselben im nichtper-
turbativen Bereich versagen. Der Grund dafiir liegt darin, dass die Kopplungskonstante im
nichtperturbativen Bereich grofter wird und auf Grund der Groke der Kopplungskonstante
statt der Quarks und Gluonen die Baryonen und Mesonen die relevanten Freiheitsgrade
sind.

Zur Beschreibung des nichtperturbativen Bereichs der QCD schlug Steven Weinberg 1979
vor, dies im Rahmen einer effektiven Feldtheorie, der chiralen Stérungstheorie, zu tun,
wobei in der urspriinglichen Formulierung [Wei 79, |GT. 84] IGT._85a] lediglich die leichte-
sten pseudoskalaren Mesonen als effektive Freiheitsgrade auftreten. Erst eine spétere For-
mulierung von Gasser, Sainio und Svarc [GSS 88| fiihrt auch die Nukleonen (Baryonen)
als effektive Freiheitsgrade ein. Die beiden Hauptannahmen der chiralen Storungstheorie
sind dabei, dass sich die Massen der leichten Quarksl als eine Storung behandeln las-
sen und dass im chiralen Limes, d.h. fiir verschwindende Quarkmassen, die chirale Sym-
metriegruppe SU(2);, x SU(2)r spontan zu ihrer vektoriellen Untergruppe SU(2)y hin
gebrochen wird. Das Auftreten der spontanen Symmetriebrechung fiihrt jedoch geméafs
des Goldstone-Theorems [Gol 61] zu drei masselosen Goldstone-Bosonen (Pionen). In der
Natur wird jedoch beobachtet, dass die Pionen eine kleine Masse tragen, welche die ex-
plizite Symmetriebrechung der chiralen Symmetrie widerspiegelt. Die Basis der chiralen
Storungstheorie bildet schlieflich die Entwicklung der allgemeinsten, mit den Symmetrien
der QCD vertriglichen, Lagrangedichte nach den Quarkmassen und den externen Impul-
sen, wobei in jeder Ordnung der Entwicklung in den entsprechenden Lagrangedichten so
genannte Niederenergiekonstanten auftreten, welche die zu Grunde liegende Dynamik der
QCD parametrisieren. Die Durchfiihrbarkeit dieser Entwicklung ist gewéhrleistet, da die
Wechselwirkung zwischen Goldstone-Bosonen (Pionen) fiir verschwindende Energien eben-
falls verschwindet. Falls es moglich wére, die QCD im nichtperturbativen Bereich zu 16sen,
sollte es auch mdoglich sein die Niederenergiekonstanten zu bestimmen. Solange dies jedoch

! Als leichte Quarks werden das up-, das down- und das strange-Quark bezeichnet. Abhingig davon, ob
nur die Massen des up- und des down-Quarks oder auch die des strange-Quarks gegeniiber der hadronischen
Skala A ~ 47Fy ~ 1 GeV als klein angenommen werden, wird sich im Rahmen einer SU(2) oder SU(3)
chiralen Stérungstheorie bewegt, so dass sich einmal drei und dass andere Mal acht Goldstone-Bosonen
ergeben. Im Rahmen dieser Einleitung werden wir stets eine Betrachtung im Rahmen einer SU(2) chiralen
Stérungstheorie zu Grunde legen. Die getroffenen Ausagen gelten aber auch analog fiir den Fall einer SU(3)
chiralen Stérungstheorie.



noch nicht der Fall ist, miissen die Niederenergiekonstanten anderweitig bestimmt werden,
z.B. durch die Anpassung an experimentelle Daten.

Wie auch fiir andere effektive Feldtheorien gilt fiir die chirale Stérungstheorie, dass sie
im iiblichen Sinn nicht renormierbar ist. Da jedoch die verwendete allgemeinste effekti-
ve Lagrangedichte alle denkbaren auf Grund der Symmetrien erlaubten Strukturen zur
Verfiigung stellt, kann die Renormierung Ordnung fiir Ordnung durchgefiihrt werden. Im
mesonischen Sektor werden die aus den Schleifenintegralen herriihrenden Unendlichkeiten
zundchst durch die dimensionale Regularisierung extrahiert und schlieflich in den Nieder-
energiekonstanten, welche sich in einen endlichen und einen unendlichen Anteil aufspalten
lassen, absorbiert. D.h., der unendliche Anteil der Niederenergiekonstanten und die Unend-
lichkeiten aus den Schleifendiagrammen heben sich gegenseitig exakt auf. In der chiralen
Storungstheorie wird dazu das modifizierte Abzugsverfahren MS verwendet, welches neben
den Unendlichkeiten noch weitere endliche Terme subtrahiert. Damit diese Renormierung
getrennt filir jede Ordnung durchgefiihrt werden kann, wird ein Zahlschema benotigt, wel-
ches erlaubt, die chirale Ordnung zu bestimmen.

Hinsichtlich der Erweiterung der chiralen Stérungstheorie auf den baryonischen Sektor stel-
len Gasser, Sainio und Svarc [(GSS 88| zweierlei fest. Zum einen, dass das Auftreten bzw.
das Nichtverschwinden der Nukleonmasse im chiralen Grenzfall das Leben sehr verkompli-
ziert und zum anderen, dass im baryonischen Bereich der chiralen Stérungstheorie keine
Regularisierung bekannt ist, welche das Auftreten von zihlschemaverletzenden Termen ver-
hindert, so wie dies die dimensionale Regulariserung im mesonischen Sektor bewirkt. D.h.,
da die Masse des Nukleons in der Groflenordnung der hadronischen Skala von 1 GeV liegt,
konnen Integrale mit inneren Baryonlinien, welche mittels der dimensionalen Regularisie-
rung berechnet werden, zu jeder Ordnung beitragen, so dass auch nach der Anwendung
des MS-Abzugsverfahrens endliche Terme verbleiben, die das Zé&hlschema verletzten. Eine
Moglichkeit zur Wiederherstellung des chiralen Zahlschemas besteht in der Verwendung
der so genannten Heavy Baryon Chiral Perturbation Theory [JM 91], die auf den Ideen
aus der Heavy Quark Effective Field Theory [Geo 91 [BKP 94| beruht. Allerdings ist diese
Formulierung nicht in der Lage die Problematik letztlich vollstindig zu 16sen, da die mani-
feste Lorentzinvarianz aufgegeben werden muss und somit die Konvergenz nicht mehr im
gesamten Niederenergiebereich gew#hrleistet ist [BL.99]. Die von Becher und Leutwyler
entwickelte Infrarotregularisierung [BL 99] hingegen umgeht diese Problematiken, ebenso
wie die EOMS-Renormierung [FGJS 03]. Im Rahmen der Infrarotregularisierung werden
die auftretenden Integrale in einen infraroten und einen reguléren Anteil zerlegt, wobei der
regulére Anteil alle zdhlschemaverletzenden Terme beinhaltet. Dariiber hinaus besitzen bei-
de Anteile die Eigenschaft, die Ward-Identitdten unabhéngig voneinander zu erfiillen. Der
Nachteil der Infrarotregularisierung in ihrer urpriinglichen Formulierung liegt allerdings
darin, dass sie auf Einschleifenprozesse beschriankt ist. Die in Referenz [SGS 03] gegebene
Reformulierung derselben hingegen erlaubt auch das Durchfiithren von Mehrschleifenrech-
nungen, wobei auf Techniken der EOMS-Renormierung zuriickgegriffen wird.

Einen wichtigen Prozess zur Erforschung der hadronischen Struktur stellt bis heute die
Pionproduktion dar, welche eine der einfachsten Reaktionen unter den elektromagneti-
schen Prozessen mit Nukleonen bzw. Kernen ist. Sie kann als eine wichtige ,Sonde* zur
Erforschung der starken Wechselwirkung verstanden werden, da der auftretende leptoni-
sche Vertex durch die Quantenelektrodynamik (QED) zuverlédssig beschrieben wird. Dabei
kommt der Produktion an der Schwelle eine besondere Bedeutung zu, weil an dieser nur
wenige Multipole (Epy und Lo ) beitragen.
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Die Theorie der Pionproduktion (Pionphotoproduktion) nahm ihren Anfang in den 50er
Jahren mit der Herleitung modellunabhéngiger Vorhersagen, der so genannten klassischen
Niederenergietheoreme, im Bereich der Schwelle durch Kroll und Ruderman [KR. 54]. Die
klassischen Niederenergietheoreme wurden dabei durch das Anwenden der Eich- und Lor-
entzinvarianz auf die Reaktion v+ N — 7 + N (N: Nulkeon) abgeleitet. Der allgemeine
Formalismus fiir die Pionproduktion wurde schlieklich 1957 von Chew, Goldberger, Low
und Nambu [CGLN 57| ausgearbeitet. Fubini, Furlan und Rosetti [FFR. 65| erweiterten die
Aussagen der Niederenergietheoreme um die Hypothese eines teilweise erhaltenen Axial-
vektorstroms (PCAC) und konnten auf diese Weise die Schwellenamplitude als eine Ent-
wicklung in M /my bis zur zweiten Ordnung beschreiben. Berends, Donnachie und Weaver
[BDW 67| schlieplich analysierten die existierenden Daten im Rahmen einer Multipolzer-
legung.

Seit den 80er Jahren wurden mittels so genannter Dauerstrichbeschleuniger totale und
differentielle Wirkungsquerschnitte der geladenen sowie der neutralen Produktion gemes-
sen, um den Multipol Ep;+ zu bestimmen und somit die klassischen Niederenergietheo-
reme zu testen. Wihrend die Resultate der geladenen Produktion mit den Vorhersagen
der Niederenergietheoreme iibereinstimmten, zeigten sich in der neutralen Produktion
[Maz+ 86, Bec+ 90| [Fuc+ 96l Ber+ 96| starke Abweichungen gegeniiber den Vorhersagen
der klassischen Niederenergietheoreme [DeB 70]. Aufserdem trat eine starke Energieabhén-
gigkeit des Multipols Ep4+ im Bereich der Schwelle auf [Bec+ 90].

In den 90er Jahren schliefslich wurde die Pionproduktion zunéchst im Rahmen der so ge-
nannten relativistischen chiralen Stérungstheorie beschrieben [BKGM 91, BKM 92a)
IBKLM 93], wobei bereits in der ersten Referenz [BKGM 91| aufgezeigt wurde, dass die
klassischen Niederenergietheoreme nicht vollstdndig sind. Spéter konnten z.B. weitere Bei-
trige zu den Niederenergietheoremen der S-Wellen-Multipole Eg4 und Loy an der Schwelle
IBKM 92b| hergeleitet und neue Niederenergietheoreme fiir die P-Wellen-Multipole
[BKM 95h] abgeleitet werden. Nach der Entwicklung der chiralen Stérungstheorie fiir
schwere Baryonen (HBChPT: heavy baryon chiral perturbation theory) erfolgten die weite-
ren Untersuchungen der Pionproduktion durch diese Methode, z.B. [BKM 96al BKM 96¢]
und [BKM 01]. Der Grund fiir eine neuerliche Untersuchung der Pionproduktion — nunmehr
im Rahmen der reformulierten Infrarot Regularisierung — liegt in den bereits diskutierten
Nachteilen der HBChPT begriindet, d.h., Ziel dieser Arbeit ist es, die Pionproduktion in
einer manifest Lorentz-invarianten Form der chiralen Stérungstheorie zu beschreiben.

Die Gliederung dieser Arbeit ist folgendermafen angelegt: In Kapitel 2] wird zunéchst die
Lagrangedichte der QCD behandelt. Es schliefst sich eine Diskussion des Noether Theorems,
gefolgt von einer Einfilhrung in die chirale Stérungstheorie an, wobei zunéchst der meso-
nische und anschlieffend der baryonische Sektor derselben erdrtert wird. In diesem Kapitel
werden ebenfalls die fiir diese Arbeit benétigten chiralen Lagrangedichten eingefiihrt.

In Kapitel Bl wird die Renormierung behandelt. Zunichst wird die Problematik der Re-
normierung im baryonischen Sektor der chiralen Stérungstheorie erldutert. Im Anschluss
daran wird zum einen das Weinbergsche Zihlschema vorgestellt, welches erlaubt im ba-
ryonischen Sektor der chiralen Stérungstheorie die chirale Ordnung, beispielsweise eines
Feynmandiagramms, festzustellen. Zum anderen wird die Infrarot Regularisierung [BI._99]
in ihrer reformulierten Variante [SGS 03| vorgestellt und erortert.

In Kapitel Hlwird eine Einfithrung in die Pionproduktion gegeben. Dabei wird zuerst die Ki-
nematik dieses Prozesses behandelt. Es schlieft sich die Diskussion der invarianten Ampli-
tuden sowie der Isospinamplituden an. Dieser Diskussion folgt die Behandlung der CGLN-



Amplituden [CGLN 57| und des Wirkungsquerschnitts. Im Rahmen der Diskussion des
Wirkungsquerschnitts wird dabei auf die Eigenschaften des leptonischen und des hadro-
nischen Tensors, den differentiellen Wirkungsquerschnitt sowie auf die damit verbunden
Antwortfunktionen eingegangen.

Kapitel Bl behandelt schliefslich die Berechnung der invarianten Amplituden bzw. [sospin-
amplituden. Dabei wird im ersten Abschnitt zunéichst erlautert, wie die Feynmanregeln der
Vertices hergeleitet werden. Diesem schliefst sich die Berechnung der Baumdiagramme bis
einschlieklich der Ordnung O(g*) an, wobei dies an Hand von drei Beispielen verdeutlicht
wird. In diesem Zusammenhang wird im Besonderen dargelegt, wie aus der Pionproduk-
tionsamplitude zunéchst die eichinvarianten Amplituden und aus diesen die Isospinam-
plituden bestimmt werden. Im darauf folgenden Abschnitt wird die analoge Rechnung —
wieder an Hand dreier Beispiele — auf dem Niveau der Schleifendiagramme erldutert, wo-
bei im Besonderen auf die Unterschiede zu der Rechnung auf dem Baumgraphenniveau
eingegangen wird. Den Schwerpunkt dieses Abschnittes bildet jedoch die Berechnung und
Renormierung der Integrale, wobei zur Berechnung derselben das Programm LoopTools
[HP 98| eingefithrt und die Renormierung mittels der reformulierten Infrarot Regulari-
sierung durchgefithrt wird. Die einzelnen Schritte werden dabei an Hand von Beispielen
erlautert.

In Kapitel [l werden die Ergebnisse aus zwei unterschiedlichen Gesichtspunkten heraus
diskutiert. Begonnen wird mit der Diskussion der eichinvarianten Isospinamplituden auf
dem Baumgraphenniveau. Dabei unterscheiden wir zwischen den so genannten Pol- und
Nicht-Polbeitrdagen und untersuchen unter anderem das Verhalten der Resultate unter der
,crossing“-Symmetrie. Danach wenden wir uns der Betrachtung der vorldufigen, numeri-
schen Ergebnisse zu, die wir durch das Einbauen der in Kapitel [l berechneten eichinva-
rianten Isospinamplituden in MAID [DHKT 99| erhalten haben. Fiir den Fall der Pion-
photoproduktion vergleichen wir dabei den Multipol Ey. fiir die geladenen Produktionen
und die Multipole Eg; sowie Loy fiir die neutralen Produktionen mit den Ergebnissen des
wklassischen“ MAID, als auch mit den Messergebnissen aus den Referenzen [Sch+ 01] und
[Ada 76].

Eine Zusammenfassung sowie ein Ausblick enthélt Kapitel [7l

Daran schliefit sich ein Anhang an, in welchem theoretische Details, Ubersichten und Ergeb-
nisse aufgelistet sind. So werden in Anhang[Alund Anhang([Bldie Pauli- bzw. Dirac-Matrizen
aufgefiihrt und kurz einige ihrer Eigenschaften diskutiert. In Anhang [C] befinden sich die
Konventionen hinsichtlich der Multipole sowie die Zusammenhénge zwischen Multipolen,
CGLN-Amplituden und invarianten Amplituden. Anhang [Dl enthélt eine Betrachtung der
Winkelabhingigkeit des hadronischen Tensors. Die Anhéinge[Elund [ beinhalten eine Uber-
sicht der numerischen Werte der auftretenden Niederenergiekonstanten bzw. eine Ubersicht
aller im Rahmen dieser Arbeit berechneten Feynmandiagramme. Darauf folgen in Anhang
die Feynmanregeln sowie Anmerkungen beziiglich derselben. Letztlich findet sich in
Anhang [[] ein Uberblick iiber simtliche auf dem Baumgraphenniveau bestimmte eichin-
variante Isospinamplituden sowie in Anhang [[l das Beispiel einer analytischen Berechnung
eines skalaren Integrals in dimensionaler Regularisierung.



Kapitel 2

Chirale Storungstheorie

In diesem Kapitel wird die Lagrangedichte der QCD diskutiert, der Zusammenhang zwi-
schen QQCD und chiraler Storungstheorie erldutert und eine Einfiihrung in die chirale Sto-
rungstheorie der Mesonen und Baryonen gegeben. Die Darstellung in diesem Kapitel ori-
entiert sich an den Referenzen [Fuc 03] [Sch 01a), [Sch (2] T

2.1 Die Lagrangedichte der QCD

Die QCD ist eine nichtabelsche Eichtheorie mit der lokalen Symmetriegruppe SU(3). Die
Materiefelder sind die so genannten Quarks — Fermionen mit Spin 1/2, die in sechs ver-
schiedenen flavours auftreten (u: up, d: down, s: strange, c: charm, b: bottom, t: top) und
unabhéingig von den flavours sich in der Farbladung (blau (b), griin (g), rot (r)) unter-
scheiden. Ausgehend von der Lagrangedichte eines freien Dirac-Teilchens

flavour u d s
Ladung [e] 2/3 -1/3 -1/3
Masse [MeV]| 3+1 6,0+£1,5 103 £ 20
[Yao+ 06] [Yao+ 06] [Yao+ 06]
flavour ¢ b t
Ladung [e] 2/3 -1/3 2/3
Masse [GeV] | 1,25+ 0,00 | 4,20 £ 0,07 | 174,2 £ 3,3
[Yao+ 06] [Yao+ 06] [Yao+ 06]

Tabelle 2.1: Die Quarks, ihre Ladungen und Massen

L= (i) —m)p (2.1)

erhalten wir somit fiir die Lagrangedichte der QCD ohne Wechselwirkung

L= qip—msqy. (2:2)
f

! Weitere Ubersichtsartikel zur chiralen Stérungstheorie finden sich in den Referenzen [BKM 95a)
Eck 95 [Man 96l Mei 93| [Pic 95].
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Hierbei ist jeder Quarkflavour ¢y ein komplexwertiges dreikomponentiges Objekt:

Qf,r
ar =1\ arg | (2.3)
qf.b

wobei f fiir den jeweiligen flavour und r, g und b fiir rot, griin und blau, die Farbladun-
gen? stehen. Jeder Eintrag von qf ist wiederum ein vierkomponentiger Dirac-Spinor. gy
transformiert sich beziiglich einer lokalen Transformation g(z) wie folgt:

qr = ¢y = Ulg(x)]gy- (2.4)

Dabei ist U[g(x)] eine unitare (3 x 3)-Matrix, welche glatt von z abhingt. Durch das Eich-
prinzip wird nun Wechselwirkung zwischen den Materiefeldern (Quarks) und den Eich-
feldern (Gluonen) erzeugt. Dazu fithrt man eine kovariante Ableitung ein. Die kovariante
Ableitung eines Objekts soll sich per definitionem, wie das Objekt selbst transformieren —
sieche Gleichung (2.4):

Dugs — (Dugy)" = Ulg(2)|Dpugy- (2.5)

Zu diesem Zweck werden so genannte Eichfelder A, eingefithrt (a = 1,...,n), n ist dabei
die Anzahl der Parameter der Symmetriegruppe — im Fall der SU(3) sind dies acht. Diese
bewirken auf Grund ihrer Transformationseigenschaft, dass die beim Ubergang von der
globalen zur lokalen Symmetrie aus den partiellen Ableitungen entstehenden Zusatzter-
me kompensiert werden. Dadurch wird nun die geforderte Wechselwirkung zwischen den
Materie- und den Eichfeldern erzeugt. Allerdings sind die Eichfelder bis jetzt noch kei-
ne richtigen dynamischen Freiheitsgrade. Um dies zu erreichen, miissen wir noch einen
ykinetischen“ Anteil einfiihren:

1
L, g (26)

Die Feldstérketensoren der QCD sind gegeben durch
Gl = 0, A% — 0,A% + gf ™ AL AL (2.7)

Hierbei sind % die Strukturkonstanten der SU(3). Die Feldstirketensoren transformieren
sich wie folgt:

Aa va Aa va

Ry, o Ulg()) 265, U lg(@)] (2.

pv

Die \{ sind die acht Gell-Mann-Matrizen, wobei der Index c fiir colour steht. Da in den
Feldstirketensoren Produkte in den Eichpotentialen auftreten, existieren Vertices mit drei
und vier Fichfeldern, d.h., die Eichfelder (Gluonen) koppeln untereinander. Dies ist der
erhebliche Unterschied zu einer abelschen Feldtheorie wie der QED, bei der solche Terme
nicht auftreten. Die Kopplungskonstante g der starken Wechselwirkung tritt sowohl in der
Wechselwirkung der Quarks mit den Gluonen als auch bei der Kopplung der Gluonen unter-
einander auf. Es ist weiterhin anzumerken, dass die Wechselwirkung zwischen den Materie-
und den Eichfeldern flavourunabhéngig ist. Somit ergibt sich fiir die Lagrangedichte der
QCD nach [DGH 92| [Sch 02|

. ]' a v,a
Loop =Y qr(iD — my)qs — 1w G (2.9)
f

2Daher auch der Name Quantenchromodynamik von griech.: chroma, die Farbe.
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8

. . g

mit D,qr = 8qu—zg§ ?“Aﬁqf.
a=1

Betrachten wir Tabelle 211 so ist festzustellen, dass die sechs Quarks zunéchst in zwei
Gruppen unterteilt werden kdénnen,

My, Mg, Ms K 1GeV < my, myp, my, (2.10)

wobei die Gréfle von 1 GeV mit den Massen der leichtesten Hadronen, die keine Goldstone-
Bosonen sind, z.B. m, = 775,540,4 MeV [Yao+ 06|, verkniipft ist. Auch die Skala, welche
mit der spontanen Symmetriebrechung assoziiert ist, betrigt 47 F; ~ 1170 MeV und liegt
somit in der gleichen Gréfsenordnung. Innerhalb der Gruppe der leichten Quarks fallen die
sehr kleinen Massen des up- und des down-Quarks gegeniiber der strange-Quarkmasse auf.
Es erscheint deshalb die Annahme verniinftig, dass sich bei niedrigen Energien die beiden
leichtesten Quarks als Storung betrachten lassen B Daraus folgend schreiben wir Gleichung
239) um, d.h., wir separieren die schweren Quarks (inklusive des strange-Quarks), welche
sich unter der chiralen Symmetrie (SU(2)) nicht transformieren, von den beiden leichten
Quarks:

_ 1
Locp = Y ap(i = mp)ay = GG + Luchwere Quarks: (211)
f=u,d

Im Niederenergiebereich kénnen wir uns deshalb auf die leichten Quarks beschrinken &
Betrachten wir nochmals Tabelle Bl stellen wir fest, dass fiir die Erzeugung der Hadro-
nenmassen ein komplexer Mechanismus verantwortlich sein muss, da fiir die Protonmasse,
my, = 938 MeV, gilt:

my > 2my, + my. (2.12)

Die Summe der Massen jener drei Quarks, welche das Proton bilden, ist also sehr viel kleiner
als die Masse des Protons, deshalb muss der weitaus gréfere Anteil der Protonmasse durch
Wechselwirkungen innerhalb des Protons erzeugt werden. Dies legt nahe, den so genannten
chiralen Grenzfall m,, mqy — 0 zu betrachten.

Des Weiteren unterscheiden wir zwischen rechts- und linkshéndigen Anteilen der Quark-
flavours:

1 1
q= [2(14"75)-%2(1—’75) q=[Pr+ Prlq¢=qr +qr (2.13)
Hierbei sind Pr und Pp, Projektionsoperatoren, die gerade aus dem Diracfeld ¢ die chiralen
Komponenten gr und g7, herausprojizieren. So erhalten wir schlieflich die Lagrangedichte
der QCD im chiralen Limes [Sch 02]

. . 1
‘C%CD = Z (QR,f@p)QR,f + QL,f(lD)QL,f> - ZGZVGMV@ + Lschwere Quarks- (2.14)
f=ud

Diese Lagrangedichte ist invariant unter globalen U(2)r, x U(2)g-Transformationen, wobei
die Untergruppe SU (2), x SU(2)r als chirale Gruppe bezeichnet wird. Bei der Betrachtung

3Es ist auch ohne weiteres moglich, das strange-Quark mit in die Betrachtung einzuschlieRen, wie dies
z.B. beim Berechnen der Baryonmassen im Rahmen der SU(3) chiralen Stérungstheorie [BM 96| [LGS 04]
geschieht. Jedoch scheint die Konvergenz in der SU(3) chiralen Stérungstheorie schlechter zu sein als in
ihrem SU(2)-Aquivalent; dies wurde auch in anderen Fillen von [BHLO 02] beobachtet. Die Ursache dafiir
scheint die relativ grofie strange-Quarkmasse zu sein.

4 Hierzu ist anzumerken, dass sich im Rahmen der chiralen Stérungstheorie die Effekte der schweren
Quarks in den Niederenergiekonstanten manifestieren.
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der Natur, genauer, des Spektrums der Hadronen, ist festzustellen, dass dieses approxima-
tiv eine SU(2)y-Symmetrie erfiillt. Nach dem Theorem von Coleman [Col 66| bestimmt
die Symmetrie des Vakuums, d.h., die des Grundzustandes, die Symmetrie des Teilchen-
spektrums. Die spontane Symmetriebrechung liefert die Losung fiir diesen Widerspruch,
indem die SU(2), x SU(2)g-Symmetrie spontan nach SU(2)y gebrochen wird.

Die Voraussetzung dafiir ist die Existenz mehrerer entarteter Grundzustinde. Durch in-
finitesimal kleine Stérungen wird nun ein Grundzustand gewdhlt. Die Symmetrie wird
somit gebrochen. Dies hat zur Folge, dass der Grundzustand nicht mehr unter der vollen
Symmetriegruppe G mit ng Generatoren invariant ist, sondern lediglich hinsichtlich der
Untergruppe H mit ng Generatoren. Gemif des Goldstone-Theorems [Gol 61 wissen wir,
dass (ng — ny) masselose Goldstone-Bosonen existieren miissen. Die Eigenschaften der
Goldstone-Bosonen sind durch die (ng — ng) Generatoren bestimmt, welche das Vaku-
um nicht vernichten. Das Spektrum hingegen wird durch die Untergruppe H bestimmt,
deren ng Generatoren den Grundzustand vernichten. Fiir die Energie & — 0 zeigen die
Goldstone-Bosonen eine verschwindende Wechselwirkung, weshalb es zuléssig ist, in einer
effektiven Lagrangedichte eine Impulsentwicklung durchzufiihren.

Die Gruppe SU(2) besitzt ny = 22 — 1 = 3 Generatoren; somit hat die Gruppe SU(2)r, x
SU(2) g sechs Generatoren, d.h., wir erhalten 6 — 3 = 3 masselose Goldstone-Bosonen, die
mit dem Piontriplett (7F, 7%, 77) identifiziert werden.

Gemif |GL 84l IGL 85a) fithren wir nun die Kopplung der Vektor- und Axialstréme sowie
der skalaren und pseudoskalaren Dichten an externe, hermitsche, farbneutrale Felder v, (x),

U,(f) (x), au(x), s(x) und p(z) in die Lagrangedichte ein:

Laop = Lhop + @) (wu(a) + 508 (@) +150,(2))a(@) — ) (x) — ivsp(@))a(z)

- ﬁQQCD + Lext- (2'15)

Dabei fasst die Grofe g die up- und die down-Quarkfelder zusammen, ¢ = (u,d)?. Bei den
Feldern, welche an die Vektorstrome koppeln, unterscheiden wir zwischen denjenigen, die
an den isoskalaren Strom koppeln, v,(f) (), und jenen, welche an die isovektoriellen Strome
koppeln, v, (x). In diesem Fall konnen die externen Felder nach den Pauli-Matrizen und

der Einheitsmatrix entwickelt werdenB:
3. 1 3. 3 3
vy = Z EZUL, UELS) = 51}2, a, = Z 2z L, 5= HSO+Z TiSi, D= ]lp0+z Tipi. (2.16)
i=1 i=1 i=1 i=1

Die Lagrangedichte (2.15]) ist invariant unter einer lokalen SU(2)y, x SU(2)z-Transforma-
tion, falls die externen Felder, wie folgt, transformieren:

(vu+a,) — R(v,+a,)R'+iRO,RT, (2.17a)
(v —a,) — L(v, —a,)LT +iLd,LT, (2.17b)
s+ip — R(s+ zp)LT (2.17¢)
s—ip — L(s—ip)R! (2.17d)

Den Quarkmassenterm, welcher den Pionen ihre Masse gibt und zur expliziten Symme-
triebrechung fithrt, erhalten wir, indem wir sop = m setzen. Hierbei ist 7 = (m, + mgq)/2,

Im Fall des Einbeziehens des s-Quarks wird analog nach den Gell-Mann-Matrizen und der Einheits-
matrix entwickelt.
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d.h., wir machen im Rahmen dieser Arbeit von der perfekten Isospinsymmetrie Gebrauch
und vernachlissigen alle Terme, die auf Grund der Verletzung dieser Symmetrie entstehen.
Das elektromagnetische Feld A* wird durch die folgende Betrachtung miteinbezogen®

2_ 1-
Lem = —eA, <3u’y“u — 3d7“d>
2.0
= —6«4#677“< 0 _1 )q
3

1 1 B 1
= gqv“ (—26&) q+aq" (—267'3./4“) q
= —eA,(JE+ TP, (2.18)

wobei e > 0 ist. Mittels eines Koeffizientenvergleich kdnnen wir nun die Form der vektori-
ellen Felder in Anwesenheit der elektromagnetischen Wechselwirkung angeben:

1

1
U,L(LS) — —56./4“, Uy = —567'3./4#. (219)

2.2 Das Noether-Theorem

Fiir die im vorherigen Abschnitt verwendeten Lagrangedichten (Z.14) und (2I3]) wird auf-
gezeigt werden, wie mit Hilfe einer lokalen Transformation der Felder |[GL 60| die axialen
und die vektoriellen Stréme und deren Divergenzen abgeleitet werden konnen. Hierbei wird
auch der Fall der expliziten Symmetriebrechung behandelt.

Wir beginnen zunichst mit der Betrachtung einer Lagrangedichte, die von n unabhéngigen
Feldern ®; (i = 1,...,n) und deren ersten partiellen Ableitungen 0,®; abhéngt:

L= L(P;,0,P;). (2.20)
Wir betrachten nun eine infinitesimale, lokale Transformation der Felder

Di(2) > Bl(x) = Dile) — ica(0) FF [0, ()], (2.21)

)

wobei €,(z) (a = 1,...,n) der infinitesimale Transformationsparameter ist. Bei Vernach-
lissigung von Termen der Ordnung O(e?) erhalten wir als Variation der Lagrangedichte

oL = L(9},0,P;) — L(D;,0,D;)

oL oL oL
— i pa 9% g pa . i 9% pa
e(a:)( Zafl)i b Z@(Qﬂ%)a" Z)—I—aue (m)( Z@(@Mbi) Z>
= €q(x)0, 5" + Opealx) " . (2.22)

Demnach ergeben sich aus der Variation der Lagrangedichte fiir die Stromdichte und deren
Divergenz folgende einfache Ausdriicke:

0oL
e = 2.2
j a(aﬂEa)7 ( 3a’)
0oL
e
B, S (2.23b)

5Die Lagrangedichte L., erhalten wir aus der Lagrangedichte der QCD mittels minimaler Substitution.
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Fiir den Fall einer kontinuierlichen globalen Symmetrietransformation ist der Transformati-
onsparameter €, nicht von x abhéngig, so dass der zweite Term in Gleichung ([2.22) entfillt.
Ist die entsprechende Lagrangedichte weiterhin invariant unter dieser globalen Transforma-
tion, so resultiert daraus, dass der Strom erhalten ist. Dies ist die Aussage des Theorems
von Noether, welches besagt, dass jeder kontinuierlichen globalen Symmetrietransformati-
on, welche die Lagrangedichte (bis auf eine totale Divergenz einer Funktion der Felder und
der Koordinaten) und die Bewegungsgleichungen invariant ldsst, ein Erhaltungssatz und
somit eine Konstante der Bewegung zugeordnet ist. Es gilt also

SL=0 = 8,j""=0. (2.24)

Somit bekommen wir erhaltene Strome 7% mit zeitunabhingigen Ladungen
Q" = /d?’xjo’“(f, t). (2.25)

Dieses Prinzip wenden wir jetzt auf die Lagrangedichte LOQC p aus Gleichung (2.14) an und
erhalten fiir die Variation der Lagrangedichte

3 3
Ta _ Ta "
SLOep = R <§ :@H@(f? - aH@R) Y'ar + qr, <§ jaﬂ@gg + aﬂ@L> Yar.  (2.26)

a=1 a=1

Dabei haben wir zunéchst verwendet, dass E%CD auf klassischem Niveau eine globale
U(2)r x U(2)g-Symmetrie besitzt, d.h., invariant beziiglich
a. = UL qr , qr — Ur qr (2.27)

ist. Uz und Ug sind dabei unabhéngige, unitire (2 x 2)-Matrizen:

3 3
UL = exp (—iZ@ﬁZ) e ©" | Up=exp (—iZ@fZ) e, (2.28)

a=1 a=1

Aus der Variation der Lagrangedichte erhalten wir nun geméf den Gleichungen (2.23al)
und (2.23D)) die Strome und die dazugehdrenden Divergenzen:

a

a
RM = @R’YM%QR, IR = 0. (2.29b)

Die drei Strome L*® transformieren sich unter SU(2), x SU(2)r wie ein (3,1)-Multiplett;
analog dazu transformieren sich die Strome R*® wie ein (1,3)-Multiplett unter SU(2), X
SU(2)g. Statt dieser chiralen Strome verwendet man haufig auch folgende Linearkombi-

nationen:
a
V,u,a — R,U‘)a _I_ L1u‘7a‘ — _/ylu‘%q’ (2.30&)
a
AR — RO _ [ — (77“75%(1, (2.30b)

die sich beziiglich der Paritédt, wie Vektor- und Axialvektorstromdichten transformieren:

P VIRUE ) — V(=) (2.31a)
P AT ) = —A(=7,1). (2.31b)
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Neben den Triplettstromen erhalten wir noch einen Singulettvektorstrom V# und einen

Singulettaxialvektorstrom A*.

VH
9, V"
AN«

9, A"

= ' (2.32a)

= 0, (2.32D)

= "59; (2.32¢)
3 2

= g E,prchuV “Gret. (232(1)

3272

Der Vektorstrom resultiert aus einer ITransformation aller links- und rechtshandigen Quark-
felder mit der selben Phase; der Axialvektorstrom aus einer Transformation mit entgegenge-
setzter Phase. Betrachten wir nun Gleichung (2.32d), so stellen wir fest, dass die Divergenz
des Axialvektorstroms eine Anomalie besitzt [Sch 01al. Diese verschwindet auf klassischem
Niveau, d.h., L%CD besitzt hier (Z32) eine SU(2)r x SU(2)g x U(1)y-Symmetrie, wobei
die Symmetrie beztiglich U(1)y — V fiir Vektor — in der Baryonzahlerhaltung resultiert.
Im Laufe der bisherigen Betrachtung haben wir keine externen Felder betrachtet; nun wer-
den wir uns mit Lagrangedichte ([2.13]) beschéftigen. Diese Lagrangedichte unterscheidet
sich von der bisher betrachteten Lagrangedichte durch ihren Anteil L.y, in welchem die
externen Felder zusammengefasst sind. Sie ist, wie bereits erwdhnt, invariant unter lokalen
SU(2), x SU(2) gr-Transformationen, falls sich die externen Felder geméf (2.17) transfor-
mieren. Werden die externen Felder nicht mittransformiert, so erhalten wir fiir die Variation
von Ly die folgende Gleichung:

T,
5V } 4R + iRV 50 [

[%}
(©"

0Lext = iGry"OR [2 vu} qr + qm“@R[ 5 au} qr

qr, +iqry" ;0L [ 5 au] qr

0%)qr,
@R)CIL

+igy"OL [2 v“} qr, + QL’Y

+iGr (@555‘1 — @f;%) qr + iqrs
) qL + iqrysp(©" —
@L)QR

0% qr,

+iqRrYs <@LPE - @R%

+ 4qr, (@Rp

2
+1iqr7s <@aR85a - @£§QS> qr + iqrysp(0F —

O, *p> qr +iqrs(0f —
(2.33)

wobei a = 1,2,3. Damit bekommen wir fiir die Divergenzen der Triplettvektor- und Tri-
plettaxialstréme in Anwesenheit externer Felder folgende Ausdriicke:

-
aMVaH = igy" [2 Uu} Q+ 3 [5 ol )} q+igy" s [5 au} q
_[Ta . Ta
—1q [5,8} q—1q97s [5,29} q (2.34a)
L Ta
AL = igy'ys [2 vu} q-+ 3617 Y5 [5 vl )} q+igy" [2 ,a,L} q
. Ta . a
+zq75{578}q+2q{5,p} q. (2.34b)

Fiir die Divergenzen der Singulettvektor- und Singulettaxialstrome erhalten wir (ohne An-
omalie):
oVt
o A*

0,
i2 (qy559 + qpq).

(2.35a)
(2.35b)
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Die Einfithrung der externen Felder fiihrt also zu einer expliziten Symmetriebrechung in
der Lagrangedichte, so dass die Divergenzen der Triplettstrome nicht langer Null sind.
Betrachten wir nun explizit die in den Gleichungen (2.19) gegebenen Vektorstrome und
assoziieren die skalare Dichte, wie oben beschrieben, mit der Quarkmasse, so erhalten wir
fiir die Divergenzen der Strome

1
a/iva'u = —566’}/“/1#63[11qu, (2.36&)
1
hAL = —5667“’75Au63amq+Z'Q%Thmq, (2.36Dh)
gV = 0, (2.36¢)
A" = i2qvysmq, (2.36d)

wobei wir die pseudoskalaren Felder p und die axialen Felder a, gleich Null gesetzt haben;
die Anomalie (2.32d)) des Axialvektorstroms wurde dabei nicht beriicksichtigt. Dariiber
hinaus wurde auch eine weitere Anomalie, die im Fall der Anwesenheit der elektromagne-
tischen Wechselwirkung in der dritten Komponente des Axialvektorstroms auftritt, nicht
beriicksichtigt [SS_05]. Diese ist jedoch von der Ordnung e? und kann deshalb vernach-
lassigt werden. Bei der Herleitung dieser Relationen haben wir, wie oben bereits erwihnt,
eine perfekte Isospinsymmetrie angenommen. Wir stellen nunmehr fest, dass der Singulett-
vektorstrom Vpu stets erhalten ist. Darin spiegelt sich die Diagonalitit der Quarkmassen-
matrix und die flavour-Unabhéngigkeit der Wechselwirkung wider. V# ist die Summe der
zwei Baryonstrome der Quarkflavours, d.h., fiir jeden Quarkflavour existiert eine U(1)y-
Symmetrie. Eine besondere Bedeutung kommt Gleichung (2.36D) zu. Sie wird als PCAC-
Relation unter Anwesenheit der elektromagnetischen Felder bezeichnet und wurde bereits
in dhnlicher Form von Adler und Gilman [AG 66| mittels minimaler Substitution abgelei-
tet. Im Unterschied zum Vektortriplettstrom ist der Axialvektortriplettstrom lediglich im
chiralen Grenzfall erhalten, wohingegen der Vektortriplettstrom bei Annahme der Isospin-
symmetrie bereits in Abwesenheit externer Felder erhalten ist. Schalten wir die externen
Felder ab und nehmen Isospinsymmetrie an, so bleiben wiederum die Vektortriplettstrome
erhalten und die Axialtriplettstrome nicht, d.h., die SU(2)1, x SU(2) gp-Symmetrie wird ex-
plizit nach SU(2)y gebrochen. Eine ausfiihrliche Darstellung iiber Symmetriebrechungen
wird in den Referenzen [Rey 74, [Pag 75| gegeben.

2.3 Chirale Storungstheorie

Die chirale Storungstheorie ist die effektive Feldtheorie der QCD im Niederenergiebereich.
Diese ist wohl definiert und Ordnung fiir Ordnung renormierbar. Die effektive Lagran-
gedichte hat alle méglichen Terme zu beinhalten, welche die von der Theorie geforderten
Symmetrien erfiillen, z.B. die Paritdtserhaltung, die Ladungskonjugation, die Hermitizitét,
die Lorentzinvarianz und die SU(2)r x SU(2)r x U(1)y-Symmetrie. Die beiden Hauptan-
nahmen sind:

1. Die Massen der leichten Quarks lassen sich als Storungen behandeln.

2. Im chiralen Limes (Quarkmassen gleich Null) wird die chirale Symmetrie spontan zu
ihrer vektoriellen Untergruppe hin gebrochen.
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2.3.1 Mesonische chirale Storungstheorie

Gesucht ist nun die effektive Lagrangedichte, welche im chiralen Grenzfall hinsichtlich
SU(2), xSU(2)grxU(1)y invariant ist. Diese Lagrangedichte muss die drei pseudoskalaren
Goldstonebosonen, die sich beziiglich SU(2)y, wie ein Triplett transformieren, als effektive
Freiheitsgrade beinhalten. Dies ergibt sich, da die SU(2)1, x SU(2) g-Symmetrie spontan zu
SU(2)y gebrochen wird und wir geméf des Goldstone-Theorems (3 + 3) —3 = 3 masselose
Goldstone-Bosonen erhalten. Die Goldstone-Bosonen werden in einer speziell unitéren (2 x
2)-Matrix zusammengefasst:

U—expz— , &= ng)aTa:( WO_ ﬂﬂ;). (2.37)

—T

Hierbei ist die Konstante F' die Pionzerfallskonstante im chiralen Grenzfall, F;; = F(1 +
O(m)) = 92,4 MeV [GL 85a].

Die Matrix U transformiert sich unter einer globalen SU(2); x SU(2)g-Transformation
wie folgt:
U~ RUL' mit Re SU(2)g und L € SU(2)r. (2.38)

Die Terme der effektiven Lagrangedichte sind geméfs ihrer chiralen Ordnung klassifiziert
und die Lagrangedichte selbst ist geméif dieser Ordnung organisiert. Zur Konstruktion
der effektiven mesonischen Lagrangedichte, bzw. der einzelnen Terme einer bestimmten
Ordnung werden folgende Basisbausteine verwendet:

b,U = 9o,U—ir,U+1Ul,, (2.39a)
X = 2B(s+ip), (2.39h)
;f/u = aull/ - aulp - i[lua lu]a (2390)
£l = Oury — Oury —ilru,ml, (2.394)
mit
ry, = v,+a, und (2.40a)
ly, = v,—ay, (2.40b)

wobei die in Gleichung (2.39D) auftretende Konstante B unmittelbar mit dem Quark-
kondensat durch 2F2B = — < @q > verkniipft ist. Im Rahmen des hier verwendeten
Zghlschemas besitzen die Basisbausteine folgende chirale Ordnung:

U=0(") , DLU=0(q) , flr=0(* , x=0(¢). (2.41)

uv

Die einzelnen Basisbausteine transformieren unter der chiralen Gruppe (lokale SU(2)r x
SU(2) g -Transformation) wie folgt:

(D U) — R(D,U)LT | fi+— RfE'RT | — LAYLT | x+— RxLl.  (2.42)

Die Symmetrie beziiglich Uy (1) ist in trivialer Weise erfiillt, da die Goldstone-Bosonen die
Baryonzahl Null besitzen. Da die Gréfe x zur Ordnung O(g?) zihlt und die Lorentzin-
dices, auf Grund der Lorentzinvarianz, stets kontrahiert werden miissen, treten in dieser
Impulsentwicklung nur gerade Ordnungen auf.
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Die allgemeinste, effektive, chirale Lagrangedichte der niedrigsten Ordnung (O(q?)) lautet:

£ = F—ZTr[D U (DU +F—2Tr[ Ut + Uy (2.43)

Der Index (2) bezeichnet hierbei die chirale Ordnung, d.h., die Lagrangedichte [2.43]) ent-
hilt lediglich Terme der Ordnung O(g?). Entwickeln wir den zweiten, symmetriebrechenden
Term nach den Feldern, so ergibt sich fiir die Massen der Goldstonebosonen, d.h., der Pio-
nen in niedrigster Ordnung

M2, = 2Brh. (2.44)

™

Dabei bezeichnet der untere Index 2 wiederum die chirale Ordnung.
Neben der Lagrangedichte der Ordnung O(g?) bendtigen wir in dieser Arbeit auch die
Lagrangedichte der nichst hoheren Ordnung (O(g%)). Diese lautet gemif [GSS 88]:

LY = %{Tr[DMU(D“U)T]}2+%TF[DMU(DVU)T]TV[D“U(DVU)T]

I3 + 14
16

v ~16 v v
+isTr[f U U +15Tr[ " D'UDYU)! + fL,(D*U) DVU]
l7 hi+hs — 1y
A T_py2p 2070 4
16{ rixU' = UX']} + 1
hi—hs —h
e (Ut + U+ (Tt - o)

. 4hg +1
—oTr[yUTyUT + UXTUXT]) _ %

l
+ {TrixUt + UXT}? + éTr[DHU(D“U)T]Tr[XUT + Uxf]

Trixx']

Trlfo 1+ FR . (2.45)

Die Niederenergiekonstanten sind nicht durch die chirale Symmetrie bestimmt, sondern
miissen entweder durch den Vergleich mit experimentellen Daten gewonnen oder an Hand
der Gitter-QCD oder phinomenologischer Modelle abgeleitet werden.

Es ist jedoch nicht ausreichend eine systematische Anordnung der Lagrangedichte zu besit-
zen. Dariiber hinaus benétigen wir ein Schema, welches uns erlaubt, Feynman-Diagramme
zu klassifizieren, um physikalische Prozesse bis zu einer bestimmten Ordnung berechnen zu
konnen. Ein solches Schema wird uns mit dem so genannten Weinberg’'schen Zdihlschema
[Wei 79] an die Hand gegeben. Betrachten wir ein beliebiges Diagramm und reskalieren
die externen Impulse der Goldstone-Bosonen und deren Massend, dann ergibt sich fiir das
Verhalten der invarianten Amplitude des Diagramms Folgendes:

M(tp,*M?) = tP M(p,M?), D=2+ 2(n—1)Ny, + 2Ny, (2.46)

n=1

Hierbei steht Na, fiir die Anzahl der Vertices im Diagramm, die aus der Lagrangedichte
Loy, herriihren und Np, fiir die Anzahl der unabhingigen Schleifen. Daraus ergibt sich,
dass Diagramme mit kleinem D dominieren®. Die Schleifendiagramme sind auf Grund des
Summanden 2N, stets unterdriickt.

"Das Reskalieren der Massen ist ein rein mathematisches Instrument, wohingegen sich die Impulse
experimentell bis zu einem bestimmten Maf stetig verkleinern lassen.
8Es gibt Fille, in denen die fithrende Ordnung der Baumgraphen keinen Beitrag liefert.
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2.3.2 Baryonische chirale Storungstheorie

Im vorherigen Abschnitt haben wir uns auf den rein mesonischen Sektor beschrankt, d.h.,
auf die Wechselwirkung der Goldstone-Bosonen untereinander. Es ist jedoch méglich, die
chirale Storungstheorie auf den baryonischen Sektor auszuweiten und die Dynamik der
Baryonen bei kleinen Energien zu beschreiben. Das Ziel ist demnach die Beschreibung der
Wechselwirkung zwischen Baryonen und Goldstone-Bosonen, d.h., neben den Goldstone-
Bosonen sind jetzt auch die Baryonen effektive Freiheitsgrade. Im Folgenden beschrinken
wir uns darauf, Prozesse zu betrachten, die genau ein Baryon im Anfangs- und im End-
zustand besitzen. Konkret werden wir in dieser Arbeit die Nukleonen, d.h., Proton und
Neutron betrachten @ Die Nukleonen sind in dem Nukleonfeld

U= (p,n)" (2.47)

enthalten, welches die Viererspinoren von Proton und Neutron zusammenfasst. Anders als
bei den Mesonen kann der Vierervektor der Baryonen nicht als klein im Vergleich zur chi-
ralen Skala angesehen werden, sondern lediglich der Dreiervektor. Der Grund dafiir ist,
dass die nullte Komponente der Gesamtenergie des Baryons entspricht und diese nicht als
klein angesehen werden kann, da die Baryonmasse, bzw. Nukleonmasse von der gleichen
Grofsenordnung, wie die chirale Skala ist. Das Auftreten der Nukleonmasse bereitet dar-
iiber hinaus, wie wir in Kapitel Blnoch diskutieren werden, Probleme, da diese im chiralen
Grenzfall nicht verschwindet. Des Weiteren existieren in der baryonischen chiralen St6-
rungstheorie im Gegensatz zur rein mesonischen chiralen Stérungstheorie Lagrangedichten
fiir alle chiralen Ordnungen und nicht nur fiir die geraden Ordnungen; die Ursache dafiir
liegt darin, dass mit dem Spin ein weiterer Freiheitsgrad auftritt. Die Pionen werden nun-
mehr in der Gréke u zusammengefasst, welche wie folgt mit der bereits bekannten Grébe

U zusammenhéngt:
3
1
u= vU—ewp{zﬂT;mSl}. (2.48)

Im baryonischen Sektor haben wir, zusitzlich zu den bereits aus dem mesonischen Sektor
bekannten, folgende Basisbausteine:

Dy = (8 +Tu—iwf)) W mit (2.49a)
1

r, = §[uT (8 — irp)u + u(dy, —il,)ul] und (2.49b)

u, = i[ul (0, —iry)u —u(8, —il,)ul], (2.49c¢)

e = ulyul +uxTu, (2.49d)

fuil, = uf/ﬁ,uJr + qufVu, (2.49¢)

o) = 0l -0y, (2.49f)

Diese Gréfsen besitzen im chiralen Z&hlschema die folgenden chiralen Ordnungen:

V=00, DY =0("), uy=0(q) , xt =0) , fi=0(), vfi) = O).
(2.50)

Die Nukleon- und Pionfelder werden jeweils zur Ordnung O(q") geziihlt. Die kovariante
Ableitung D,, kann sowohl auf das Nukleonfeld ¥ als auch auf das Pionfeld U und die

°Im Rahmen einer SU(3) chiralen Stérungstheorie ist es auch mdoglich die Baryonen des 1/27-
Baryonoktetts zu betrachten.
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externen Felder wirken. Wirkt die kovariante Ableitung auf ein Nukleonfeld, so zdhlen wir
diese Groke, wie angegeben, zur Ordnung O(q°), da die Zeitableitung die Gesamtenergie des
Nukleons liefert und diese Groéfe nicht als klein im Verhéltnis zur chiralen Skala angesehen
werden kann; wirkt die kovariante Ableitung hingegen auf das Pionfeld U oder ein externes
Feld, so zahlen wir diese Grofe zur Ordnung O(q). Dabei ist zu beachten, dass die hier im
baryonischen Sektor verwendete kovariante Ableitung nicht mit jener aus dem mesonischen
Sektor verwechselt wird.

Die Basisbausteine sind gerade so gewahlt, dass es einfach ist, Terme zu konstruieren,
welche unter der chiralen Gruppe invariant sind. Die einzelnen Basisbausteine besitzen das
folgende Transformationsverhalten:

v — K(L,RU)V, (2.51a)
U — UK(L,RU), (2.51D)
X = K(L,RU)XK(LRU)™" mit X =uyu,xx, fi,, (2.51c)
v = o), (2.51d)

Dabei ist die SU(2)-wertige Matrixfunktion K (L, R,U) wie folgt definiert:

K(L,R,U) = VRUL' 'R VTU. (2.52)

Fiir die kovariante Ableitung folgt, dass [D,, X] gemé$ Gleichung 2.51d) und D, ¥ gemih
Gleichung (2574l transformiert wird [FMMS 00)].
Die effektive Pion-Nukleon-Lagrangedichte der niedrigsten Ordnung O(q) lautet [GSS 88J12:

ESK, =VU (zﬂ) —m+ g;'y“%uﬂ> . (2.53)

In dieser Lagrangedichte treten zwei neue Niederenergiekonstanten auf, zum einen die
Nukleonmasse my = m(1+ O(q)) = 939,57 MeV und zum anderen die axiale Kopplungs-

konstante g4 = g4(1+0(q)) = 1,2695 [Yao+ 06]. Die GréRen m und g, bezeichnen dabei
jeweils die physikalischen Gréfsen im chiralen Grenzfall. Betrachten wir diese Lagrange-
dichte nun explizit aufgeteilt nach den externen Feldern:

Efrljz, = U@Ep-—m)¥ + \Tlfy“v/(f)\lf
1 Ga -~
+ éﬁ\IJW“(uTG#u + uﬁﬂuT)W + i%\lﬂyu%(umﬂu — u@uuT)\II

1- _
+ §\Iw“(uTvuu + uv,u) W + g?A\I/’y“%(uTv#u — v, ul) W (2.54)

Hierbei haben wir, wie in der gesamten Arbeit, a, = 0 gesetzt, da wir den axialen Anteil
nicht bendtigen; daraus ergibt sich, dass r, = [, = v,. Die Lagrangedichte der néchstho-
heren Ordnung O(q?) lautet [FMMS 00, [FS 03]:

2 - 1 - -
Egr]i/' = a¥Tr[x4]¥ - CQmTr[UuUu}(‘I’D“DV\I/ + (\I/D”D”\II)T)
1 1- -
+ 03§\I/Tr[uﬂu“]\ll + 2‘04Z\Il[u#, uy]o W + cs U x4 W

1_ 1_
oy UL + oo oo, (2.55)

Der Parameter ¢ steht hierbei fiir eine kleine Gréofie, wie z.B. einen Mesonenviererimpuls, Nukleon-
dreierimpuls oder die Pionmasse.
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Diese Lagrangedichte beinhaltet sieben neue Niederenergiekonstanten (cy,...,c7). Auker-
dem haben wir noch der Einfachheit halber eine neue Schreibweise fiir bestimmte Grofen
eingefiihrt. Diese lautet

X=X- %Tr[X]]l. (2.56)

Des Weiteren bendtigen wir in dieser Arbeit die Lagrangedichten der chiralen Ordnung
drei und vier. Diese sind in Referenz [FMMS 00| gegeben und beinhalten 23 bzw. 118
unabhingige Terme, die wir allerdings nicht alle bendtigen werden. Im Folgenden sind
deshalb nur die benétigten Terme der jeweiligen Lagrangedichte angegeben. Aufkerdem
fiihren wir zur besseren Ubersicht folgende Schreibweisen ein:

Do — {DQ,DB},
b = (o))
[Da7uﬁ]+[DﬁauOé]'

hag

Aus der Lagrangedichte ES{, benotigen wir die folgenden neun Terme:

LS = d6ﬁ {\Ifz (D, | D7+ (Wi [, ) D”\Il)T}
+ d7% {@z DT A, + 2031 DY (i [ D2 Tl 1, + 201 D”\II)T}
" d8% {\Mﬁmﬂmf ta D -+ (Wi Tr[f;fuua]Dﬁ‘I’)T}
+ dgi {mewﬁmf;,, + 20 ]ua D + (\I:iewﬁTr[f;V - 2U£’;)}uapﬁ\p>T}
+ d16%‘Il’y“'y5Tr[X+]uu\I’ + dlgé\ii’y“w, (D, x-]¥
- d20# {‘T’W”% {NJ/;U,\} DMV + (‘T/W“’YE) {N,fwu,\} DAW/)T}

1. 1 _
+ da1 5 Ui s [ s u”} W a5 095 [ D] W (2.57)
Aus der Lagrangedichte 5;4]2, bendtigen wir die folgenden 19 Terme:

1 I s
ﬁ%{; = —eas {\IJZTr[f)‘; + 2”§2]hAV’Y5V“D”\II n h.k:.}
1 (.. i )
T ym {\I’ZTr[fAJL + 20001, 457" DR+ h.k.}

+eso {\Ifm[ £, 4 208 sy DI h.k;.}

24m3 Ap
1 (- )
s~ {\I/M [DA,Tr[ P 2v,<fy]} A5y DV h.k.}

1 T, S
s~ {Wiu, [DA, Trlfs + 2u§3]] Y5y DV h.k;.}
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es {Wiw, [ D) Tef5, + 200)1] 159" D" + k. |
[DA, [DA,Tr[f/j,, + 2va5,,]” oy
{\i'iTr[f;LMhAy]’yyy“D”\I/ + h.k.}
{\IfiTr[ B A sy DR+ h.k.}
WiTr[f5f huplys ™ D0 + h.k.}

ey {\Ilz [ i hy,,} MY DPT h.k.}

T {\IliTr[u’\[DA, Fh sy D" + h.k.}
. emﬁ {‘I’iTr[uu[D)‘, Fo sy DY + h.k.}

{@iTr[uH D>, fi sy D" + h.k.}

—eni ¥ [DA, [DA, fm” o
_ el%%\f’Tr[ b+ 200 Tr[x 4o W — emﬁ%@ FbTrixg o v
- engﬁ {\I’Tr[ij + 2UL?]X,757“D”W + h.k‘.}

1 _ -
—ens— (U X s D70 + bk}
4m

Hierbei steht h.k. fiir den hermitisch konjugierten Anteil.

19

(2.58)



Kapitel 3

Infrarotregularisierung

Die effektive Feldtheorie der starken Wechselwirkung im Niederenergiebereich basiert auf
einer Entwicklung der Green’schen Funktionen der QCD in (kleinen) externen Impulsen
und Quarkmassen (chirale Entwicklung). Im rein mesonischen Sektor fiihrt eine Kombi-
nation von dimensionaler Regularisierung und modifiziertem minimalen Abzugsschema zu
einem direkten Zusammenhang zwischen der Schleifenentwicklung und der chiralen Ent-
wicklung in kleinen Impulsen und Quarkmassen, so dass jedes Diagramm eine eindeutige
chirale Ordnung besitzt. Bei der Hinzunahme des baryonischen Sektors ist die Struktur im
Niederenergiebereich komplizierter. Es tritt eine neue Massenskala auf — die Masse der Ba-
ryonen, bzw. des Nukleons. Diese Masse verschwindet im chiralen Grenzfall nicht und kann
auch nicht als eine kleine Groéfse betrachtet werden, so dass das chirale Zahlschema zer-
stort wird. Die zugehorige effektive Feldtheorie kann zwar in manifest Lorentz-invarianter
Form formuliert werden, jedoch ist es nicht trivial, dies in diesem Rahmen umzusetzen.
Die Darstellung in diesem Kapitel orientiert sich an den Referenzen [BL_99, [SGS 03].

3.1 Motivation

Die chirale Entwicklung der Schleifendiagramme beginnt im Allgemeinen mit derselben
Ordnung, wie die der entsprechenden Baumdiagramme, so dass die Renormierung der
Divergenzen einer Abstimmung mit den Niederenergiekonstanten bedarf; so muss z.B. die
Nukleonmasse in jeder Ordnung renormiert werden.

Berechnen wir also ein Schleifendiagramm, so treten aus den Schleifenintegralen herriih-
rend Unendlichkeiten auf, so dass es erforderlich ist, ein Renormierungsschema anzuwen-
den, d.h., zundchst werden die Divergenzen per dimensionaler Regularisierung extrahiert
und anschlieiend in den Niederenergiekonstanten der Lagrangedichte absorbiert. Dies be-
deutet, dass die Niederenergiekonstanten in einen divergenten und einen endlichen Anteil
aufgespalten werden, wobei der divergente Anteil derart gewiahlt wird, dass er sich exakt
mit jenen Divergenzen, welche aus dem Schleifenintegral stammen, weghebt. Die nunmehr
verbleibenden endlichen Anteile sind die experimentell bestimmbaren renormierten Gro-
fen. Dariiber hinaus werden abhingig von dem verwendeten Renormierungsschema auch
endliche Anteile in den Niederenergiekonstanten absorbiert, so dass die Niederenergiekon-
stanten von dem jeweiligen Renormierungsschema abhéngen. Die so genannten Gegenterme
sind bereits in der effektive Lagrangedichte der chiralen Stérungstheorie enthalten, da es
sich bei dieser um die allgemeinste denkbare mit den Symmetrien der QCD vertrigliche
Lagrangedichte handelt [Wei 79).

20
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Im rein mesonischen Sektor wird das so genannte modifizierte Abzugsverfahren der chiralen
Storungstheorie (MS) angewandt. Hierbei wird die Konstante

1
R == +3p —1-In(4m) (3.1)

in den Niederenergiekonstanten absorbiert, wobei € = (n — 4)/2; n ist dabei die verallge-
meinerte Dimension. Verwenden wir diese Methode im baryonischen Sektor, so stellen wir,
wie bereits erwahnt, fest, dass das chirale Zéhlschema verletzt wird.

Gasser, Sainio und Svarc fithren dazu aus [GSS 88|, dass die Problematik der Verletzung
des chiralen Zahlschemas prinzipiell auch im mesonischen Sektor vorhanden ist, die Wahl
der dimensionalen Regularisierung jedoch deren explizites Auftreten verhindert. Fiir den
baryonischen Sektor hingegen ist keine Regularisierungsmethode bekannt, die in der Lage
ist, dies in einfacher Weise zu leisten.

Demnach wird also eine Methode benétigt, die es uns erlaubt, das chirale Zdhlschema wie-
der herzustellen. Dies muss allerdings systematisch geschehen, da zu gew#hrleisten ist, dass
die verbliebenen renormierten Ausdriicke weiterhin die chirale Symmetrie erfiillen. Es ist
also nicht moglich, diejenigen Terme, welche das Z&hlschema verletzen, einfach (willkiirlich)
zu subtrahieren.

Eine bisher hiufig verwendete Methode, die das chirale Z&hlschema wiederherstellt, ist
die so genannte ,heavy baryon chiral perturbation theory“ (HBxPT). Der Ansatzpunkt
dieser Methode ist dieselbe Lorentz-invariante effektive Lagrangedichte, welche auch im
relativistischen Ansatz Verwendung findet. Diese Lagrangedichte ist jedoch nicht jene,
aus welcher schlieflich die Feynmanregeln bestimmt werden. Der Dirac-Spinor, der die
Freiheitsgrade der Nukleonen beschreibt, wird auf ein zweikomponentiges Feld reduziert
und die baryonische Kinematik wird um dem nichtrelativistischen Grenzfall entwickelt.
Diese Methode erfiillt zwar das chirale Zahlschema, hat jedoch zur Folge, dass die manifeste
Lorentz-Invarianz aufgegeben werden muss.

Abgesehen von der Tatsache, dass die nichtrelativistische Entwicklung die Lagrangedich-
te aufblaht, leidet die HBYPT an einem weiteren Mangel: Die zugehorige Storungsreihe
konvergiert in Teilen des Niederenergiesektors nicht [BL_99].

3.2 Das Weinberg’sche Zihlschema

Zur Klassifizierung eines renormierten Feynmandiagramms, eines renormierten Schleifenin-
tegrals oder der Terme der Lagrangedichte benétigen wir ein Zahlschema, welches es jeweils
ermoglicht dem entsprechenden Objekt eine bestimmte chirale Ordnung zu zuweisen. Das
von Weinberg vorgeschlagene Schema [Wei 91| verwendet folgende Klassifizierung: Eine
Schleifenintegration in n Dimension zihlt als O(¢"), ein Meson- bzw. Pionpropagator als
O(q~?), ein Baryon- bzw. Nukleonpropagator als O(¢~!), ein Vertex abgeleitet von der
Lagrangedichte [,gk) als O(¢%") und ein Vertex abgeleitet von der Lagrangedichte 57(3\[ als
O(q"). Die Grofe g stellt hierbei eine kleine Grofe dar, wie z.B. eine Mesonmasse, einen
kleinen externen Meson-Viererimpuls oder einen Baryon-Dreierimpuls. Fiir die chirale Ord-
nung eines Feynmandiagramms ergibt sich:

o o
D =nNg—2I; — Iy + » 2kNg, + > IN}. (3.2)
k=1 =1

'Eine Herleitung von (2] findet sich z.B. in Referenz [Sch 02].
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Hierbei ist Ng die Anzahl der unabhéngigen Schleifenimpulse, I; die Anzahl der internen
Pionlinien und Iy die Anzahl der internen Nukleonlinien. NJ, ist die Anzahl der Vertices,

)

welche von der Lagrangedichte Lﬁ?’“ herrithren und AV, lN ist die Anzahl jener Vertices, die

aus der Lagrangedichte 552\, abgeleitet sind. Auf Grund des Summanden 2Ny, sind Schlei-
fendiagramme also stets unterdriickt. Auferdem sollten bei niedrigen Energien Diagramme
mit einem kleinen D dominieren. Es existieren allerdings auch Fille, in denen die fiihrende
Ordnung der Baumdiagramme keinen Beitrag liefert.

3.3 Die Infrarotregularisierung

Becher und Leutwyler entwickelten mit der so genannten Infrarotregularisierung [BIL_99]
eine Methode, welche manifest Lorentz-invariant ist und somit die Probleme von HBxPT
umgeht. Die grundlegende Idee dabei ist es ein (beliebiges) Einschleifenintegral H in einen
singuléren (infraroten) Anteil I und einen reguldren Anteil R aufzuspalten.

H=1I+R. (3.3)

Zur Verdeutlichung dieser Methode betrachten wir ein bestimmtes charakteristisches, di-
mensional regularisiertes Ein-Schleifenintegral als Beispiel:
d"k 1
H n(0,—p) = - —.
N (0, =p) / (2m)" [k?2 — M2 +i0t][(k — p)?2 — m? 4+ i0F]

(3.4)

Hierbei bezeichnet n die Dimension, m die Nukleonmasse im chiralen Grenzfall und M die
Pionmasse in niedrigster Ordnung. Verwenden wir das Weinberg’sche Z&hlschema, so ist
das Integral von der Ordnung O(¢"~3). Dieses Integral schreiben wir nun mittels der so
genannten Feynman-Parametrisierung

1 ! dz
ab /0 [az + b(1 — 2)]? (3:5)

um. Dabei ist in unserem Fall @ = (k — p)? — m? + 40" und b = k? — M? + i0*. Nach
dem Vertauschen der Integrationsreihenfolge und der Ausfiihrung der Integration iiber den
Schleifenimpuls k£ erhalten wir

i 1
Hon(=9.0) = TR —n/2) /O d2[A(2))/2=2, (3.6)

mit
A(z) = —p*(1 — 2)z + m?z + M?*(1 — z) — i0™. (3.7)

Das Integral (8.6) wird nun, wie bereits erwéhnt, in einen singuldren infraroten Anteil I x
und den Rest Ry, den reguldren Anteil, aufgespalten:

Hﬂ'N = ITI'N+R7TN7 (38)
Iy = rﬂl)n T2 —n/2) /0 dz[A(2)] /D2, (3.9)
Ry — Wr(z—n/z) /1 ~ da[A(z) D2, (3.10)
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Dabei gilt hinsichtlich der Betrachtung eines Ausdrucks, welcher das Integral H,y beinhal-
tet, dass die beiden durch diese Separtion (B.8]) entstandenen Ausdriicke, welche zum einen
den singulédren infraroten Anteil Iy und zum anderen den regulren Anteil R,y beinhal-
ten, nun genauso die Ward-Identitdten separat von einander erfiillen, wie diese auch von
dem urspriinglichen Ausdruck erfiillt werden.

In der Zerlegung (3.8]) ist das Integral I;; (3.9) im Falle einer nicht ganzzahligen Dimension
n proportional zu einer nicht ganzzahligen Potenz der Pionmasse (~ M™™3) und erfiillt
somit das Zahlschema.:

I=0@"*)(1+0(q) +0(g*) +...). (3.11)

Andererseits erfiillt der Rest Ry aus (B.10) zwar nicht das Zahlschema, aber fiir beliebige
n enthilt er nicht negative Potenzen kleiner Parameter und kann somit in einer unendlichen
Anzahl von Gegentermen absorbiert werden.

R=0(")+0(" )+ 0 +.... (3.12)

Dartiber hinaus werden auch die divergenten Anteile von Iy in einer unbegrenzten Anzahl
von Gegentermen absorbiert.

Eine Reformulierung (und Erweiterung) dieser Methode findet sich in Referenz [SGS 03];
diese Formulierung ist analog zur EOMS-Renormierung? [FGJS 03] und erweitert die ur-
spriingliche Formulierung der Infrarotregularisierung dahingehend, dass es nunmehr mog-
lich ist, auch Mehrschleifenintegrale zu berechnen. Im Rahmen der EOMS-Renormierung
wird eine konventionelle Renormierungsvorschrift verwendet, um jene Terme zu identifi-
zieren, die das Zahlschema verletzen, ohne zuvor das Integral berechnen zu miissen. Diese
Methode zeichnet sich also vor allem dadurch aus, dass es im Prinzip mdéglich ist, auf
bekannte Methoden zuriickzugreifen und bereits bekannte Ausdriicke nicht nochmals be-
rechnen zu miissen.

Um nunmehr R im Rahmen der reformulierten Infrarotregularisierung zu bestimmen,
schreiben wir das urspriingliche Integral (8.4]) mittels der Schwinger-Parametrisierung

1 (e

T @y S el - 4 (313

um und integrieren iiber die Schleifenimpulse. Anschliefsend reparametrisieren wir die
Schwinger-Parameter, fiihren die Integration iiber den ersten dieser Parameter aus und
erhalten im Falle unseres Beispiels

4—n
Hon (0, —p) = it F(2—n/2)/dz((l—z)2p2+zM2—(p2—m2)(1—z)—ie)”/22. (3.14)

An/2
Der erhaltene Integrand wird nun in eine Taylorreihe nach kleinen Parametern entwickelt.
Dabei ist zu beachten, dass p? als m?+(p? —m?) geschrieben werden kann und (p? —m?) laut
dem von uns verwendeten Zihlschema von der chiralen Ordnung O(q) ist. Vertauschen wir
schlieRlich die Reihenfolge von Integration und Summation, [dz ) — Y [ dz, so erhalten
wir
m"4T(2 — n/2)

(4m)™/2(n — 3)
P (=6 (P —m?) | (n=3) M
2m? (n—>5) 4m?

4—n

X |1—

(3.15)

2engl.:extended on-mass-shell scheme.
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Dieses Ergebnis stimmt mit jenem von Becher und Leutwyler [BL 99| iiberein. Die soeben
behandelte Methode wird in Kapitel Bl im Rahmen der technischen Umsetzung nochmals
ausfiihrlich diskutiert.

Ein anderer Weg zur Bestimmung des infraroten reguldren Anteils R besteht darin, einen
Integranden zu verwenden, der aus dem urspriinglichen Integranden durch das Entwickeln
nach kleinen Parametern hervorgeht. Dieser wird danach termweise integriert, um R zu
erhalten. Im Fall unseres Beispiels wird dazu folgende Entwicklung betrachtet:

— (PP —m?) (M)
Jon =Y i (3.16)
1,j=0

{(pa>< 2y ! }
22 0p,) \oM2) [k —p)? —m? +-i0F[R2 — D2 4i0¥]

Dabei ist zu beachten, dass die Koeffizienten von (p? —m?) (M?)7 nur fiir Viererimpulse p*
betrachten werden, welche die Massenschalenbedingung erfiillen. Obwohl die Koeffizienten
noch immer von der Richtung des Vierervektors p* abhingen, ist die integrierte Reihe,
nach der Integration hinsichtlich des Schleifenimpulses und der Bestimmung der Koeffizi-
enten fiir p> = m?, nur noch eine Funktion von p?. Durch das schrittweise Integrieren der
Entwicklungsreihe (3.18) wird die Entwicklung von R [BL 99] in M? und p? —m? ebenfalls
reproduziert. Fiir den allgemeinen Fall ist dies in Referenz [SGS 03] gezeigt.



Kapitel 4

Einfihrung in die Pionproduktion

In diesem Kapitel erfolgt eine Einfithrung in die Pionproduktion. Im Rahmen dieser Arbeit
wird sowohl die Pionelektroproduktion als auch die Pionphotoproduktion behandelt, wobei
sich die letztere als ein Grenzfall der erstgenannten betrachten lisst. Deshalb wird primér
der allgemeinere Fall der Pionelektroproduktion diskutiert. Die Darstellung in diesem Ka-
pitel orientiert sich an den Referenzen [MS 03], [DT 92| und [AFE 79].

Unter Pionelektroproduktion wird die inelastische Elektronenstreuung am Nukleon mit der
Produktion eines Pions verstanden. Demnach betrachten wir die folgenden vier physikali-
schen Prozesse:

e +p — e +n+7t, (4.1a)
e +n — e +p+7, (4.1b)
e +p — e +p+a’ (4.1c)
e 4+n — e +n+n° (4.1d)

Die Pionphotoproduktion erhalten wir aus der Pionelektroproduktion, indem wir den Im-
puls des virtuellen Photons im Rahmen der Einphotonaustauschnédherung auf die Massen-
schale setzen und somit ein reelles Photon erhalten. Die vier physikalischen Prozesse der
Pionphotoproduktion sind somit

y4+p — n+at, (4.2a)
y+n — p+m, (4.2b)
y+p — p+a, (4.2¢)
y+n — n+a’ (4.2d)

4.1 Kinematik

Prozesse der Art ({I) werden durch den Austausch von einem oder mehreren virtuel-
len Photonen zwischen den Lepton- und den Hadronstrémen beschrieben. Die Unter-
suchung der Pionelektroproduktion in dieser Arbeit erfolgt im Rahmen der Einphoto-
naustauschniherung (Abb. [, da die elektromagnetische Kopplungskonstante a mit
a = e?/4w ~ 1/137 sehr viel kleiner als 1 ist und somit im Rahmen einer Stérungs-
rechnung die Beitriige der Ordnung o und hoherer Ordnungen als klein erwartet werden
konnen. D.h.; je grofer die Anzahl der ausgetauschten Photonen, desto kleiner wird der
entsprechende Beitrag auf Grund der kleinen elektromagnetischen Kopplungskonstante «
erwartet.

25
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Elektronenstreuebene

Reaktionsebene

Abbildung 4.2: R&Aumliche kinematische Variablen der Pionelektroproduktion sowie
Elektronenstreu- und Reaktionsebene.

Die Reaktion der Pionelektroproduktion lduft im Allgemeinen innerhalb zweier Ebenen
ab, der Elektronenstreu- und der Reaktionsebene, wie in Abbildung dargestellt. Die
Elektronenstreuebene wird dabei durch den Impuls des einlaufenden und den Impuls des
auslaufenden Elektrons aufgespannt; die Reaktionsebene durch den Pionimpuls und den
Impulsiibertrag, welche den Winkel 6, zwischen sich einschlieften. Die Reaktionsebene ist
dabei um den Winkel ¢, gegen die Streuebene gedreht.

Des Weiteren gilt die Viererimpulserhaltung

P+ ki =+ k4 g (4.3)
bzw. die Energie- und Impulserhaltung
E,+ & = Ef—i-gf-i-Eﬂ,
Pit+ki = Prtki+ad
Betrachten wir lediglich den Impulsiibertrag
R k;ﬁ (4.5)
so ergibt sich fiir die Impulserhaltung
Py + K =ph 4 gt (4.6)

Das Quadrat des Impulsiibertrags k? des virtuellen Photons, die so genannte quadrierte
SMasse”, ist stets flir die Elektronenstreuung negativ, d.h., die virtuellen Photonen sind
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raumartig. Deshalb wird auch oftmals die Gréke Q? = —k? verwendet. Die Raumartig-
keit der virtuellen Photonen wird bei einer Betrachtung im Ruhesystem des auslaufenden
Elektrons deutlich:

k= 2m?—2k; - ky
= 2me(me — &)

= 2m, <m —\/m2 + |/5i2> . (4.7)

Hierbei bezeichnet m. die Masse des Elektrons. Im Fall hochrelativistischer Elektronen,
d.h., &, & > m, wird folgende Ndherung verwandt:

- 0,
k? = 2m2 — 2(&E; — |ki||ky| cos 0 ) ~ —4E;E sin® <2> . (4.8)

Dabei ist 6. der Winkel zwischen dem einlaufenden und dem auslaufenden Elektron, wie
in Abbildung eingezeichnet. Betrachten wir die Gleichungen (L.5]) und @.1), so wird
deutlich, dass die Werte der Photonenergie und der verallgemeinerten quadrierten ,,Photon-
masse k2 unabhéngig variiert werden kénnen. Bei der Pionphotoproduktion hingegen
ist k2 = 0, da das reelle Photon keine Masse besitzt.

Zur Charakterisierung der Pionproduktion werden héufig die invarianten Mandelstam-
Variablen

s = W2

= (pi+k)? =K 42k -p+m3

= (pyr+q)? = M +2q - ps+my, (4.92)
t = (k—q) =k —2k q+ M

= (ps —p)* =2m% — 2pi - py, (4.9b)
u = (pf—k)?=mi—2ps k+k

= (pi— @) =m} —2pi-q+ M (4.9¢)

verwendet, wobei W die Gesamtenergie des Prozesses im hadronischen Schwerpunktsystem
ist und M, sowie my die Pionmasse bzw. die Masse des Nukleons bezeichnen. Die drei
Mandelstam-Variablen kénnen wir folgendermafen in Relation setzen:

s+t+u=p;+p;+k+¢* =2mi+ k& + M. (4.10)

Dariiber hinaus wird in der Literatur haufig von der so genannten ,crossing‘-Symme-
trievariable

(s —u)
v = pr. (4.11)

Gebrauch gemacht. Diese ist mit der Energie des Photons im Laborsystem durch

t— M2 —k?

U= E#abor +
4mN

(4.12)

verkniipft.
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Die Schwelle fiir die Pionelektroproduktion liegt bei

3’Schwelle = (mN + Mw)27 (413&)
my (M2 — k2
t’Schwelle _W, (413b)
M, (2my + My)? — k?
V’Schwelle = 4m7]rv( ];an _'_7;\)4 . (4:13C)
T

Die entsprechenden Werte der Pionphotoproduktion ergeben sich auf einfache Weise durch
das Einsetzen von k? = 0.

Betrachten wir jetzt noch einige kinematische Gréfsen im Pion-Nukleon-Schwerpunktsy-
stem fiir die Pionelektroproduktion. Um anzuzeigen, dass wir uns jetzt in einem bestimm-
ten Bezugssystem befinden, sind die Grofen dieses Systems mit einem * gekennzeichnet.
Im Pion-Nukleon-Schwerpunktsystem gilt

pir=—k", pf=-q", (4.14)
so dass sich fiir die Energie des virtuellen Photons und des Pions

W? —m3% + k? W2+ M, —m?
L N TV Ef = Ll N .
ko 5 und E 5 (4.15)

ergibt. Fiir den Betrag des Dreierimpulses der beiden Teilchen erhalten wir

r 1/2 1/2

r 1/2 1/2
O e T S R VR S T AR
= 2W A 2W N

(4.16b)

Zudem betrachten wir die Energie des ein- und auslaufenden Nukleons und bekommen

W2+ m3 — k?
Ef = — k= N 4.1
1 W 0 2W Y ( 7a’)
. . W2+mi — M2
Ej = W-E;= 5717 . (4.17D)

Auch in diesen Féllen erhalten wir die entsprechenden Gréfen der Pionphotoproduktion
durch einsetzen von k? = 0.
Dariiber hinaus wird in der Literatur die so genannte Photon-Aquivalent-Energie ky, ver-
wendet. Als solche wird jene Energie bezeichnet, die ein reelles Photon (k* = 0) im La-
borsystem haben muss, um ein Pion-Nukleon-System mit invarianter Masse W = /s zu
erzeugen:

s —m¥

kr = . 4.1
L 2mN ( 8)
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4.2 Invariante Amplituden

Betrachten wir Abbildung [4.] so erkennen wir, dass die invariante Amplitude im Rahmen
der Einphotonaustauschnédherung mit

M = —ie(e_(k:f,sf)|j”(0)\e_(k:i,si)>< kzi— O+—|—Elchterme)

< ie(N(ps. Sf), 7(q)| J*(0)|N (pi, S,) (1.19)

gegeben ist, wobei e > 0 gilt. Hierbei bezeichnen s; und S; den Spin der Elektronen bzw. der
Nukleonen, wobei j = 4 und f fiir den einlaufenden (engl.: initial) und auslaufenden (engl.:
final) Zustand stehen. Das erste Matrixelement ist hierbei der leptonische Vertex, welcher
aus der QED wohlbekannt ist. Der Photonpropagator ist ohne die Eichterme angegeben, da
diese auf Grund der Stromerhaltung nicht beitragen. Das zweite Matrixelement schlieftlich
beschreibt den hadronischen Vertex, welcher die hadronischen Informationen beinhaltet.
Die invariante Amplitude lasst sich dann wie folgt parametrisieren:

M = —iee, M", (4.20)

wobel

€ _
eu = ﬁu(kf, Sf)’)/uu(kii, Si) (4.21)

das Produkt aus dem leptonischen elektromagnetischen Strom und dem Photonpropagator
ist; dieses wird auch als der Polarisationsvektor des virtuellen Photons bezeichnet. Im Fall
der Pionphotoproduktion ist €, der Polarisationsvektor des reellen Photons. Das Uber-
gangsstrommatrixelement M*# beinhaltet dabei alle Abhéngigkeiten der starken Wechsel-
wirkung und erfiillt die Stromerhaltung

k, MH = 0. (4.22)

Es kann durch sechs invariante Amplituden A; ausgedriickt werden, die von drei unabhéngi-
gen Variablen abhingen, z.B. der ,crossing“-Symmetrievariable v, der Mandelstamvariable
t und dem Impulsiibertrag k20

6
= Z pf,Sf M Aj u(pusz) (4.23)

'Die Anzahl der sechs unabhingigen Amplituden kénnen wir uns durch abzihlen der Spinprojektionen
plausibel machen. Im Anfangszustand befinden sich ein Nukleon mit Spin 1/2 und ein virtuelles Photon mit
Spin 1; im Endzustand ein Nukleon mit Spin 1/2 und ein spinloses Pion. Damit erhalten wir 2 x 3 x 2 =12
Satze von Spinprojektionen. Da die Paritétserhaltung jedoch jeweils zwei Satze mit genau entgegengesetzter
Spinprojektion miteinander verbindet, bekommen wir sechs Amplituden. Bei dieser Methode des Abzéhlens
muss jedoch auf eventuelle weitere Symmetrien geachtet werden.
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In diesem Ausdruck ist die Eichinvarianz bereits implementiert. Die ,Vierervektoren* M ]“
beinhalten die gesamte Lorentzstruktur und sind durch

1.
My = —Sivs(0" k= k), (4.24a)
1 1
MY = ivs <P“k: (g — 5]{:) —(¢" — ik“)k : P> , (4.24b)
MY = —ivs(v"'k-q— Kq"), (4.24c)
MY = —ins(yth - P EPY) — 2my MY (1.244)
MY = iys(kFk - q — K*q"), (4.24e)
ME = —iys (Kl — Ky (4.24f)

gegeben. Hierbei ist P* = p!' + p’; , die Summe der ein- und auslaufenden Nukleonimpulse.
Im Fall reeller Photonen k% = 0 — also im Rahmen der Pionphotoproduktion — und unter
Ausnutzung der Eichinvarianz

ekt =0 (4.25)

entfallen ML und M{' und die verbliebenen ,Vierervektoren* M ]“ reduzieren sich zu

My = —%i%(v“ K= kA", (4.26a)
MY = iy (P*k-q—¢'k-P), (4.26b)
MY = —is(VWk - q— Kq"), (4.26¢)
M} = —iys(""k - P— §P") —2mn MY (4.26d)

Dariiber hinaus sind die invarianten Amplituden Ay bis A4 mit k% = 0 auszuwerten.

4.3 Isospinamplituden

Betrachten wir die Isospinstruktur der Pionelektroproduktion unter den Voraussetzungen,
dass die elektromagnetische Wechselwirkung nur in erster Ordnung beriicksichtigt wird
(Einphotonaustauschnéherung) und dass die Isospinsymmetrie (m,, = my) gilt, so konnen
wir die im vorherigen Abschnitt behandelten Amplituden noch in drei unabhéngige Isospi-
namplituden zerlegen. Der Anfangszustand ist durch ein Nukleon mit Isospin % charakte-
risiert, welches an den elektromagnetischen Strom koppelt. Die Isospinstruktur desselben

(Gleichung ([2.13)
Jt=Jl + JlTs

beinhaltet einen isoskalaren und einen isovektoriellen Anteil. Der Endzustand wird durch
das isovektorielle Pion (7) und das auslaufende Nukleon gekennzeichnet.

J (’6 1 Anfangszustand | Endzustand | Anzahl Amplituden
1 1
1 1.3
1 ® : 1e3 2
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Unter der Annahme der Isospinsymmetrie der starken Wechselwirkung, muss die Pion-
Nukleon-Wechselwirkung im Isospinraum ~ 7 - 7 sein. Die Paulimatrizen, welche in der
Wechselwirkung mit dem Photon und dem Pion erscheinen, kénnen in

A(y*is f1) = (f] (;A<—>[M,Tg] + %{T,a,@,}A(H + TQA@)) 1) (4.27)

angeordnet werden, wobei « die Ladung des Pions bezeichnet. |i) und (f| bezeichnen hier-
bei die Isospinzustinde des ein- und auslaufenden Nukleons, d.h., |i) = |p) oder |n)2.
A AC) und A sind die Isospinamplituden, die Bezeichnungen (+), (0) und (—) leiten
sich von dem Isospinoperator ab, mit welchem sie jeweils auftreten — Kommutator und
Antikommutator. Die beiden Terme, welche mit dem Kommutator bzw. dem Antikom-
mutator stehen, korrespondieren mit dem isovektoriellen Anteil des elektromagnetischen
Stroms, wohingegen der dritte Term mit dem isoskalaren Anteil in Verbindung steht. Die
in Gleichung (£27) verwendeten Matrizen stehen wie folgt in Zusammenhang mit den
Paulimatrizen:

1
(r1+im) , 7—- = —=(n1 —im2) , T3 = T3. (4.28)

AV V2

Verwenden wir statt der physikalischen die kartesischen Felder, so ergibt sich fiir Gleichung

E.27)
A(y*i; f7*) = (f] [iﬁknglA(_) + ks A+ 7, A0 Ja) (4.29)

Beziiglich der ,crossing“-Symmetrie, d.h., dem Vertauschen der Mandelstamvariablen s und
u, haben die Isospinamplituden das folgende Verhalten:

Af — mje" AT, (4.30)

mit a = +,0,— und j = 1,--- ,6. Dabeigilt er = = ¢ =1lundm = =m =1
sowie 3 =15 = ng = —1.

Der Zusammenhang zwischen den physikalischen und den kartesischen Amplituden ist
durch

A(nt) = \}i(A(ﬂl)—iA(WQ)), (4.31a)
_ 1 ‘

Alr™) = E(A(Wl)—i-zA(Wg)) und (4.31Db)

A(r%) = A(n?) (4.31c)

gegeben. Der Ubersichtlichkeit halber sind hier nur jene Grofen angegeben, die sich auf
das Pion beziehen.

Schlieflich erhalten wir fiir die physikalischen Amplituden ausgedriickt durch die drei Iso-
spinamplituden

A(y*p;na™) V2(AD) + A0, (4.32a)
AWy n;prt) = V2(=A0) 4 A0, (4.32Db)
Ay pipr®) = A 4 40 (4.32¢)
A(v'nsna®) = A — A0, (4.32d)

2|p) = (1,0)T und |n) = (0,1)T.
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4.4 CGLN-Amplituden

Eine andere Moglichkeit, die invariante Amplitude M zu zerlegen, sind die so genannten
CGLN-Amplituden (Strukturfunktionen), wie sie von Chew, Goldberger, Low und Nam-
bu urspriinglich fiir die Pionphotoproduktion in Referenz [CGLN 57| eingefithrt wurden.
In diesem Fall ist es iiblich, die invariante Amplitude im Pion-Nukleon-Schwerpunktsy-
stem beziiglich Pauli-Matrizen und Pauli-Spinoren auszudriicken. Wir erhalten dann einen
Ausdruck von der Form

6
. 4nW
M = —ieu(py) Z Aje MFu(p;) = XTfina (4.33)

mn

Jj=1

wobei x die Pauli-Spinoren des Nukleons im Anfangs- und Endzustand bezeichnet und der
Operator F die Zerlegung nach den CGLN-Amplituden beinhaltet.

Den Stromoperator J* = (p, J ) aus dem Ubergangsstrommatrixelement M* kénnen wir
gemif [DT 92| in die CGLN-Amplituden zerlegen:

- 47 W N N
J = Tie B+ (G40 (6 x K Fo+id" (G- k) Fy +id(3 - 47)
N
+ ik (G- k*) Fy +ik* (3 - §*) Fs), (4.34a)
47 W "
p o= i(G-q7) Fr+i(d k) Fel, (4.34b)
my

mit & = ¢—(¢k*)k* und analog §* = ¢*—(¢*-k*)k*, wobei * anzeigt, dass es sich um Grofen
des Pion-Nukleon-Schwerpunktsystems handelt. Machen wir nun von der Stromerhaltung

E.22) Lo
ey MF = koM° — k- M

Gebrauch, so stellen wir fest, dass die ersten vier Terme auf Grund ihrer Transversalitét
verschwinden und somit

| Fs = ki T, (4.352)
E*| Fo = ki Fr (4.35b)

gilt. Bestimmen wir den Operator F, so erhalten wir nach dem Eliminieren von F7 und Fg

F = G- bF—G-qb-(Gxk*) Fo—ib-¢"(G k) Fs—ib-¢*(G- ") Fa
N E* _)*
+id - k* b0| Jfg,—l—i&-é* b0| *‘f(;, (4.36)
k(] kO
wobei
e
W=t ekt P (4.37)

ist. In der hier gew&hlten Eichung ist b-k* = 0 und b, besitzt keine longitudinalen Kompo-
nenten, so dass das virtuelle Photon transversale und skalare Komponenten besitzt. Da die
Anzahl der unabhingigen Strukturfunktionen mit den Spinfreiheitsgraden korreliert ist,
sind Polarisationsexperimente notwendig, um alle Strukturfunktionen bestimmen zu kon-
nen. Die Strukturfunktionen hdngen von drei unabhéngigen Variablen ab, z.B. von dem
Impulsiibertrag k? und zwei Mandelstamvariablen.
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Fiir den Fall der Pionphotoproduktion gilt wegen k? = 0 und der Eichinvarianz (#.27),
dass das reelle Photon einen reinen transversalen Charakter hat. Der Zusammenhang zwi-
schen den invarianten Amplituden A; und den CGLN-Amplituden F; ist Anhang [C.2] zu
entnehmen.

Auferdem lassen sich die CGLN-Amplituden in eine Multipolreihe entwickeln, wie es aus
Anhang ersichtlich ist. Betrachten wir uns Experimente nahe an der Pionschwelle,
d.h., bei W 2 my + M, so tragen lediglich die niedrigsten Multipole bei. Unter der
Annahme, dass nur Multipole mit einem Relativbahndrehimpuls von [ < 2 beitragen (s-
und p-Wellen), lauten die CGLN-Amplituden wie folgt:

F1 = Epy + 3cos Qﬂ(E1+ + M1+), F4 =0,
Fo=2Mi4 + M;_, Fs5 = Lo+ +6cos0,Lq4, (4.38)
F3 =3(E4 — Myy), Fo=Li— —2L4.

4.5 Wirkungsquerschnitt

Der differentielle Wirkungsquerschnitt der Pionelektroproduktion ist geméf der Notation
von Bjorken und Drell [BD _67a] durch

3k Me dpr my d3q 1
(2m)3 & (2m)3 Ef (2m)3 2E,

1 Me MN 9
dO' = e — M
vy — V4| & Ei M|

2m)*0(k; +pi — ky —pp — q)

(4.39)
gegeben. Im Laborsystem mit einem ruhenden Nukleon im Anfangszustand gilt
B} R
Vi=0und 0; = = = ki, (4.40)
i
so dass wir fiir den im Laborsystem ausgewerteten Flussfaktor
|ty — Vi| ~ 1 (4.41)

erhalten.

Betrachten wir die Winkelverteilung der Pionen im hadronischen Schwerpunktsystem und
die Energieverteilung des Elektrons im Laborsystem, so erhalten wir unter der Annahme,
dass das Nukleon im Endzustand nicht nachgewiesen wird, fiir den dreifach differentiellen
Wirkungsquerschnitt

- o ~ M2 4.42
dE; dQ. dr — (2m)F €& W > 1M (442)

Betrachten wir hingegen alle Gréfsen im Laborsystem so ergibt sich

do _ 1 LE my|q* Lo
d€p dQe dQx (2m)° & Ey|q) + Ex(|q] — |k| cos(0)) 2

(4.43)
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4.5.1 Leptonischer und hadronischer Vertex

Das in Gleichung (#.39)) verwendete Quadrat der invarianten Amplitude kénnen wir in der
Einphotonaustauschndherung als Produkt zweier Lorentztensoren zweiter Stufe schreiben:

M = e*(eM") (e, MY)"

4
(& — — * 1263
= (k2)2 [k, sp)yuulki, si)llu(ky, sp)vu(ki, si)]" M*M
ol
= 7(]{2)2%14/’ : (4.44)

wobei 7, als leptonischer Tensor und W#" als hadronischer Tensor bezeichnet werden.

Fiir den Fall, dass mit einem unpolarisierten Elektronenstrahl agiert wird und die Polari-
sation des gestreuten Elektrons nicht nachgewiesen wird, muss iiber die nicht beobachteten
Spinfreiheitsgrade summiert und gemittelt werden, so dass wir fiir den leptonischen Tensor

_ 1 — i )
= 5 D [k, sp)yeulks, si)lalky, sp)wulki, i)
i, S¢
1
= 53 kiuks + Epukin + Gy (M — ki - k)] (4.45)

e

erhalten. Dieser ist symmetrisch unter der Vertauschung von p und v. Betrachten wir uns
hingegen einen polarisierten Elektronenstrahl, so wird nicht mehr iiber die einlaufenden
Spinfreiheitsgrade gemittelt und wir bekommen

mw = Y ks, sk, s)l[alky, sp)yulki, )]
sf
_ { o
N + thﬂ,pgkfk‘f, €013 = 1. (4.46)

Die Helizitét h des einlaufenden Elektrons ist hierbei durch h = o - k; = +1 gegeben.

Beziiglich des hadronischen Tensors ist noch anzumerken, dass wir diesen in einen symme-
trischen und einen antisymmetrischen Anteil wie folgt zerlegen kénnen:

1

1
W = 2 (W WH) 4 o (W — W), (4.47)

O |

wh W

Dies ist in Kombination mit dem unpolarisierten leptonischen Tensor 7, wichtig, da dieser
nur auf den symmetrischen Anteil W£" des hadronischen Tensors empfindlich ist, d.h., Mes-
sungen mit einem unpolarisierten Elektronenstrahl kénnen keinerlei Informationen iiber
den antisymmetrischen Anteil WEY des hadronischen Tensors liefern.

4.5.2 Differentieller Wirkungsquerschnitt und Antwortfunktionen

Fiir die anstehende Uberlegung legen wir folgendes Koordinatensystem fest:

€3 = /ﬂ, €y = —/———, él = ég X é3. (4.48)
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Hierbei ist 6, = arccos(l%i . l%f) D.h., é; und é3 spannen die Elektronenstreuebene auf,
wohingegen é5 senkrecht zu dieser steht3. Betrachten wir jetzt die einzelnen Eintriige des
leptonischen Tensors, so erhalten wir

k> 1+e€
11
= - 44
" 4m21—¢€’ (4.492)
22 k>
n = —— 4.49b
i e’ (4.49b)
ac k2 2
_33 0
= 4.49
7 T2l e (4.49¢)
. kovV—k2 \/2¢(1 +¢€) (4.49d)
4m? 1—¢ 7 '
e o= 7*=0, (4.49€)

wobei der Polarisationsparameter € den Grad der transversalen Polarisation beschreibt.

Dieser ist definiert als
11 =22

n n
€= — . (4.50)
,,711 + ,,722
Hierbei beinhaltet 7'' die in der Elektronenstreuebene liegenden Gréken und 722 die ent-
sprechenden senkrecht zu dieser stehenden. Bestimmen wir den Polarisationsparameter e
in unserem Koordinatensystem, so erhalten wir

- —1
k2 0,
€= [1 — 25 tan? <2>] : (4.51)

In diesem Zusammenhang ist anzumerken, dass auf Grund der Stromerhaltung
kun*” = n*k, = 0 es ausreichend ist, die rdumlichen Komponenten des leptonischen
Tensors zu betrachten, da diese mit den zeitlichen verkniipft sind. In unserem Fall k* =
(ko, 0,0, ]IZ\)T lauten die Relationen

- 2 = N
|K| k| |kl

= —_— i = — "33, 0 — — 13- 4 2

700 (kro 733, 10 koﬁs 7i0 k0773 (4.52)

Wie der leptonische Tensor erfiillt auch der hadronische Tensor die Stromerhaltung, so
dass die zeitlichen Komponenten analog durch die rdumlichen ausgedriickt werden kénnen.
Betrachten wir uns das Produkt des leptonischen Tensors fiir unpolarisierte Elektronen mit
dem hadronischen Tensor, so ist dieses als

—kQ Wll W22 Wll _ W22
N WH = o1 [ ; +e— + LW — \/2e (1 + €)Re(W'?)

(4.53)

gegeben, wobei wir als Mak fiir den Grad der longitudinalen Polarisation

k2

(L= (4.54)

3Betrachten wir Abbildung 2] so sind der Winkel 6. und der Einheitsvektor é3 verzeichnet, wobei
letzterer der z-Achse entspricht.
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eingefithrt haben. Setzten wir nun dieses Ergebnis (4.53)) unter Berticksichtigung von Glei-
chung ([@44)) in Gleichung ([A.42]) ein, so erhalten wir fiir den differentiellen Wirkungsquer-
schnitt in komponenten des Pion-nukleon-Sschwerpunktsystems

T 57 =E
dE; dQ, d: ik 1112 2 T2

e W — \/2er (1 + e)Re(Wl‘g)} : (4.55)

do W 5 [W“ w2 W w2

wobei
_ e ik
o 2m)3 & k2 (1—e¢)

(4.56)

der Fluss des virtuellen Photonfeldes ist und der Faktor = = m3%;/(47W)? einen Normie-
rungsfaktor darstellt, der auch in die Funktionen bzw. Komponenten des hadronischen
Tensors gesteckt werden kann® Die Form von Gleichung (L55)) legt es nahe die so ge-
nannten Antwortfunktionen einzufiihren. Diese sind mit den Eintrigen des hadronischen
Tensors wie folgt verkniipft:

Ry = %(W11+W22)’ R, = W337

cosdrRrr, = —Re(W3), cos@én)Rrr = Lwi-w) (45D

Die Abhéngigkeit des Winkels zwischen Streu- und Reaktionsebene ¢, wurde hierbei se-
pariert.E] Die Antwortfunktionen hingen von drei unabhéngigen Variablen ab, z.B. R =
R(k% Er,0;). Setzen wir die Gleichungen (57) in Gleichung ([f42) ein, so bekommen wir

do w

dE; dQ, d ok, 1115 (4.58)
R R
X 7T 4 e IT cos(2¢r) + e Rr, + \/2er,(1 + €)Ryr, cos ¢

Dieses Ergebnis vergleichen wir jetzt mit dem der Form des differentiellen Wirkungsquer-
schnitts, der sich gemif Referenz [AFF 79| in mehrere Anteile zerlegen lasst:

do do,

. ey
A€y dQ, dQE ~  dQE

(4.59)

Dabei ist I' der in Gleichung (£.56) gegebene Photonfluss und

do, dor n doy,
o ae " Laar

+ hy/2¢er(1 + €)

der Wirkungsquerschnitt des virtuellen Photons. Die einzelnen Anteile dieses Wirkungs-
querschnitts kdnnen als Wirkungsquerschnitte fiir Reaktionen interpretiert werden, welche

dorr, dorr
o cos P + € dr

L sin g + hy/(1 — 62)‘2’53 (4.60)

™

+V2er(1+¢) cos(2¢r)

dor
7k9)

“Vergleichen wir den hier angegebenen differentiellen Wirkungsquerschnitt mit Gleichung (22) aus Re-
ferenz [DT 92|, so stellen wir fest, dass sich beide Ausdriicke um den Faktor Z und um den Faktor e?
unterscheiden. Die Faktoren rithren dabei aus unterschiedlichen Definitionen fiir den hadronischen Tensor
W (Z) und die invariante Amplitude M (e?) her, die sich um eben diese Faktoren unterscheiden.

*Die Winkelabhiingigkeit des hadronischen Tensors kénnen wir uns an Hand einer eichinvarianten Pa-
rametrisierung desselben, wie in Anhang [Df dargestellt, klar machen.
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durch bestimmte Polarisationen des Stroms der virtuellen Photonen verursacht werden.
Die Wirkungsquerschnitte bestimmter Reaktionen erhalten wir also als Produkt der Vor-
faktoren und der entsprechenden Antwortfunktion.

Die beiden letzten Terme aus Gleichung (@60) sind in unserer Uberlegung nicht enthalten,
da wir von einem unpolarisierten Elektronenstrahl ausgegangen sind. Wiederholen wir die
vorangegangenen Uberlegungen mit dem leptonischen Tensor N filir einen polarisierten
Elektronenstrahl, so erhalten wir zwei zusétzliche Terme in Gleichung ([.53]) bzw. folgende
Antwortfunktionen

singzRrp = Im(W?),  Rpp = Im(W1?). (4.61)

Somit ergeben sich die beiden zusitzlichen Terme in Gleichung (60]).

Der erste Term (T) aus Gleichung (4.60) ist der transversale Wirkungsquerschnitt, die-
ser beschreibt unpolarisierte transversale virtuelle Photonen. Der zweite Term (L) ist der
longitudinale Wirkungsquerschnitt und beschreibt longitudinale Photonen. Diese beiden
Terme hangen nicht vom Azimutwinkel ¢, ab und kénnen deshalb beziiglich cos 0, in ei-
ne Multipolreihe entwickelt werden® Der dritte Term (TL) und der fiinfte Term (TL’)
beschreiben transversal-longitudinale Interferenzen, wobei letzterer nur bei einer Polarisa-
tion des einlaufenden Elektrons auftritt. Auf Grund ihrer Abhéngigkeit von cos ¢ bzw.
sin ¢, miissen diese einen expliziten Faktor sin , enthalten, so dass sie entlang der Ach-
se des Impulsiibertrags verschwinden. Dies gilt auch fiir den vierten Term (TT), welcher
transversal-transversale Interferenzen proportional zu sin 6, beschreibt. Der letzte Term
(TT’) schlieklich tritt nur bei einer Polarisation des Targets oder beobachteter Riickstof-
polarisation und gleichzeitiger Polarisation des einlaufenden Elektrons auf. Das Auftreten
des Azimutwinkels ¢, in der Kombination cos ¢, sin ¢, und cos(2¢,) ist mit der Tatsa-
che verkniipft, dass das virtuelle Photon einen Spin 1 trigt [DT 92|. Eine experimentelle
Separation der sechs Antwortfunktionen benétigt die Variation zum einen des virtuellen
Photons (¢) und zum anderen des Elektrons (h) sowie eine Messung des Azimutwinkels ¢.
Gehen wir zur Pionphotoproduktion iiber, d.h., k — 0, so verschwinden alle Terme mit
longitudinalen Anteilen, da das reelle Photon einen rein transversalen Charakter besitzt.
Der erste Term (T) beschreibt dann unpolarisierte reelle Photonen und der zweite Term
(TT) linear polarisierte Photonen. Die Photonédquivalenzenergie kj, geht in diesem Fall in
die Energie des reellen Photons iiber.

Fiir weiterreichende Informationen sei hier auf die Referenzen [AEF 79, [DT 92| verwiesen.
Im Anhang von Referenz [DT 92] ist aukerdem der Zusammenhang zwischen den Antwort-
funktionen und den CGLN-Amplituden sowie den Multipolen angegeben.

®In Anhang B der Referenz [DT 92] sind die Antwortfunktionen beziiglich der CGLN-Amplituden aus-
gedriickt angegeben.



Kapitel 5

Berechnung der invarianten
Amplituden

Nachdem in den vorherigen Kapiteln eine Einfiihrung in die chirale Storungstheorie und
die Pionproduktion gegeben wurde, behandelt dieses Kapitel die Berechnung der invari-
anten Amplituden bis einschlieklich der chiralen Ordnung O(g¢*). Bis zu dieser Ordnung
tragen 105 Feynmandiagrammem bei. Dabei handelt es sich um 20 Baumgraphen, die sich
wiederum unterteilen lassen in 16 Polterme und vier Kontaktgraphen sowie 85 Schleifen-
diagramme; von diesen tragen 50 ab der dritten Ordnung und 35 ab der vierten Ordnung
bei.

In diesem Kapitel werden wir zuerst die Herleitung der notwendigen Feynmanregeln be-
trachten. Daran anschliefend diskutieren wir, ausgehend von der Definition der invarianten
Amplituden in Gleichung [@.23]), die Rechnung auf dem Baumgraphenniveau, bevor wir
diese letztlich auf dem Schleifenniveau behandeln werden.

5.1 Herleitung der Feynmanregeln

Um Feynmangraphen direkt in mathematische Ausdriicke {ibersetzen zu kénnen, d.h., be-
rechnen zu kbnnen, ist es zunichst notwendig, die entsprechenden Feynmanregeln zu ken-
nen. Im Folgenden werden wir an Hand zweier Beispiele die Feynmanregeln fiir die Vertices
herleiten. Die weiteren Konventionen beziiglich der Feynmanregeln befinden sich in Anhang
Betrachten wir uns die in Abbildung b.1] dargestellten Feynmanregeln der chiralen Ord-
nung eins. Zunéchst entwickeln wir die Lagrangedichte aus Gleichung (2.53))

o

L% = D" 0+ T — i) = m o+ Gt ggu, ) (5.1
nach ® = ¢;7;. Wir erhalten bis zur gesuchten zweiten Ordnung in den Pionfeldern

o o2
u=1+i——m — — + O(®%) (5.2)

! Anhang [F] enthilt die komplett aufgelisteten Feynmandiagramme.

38
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Abbildung 5.1: Links: Feynmanregel fiir M . n. Die 1 im Vertex steht hierbei fiir die chirale
Ordnung der Lagrangedichte, aus welcher die Feynmanregel abgeleitet wurde. a ist der Isospin-
index des Pions und e der Polarisationsvektor. Es sind keine Impulse angegeben, da diese hier
nicht relevant sind. Rechts: Feynmanregel fiir M n.rn. Hier bezeichnet die 1 wiederum die
chirale Ordnung. u und v bezeichnen den ein- und auslaufenden Pionimpuls sowie a und b die
entsprechenden Isospinindices der Pionen.

und der ersten Ordnung in den elektromagnetischen Feldern fiir die Bausteine folgendes
Ergebnis:

Ly = §6Au7'3 + m‘ﬁa@u%)fabc% + mez‘lu%%(%g% — Ogp73) + -, (5.3a)
1 e 1
’LLM = —fau¢a7—a + fAMQbaEQJ,abTb + @Qsa(a,ugbb)gbc[éach — 5ab7—c] 4+ ... , (53b)
1
vl(f) = —5€ 1A, (5.3¢)
Setzen wir diese Gleichungen in die Lagrangedichte (5.0]) ein, so bekommen wir
‘Cfbljz;NNﬂ’y = ie%d}yuf}%Au(paﬁabcTcw (5.4)
und )
NN =
LN = 507" 60O st (5.5)

Nun beschreiten wir den in Anhang[Gl angegebenen Weg, um die entsprechende Feynman-
regel zu erhalten 2 D.h., zunéchst multiplizieren wir die Lagrangedichte mit ¢

Monan = i@ QN LS5y (k)N (p)), (5.6a)
Manin = i(m@)N(pp) LSV 7 (w) N (py) (5.6b)

und werten anschlieflend das Matrixelement aus, d.h., alle denkbaren Kombinationen der
Indices der Lagrangedichte und des Diagramms werden kontrahiert. Treten Ableitungen
0y auf, so werden diese bei einlaufenden Teilchen durch den Faktor —ip, und bei auslau-
fenden Teilchen durch den Faktor ip, ersetzt, wobei p,, fiir den entsprechenden Impuls des
Teilchens steht. In unserem Fall erhalten wir demnach

(o}

MaNyN = ie;% #V5€3abTh, (5.7a)
1
MWNQWN ﬁ(ﬂ"’_ ﬁ)eabcTc- (57b)

?Priiziser ausgedriickt: Wir betrachten in Gleichung (58a) i [ d*z(r(q, a)N(ps)| LS5V ™ |y (k)N (ps))
und streichen nach der Auswertung des Matrixelements (27)*6*(ps+q—pi—k). Dabei ist zu beriicksichtigen,
dass wir verallgemeinerte ,Zustinde“ betrachten, welche die Massenschalenbedingung nicht erfiillen.
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Dabei wurde bereits der Polarisationsvektor des Photons €, beriicksichtigt. Zur Nomen-
klatur der Feynmanregeln ist hierbei anzumerken, dass die Indices rechts des Semikolons
den Anfangszustand und jene links des Semikolons den Endzustand bezeichnen.

Damit wir die erhaltenen Feynmanregeln im weiteren Verlauf der Rechnung nutzen kénnen,
ist es notwendig eine Mathematica-Datei anzulegen, welche als Bibliothek fiir ebendiese
dient. Die Bibliothek beruht auf der Nomenklatur des Mathematica-Pakets ,FeynCalc*
[MBD 91], da dieses mit Dirac- und Paulistrukturen umgehen kann und deshalb als Basis
der Computer-gestiitzten Rechnung gewihlt wurde. Fiir unsere Beispiele erhalten wir in
dieser Nomenklatui® folgende Eintriige in der Feynmanregelbibliothek®

NNPGlla_,mu_]| := (Dummyl = Unique[d];((—I/2)*gAxex

NM[UMatrix[UGenerator[SUNIndex[Dummy1]]], GA[5], GA[mu]]
*SU2F|ExplicitSUNIndex|3], SUNIndex|a|,SUNIndex|Dummy1|])/F0),

(5.8a)

NNPPlla ,q ,b ,k ] := (Dummyl = Unique[d];

—(NM[GA[k],UMatrix|UGenerator[SUNIndex[Dummy1]]|] *
SU2F[SUNIndex[a], SUNIndex[b], SUNIndex|[Dummy1]])/(4 * F0O A 2)
+(NM[GA[q], UMatrix[UGenerator[SUNIndex[Dummy1]]]] *
SU2F[SUNIndex|[a], SUNIndex[b], SUNIndex[Dummy1]])/(4 * FO A 2)),

(5.8b)

wobei der Polarisationsvektor des Photons im Gegensatz zu Gleichung (5.7D)) nicht bertick-
sichtigt wird, da dieser in der Rechnung geméf Gleichung (£.20) als genereller Vorfaktor
ausgeklammert wird. Hierbei ist anzumerken, dass es notwendig ist die laufenden Indices
mittels der Funktion Unique zu erzeugen, um sicherzustellen, dass diese Indices lediglich
so oft, wie erforderlich auftreten. D.h., es ist gewidhrleistet, dass die laufenden Indices ,ein-
zigartig® sind und keine zusétzlichen (falschen) Summationen ausgefiihrt werden, sobald
mehrere Feynmanregeln multipliziert werden. Aufserdem ist an dieser Stelle zu bemerken,
dass in dieser Bibliothek alle Impulse der Feynmanregeln einlaufend gewdhlt wurden, wie
an Hand von NNPP1 ersichtlich ist. Die einzige Ausnahme bildet der auslaufende Nukleon-
impuls, der stets als auslaufend gewihlt ist.

Analog verfahren wir fiir alle in Abschnitt 2.3] aufgefithrten Lagrangedichten und erhalten
somit alle in Anhang[Gl aufgefiihrten Feynmanregeln. Dariiber hinaus wurde die Bibliothek
mit einer Dokumentation versehen.

5.2 Die Rechnung auf dem Baumgraphenniveau

In diesem Abschnitt werden wir die Pionproduktion auf dem Baumgraphenniveau disku-
tieren. Dies werden wir zunéchst an Hand der in der Abbildung dargestellten Baum-
digramme (s- und u-Kanal) tun. Spéater werden wir aufserdem ein Kontaktgraphen (Abb.
£.3) betrachten. Diese Diagramme sind rechentechnisch représentativ fiir alle Baumgra-
phen, d.h.; mit den im folgenden gezeigten Techniken kénnen die invarianten Amplituden

®Die in Gleichung (5.8) verwendete Nomenklatur ist beziiglich der Niederenergiekonstanten gegeniiber
der in Mathematica angewandten vereinfacht.

“Die in den Gleichungen (5.8) aufgefiihrten Grofen und Funktionen sind mit der bekannten Nomenklatur
wie folgt verkniipft: GA[- - -] steht fiir die Gammamatrizen; UMatrix[UGenerator[SUNIndex[a]]] = 7. und
SU2F[SUNIndex[a], SUNIndex[b], SUNIndex|c]] = €asc. Die auftretenden Konstanten sind gA = EJA und
F0 = F sowie die elektrische Ladung e. Die Funktion NM]- - -] stellt ein nichtkommutatives Produkt dar.
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Abbildung 5.2: Poldiagramme der niedrigsten Ordnung. Links: s-Kanal, rechts: u-Kanal.

aller Baumgraphen (Diagramme 86 - 105 in Anhang [E]) bestimmt werden. Dies gilt insbe-
sonders auch fiir die t-Kanaldiagramme, die sich analog zu den beiden folgenden Beispielen
berechnen lassen.

5.2.1 Die Bornterme der niedrigsten Ordnung

Zunichst betrachten wir uns das s- und das u-Kanaldiagramm der niedrigsten Ordnung
aus Abbildung (.2l Nachdem wir, wie im vorherigen Abschnitt beschrieben, die entspre-
chenden Feynmanregeln (siche Anhang [Gl) bestimmt haben, kénnen wir damit beginnen,
die Pionproduktionsamplitude zu berechnen. Mit der Nomenklatur aus Anhang [Gl gilt

o

» = 1 T3+ 1
MO = eI alpr)ys f — o u(p) X T o= X, (5.9a)
2F (pit+ §) — mn + 40+ f 2
7
. 5 _ 1 3+ 1
M(go) = Zeﬁﬁuu(pf)’yu (ﬁ_ g/) g n ZO+ VY5 q u(pz) X} T Ta Xis (59b)

wobei im Folgenden die Feynman-Stiickelberg Randbedingung 0% nicht mehr explizit
angegeben wird. Die entsprechende Eingabe in Mathematica ist gegeben durch

]W(%G) = NM([SpinorUBar[ps, mn], NNP1[a, —q|, PropN[k + p;|, NNG1[p], SpinorUlp;, mn]],
(5.10a)

M’(“go) NM[SpinorUBar[ps, mn], NNG1[u], PropN[p; — ¢], NNP1[a, —¢], SpinorU[p;, mn]],
(5.10b)

wobei statt der Parametrisierung (£.20) im Rahmen der Rechnung die Parametrisierung
M :=e,M" mit M" = —ieM" (5.11)

verwendet wird. Der Einfachheit halber wird auf den Stern im Folgenden verzichtet, da in
diesem Kapitel ausschlieklich diese Parametrisierung verwandt wird.

Beziiglich der Gleichungen (5.10)) ist noch anzumerken, dass NM[- - - | das nichtkommutative
Produkt, NNP1[a, —¢] und NNG1[u] die Feynmanregeln fiir den Vertex mit zwei Nukleo-
nen und einem Pion bzw. einem Photon abgeleitet von der Lagrangedichte ES}, sowie
SpinorUBar[ps, my] und SpinorU[p;, my| die Diracspinoren sind. Zu ergénzen ist, dass im
Folgenden die Groéfsen im chiralen Grenzfall nicht mehr explizit gekennzeichnet sind. Eva-
luieren wir diese Eingabe, so erhalten wir hier zur Illustration als Mathematica- Ausgabe:
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€gA

M) = ~Tr (g p)z =z (EDKTakwsK A+ vt )

* (LA™ + 4 em3)keu(pi)) (5.12a)
Mgy = TIF (o _65232 =y (u(ps) k(L +yHSkT3)

*(— d+mn+ pi)kTakysk dhku(p;)) - (5.12b)

Dabei ist das nichtkommutative Produkt nunmehr durch den Stern gekennzeichnet. Tren-
nen wir nun die Dirac- und die Isospinstrukturen und vereinfachen diese, unter anderem
durch Umbenennen von Indices, so bekommen wir fiir die beiden Diagramme

M= A (V"5 (K? + 2k - pi) = 2m (295 D'+ K7"75))

u
(86) ap P ((k+pi)2 —m%)
X (1634 + Ta — i€3ap70) u(pi), (5.13a)
ME o~ _an (7“75((12 —2q-pi) = 2mn (7" fys — 2751)’}))
o0 aF (i — 9 = m3,)
X (1634 + Ta + i€3ap7p) u(p;). (5.13b)

Nachdem wir die Pionproduktionsamplitude in diese Form gebracht haben, verbleibt somit
— im Prinzip — lediglich die Extraktion der sechs invarianten Amplituden.

5.2.2 Die Extraktion der invarianten Isospinamplituden

Um die invarianten Amplituden aus den einzelnen Feynmandiagrammen, wie in den Glei-
chungen (5.13)) gegeben, extrahieren zu konnen, bendtigen wir eine fiir unsere Zwecke besser
geeignete Parametrisierung der Pionproduktionsamplitude als die uns bereits bekannte. Zur
Verdeutlichung betrachten wir vorab noch einmal die bereits in Abschnitt gezeigte ei-
chinvariante Zerlegung der Pionproduktionsamplitude M* aus Gleichung (4.23)). An Hand
der sechs ,Vierervektoren aus Gleichung (L.24)) zeigt sich bereits das erste Problem. Die Di-
racstruktur dieser eichinvarianten Parametrisierung ist zu kompliziert, um die invarianten
Amplituden A; aus Ausdriicken wie (B.I3]) leicht extrahieren zu kénnen. Das zweite Pro-
blem liegt in der Eichinvarianz. Eine eichinvariante Parametrisierung ist ungeeignet, weil
einzelne Feynmandiagramme iiblicherweise nicht eichinvariant sind. Dieses Problem sei an
Hand des folgenden Beispiels erortert: Wir nehmen an, es gebe zwei Feynmandiagramine,
deren Amplituden durch

Dl = iys(kMk - q — k*q")Cs — ivsyt'k - qCs, (5.14a)
Dy = —iys (k" — k*4")Cs + ivs Kq"Cs, (5.14b)

gegeben sein. Unter der Voraussetzung, dass wir einen Algorithmus zur Verfiigung haben,
der die Strukturen aus (4.24]) erkennt und die entsprechenden Koeffizienten extrahiert,
wird eben dieser Algorithmus angewandt auf die einzelnen Diagramme nur die Koeffizien-
ten As = C5 und Ag = Cg bestimmen, wohingegen der gleiche Algorithmus angewandt auf
die Summe aus beiden Diagrammen richtiger Weise zusétzlich den Koeffizienten Az = C3
extrahieren wird. Deshalb bendtigen wir eine Parametrisierung der Pionproduktionsampli-
tude, die apriori nicht eichinvariant ist. Sie muss einfache Diracstrukturen besitzen, welche
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auch fiir ein Computeralgorithmus eindeutig zu erkennen sind. Eine solche Parametrisie-
rung ist durch

8
M* =" B;Q% (5.15)
j=1
gegeben, wobei die Diracstrukturen wie folgt lauten:

QY =", Q5 =" ks,

Qy=vP", Qg =k P,

5 =754", r =K a",
Qy =15 k', § =K kH. (5.16)
Hierbei gilt wieder, dass P* = pl' + p’; die Summe des ein- und des auslaufenden Nu-

kleonimpulses ist. Diese acht Operatoren Q;‘ sind von der Struktur s x ,Vierervektor ¢ =
LAxialvektor “, wobei das Auftreten des ~v5 daraus resultiert, dass ein pseudoskalares Teil-
chen produziert wird. Alle anderen Diracstrukturen lassen sich mittels der Impulserhaltung,
der Dirac-Gleichung

(i — ma)ulps) =0, a(ps)(#y — ma) =0 (5.17)
sowie dem Antikommutator fiir die Gammamatrizen (siehe auch Anhang [BI)
{7t =24"1 (5.18)

auf diese acht Operatoren zuriickfiihren.

Betrachten wir uns jetzt wieder die beiden Borndiagramme und gehen zuriick zu den
Gleichungen (G5.13). Die in diesen Ausdriicken enthaltenen Diracstrukturen formen wir
nun, wie eben beschrieben, mittels der Impulserhaltung

d =K+ pi— by (5.19)

unter Ausnutzung der Dirac-Gleichung und der Anwendung der Vertauschungsrelationen
der Gammamatrizen solange um, bis wir nur noch die in (G.16) angegebenen Strukturen
erhalten. Aufierdem werden die eingehenden und die ausgehenden Nukleonviererimpulse
auf die Summe der beiden Impulse P umgeschrieben:

1

W= Pk, (5.20a)
1

pio= PPk ). (5.20b)

Das zuvor Geschilderte wird durch einen Schleifenalgorithmus gewahrleistet, welcher erst
dann ein Ergebnis ausgibt, wenn alle Objekte eindeutig identifiziert wurden und kein Rest
mehr vorhanden ist. Nach der Anwendung dieses Algorithmus erhalten wir schliefslich

€JgA _ 1 _
Mgy = 77 14 _
(86) AF U(pf) (k+pz)2 _m?\[( 3a +Ta ’LégabTb)
X (=275 mnEH + M5 k% + 29H s k - pi — 2PHys my
= 2¢"ys my + 29" Kys m) u(pi), (5.21a)
Mg - %ﬁ(pf) . (15311 + 7o + i€3ab7—b)
o A (pi — q) —m3

X (=295 mnE! — ¢*ytys — 2P s my + 2¢Mys m
+ 29" ks mu + 295 q - pi) u(p;). (5.21b)
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Aus diesen Gleichungen kénnen wir nun auf einfache Weise die Koeffizienten fiir beide
Diagramme ablesen. Fiir das Diagramm 86 erhalten wir mit hilfe der Mandelstamvariablen
die Amplituden

B§86) _ 4%;1 (1630 + T — i€3007), (5.22a)
ega m )
B = _2gFS_N%V(]l<53a + Ta — 1€3qbTh), (5.22b)
ega m .
B§86) = 291:‘ . N?V (1630, + To — Z€3ab7—b)a (522C>
ega m .
35186) _ 29F - N?V (1630 + Ta — i€3007s), (5.22d)
BE()SG) I L (]léga + Ta — 1€3abTh), (5.22¢)
2F s —
Bé86) _ B§86) _ B§86) -0 (5.22f)
und fiir das Diagramm 90 die Amplituden
e
B = —SA (165, + 7 + icsamy), (5.23a)
90 _€ga MmN ;
Bé ) = 9F u_ N (]].(530, + 7o + Z€3ab7—b)> (523b)
ega  m )
B§90) _ %u i N = (1830 + To + i€300), (5.23¢)
egA mn .
ega m .
BéQO) = 29}7 " N (1530, + 7o + Z€3ab7—b)a (5236)
B = B B§ 9 _ . (5.23f)

Um sicherzustellen, dass keine Fehler beim Auslesen der Amplituden gemacht wurden,
werden die jeweiligen Amplituden in Gleichung (B.I5)) eingesetzt und dann von der ent-
sprechenden Gleichung (5.21]) subtrahiert. Ist dieses Ergebnis gleich Null, so wurden die
Amplituden richtig ausgelesen.

Der néchste Schritt besteht nun darin, die erhaltenen Ergebnisse so umzuschreiben, dass
wir diese in Form der invarianten Amplituden A; erhalten. Dazu wenden wir die Stromer-

haltung #22)) auf Gleichung (G.I5) an und erhalten zunéchst

8
kuM" =k, > B;QY =0. (5.24)
j=1

Setzten wir nun die Gleichungen (5.I6]) ein, so bekommen wir nach Umformungen
kyM" = Jvs (B1+ Bgk - P+ Brk - q + Bsk?)
+ 75 (Baok - P+ Bsk - ¢ + Bak® + Bsk?) . (5.25)

D.h., wir erhalten zwei unabhéngige Strukturen, welche demnach unabhingig von einander
Null ergeben miissen, so dass folgende Bedingungen gelten

By + Bgk - P+ Bk - q + Bgk* = (5.26a)
Bok - P+ Bsk - q+ B4k? + Bsk*> = 0. (5.26b)

=
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Diese Bedingungen erlauben es uns, zwei Amplituden durch eine Linearkombination der
anderen Amplituden zu ersetzen, so dass wir letztlich wieder sechs unabhingige Amplitu-
den besitzen.

Den Zusammenhang zwischen den nicht eichinvarianten Amplituden B; und den eichin-
varianten Amplituden A; erhalten wir, indem wir in Gleichung (Z.23)) die Operatoren M}*
durch die Operatoren @ ausdriicken

My = —ilQ5 - QY], (5.27a
1
MY = i [(2k-q— K*)QY — 2k - PQY + k- PQY] , (5.27b

MY = ilk-qQf —Q%, (5.27c
My = ilk-P Q) —Qf]+ 2imy [QF — QY] (5.27d
MY = ilk-qQf -k Q4]

Mg = i[QF -k QY]
und schlieflich einen Koeffizientenvergleich

6

8
> B =) AM! (5.28)
j=1

=1

durchfithren. Da wir zwei Amplituden auf Grund der Bedingungen (5.26)) durch andere
ausdriicken konnen — wir wihlen die Amplituden By und Bs — bekommen wir schlieklich
folgenden Zusammenhang zwischen beiden Amplitudemnemgem.IE

A1 = i(Bs+2Bemy), (5.29a)
2 1

Ay = —i k-qBs+k*By + k*B 2

2 Zk-Pk2—2k-q( qBs + 4+ 5), (5.29b)
A3 = By, (5.29¢)
Ay = iBs, (5.29d)
As = i———(B3+2B4+2B .

5 zk2—2k'q( 3+ 2B, + 2Bs), (5.29¢)
As = —iBs. (5.29f)

Werten wir mit diesen Zusammenh#ngen nun die fiir die Diagramme 86 und 90 erhaltenen
Amplituden B; aus und schreiben das Resultat mittels der Mandelstamvariablen (9] um,

®Die Ursache fiir die unterschiedlichen Konventionen der eichinvarianten und der nicht eichinvarianten
Amplituden liegt darin, dass zum einen die iibliche Konvention und zum anderen eine fiir die Rechnung
technisch sinnvolle Konvention verwendet werden. Bei den eichinvarianten Amplituden handelt es sich dabei
um die in dieser Weise traditionell verwendete Konvention und bei den nicht eichinvarianten Amplituden
um die aus technischen Griinden gewé#hlte. Der Grund das ¢ nicht in den ,V ierervektoren“Q;L hinzuziehen
ist, dass teilweise erst der Ausdruck —ii gebildet werden miisste, was eine zusitzliche Fehlerquelle darstellt.
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so bekommen wir folgende invariante Amplituden fiir das Diagramm 86

(86) _ €94 MmN g —
Al = 1 OF 5 — m?v (]153a + Ta Z€3ab7—b))
2 F (s —u)(s —my)(t — M2)
AP = o,
AP = o,
AB6) __,e94 my
5 2F (s — m?\,)(t — M?2)
AP = 0

und folgende fiir das Diagramm 90

(]]-53a + T — Z.€3ab7—b)7

(]153(1 + Tq — Z'63(1b7—b)7

(]15361 + 7o + i€3ab7_b)a

(90) _ .€gA MmN :
AT TR (g e e s,
’ F' (s —u)(u—m3)(t — MZ)
AYY = o,
A = o,
400 _ 094 MmN
° 2F (u—m3)(t - MZ)
A9 — .

(ﬂéga + Ta + iﬁgabTb),

(5.30a)

(5.30b)

(5.30c)
(5.30d)
(5.30¢)

(5.30f)

(5.31a)

(5.31b)

(5.31c)
(5.31d)
(5.31e)

(5.31f)

Der letzte Schritt, der nunmehr verbleibt, ist die Bestimmung der Isospinamplituden. Diese
hatten wir in Gleichung (A.29) fiir die kartesischen Pionfelder definiert, d.h.,

A¢ = A ienbrb 4 A0 e A5,

(5.32)

wobei a der Isospinindex des kartesischen Pionfeldes ist. Lesen wir — oder vielmehr ein dazu
geschriebener Algorithmus — die Isospinamplituden aus obigen Gleichungen ab, bzw. aus,
so erhalten wir fiir unsere Beispieldiagramme folgende Isospinamplituden: Fiir Diagramm

86

S Ok W N~

+ 0 -

; gAMN ; gAMN ; gaAmnN
Ve, o €55, o~ €5, 9o~
2F(s—m3;) 2F(s—m3;) 2F (s—m?;)

gamy (—k*~MZ+t)

gampy (—k2—M2+t)

gamy (—k*>—MZ2+1)

e (s—u)F(s—m?v)(t—M,%)

e (s—u)F(s—mZ,)(t—M32)

—1e

(s—u)F(s—m?\,)(t—M?r)

0
0

gaAmn

TSR

m?v)(t—]V[?r)
0

(5.33a)
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Abbildung 5.3: Diagramm 93: Kontaktgraph dritter Ordnung.
und fiir Diagramm 90
+ 0 —
. gam . gam . m

1 wzF(ﬁ—gfv) wzp(ﬁ_é%v) _7'62Fg(3—n1\17?\,)
2 | je gAmN(7k27M§.+t) ie gAmN(fk27M§+t) —je gAmN(fk‘fo\/[?r#»t)

(s—u)F(u—m?\,)(t—Mﬁ) (s—u)F(u—m?v)(t—J\/[?r) (s—u)F(u—m%\,)(t—Mg) (533b)
3 0 0 0
4 0 0 0
5| e 2F(uf%§)]zt7M,%) ZeQF(uf%nA?Zl)IE]th,%) —wzmuf’ﬁ%ﬁwg)
6 0 0 0

Hiermit haben wir unser Ziel erreicht, die invarianten Isospinamplituden der Diagram-
me 86 und 90 zu bestimmen. Fiir alle anderen Baumdiagramme konnen die invarianten
Isospinamplituden analog bestimmt werden.

Betrachten wir die in den Tabellen [5.33]aufgefiihrten invarianten Amplituden, so stellen wir
fest, dass diese erwartungsgemifs die ,crossing“-Symmetrie (£30) erfiillen, d.h., unter der
Vertauschung der Mandelstamvariablen s und w verhalten sich die einzelnen Amplituden,
wie folgt:

(+) (+) (0) (0) =) (-)

A(L(§36> - A(L(f)m)’ A%é()%) - A%é()%)’ A(L()Sﬁ) _A%x?ow
+ + - -

A%,(§56> _> Az,((90 ’ A%é()%) - A2,<(90c;)’ A?,()%) _> _(‘42), 90) (5.34)
+ + - -

A5,(86) - _As,(go)v A5,(86) - _A5,(90)7 AS,(SG) - A5,(90)'

Eine weitere Diskussion der Ergebnisse des Baumgraphenniveaus wird in Kapitel[6lerfolgen.

5.2.3 Der Kontaktterm der 3. Ordnung

Im vorherigen Abschnitt haben wir die Diagramme 86 und 90 exemplarisch fiir die Be-
rechnung der invarianten Isospinamplituden auf dem Baumgraphenniveau behandelt. Bei
den Kontakttermen der dritten (Diagramm 93) und der vierten Ordnung (Diagramm 94)
tritt jedoch eine zusétzliche Schwierigkeit auf, die darin begriindet ist, dass der totale
antisymmetrische Tensor vierter Stufe €,,,, in den entsprechenden Feynmanregeln des
Vertex auftritt. Deshalb werden wir im Folgenden den Kontaktterm der Ordnung O(q®)
(Diagramm 93) als das entsprechende Beispiel diskutieren.
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Die Amplitude dieses Diagramms ist gegeben als

Mgy = igeaulpy){ — m%kuqa(piﬁ + pyg) e (dgbas + doa)
+ [M2y"(2d16 — dis)
=0 77 Ry (’YV (p?pé‘ +p}p§‘) —* (p?p;’ +p}p§>> (5.35)

+daiky (¢"* — ¢H)
—daag ((¢-k — k) v+ (k" — ") ¥) 175 €3ab T }u(ps).

In dieser Form kann sie jedoch durch den in den vorherigen Abschnitten vorgestellten
Algorithmus nicht korrekt verarbeitet werden. Dazu ist es notwendig, den Tensor 8
umgzuschreiben. Betrachten wir daher lediglich den Teil der Amplitude, welcher von diesem
Tensor abhangt

a(py) .- kuqa(Pig + prs)e™ P .. up;) (5.36)

und beschrinken uns zunéchst auf den Anteil mit dem auslaufenden Nukleonimpuls. All-
gemein kénnen wir einen Vierervektor p®* durch Ausnutzung des Antikommutators der
Gammamatrizen, wie folgt schreiben:

b= 50 B (5.37)

Setzten wir dies in den Anteil mit dem auslaufenden Nukleon aus Gleichung (5.36) ein, so
erhalten wir

— 1 ro
(ps) - kutaz (18 Brt Pris)e B u(p). (5.38)
Unter Ausnutzung der Impulserhaltung
Py =vit+ k=4 (5.39)

schreiben wir diesen Ausdruck zu

W(pg) ko Cal At K -+ F)e™™ . u(p) (5.40)

um. Nunmehr nutzen wir die Dirac-Gleichung aus und erhalten

— 1 rvo
a(pf) - - k‘yqa§6“ Prys2ma+ F— o) ... u(p;). (5.41)

Nach Gleichung (B.I6D) gilt jedoch, dass
— (5.42)

wobei Y% laut Gleichung (B.13) als

1
AP = G (’Y“’YV’Y)‘ F AR R — A — Ay — VHVAVV> (5.43)
gegeben ist. Setzen wir jetzt Gleichung (5.42) in Gleichung (5.41) ein, so erhalten wir

schlieflich

a(pf) - kyqa%757“”a(2mN+ K— o) ... u(pi). (5.44a)

Auf analoge Weise schreiben wir jetzt den Anteil aus Gleichung (5.36) um, der von dem
einlaufenden Nukleonimpuls p; abhéngt und erhalten

u(pf) - - kvga(2mn+ ¢— }6)3757“”“ cou(p). (5.44b)
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Setzen wir nun die soeben erhaltenen Ergebnisse (5.44al) und (5.440) in Gleichung (5.35)
ein und schreiben dabei y#¥* explizit aus, so kénnen wir, nach der in den beiden vorherigen
Abschnitten geschilderten Methode, die invarianten Isospinamplituden bestimmen.

Entwickeln wir also Gleichung (5.35) mit den eben angefiihrten Anderungen und schreiben
diese unter Verwendung der Dirac-Gleichung, der Impulserhaltung und der Gammamatri-
zenalgbra um, so erhalten wir fiir die nicht eichinvarianten Amplituden B;

93 €
B = 2Fm3, [81ds(k - py + k - pi)dsamdy + 8dy(k - py + k - pi)Tamiy
+ i(4d16M£m?\[ — 2d18M3m?\[ + 2k - nglm%\; + k2d22m%\7 —k- ngzm?\f
+ dook - prq - py + dook - piq - Pi)€3abTy] 5 (5.45a)
2
Bég?’) = Fﬂ:N (k2 — k- q)(1dgdsq + dyTa), (5.45b)
2
B = _3F;LN (2k* — 2k - q — 5k - py — k - pi)(Lds6sq + doTa), (5.45¢)
2
B = _3F;N (=K% = 3¢% + 12m3 + 4k - ¢+ k - p + 5k - p;) (1dgdsq + doTa),
(5.45d)
2
By = FTSN (—k* = ¢ +4m3; + 2k - q) (Ldsb3q + dy7a), (5.45¢)
B = %  161dsdsam? + 16dgrem? + id : 5.45¢
6 = TIFmZ [ 803a My + 9TaMy + 1 2g(q-pf +q'pz)€3abTb] ) (5.45f)
N
B = — ' [2dpymd + dao(q- by — - 1)) s (5.45h)
4Fm?\,

Verwenden wir jetzt die in Abschnitt 522 hergeleiteten Gleichungen (5.29), so bekommen
wir fiir die eichinvarianten Amplituden A;

AP = Z4Ffmv (—81tdsdsq — StdgTy — i(s — u)d20€sapT), (5.46a)

AP = iﬁm(lds%a +dgTa), (5.46D)

APY = E;anfv [4(2da1 — do2)m3; + dao(—k? + M7 +1)] e3apm, (5.46c)

Aig?’) = z‘ﬁ [—321dgd3am3y — 32dgTam?y — i(s — w)daoesapm) ,  (5.46d)
N

AP — —i;M(ldgéga + dyTa), (5.46¢)

Aég?’) = 8F(:n?\, [doo(—k? + M2 + t) — ddoam¥y| €3ap7p. (5.461)

Letztlich erhalten wir die folgenden invarianten Isospinamplituden durch das Auswerten
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dieser Gleichungen gemif Gleichung (5.32):

+ 0 —
1 —ze% —Zeilgfg?v ie(zrqu)@%o
9 | je2ds(K2—Mz+t) | . 2do(k>—MZ+1) 0
Fin(—M2) | "¢ Fmy(i—M3)
. [4(2d21—d 2 +doo(—k2+M2+t
3 0 0 w[ (2d21—d22)m3,+ ;0( +MZ+41)] (5.47)
8Fm%;
—9 % 9 % . (S*U)dgo
4 ‘o 3 YT FmE,
_je_ (szwds PP C) L
O TTnn -0 | T Fmn (-012) 0
. |doo(—=k2+M2+t)—4daam?
6 0 0 Ze[zo( 2) 22m3 ]
8Fm3y;

Betrachten wir die erhaltenen Isospinamplituden, so stellen wir zunéchst fest, dass diese
keine Pole in den Mandelstamvariablen s und u besitzen, d.h., es handelt sich dabei um so
genannte Nicht-Pol-Beitrdge. Abschliefsend — als Test der Rechnung — iiberpriifen wir auch
hier die ,crossing“-Symmetrie, d.h., das Verhalten der Amplituden unter der Vertauschung
der Mandelstamvariablen s und wu.

ASF(Z):%) - A§,+(3)3)a Ag(,)()gzz) - Af()%), Ag,_(é?,) - _Ag,_(S)B)’
Agr(%) Aéf(és)v A;,()ga) - Ag,)()gz)’

A:({%g) - A§,<)93§= (5.48)
Aijr(é?)) - ASJ(Z)?);’ Az(l(,)()%) - Az(l(,)()%)’ Ai,_(;?)) - _AEL,_(93)7 .
AS@):&) - _Aéjzg:s)’ Aé,()ga) _Ag,)()%)’

Aéj(?):a) - Aéj(?m)'

Dieses Verhalten stimmt mit dem erwarteten Verhalten gemif Gleichung (L30) iiberein.
Dazu ist anzumerken, dass dieses Verhalten hierbei unabhingig von der explizit verwen-
deten Mandelstamvariablen ist; d.h., schreiben wir in den nicht explizit von s und u ab-
hangenden Amplituden die Mandelstamvariable ¢ mittels Gleichung (.10 entsprechend
um, so andert sich dieses Verhalten nicht. Eine weitere Diskussion der Ergebnisse wird,
wie bereits oben erwahnt, in Kapitel [6] erfolgen.

5.3 Die Rechnung auf dem Schleifenniveau

Nachdem wir im vorherigen Abschnitt die Berechnung der invarianten Isospinamplituden
auf dem Baumgraphenniveau behandelt haben, werden wir in diesem Abschnitt dieselbe
Rechnung auf dem Schleifenniveau diskutieren. Im Rahmen der Rechnung auf dem Schlei-
fenniveau treten jedoch Schwierigkeiten auf, die auf dem Niveau der Baumgraphen nicht
vorhanden sind. Hierbei sei insbesondere auf die notwendige Berechnung einer Vielzahl
verschiedener Schleifendiagramme sowie deren Renormierung hingewiesen.

Deshalb werden wir in diesem Abschnitt — analog zum vorherigen — an Hand dreier Beispiele
die Rechnung diskutieren. Im Besonderen werden wir dabei ausfiihrlich die Definition der
Integrale, deren Berechnung und Renormierung behandeln.

5.3.1 Die Schleifendiagramme 15 und 50

Zur Diskussion der Rechnung auf dem Einschleifenniveau betrachten wir uns zunéichst die
beiden in Abbildung 5.4l dargestellten Diagramme 15 und 50. Diese Diagramme lassen sich
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Abbildung 5.4: Schleifendiagramme: Diagramm 15 (links) und Diagramm 50 (rechts). Beide
Diagramme sind Diagramme der Ordnung O(g?).

als s-Kanal und u-Kanal-Diagramme betrachten; demnach miissen sich — analog zu den
zuvor diskutierten Baumdiagrammen 86 und 90 — die erhaltenen invarianten Isospinam-
plituden unter der ,crossing“-Symmetrie gemif Gleichung ([A.30) in einander iiberfithren
lassen.

Stellen wir jetzt, wie in Anhang [Gl beschrieben, die Pionproduktionsamplitude fiir diese
beiden Diagramme auf, so erhalten wir

iegA _ d4l (q+ I)Teeace(k— l+ my-—+ ﬂi)Tb'YS’YueSbc )
Mis = —gps ™ f)/ Gl (-2 (kL pmg) P
(5.49a)
_iega _ d'l Teysy"esce(— 4= J+mn+ Bi)(J— d)veave
M(Mso) ~ ]F8 u(pf)/ (271')4 (2 — MTQF) ((—l —q+pi)?— m?\f) u(pi),
(5.49b)

wobei I den Schleifenimpuls bezeichnet 8 Diese Ausdriicke fiir die beiden Diagramme formen
wir jetzt, wie im Fall der Baumdiagramme, um, d.h., die Dirac- und die Isospinstrukturen
werden mittels entsprechender Algorithmen getrennt und vereinfacht.

d*l 1
MH — 94 - /
T S V)N (CR EE ey
X (2 dvs D +2 Jyspl'+ d v vs— o WP vs+ ¥ Ky s — P sl?
+2 dvFysmy + 2 P ysmn) u(ps) X}(2ﬂl(53a + €3abTh) Xis (5.50a)
d*l 1
M — €94 - /
o = e ") | Gt AR (gt P )

X (=" o Jvs +" 1 drs
+ s (q? — 2+ 20 p; — 2q - pi)) (i) Xh(esapms — 2103a)xi. (5.50D)

Da die Rechnungen in dieser Arbeit lediglich bis zur Ordnung vier durchgefiihrt werden,
sind jetzt die Terme héherer Ordnung noch zu eliminieren.

®Hinsichtlich der in den Schleifenintegralen verwendeten Massen ist darauf hinzuweisen, dass es sich bei
der Nukleonmasse my um die physikalische Masse handelt, wie in Abschnitt [G.4] diskutiert wird, wohin-
gegen die Mesonmasse M, die Mesonmasse in niedrigster chiraler Ordnung (eigentlich als M bezeichnet)
ist. Fiir die Mesonmasse gilt dabei, dass der Unterschied hoherer Ordnung ist und deshalb auf dem Schlei-
fenniveau vernachléssigt werden kann. Auf dem Baumgraphenniveau wird durch die Beriicksichtigung von
Diagramm 104 diesem Rechnung getragen.
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Das Zihlschema

Um die Terme gréfser der Ordnung vier eliminieren zu kénnen, ist es zunéchst notwendig die
chirale Ordnung der einzelnen Terme zu bestimmten. Dazu gehen wir vor wie in Abschnitt
erlautert. Dabei werden der Pionimpuls ¢, der Polarisationsvektor €, und der Photon-
impuls k als Grofen der chiralen Ordnung O(q) gezahlt, wie auch der Pionschleifenimpuls
1T Das Abzihlen der chiralen Ordnung geschicht letztlich mittels eines Algorithmus, der in
der Lage ist, die verschiedenen Grofien zu erkennen und die entsprechende chirale Ordnung
zu zuordnen, wobei der nicht explizit auftretende Polarisationsvektor beriicksichtigt wird.
Abschliefsend eliminiert dieser Algorithmus alle Terme, die héherer Ordnung sind und gibt
an, wieviele Terme eliminiert wurden. Im Fall unserer beiden Beispieldiagramme treten
keine Terme hoéherer Ordnung auf, so dass wir fiir diese wiederum

d'l 1
ME - 94 o /
A S T Vo) (R Ry

x (2 dspt +2 Jspl + 3 d Kytys — 3 o P ys + 3 1kt — Ivtsl

+2 v ysmy + 2 A ysmn) u(ps) X}(2i153a + €3abTh) Xis (5.51a)
d*l 1
M, = 94 gy /
I B (V) (S R R S

x (=3 o s+ IV T dvs
+ 5 (3q% = T + 20 pi — 20 - p;)) ulps) X}(E&szb — 2i1034)xi,  (5.51Db)

erhalten, wobei jetzt durch J, welches die chirale Ordnung bezeichnet, explizit die chirale
Ordnung der einzelnen Terme angegeben ist. Die Nomenklatur ist dabei wie folgt zu ver-
stehen. Da alle Terme von mindestens dritter Ordnung sind, wurde, um dies zu zeigen,
13 herausgezogen. Die Terme vierter Ordnung sind durch das Auftreten eines weiteren J
gekennzeichnet.

5.3.2 Die Integrale

Der néchste Schritt der Rechnung besteht nunmehr darin, die auftretenden Integrale zu
identifizieren. Dazu werden wir in diesem Abschnitt die Integrale im Rahmen der dimen-
sionalen Regularisierung zunéchst definieren und im Anschluss daran diskutieren, wie diese
identifiziert werden. Des weiteren werden wir auch behandeln, wie mit diesen Integralen
zu verfahren ist, um eine Form zu erlangen, die es uns erlaubt, die invarianten Amplituden
A; zu bestimmen.

Definition der Integrale

Da die in dieser Arbeit zu berechnenden Integrale Divergenzen enthalten, werden die auf-
tretenden Integrale mittels der dimensionalen Regularisierung berechnet, um auf diese
Weise die Divergenzen zu extrahieren [Vel 94]. Der Grund fiir die Wahl der dimensionalen
Regularisierung liegt darin, dass diese im Gegensatz zu anderen Methoden die Symmetrien
der chiralen Storungstheorie bewahrt. Somit definieren wir unsere skalaren Integrale im

" Der Einordnung des Pionschleifenimpulses [ als kleiner GroRe liegt die Uberlegung zu Grunde, dass
im Rahmen einer ,cut-off“-Regularisierung der ,cut-off“ als entsprechend klein angenommen werden kann.
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Rahmen der dimensionalen Regularisierung wie folgt:

o [ dn 1
Lr...N...<p1,...,pr7Q1,--~,QS>:ﬂ(4 )/(

Qﬁ)nal...arbl...bs

, (5.52)

wobei der Faktor u(*~™) gewihrleistet, dass die Dimensionalitéit der Integrale unabhingig
von der Dimension n ist; p ist dabei eine beliebige Massenskala. Es gilt aufkerdem

a; = (I+p)?— M2+i0", (5.53a)
bj = (I+g¢;)* —m} +i07, (5.53b)

so dass ein Pionpropagator als 1/a; und ein Nukleonpropagator als 1/b; gegeben ist. Analog
dazu definieren wir die vektoriellen und tensoriellen Integrale als

dnl [ ..o
ek o) = (4—n)/
ﬂ—...N..A(pla y Prsy 41, 7Q) K (27r)na1,,_a7, by - by

(5.54)

Identifikation der Integrale

Nachdem wir die Integrale im Rahmen der dimensionalen Regularisierung definiert haben,
kénnen wir diese in unseren beiden Beispieldiagrammen identifizieren. In der computerge-
stiitzten Rechnung geschieht dies wiederum an Hand eines Algorithmus. Dieser durchsucht
zunéchst termweise vom Schleifenimpuls [ abhéngige Propagatoren und fasst diese in einem
SPraintegral® zusammen. Im Anschluss daran wird jeder Term auf weitere Strukturen hin
durchsucht, die den Schleifenimpuls [ beinhalten; diese werden beispielsweise, falls notwen-
dig, entsprechend aufgespalten:

J = 7al®. (5.55)
Je nach Anzahl dieser Strukturen wird das Integral schliefslich als skalares, Vektor- oder
Tensorintegral erkannt. Dabei ist jedoch zu beachten, dass zuvor das Quadrat des Schlei-
fenimpulses umgeschrieben werden muss

2= (1> — M2)+ M2, (5.56)
d.h., z.B.

d*l 12 d4l 1
/ (271')4 (12— M2)[(l —p)? — m%\f] - / (277)4 (1—p)?— m?\/ (5.57)

/ d*l M?

+ :
(2m)* (12 = M)[(1 = p)? — m}]
Auferdem werden alle Integrale, die nur Nukleonpropagatoren beinhalten, gleich Null ge-
setzt, da Integrale dieser Art im Rahmen der Infrarotregularisierung verschwinden. Wir

werden darauf in Abschnitt B.3.4] zuriickkommen.
Somit bekommen wir fiir die Diagramme 15 und 50 folgende Ausdriicke:

ega _
My = o3 Wr) [(2 dvspi'+ d Kr"vs + 2 ' ysmn — V5 M7) Ly (0, —k — pi)
+ (2707505 = A0 5 + Yo Ky s + 29a0 vsmn ) I (0, =k — p)] u(p;)
X X (201830 + €3a47) X1 (5.58a)
ega _
M) = g3 Uen) [0"7a dyvs =" drans + 29 9s7) Iin (0,9 — pi)

+ Yys(q® — M2 —2q - pi) In (0, g — ;)] u(p;)
X X}(GSabTb — 27;]15311))613 (558b)
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1 \\ 14k, P2

(%)

14 my
my
/ I+ kn_1 >
PN PN-1

Abbildung 5.5: Wahl der Impulse innerhalb der Definition der Integrale gemil LoopTools.

Betrachten wir uns die nunmehr erhaltenen Ergebnisse, so stellen wir fest, dass wir diese
Ausdriicke noch nicht direkt in eine Form bringen konnen, die es erlaubt, die nicht eichinva-
rianten Amplituden B; fiir die beiden Diagramme zu bestimmen. Der Grund dafiir sind die
Integrale mit einer tensoriellen Struktur — also Vektorintegrale und Tensorintegrale zweiter
und dritter Stufe. Hierzu benétigen wir eine Methode, die es uns erlaubt, die tensoriellen
Integrale derart umzuformen, dass wir eine Form bekommen, welche sozusagen die Lor-
entzstruktur von der integralen Struktur trennt. Dariiber hinaus ist die Problematik der
Berechnung einer Vielzahl unterschiedlicher Integrale zu 16sen. Es wird deshalb an dieser
Stelle darauf hingewiesen, dass es sich bei den in diesem Kapitel diskutierten Diagram-
men jeweils um einfache Beispiele handelt. Die schwierigsten in dieser Arbeit auftretenden
Integrale sind Tensorintegrale dritter Stufe einer Vierpunktfunktionen.

Berechnung und Umformung der Integrale

Die soeben beschriebenen Schwierigkeiten kénnen wir prinzipiell mittels des von Thomas
Hahn geschriebenen Programms LoopTools [HP 98| l6sen, welches eine numerische Be-
rechnung der Integrale in dimensionaler Regularisierung durchfiihrt® Betrachten wir uns
deshalb zunichst die Definition der Integrale in LoopTools:
TN _ (271-”)4—71 /d”l [ ..o

wmer s in? 12 =mi[( + k1)? =m3] - [+ kv 1) —mR]

Hierbei sind die Impulse, wie in Abbildung abgebildet, zu Grunde gelegt. Die in den
Propagatoren erscheinenden Impulse k; sind dabei mit den externen Impulsen p; wie folgt

(5.59)

verkniipft:
p1 =k,  p2=ko— ki, ... pN=kny—kn_1,

5.60
ki=p1, ko =p1+po, e kv =N pi. (5.60)

Die Nomenklatur beziiglich der Anzahl der auftretenden Propagatoren lautet wie folgt:
fir eine Einpunktfunktion T steht der Buchstabe A, fiir eine Zweipunktfunktion 72 B
usw. Ein skalares Integral wird durch einen Index 0 gekennzeichnet; somit ergibt sich z.B.
fiir ein skalares Integral einer Zweipunktfunktion By. Beziiglich der tensoriellen Integrale
verhélt sich dies in so fern anders, als dass nicht die Integrale selbst sondern Koeffizienten
berechnet werden.

8Das Programm LoopTools wurde in der Arbeitsgruppe getestet, im Besonderen wurden die Ergebnisse
auch mit Referenz [DNS 91] verglichen. Weitere Ausfiihrungen und Erlduterungen zu LoopTools sind in
der Bedienungsanleitung enthalten.
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Betrachten wir uns dazu Integrale, welche {iber eine tensorielle Struktur verfiigen — also in
unserem Fall — vektorielle Integrale und Tensorintegrale zweiter und dritter Stufe. Diese In-
tegrale konnen geméf [PV 79| zu einer Kombination von Lorentztensoren reduziert werden,
wobei die Lorentztensoren aus dem metrischen Tensor g*¥ und der im Integral auftreten-
den linear unabhéngigen Impulse konstruiert werden. Explizit ergeben diese Zerlegungen
fiir die fiir uns relevanten Integrale

B, = kB, (5.61a)
B;w = guVBOO+k1uk2uBlla (5'61b)
2
Cn = kiuCr+ kouCo = Z kinCs, (5.61c)
2
C;w = guVCOO + Z kiukjucijp (5.61d)
)

2
Cul/p = Z gul/kzp + gupkzu + gupku/)COOz + Z kz,ukjuklpcz]la (5616)

=1 i,5,0=1
3
D, = > kD (5.61f)
i=1
3
D;w = g/u/DOO + Z k'z’,ukjuDija (5.61g)
ij=1

3 3

Dy = Z(Quuk¢p+gupkm+gupk‘iu)D00i+ Z kipkjvkipDiji, (5.61h)
i=1 ijl=1

wobei LoopTools die Koeflizienten der Lorentztensoren berechnet. Diese Koeflizienten wie-
derum besitzen die Eigenschaft total symmetrisch in ihren Indices zu sein. Auberdem ist
anzumerken, dass die Wahl der Lorentztensoren nicht eindeutig ist.

Unsere in Gleichung (5.52) vorgenommene Definition der Integrale und die in LoopTools
verwendete aus Gleichung (5.59) unterscheiden sich durch den Vorfaktor i/(1672). Wir
erhalten somit

I, (0) = WAO [mﬁl], (5.62a)
)
Ia1a2 (O, k?Z) = ﬁ [kﬁ2, mal,m2 ] (5.62]3)
/)
Ia1a2a3(07k2;k73) = WO@[/C%, (kz — k3) kd,mal,mgwmz ] (5,620)

fiir die Einpunkt-, Zweipunkt- und Dreipunktfunktion sowie fiir die Vierpunktfunktion

Ia1a2a3a4 (07 ko, k3, k4) =
(5.62d)
167 QDO[k2>(k2 _k3) (k3_k4)27k27k§7(k k2) ma1>m227m237m2 ]
wobei es hierbei geniigt die skalaren Integrale zu betrachten, da die Verkniipfung der Ar-
gumente analog fiir die Koeffizienten der tensoriellen Integrale gilt.
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Nun schreiben wir unsere in Gleichung (5.58]) erhaltenen Integrale mittels der Gleichungen
(GE6T) und (5:62) um und erhalten fiir die vier auftretenden Integrale

[

Lin(0, =k —p;) = 1672 Bo[(k + pi)?, m¥, MZ], (5.63a)
Lev(0.0=p) = o Bolla—pi) ik, M2, (5.63b)
v (0, =k —p;) = #(—ka — PN By[(k 4 pi)?, M2, m%], (5.63c)
on(0,g—pi) = 16;2 (¢™ — &) Bil(qg — pi)*, M2, m3), (5.63d)

wobei B; den Koeffizient eines Vektorintegrals hinsichtlich einer Zweipunktfunktion be-
zeichnet. Mit den nunmehr erhaltenen Ausdriicken der Integrale kénnen wir jetzt mit dem
in Abschnitt bereits diskutierten Formalismus die Gleichungen (5.58]) so umschrei-
ben, dass wir die nicht eichinvarianten Amplituden bestimmen koénnen. D.h., wir nutzen
die Dirac-Gleichung, die Gammamatrizenalgebra und die Impulserhaltung (5.19) sowie die
Verwendung der Summe der Nukleonimpulse (5.20) aus und bekommen fiir die Gleichungen
(5.58) folgenden Ausdruck:

M)

Mz

__f9A4
12872 F3
X ﬂ(pf) {Bl[(k + pi)27 M?r? m?\i]
x (=2ysmnkt — 29 ysmy — 2P ysmy — 2¢Mysmy + 29" Kysmy)
+ Bo[(k + pi)*, may, M2 "5 (k* — M2 + 2k - pi) } u(p;)
X X} (21030 — i€30bm) i (5.64a)
iega
- 12872F3
x w(pg) { Bol(pi — q), m¥, M2] v*y5 (—q° + M7 +2q - ps)
+ 2B [(pi — q)%, M2, my] (—ysmnk! + 29 y5m% — py - piinys
+ Yysk - pi — Plysmy + ¢'ysmy + 4" Eysmy — Y 50 - pi) Fu(ps)
X X}(EgabTb — 2i1034)Xi- (5.64b)

Hierbei befinden sich die Nukleonimpulse auf der Massenschale.

5.3.3 Extraktion der invarianten Isospinamplituden

Nachdem wir es erreicht haben, die beiden Amplituden wie beschrieben umzuformen, koén-
nen wir jetzt aus den Gleichungen (5.64]) die nicht eichinvarianten Amplituden B; bestim-
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men. Wir erhalten fiir das Diagramm 15

15 —legA

B§ ) = m (231[(k +pz) M2 mN]m?V

+ Bo[(k + pi)?, mR, MZ)(—k? + M2 — 2k - p;))
X (2i]l(53a + EgabTb), (5.65a)

e .

By = 64r2 3 gamy Bi[(k + pi)?, M2, my (21830 + €3ap7), (5.65Db)
e .

B{"” = 6423 gamyBi[(k + pi)?, M2, m%](2i1034 + €3a57), (5.65¢)
e .

B£15) = 7647'(2}73 gAmNB1[(/€ + pi)27 M72r7 m?\[](21153a + €3abTb)7 (565d>
—1e

Béw) = YPeyas) gAmNBl[(k +pz) M2 ]( 201034 — €34bTp), (5.65e)

B — pU9 _ p® _g (5.65f)

und fiir das Diagramm 50

(50) _ —i€ega , 2 22 2 2 , . .
B, = W(QBl[(pz—Q) , Mz, my](2my —pr-pi+ k-pi—q-pi)
+ Bol(pi — ¢)%,m%, MZ)(—a® + M7 + 2 - p;))
x (e3apTp — 2i1634), (5.66a)
—ie )
B = ci2ps damnBil(p — q)%, M7, m3](2i1830 — €3a57) (5.66b)
50 —1e
B{ = a2 s 9AmNBa(pi - @)%, M2, m%](esapmy — 2i1834), (5.66¢)
50 —ie .
Bé(l ) = Py gamnBi[(pi — @)%, M7, m}/] (201030 — €3a7), (5.66d)
50 —1e
BPY = a2 s 9AmNBa(pi - @)%, M2, m%](esapmy — 2i1834), (5.66¢)
B = BPY =B —o. (5.66f)

Diese Resultate konnen wir wiederum mittels der Gleichungen (5.29) als die invarianten
Amplituden schreiben:

—te .
A§15) = 64'71'291;43 mny Bi]s, Mg, m?v](QIldga — i€30bTh), (5.67a)
A0 __iega my [
2 327T2F3 (S—u)(t_MTZF) 1[85 ﬂ’mN]
x (—k* — M2 + t)(2163, — ie3apTs), (5.67h)
457 = Al -0 (5.67c)
AL = 94 TN B (s, M2, mZ (21050 — i€sapTs), (5.67d)

642 F3 (t — M2)
AP = o, (5.67e)
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0) —1ega

— 2 2 .

= Gi2ps B [u, Mz, my (21634 + i€3a67s), (5.68a)
0) —iega my 9 9

= Bilu, M,

32m2F3 (s — u)(t — M2) tlt, M, mi]
X (=k* = M + 1)(2163, + i€3a7), (5.68b)

Vo= 4=, (5.68¢)
0 —iegA 5 9 ‘

T B64m2FS3 (t _ MTQI') By [u, M7T7 mN](2IL(53a + ZegabTb), (568d)
V=0 (5.68¢)

Schlieflich bestimmen wir daraus die eichinvarianten Isospinamplituden geméf Gleichung
(E32) und bekommen fiir das Diagramm 15

+ 0 —

ieBl[s,Mgr,m?\,]gAmN ieBl[s,Mg,m?V]gAmN

1 o 22 F3 0 o 423
; 2 3 2 2_ ; 2§ 2 2_

9 __ieBi[s,Mz mg]gamn (k°+M7Z—t) 0 __ieBi[s,M7 my]gamy (k*+Mz—t)

1672 (s—u) F3(t—M32) 3272 (s—u)F3(t—M2) (569)
3 0 0
4 0 0
5 ieBl[s,Mg,m?\,}gAmN 0 ieBl[s,AM,Qr,m?V]gAmN

3272 F3(t—M2) 642 F3(t—M32)
6 0 0 0
und fiir das Diagramm 50
+ 0 -

teB; [uzM‘rQr»m?\]]gAmN ieBl[ungzm?\f}gAmN
L —_— 2 232”2F3 2 2 0 : 2 6%71—2}73 2 2
9 ieBy[u, M2 m3]gampy (k*+MZ—t) 0 _ieBifu,MzmE]gamn (k°+M7—t)

1672 (s—u)F3(t—M2) 32m2(s—u)F3(t—M32) (570)
3 0 0
4 0 0 0

ieBl[u,Mgr,m?\,]gAmN ieBﬂu,M?r,m?\,}gAmN
5 - 253 2 0 253 2

3272 F3(1—M2) 642 F3(t—M2)

6 0 0 0

Anfangs der Berechnung haben wir festgestellt, dass sich die beiden Diagramme als ein s-
Kanal- und ein u-Kanal-Diagramm betrachten lassen. Uberpriifen wir nunmehr die ,crossing“-
Symmetrie, so erhalten wir fiir die einzelnen Amplituden das folgende Verhalten

(0) (=) (=)
R
= Az’((%o)), A%()1 : (A) Loy (5.71)
_As,(50)> A5 a5 y Aj 5,(50)"

Dieses Verhalten unter der ,crossing“-Symmetrie entspricht exakt dem erwarteten nach

Gleichung ([.30]).

Somit haben wir die invarianten Isospinamplituden ausgedriickt durch Koeffizienten (Loop-
Tools) bestimmt. Der nichste Schritt, damit wir diese Ausdriicke auch nutzen konnen, ist
die Renormierung der Koeffizienten, da diese das Zahlschema nicht erfiillen.
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5.3.4 Renormierung

In diesem Abschnitt werden wir die Renormierung der im vorherigen Abschnitt erhalte-
nen Ergebnisse behandeln. Wie wir in Kapitel B diskutiert haben, treten im Rahmen der
baryonischen chiralen Stérungstheorie bei der Berechnung von Schleifendiagrammen bzw.
Schleifenintegralen Terme auf, welche das chirale Zahlschema verletzen. Die in Kapitel
B diskutierte Methode der reformulierten Infrarotregularisierung [SGS 03] erlaubt es uns
jenen Anteil, der das Zahlschema verletzt, zu berechnen und von dem in dimensionaler Re-
gularisierung berechneten ,yollen* Integral zu subtrahieren. Das im vorherigen Abschnitt
eingefiihrte Programm LoopTools [HP 98| ermdglicht uns zum einen die Massenska-
la p frei zu wihlen und zum anderen im Rahmen der dimensionalen Regularisierung das
Abzugsverfahren festzulegen. Als Abzugsverfahren wihlen wir das in der chiralen Stérungs-
theorie iibliche modifizierte Abzugsverfahren MS, d.h., wir erhalten endliche Integrale, die
jedoch weiterhin endliche Terme, welche das Zahlschema verletzen, enthalten. Im Folgenden
werden wir also an Hand von Beispielen die notwendigen Abzugsterme geméf der reformu-
lierten Infrarotregularisierung ableiten. Dabei werden wir skalare Integrale, Vektorintegrale
sowie Tensorintegrale zweiter und dritter Stufe behandeln.

Allgemein sind vorweg noch einige Anmerkungen zu den entsprechenden Computeralgo-
rithmen zu machen. Den Computeralgorithmen, welche die Abzugsterme bestimmen, ist
ein weiterer ,Superalgorithmus“ vorgeschaltet. Dieser wird von allen Schleifendiagrammen
durchlaufen; dabei werden die einzelnen Integrale identifiziert sowie standardisiert (Lor-
entzindices) und an den entsprechenden Algorithmus weitergeleitet. Vorab wird jedoch
iiberpriift, ob der Abzugsterm des Integrals dem System schon bekannt ist. Ist dies der
Fall, so wird getestet, ob auch die entsprechenden Abzugsterme der Koeffizienten (Loop-
Tools) bekannt sind. Ist auch dieser Test positiv, so wird auf eine Evaluierung verzichtet;
anderenfalls erfolgt die Bestimmung der Abzugsterme, sowie die anschliefende Katalogisie-
rung. Dariiber hinaus ist anzumerken, dass die Ergebnisse der im Folgenden vorgestellten
Algorithmen mit jeweils bekannten Abzugstermen von Integralen verglichen und getestet
wurden.

Abzugsterme der skalaren Integrale

In diesem Unterabschnitt werden wir die bereits in Kapitel Bl behandelte reformulierte
Infrarotregularisierung verwenden, um zunéchst die Abzugsterme des exemplarischen Inte-
grals I;n (0, —p;) abzuleiten und daraus die entsprechenden Abzugsterme des Koeffizienten
By gemif (5.62al) zu bestimmen.

Beginnen wir also mit der Betrachtung unseres Beispiels in dimensionaler Regularisierung

4—n

w 1 1
Lin(0,—p;) = d"l - —, 72
N i) (2%)”/ ZQ—M,%—FZO‘*‘ (l—pi)Q—m%\;—i-ZO”L (5.72)

Dieses Integral schreiben wir nun mittels der Schwingerparametrisierung um:

1 i

(12— A2~ T(a) /Ooo Bex explix(¥ — A%} (5.73)

Dazu driicken wir zunéchst die in Gleichung (5.72) auftretenden Propagatoren durch die
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Schwingerparametrisierung aus.

1 1 : 2 2 N+
P—MZ+iot z'r(1)/dxleXpW1V — M7 +i0"]}, (5.74a)
1 1
= 7 | ¢ iz2[(1 — pi)? — ma +i07]}. (5.74b
(1= pi)? —m3 +i0F iF(l)/ wg explizg[(l —pi)” —miy +i07]}. (5.74b)

Dabei ist es wichtig die Reihenfolge zu beachten, d.h., zuerst werden die r Pionpropagato-
ren mit den Parametern x; bis z, und dann die s Nukleonpropagatoren mit den Parame-
tern xy41 bis z,4s umgeschrieben. Wird diese Reihenfolge nicht beachtet, ist die daraus
folgende Parametrisierung fiir einige anspruchsvollere Integrale, beispielsweise bestimmte
Integrale iiber Vierpunktfunktionen, ungiinstig. Unglinstige Parametrisierung bedeutet in
diesen Féllen, dass der folgende Algorithmus nicht mehr anwendbar ist, da die vorletzte
Integration nicht mehr ausgefithrt werden kann. Setzen wir nun die Gleichungen (5.74) in
Gleichung (5.72) ein, so erhalten wir

4—n
B0-p) = [ dridoda

x exp{iz[12 — M2 +i0%] + iza[(1 — pi)2 — m2% +i0T]},  (5.75)

wobei die Indices AT fiir Abzugsterme stehen. Der néchste Schritt ist nunmehr die Inte-
gration {iber den Schleifenimpuls [.
Um diese Integration durchzufiihren, bedienen wir uns folgender Relation:

) iAP—2ipiric _ 0 [ B
d'le = T exp i —I—FC . (5.76)

Dazu schreiben wir den Exponenten der e-Funktion in Gleichung (B.75) als ein Polynom
beziiglich des Schleifenimpulses [

i(21 + 29)I% — 2ixop; - | — iz M2 +i(p? —m%) — (z1 + 22)0T (5.77)
und koénnen
A = (56‘1 + :Ez), (578&)
BY = ayp!, (5.78D)
C = iz +29)0" — 21 M2 4 (p? — mi)x2 (5.78¢)

identifizieren. Wenden wir dies auf Gleichung (5.73) an, so erhalten wir

'U47n /dl‘ldl‘gl exp {’L [_w%pf} }
(4m)n/2 (11 + 22)7/2 (1 + x2)

X exp{—iam]Wfr + z(p? — m?v)xg — (21 + 22)0T}. (5.79)

L0, —p) = —i'™"?

Zur weiteren Berechnung dieses Integrals fiihren wir eine neue Parametrisierung fiir d > 2
Schwingerparameter ein
1 = Az1,

o = Al — 21)%2,
( ) (5.80)

zg = M1 —2zq-1),
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so dass fiir die Summe aller x; stets

=\ (5.81)

d
=1

(2

gilt. Fiir den in dieser Parametrisierung noch nicht beriicksichtigten Fall einer Einpunkt-
funktion (d = 1) gilt ;1 = A. Fiir unser hier diskutiertes Beispiel erhalten wir

T = A 21,

22 = A1—z). (5.82)

Mittels der Jacobideterminante bestimmen wir nun den Zusammenhang der Differentiale
und bekommen

dl‘l dl‘g =Xd\ le. (583)

Dariiber hinaus fithren wir an dieser Stelle die Bezeichnung Z; = (1 — z;) ein. Diese Be-
zeichnung ist vor allem fiir den verwendeten Algorithmus wichtig, da sich die Potenzen von
(1 — z;) als hiufige Fehlerquellen in Mathematica herausstellten. Diese Parametrisierung
verwenden wir nun fiir Gleichung (5.79) und erhalten

4—n
AT _ny — g l-nj2 M 1-n/2
IA7(0, —p1) Tk /d)\ dz1 A
« e—i/\[Z1m?V+p?Z%+M72rZ1—P?'Zl_ioﬂ_ (584)

Nachdem wir die neue Parametrisierung eingefiihrt haben, kdnnen wir direkt die Integration
iiber den Parameter A mittels

/ dX A= = =+ Dp(g 4 1)p~(@+D) (5.85)
0

durchfiihren. Wir erhalten mit den Parametern

= 1-n/2 und (5.86a)
b = Zym3% +pizt + M2z — pizg —i0" (5.86b)
als Resultat dieser Integration
AT o ptn
N (0,—p;) = z(4ﬂ_)n/2f(2 —n/2)/d,21
X [Zym3 4 p22? + M2z — p2zy —i0F"/22, (5.87)

Jetzt miissen wir den Integranden nach kleinen Groken bis zur chiralen Ordnung O(q®) ent-
wickeln und anschliefend die Summation und die Integration vertauschen. Die Entwicklung
bis zur dritten Ordnung ergibt sich daraus, dass die Berechnung der Pionproduktionsam-
plitude bis einschlieRlich der Ordnung O(g*) durchgefiihrt wird und der Polarisationsvektor
€., welcher als genereller Vorfaktor in Erscheinung tritt, als von der Ordnung O(q) gezdhlt
wird. Der Ubersicht halber fiihren wir hier die Entwicklung jedoch nur bis zur zweiten Ord-
nung explizit aus. Die Gréken zdhlen wir dabei wieder, wie in Abschnitt B.21bzw. Abschnitt
B.3.1] ausgefiithrt wurde. Auferdem schreiben wir dazu den eingehenden Nukleonimpuls als
p? = m% + (p? — m3%)J, wobei J die Grofe der chiralen Ordnung bezeichnet? — analog gilt

] symbolisiert dabei jeweils die kleine Grofe, d.h., (p? —m% ) beispielsweise ist von der Ordnung O(q)
und J*M2 von der Ordnung O(q?).
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dies fiir den auslaufenden Nukleonimpuls py. Somit erhalten wir fiir den Integranden aus

Gleichung (5.87)

[Zlm?\, + (m?\, + J(p? — m?\,)) 22+ PM22 — (m?\, + J(p? — m?\,)) 21 — i0+}”/2_2
§(my2) =2 m2 {82 mYy — 4 3(n — 4)(p] — mR )21 Zym},

—P(n—4)n (—4m%\,M7% —(n—6)(p? m?V)Qzl)} +0(q%),

2 -
(5.88)
wobei auf der rechten Seite der Feynman-Stiickelbergparameter im Limes bereits gegen

Null geschickt wurde. Wir erhalten somit fiir das Integral aus Gleichung (5.87])

pt ol

(4m)"/? 8

—43(n —4)(p? — m%)z1 Z1m%

—Pn—4)z (—4m?VM,% —(n—6)(p7 — m?V)Qzl)} +O(g%).
(5.89)

O p) = i ine /o) [ R 2 e (st

Nunmehr verbleibt nach dem Vertauschen von Summation und Integration, die termweise
Integration iiber die Parameter z; — im Falle unseres Beispiels also die Integration {iber z;.
Fiir alle Integrationen iiber die Parameter z; gilt jeweils

! [(a+1I(b+1)
dz; 28 70 = .
/0 S Tatb+2) (5.90)

wobei sich die Gammafunktionen durch I'(x + 1) = zI'(x) umschreiben lassen. Nach der
Durchfiihrung dieser Operationen erhalten wir

T em?\?_4
(4m)t2 4 T(2e + 1) (2 + 2)
+ (2€I'(26 — 1)I'(2e + 2) M2 — T'(2¢ + 1)%(pf — m%)) miy

+2(e — 1)el'(2e — DT'(2e + 1) (pf — my)?} + O(¢?), (5.91)

2

L0, —p) = (=€) {20(2¢ + 1)2m,

wobei wir € = (n—4)/2 eingefiihrt haben. Damit wir letztlich das von uns gesuchte Ergebnis
bekommen, entwickeln wir den soeben erhaltenen Ausdruck fiir die Abzugsterme nach e
bis zur nullten Ordnung — damit haben wir die Divergenzen extrahiert — und subtrahieren
schlielich den im Rahmen des modifizierten Abzugsschemas MS bereits beriicksichtigten
Term

1
R=~+p —1-In(4m). (5.92)

Abschliefsend erhalten wir somit fiir den von uns gesuchten Abzugsterm bis einschlieklich
der zweiten Ordnung

i L
1250, -p) = 327ml, { [(—QIn <mN> — 1) (p? — 3m3%)
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Das gleiche Ergebnis auf der Massenschale lautet

AT _ ) — ; el 2 _ Ll 2
IT(N(O’ pl) == 39 zm%\f {<4ln (mN> 2) muy ( 21n <mN> 3> Mﬂ_} y
(5.94)

wobei anzumerken ist, dass dieses Ergebnis identisch mit dem Ergebnis der dritten Ordnung
auf der Massenschale ist, da die Terme dritter Ordnung simtlich von der Form (p? — m%)
sind.

So verbleibt noch die Bestimmung der Abzugsterme A7, B§\'T usw., der oben eingefiihrten
Koeffizienten (LoopTools). Im Fall der skalaren Integrale erhalten wir durch multiplizie-
ren mit dem Faktor —i 16 7% gem#R den Gleichungen (5.62) auf einfache Weise diese
Abzugsterme. Fiir unser Beispiel ergibt sich demnach

BAT[p2, M2, m%] = 2"11% { <41n <rr/;N> + 2> m2, + <—2ln (W‘L‘N) + 3) Mfr} .
(5.95)
Den zugehdrigen renormierten Koeffizienten Bj erhalten wir nun durch
By = By — By'T. (5.96)

Dazu ist anzumerken, dass dieser exemplarische Zusammenhang selbstverstdndlich ent-
sprechend fiir die anderen Koeffizienten A,, B;, C; und D, gilt, wobei  geméfs Gleichung
(56T)) die Art des Koeffizienten beziiglich der Lorentzstruktur bezeichnet.

Abschliefsend ist Folgendes beziiglich Einpunktfunktionen zu bemerken, d.h., dem Auftre-
ten von lediglich einem Schwingerparameter. In diesem Fall erfolgt die Bestimmung des
Abzugsterms, wie eben beschrieben, mit dem Unterschied, dass nach der chiralen Entwick-
lung selbstverstindlich die Integration iiber einen Parameter z; ausgelassen wird, da ein
zweiter Schwingerparameter erst ab einer Zweipunktfunktion auftreten kann.

Nukleonische Integrale

In Abschnitt wurde darauf hingewiesen, dass Integrale, welche lediglich Nukleonpro-
pagatoren beinhalten, nicht weiter beachtet werden. Dies ist damit zu begriinden, dass
in diesem Fall das Integral lediglich aus dem reguliren Anteil besteht (Kapitel B)), d.h.,
das Integral wird zunéchst in dimensionaler Regularisierung berechnet und anschliefsend
der Gegenterm, welcher geméf der vorgestellten Methode berechnet wurde, von diesem
subtrahiert. In der Summe heben sich das Integral und der Gegenterm gegenseitig weg.
Zur Nlustration betrachten wir kurz das Integral In(0), welches in Anhang [l analytisch in
dimensionaler Regularisierung berechnet wird:

In(0) = —Zlgfg [R +in <”;2V> + 0(6)} . (5.97)

Bestimmen wir nun, wie im vorherigen Unterabschnitt dargestellt, den Gegenterm bis zur
ersten Ordnung, so erhalten wir

im?% W
I (0) = SW{ZV In (mN> : (5.98)

Subtrahieren wir beide Terme von einander so verbleibt ein Term proportional zu R; dieser
Term aber wird durch das MS-Abzugsschema ebenfalls subtrahiert, so dass sich letztlich
Null ergibt. Dies gilt in gleicher Weise fiir alle Integrale, die ausschlieklich Nukleonpropa-
gatoren enthalten.
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Abzugsterme der vektoriellen Integrale

In diesem Unterabschnitt werden wir analog zur Berechnung der Abzugsterme der skala-
ren Integrale die Ermittlung der Abzugsterme der vektoriellen Integrale diskutieren. Wir
werden dabei im Besonderen auf die Unterschiede zu dem bereits Diskutierten eingehen.
Betrachten wir uns dazu das vektorielle Pendant zu dem bereits behandelten skalaren
Integral

o p 1 e
0,—p;) = d"l . 5.99
wn (0, =) (2m)n / 12— M2 +i0% (I — p;)? — m% +i0F (5.99)
Wie im Fall des skalaren Integrals schreiben wir dieses Integral nun durch die Schwinger-
parametrisierung um und erhalten
4—n

I:}\?T(Ov _pi) - _(Mzﬂ_)n /dnldmldxg “

x exp{iz1[I? — M7 +i0%] + iwo[(l — pi)* — miy + 07} (5.100)

Zur Durchfithrung der Integration {iber den Schleifenimpuls [ nutzen wir in diesem Fall die
Relation

« 2
g iAR-2iB+iC _ d-n/2_BY a2 | B
/d [i%e ) —Anﬂﬂ exp {z [ R + C’} } , (5.101)

d.h., wir erhalten fiir die auftretenden Koeffizienten wiederum

A = (l‘l + .TQ), (5102&)
B% = gl (5.102b)
C = iz +22)0" — 2z M2 + (p? — mi)za. (5.102c)

Des Weiteren fiihren wir jetzt die neue Parametrisierung geméf Gleichung (5.80), bzw.
(582) ein und erhalten somit fiir das Vektorintegral

4—n
7AT 11— lu -
I:N 0,—pi) = —itn/? (471')"/2 /d)‘ dz ALn/2 pi 21
o= NZimE+p2a+ M2 —p?z1—i0t] (5.103)

Die nun folgende Integration iiber den Parameter A erfolgt wieder vollkommen analog zu
dem Beispiel des skalaren Integrals, so dass wir nach Verwenden von Gleichung (5.85)

4—n
AT L ,
0. p) = il n/2) [danz
X [Zym3; 4 p22? + M2z — p2zy —i0+)"/?272, (5.104)

bekommen. Nun muss der Integrand nach kleinen Gréken bis zur chiralen Ordnung O(g?)
entwickelt werden. Dabei ist im Fall des Vektorintegrals zu beachten, dass auch der auftre-
tende Vierervektor eine chirale Dimension tragen kann, z.B. der des Photons k* oder der
des Pions ¢* die Ordnung eins. Der Fehler, welcher sich durch das Nichtbeachten des Vie-
rervektors ergibt, ist zwar hdherer Ordnung, kann jedoch bei komplizierten Integralen eine
erhebliche zusétzlich bendtigte Rechenzeit mit sich bringen. Dies ist insbesondere bei den
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Tensorintegralen zweiter und dritter Stufe von Belang. Fiir unser Beispielintegral ergibt
sich wiederum analog zum skalaren Integral folgendes Zwischenergebnis:

Ll
(47m)n/2 8
— 4 3(n —4)(p? — m3A) 21 Z1m3
—Pn-4)z (—4m%\,M£ —(n— 6)(p§ — m?V)Qzl)} +O(g%).

(5.105)

Nachdem wir die chirale Entwicklung durchgefiihrt haben, verbleibt, nach dem Vertauschen

der Summation und der Integration, das Integrieren iiber die Parameter z;. Wir bekommen
gemék Gleichung (5.90) somit

4—n 1

1570, ) = 02— n/2pt [ dea(md 200 i (s72my

i Zmy p; T'(—e)
(47)et21(2e + 2)'(2e + 3)
x {el'(26)T(2€ + 3)mA M2 + T'(2¢ + 2) (T'(2¢ + 2)mYy,
— eD(2¢ + 1)(p? — m¥)miy + (e — 1)el'(2¢) (p? — m3)?) } + O(¢?),
(5.106)

wobei wir wieder € = (n—4)/2 verwendet haben. Nun entwickeln wir dieses Ergebnis nach e
bis zur nullten Ordnung, um die Divergenzen zu extrahieren. Anschliefsend tragen wir dem
MS-Abzugsschema Rechnung und subtrahieren den entsprechenden Term R. So erhalten
wir fiir den Abzugsterm des Integrals auf der Massenschale bis einschlieflich der zweiten
Ordnung
0, -p) = sy P [2 In (;j) ma + <2 In <“> - 1> Mf] (5.107)
N

32m2ms, my

AT
176:1’\7 (O7—pi) =

Den Abzugsterm des entsprechenden Koeffizienten (LoopTools) bekommen wir schlieflich
durch Multiplikation des erhaltenen Ausdrucks mit dem Faktor —i 16 72 sowie einem
Koeffizientenvergleich beziiglich der Lorentzstruktur geméf den Gleichungen (5.61)), d.h.,
in unserem Beispiel beziiglich p’. Somit lautet der Abzugsterm des Koeffizienten in zweiter
Ordnung

BT [m2,, M2, m%] = —— {2111 (“) m3 + <21n (”) + 1) MQ} . (5.108)

Qm?v my my "

Um den dazu gehorigen Koeffizienten B; zu renormieren, muss nur noch der soeben be-
rechnete Koeffizient B{*T von demselben laut Gleichung (5.96) subtrahiert werden.
Auf eben diese Weise berechnen wir nun auch die fiir unsere Beispieldiagramme 15 und 50
relevanten Abzugsterme der Koeffizienten By. Wir erhalten

1
Bf‘T[(k'+p7;),M7%,m?V] = 5.8 {2111('u >m?\,
mb, my

+4 <4 In (WZJ + 3) (k -pi)?’} (5.109)
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und
AT 2 2 2 _ H 6
Bl [(pl'_q) ’Mw’mN] - 6 { < >
N my
my
+2q - pz{ £ M?
my

( )
(2 (5i5) +2) @~
4 (4ln (an) + 3) (q-pi)?’} . (5.110)

Abzugsterme der tensoriellen Integrale 2. und 3. Stufe

In den vorhergehenden Unterabschnitten haben wir die Bestimmung der Abzugsterme von
skalaren und vektoriellen Integralen an Hand von Beispielen behandelt. Dartiber hinaus
benétigen wir zudem Abzugsterme von Tensorintegralen zweiter und dritter Stufe. Die
Ableitung derselben geschieht analog zu den skalaren und vektoriellen Integralen, weshalb
im Folgenden lediglich die Unterschiede zu den zuvor diskutierten Fiallen behandelt wer-
den sollen. Auf die explizite Diskussion von Beispielen wird an dieser Stelle aus zweierlei
Griinden verzichtet. Zum einen werden die Ausdriicke bei diesen Integralen recht ldanglich
und uniibersichtlich, zum anderen werden keine neue Techniken mehr eingefiihrt, d.h., die
benotigten Techniken wurden bereits bei den zuvor diskutierten Beispielen erldutert.
Uberlegen wir uns also das entsprechende Vorgehen fiir ein Tensorintegral zweiter Stufe,
z.B. I:]@N(O, —py, —pi) oder fiir ein Tensorintegral dritter Stufe, wie z.B. I:ffv(O, k,—p;)
oder Iﬁfﬁ,]\,(o,k,—pi,q — p;). Zuerst werden die auftretenden Propagatoren mittels der
Schwingerparametrisierung laut Gleichung (B.73]) umgeschrieben, so dass wir fiir eine Drei-
punktfunktion, wie Iy N(O —p¢, —pi) drei Schwingerparameter 1, 2 und x3 benétigen.
Im Anschluss daran wird die Integration iiber den Schleifenimpuls [ ausgefiihrt. Hierzu
benétigen wir fiir ein Tensorintegral zweiter Stufe die Relation

. . . BBS i g8 B2
/d”l [01P AP 2B IHiIC _ j1-n/2 [ + - } 72 exp {z [— + C” (5.111)

An/2+2 An/2+1 A

und fiir ein Tensorintegral dritter Stufe das Integral

/dnl lalﬂlts eiAIZ*Q’L'B-FH‘C _ Z-lfn/2 |:BOCBﬁB§ + zgaﬁBd + ga(sBﬁ + gﬁ6B6:|
An/2+3 2 An/2+2

BZ
x 72 exp {z [—A+C]}. (5.112)

Damit wir diese Relationen verwenden kdnnen, schreiben wir den Exponenten der zuvor aus
der Schwingerparametrisierung erhaltenen e-Funktion in der Form eines Polynoms zweiter
Ordnung beziiglich des Schleifenimpulses [ und identifizieren somit die in den Integralen
(GI10) und (EI12) auftretenden Koeffizienten A, B und C. Im Anschluss an die Integra-
tion iiber den Schleifenimpuls [, fithren wir, wie in Gleichung (5.80)) angegeben, eine neue
Parametrisierung ein und transformieren mittels der Jacobideterminante die Differentiale
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Abbildung 5.6: Schleifendiagramm 7

der alten Parameter in die neuen. Daran schliefst sich — analog zu den oben diskutierten F&l-
len — die Integration iiber den Parameter X, wie in Gleichung (5.85]) angegeben, an. Bei der
nun folgenden Entwicklung des Integranden beziiglich kleiner Grofien muss wieder darauf
geachtet werden, dass die einzelnen Summanden des Integranden vorweg unterschiedliche
chirale Ordnungen haben koénnen, da BY eine chirale Dimension tragen kann, wie dies im
Fall des Vektorintegrals bereits erldutert wurde. Betrachten wir uns zur Verdeutlichung
die rechte Seite von Gleichung (5.111)). Einmal tritt der Faktor B*B” und das andere Mal
g“% auf, d.h., fiir den Fall, dass B* ~ k* triigt der erstgenannte die chirale Ordnung zwei,
wohingegen ¢®° die chirale Ordnung Null besitzt.

Nach der Durchfiihrung der chiralen Entwicklung vertauschen wir die Reihenfolge von In-
tegration und Summation und fiithren die termweise Integration iiber die Parameter z;
gemif Gleichung (5.90) aus. Weiterhin fithren wir analog zu zuvor € = (n — 4)/2 ein und
entwickeln danach bis zur nullten Ordnung, um die auftretenden Divergenzen zu extra-
hieren. Schlieflich miissen wir von dem nunmehr erhaltenen Resultat den Term R des
MS-Abzugsschemas subtrahieren. Ist auch diese Operation vollzogen, so haben wir den
Abzugsterm des Integrals bestimmt. Den Abzugsterm des Koeffizienten (LoopTools) er-
halten wir daraus, wie bereits beschrieben, durch multiplizieren mit —i 16 72 und einem
Koeffizientenvergleich beziiglich der Lorentzstrukturen beziiglich der Gleichungen (G.61]).
Den renormierten Koeffizienten (LoopTools) wiederum bekommen wir analog zu Gleichung

(6.96).

5.3.5 Das Schleifendiagramm 7

Nachdem wir in den vorherigen Abschnitten die verschiedenen Techniken zur Bestimmung
der renormierten invarianten Isospinamplitude ausfiihrlich diskutiert haben, soll in diesem
Unterabschnitt an Hand eines anspruchsvolleren Diagramms als den bisherigen ein kom-
pakter Uberblick iiber das zuvor Behandelte gegeben werden. Dazu betrachten wir uns das
Schleifenintegral 7, welches in Abbildung dargestellt ist.

Die Pionproduktionsamplitude dieses Diagramms erhalten wir nach den in Anhang (Gl
aufgefithrten Feynmanregeln als

_ ﬁa il 1
My = 5500 | G ) )

X [1evs (= J+mn+ Br)TevsV €3ae(— F+mn+ pi)1eys 1) w(pi).
(5.113)

Diese Amplitude formen wir im Folgenden um, d.h., wir trennen zuerst die Isospin- und die
Diracstruktur. Im Anschluss daran zéhlen wir die chirale Ordnung der einzelnen Terme und
streichen diejenigen Terme, welche grofer als Ordnung vier sind; dabei ist der nicht explizit
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gegebene Polarisationsvektor €, zu beachten. Weiterhin identifizieren wir die auftretenden
Schleifenintegrale laut unserer Definition in Gleichung (5.52) bzw. (5.54]) und bekommen

3

€9, _
M) = 4Fgu(pf) {7#75 [2pfapi5]:ﬁw(0a —Pf, —pi)

— M2 ((pfa + pia) LN (0, —py, —pi) — 2m% Len v (0, —pf, —pi)) |
+my [(757“75 — P y75) MELLy 5 (0, —pys, —pi)

+2 (7“7575(2% + pia) o (0, =pf, —pi)

— 2(y5pip I (0, —pg, —pi) + evsmn I (0, =Dy, —Pz‘)))} } u(p;)

XX}G?)abTin- (5.114)

Damit wir diesen Ausdruck in eine Form bringen kénnen, welche es uns erlaubt, die nicht
eichinvarianten Amplituden B; zu berechnen, ist es notwendig, die Integrale — insbesondere
die tensoriellen Integrale — so zu schreiben, dass die Lorentz- und die Integralstruktur
getrennt werden. Dies erreichen wir, wie in den Gleichungen (B.61]) gegeben, durch das
Zerlegen der tensoriellen Integrale nach Passarino und Veltman [PV _79|. Die numerische
Berechnung der dabei auftretenden Koeffizienten wird durch das Programm LoopTools
[HP 98| gewéhrleistet. Beriicksichtigen wir auferdem die Konventionen von LoopTools —
Gleichung (5.62]) — so konnen wir fiir die in Gleichung (5.114]) vorkommenden Integrale

i

ILinn(0, —pf, —pi) = WCO[E] (5.115a)
1
Iy (0, P, -pi) = @{—p?‘c& [E] — pi' Co|E]}, (5.115b)
(0% /I/ (8% (e (87
LRn(0,—ps, —p) = @{pfp?Cn [E] + pi P?CU[E] + PP Cral E]
+ pfp] Coa | B] + g*P Coo E]} (5.115¢)

schreiben, wobei wir zwecks der besseren Ubersicht die Argumente der Koeffizienten in
[E] = [pft, (py — pi)?, p?, M2, m%, m%] zusammengefasst haben.

Anschliefsend driicken wir die in den Lorentzstrukturen erscheinenden Nukleonimpulse
durch die Summe beider Nukleonimpulse (5.20) aus und nutzen die Dirac-Gleichung, die
Gammamatrizenalgebra sowie die Impulserhaltung, um den nach dem Einsetzen der Glei-
chungen (5.115)) in Gleichung (5.114) erhaltenen Ausdruck so umzuformen, bis lediglich die
in (B.16) aufgefithrten Lorentzstrukturen verblieben sind. Haben wir dies erreicht, so kon-
nen wir durch einen Koeffizientenvergleich die nicht eichinvarianten Amplituden B; nach
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Gleichung (5.13)) bestimmen und bekommen

-3
e
BY) = _647;?73 (QCII[E/]WLZ}V + 2C12[E']m§1v + 2022 [E']mN
—2C) [E’]MQm?V + CL[E|M2m; + Co[E'| M2m% + 4ps - piCr2[E'fm%
—py - piC1[E'|MZ — py - piCo E') M
—2py - p; Cra| B ] + Coo[E')(8m% — 2py - pi)) €3abTo, (5.116a)
7 zegA
B =  64m2F3 (Co[E"] — CL[E")) my MZesaps, (5.116b)
L.
(M _ __ga ’ / 2,4 ’
By sizrs ™ (G + Co[EN) M + 4C0 [E']
+4C12[E')(m + py - pi)) €3ab7h, (5.116¢)
ie
B = o1 %}3 N ((C1[E"] + Co[E'T) M + 4Coo[E']
+4C12[E')(m¥ + py - pi)) €3ab7h, (5.116d)
B = B =5 =50 5 1160

Hierbei haben Wir wiederum die Argumente der Koeffizienten zusammengefasst [E'] =
(Mm%, (pi—pg)%, m3;, M2, m3;,, m%], wobei der Unterschied zu den Argumenten [E] lediglich
darin besteht, dass wir die Nukleonimpulse auf die Massenschale gesetzt haben.

Diese Amplituden setzen wir jetzt in die Gleichungen (5.29) ein und erhalten somit die
eichinvarianten Amplituden A;

Ag) = 0, (5.117a)
A __ega mn(k — Mz +t)
2 3212 F3 (s —u)(t — M32)
< {(Cr[miy, t,mRy, M7, m3;, my]
+02[m?\/'7t7m12V’M2 mNamN]) M2

+ 400[)[m?v, t, mN, ]\42 mN, m?\/]

+ Cra[m3y, t, miy, M2, mir, my](4m3, — t)}
X €3bThs (5.117D)
AP = AP =o, (5.117c¢)
AN egi’x my
5 6472F3 (t — M32)
X {(Cl m%,t,m3, M2, m3;, m%]
+Com3, t,miy, M2, m3;, my]) M?
+ 4Coo[m%;, t,m3%, M2, m3;, m%]
+ 2C12[m3y, t, miy, M2, mir, my/])(4ma — 1)}
X €304Th: (5.117d)
Aéﬂ = 0. (5.1176)

Dabei haben wir die auftretenden Impulse durch Mandelstamvariablen ausgedriickt.
Aus den nunmehr erhaltenen Ausdriicken fiir die eichinvarianten Amplituden A; kénnen wir
direkt geméf Gleichung (£.32) die eichinvarianten Isospinamplituden ablesen. Es ergeben
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sich folgende zwei Amplituden:

o degh my(k*— M2 +1t)

2(7) 32m2F3 (s —u)(t — M32)

x {(C1[mAy, t, m%, M2, m%, m¥y]
+Co[m%,, t,mir, M2, mi, my]) M2

+4COO[mN,t,mN7M2 mN?”ﬁV]
+2C’12[mN,t mNaMQ mN7mN](4mN t)} (5.118a)
und
!
a0 g4 my
5(7) 6472 F3 (t — M?2)

x {(C1[mAy, t, m%, M2, m%, m¥y]
+Colm¥, t,miy, M2, m%;, mi]) M7

—|—4C’oo[mN,t mN,]M2 mN,m?V]

+ 2012[mN7t va M2 mNa mN](4mN - t)} (5.118b)

Alle weiteren Isospinamplituden dieses Diagramms sind identisch Null. Betrachten wir uns
auflerdem das Verhalten dieser beiden Isospinamplituden unter der ,crossing“-Symmetrie,
d.h., unter dem Vertauschen der Mandelstamvariablen s und u, so erhalten wir

2.(7) gy und AL — AT (5.119)

Dieses Verhalten entspricht wiederum dem laut Gleichung (.30]) erwarteten.

Da die in den Ausdriicken (5.118al) und (G.I18L) fiir die Isospinamplituden auftretenden
Koeffizienten jedoch noch nicht vollstindig renormiert sind, sondern lediglich das modifi-
zierte Abzugsschema MS bei der Evaluierung durch LoopTools beachtet wird, miissen wir
noch die weiteren Abzugsterme geméf der reformulierten Infrarotregularisierung bestim-
men. Die dazugehorenden Abzugsterme der Koeffizienten in den Gleichungen (5.118al) und
(5.118D) bekommen wir auf die im vorherigen Abschnitt (5.3.4) beschriebene Art und Wei-
se. D.h., wir betrachten uns das urspriingliche Integral, fiihren die Schwingerparametrisie-
rung ein, integrieren iiber den Schleifenimpuls, reparametrisieren den erhaltenen Ausdruck
und fiithren die Integration iiber den ersten Schwingerparameter aus. Den dann erhaltenen
Integranden entwickeln wir nach kleinen Gréféen und vertauschen die Integration und die
Summation. Schlieflich fithren wir die verbliebenen Integrationen aus und subtrahieren die
bereits durch das MS-Abzugsschema beriicksichtigten Terme. Somit erhalten wir fiir die
zu dem Vektorintegral gehorenden Koeffizienten C7 und Cy die Abzugsterme

CiT [m¥, t,mi, M7, m3,my] = C3'[m3, t,miy, M2, miy, my]
1 %

= —— [6my —6(In{——) 1) M+t

12m§v[mN <n<mN> ) ’r+}

(5.120a)

sowie fiir die zu dem Tensorintegral zweiter Stufe gehorenden Koeffizienten Cpp und Cia
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die Abzugsterme

1 1%
COO [mN,t mN,M2 mN,m?V] = _24771?\/ [12111 <mN> m?\[
6 <2 In <“) + 1> M2+ t] : (5.121a)
my
1
O3, t,m3e, M2, m3,m3] = —— [5m +10 (In (L) 1) M2 +¢|.
60m’y my

(5.121b)

Damit haben wir die invarianten Isospinamplituden in manifest Lorentz-invarianter Form
bestimmt. Dies erlaubt es uns, wie in der Einfithrung zu Kapitel B angegeben, verschiede-
ne physikalische Observablen zu berechnen, worauf wir im folgenden Kapitel [f] eingehen
werden.



Kapitel 6

Diskussion der Ergebnisse

Im vorherigen Kapitel wurden im Rahmen der manifest Lorentz-invarianten chiralen St6-
rungstheorie die invarianten Isospinamplituden in der reformulierten Infrarotregularisie-
rung einschliefslich der vierten Ordnung berechnet. Diese Ergebnisse wurden in einen
FORTRAN-Code transskribtiert und so in das um LoopTools ergédnzte Programm MAID
[DAKT 99] eingebaut.

Im Folgenden werden wir die so erhaltenen Ergebnisse aus zwei Perspektiven beschauen.
Zum einen werden wir direkt die Summen der berechneten invarianten Isospinamplituden
auf dem Baumgraphenniveau diskutieren und zum anderen uns vorldufige, numerische
Resultate des chiralen MAID (xMAID) betrachten.

6.1 Invariante Amplituden

In diesem Abschnitt diskutieren wir die Summen der invarianten Isospinamplituden, welche
wir aus der Berechnung der Baumgraphen erhalten haben2 Dabei legen wir wieder die in
Gleichung (B.I0)) dargelegte Definition der invarianten Amplituden zu Grunde. Betrachten
wir uns die Isospinamplituden, so stellen wir fest, dass diese in so genannte Pol- und Nicht-
Polbeitrige aufgespalten werden kénnen [PDT 07].

6.1.1 Polbeitrige

Die Polbeitrage kénnen wir dabei in der folgenden Form schreiben:

1 a

Aga)Pol _ —+ € 5 }710,7 (61&)
LS =My U= My ]
o P

Aga)Pol _ . + € 5 };12a7 (61]3)
LS =My U= My ]
- 0 7

APl _ _— € ~| Fe. (6.1c)
LS — My U= My ]

'Hinsichtlich der Berechnung der durch LoopTools zu berechnenden Koeffizienten der Integrale, ist an
dieser Stelle darauf hinzuweisen, dass LoopTools unter Mathematica als auch mit FORTRAN und C++
verwendet werden kann.

2Im Rahmen der Berechnung der Isospinamplituden auf dem Baumgraphenniveau wurde darauf ver-
zichtet die Terme hoherer Ordnung zu eliminieren. D.h., in diesem Abschnitt treten teilweise Terme grofer
der Ordnung O(q*) in den verschiedenen Ausdriicken auf.

72
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Pol 1 €?
AP = - [s—m2 T ] i (010
N N
Pol 1 €
N N
APl — (6.1f)
mit et = —~ = ¢ = 1 sowie a = +, —,0. Polbeitriige bedeutet hierbei, wie in den

Gleichungen (6.0]) zu sehen ist, dass diese Anteile als Pole der Mandelstamvariablen s und
u geschrieben werden konnen. Betrachten wir uns nunmehr die einzelnen Funktionen F}*

(i=1,...,5), so stellen wir fest, dass jede dieser Funktionen einen Term
G = _Zesz %A + (2d16 — dlg)Mgl (6.2)

beinhaltet. In diesem Term G kénnen wir die axiale Kopplungskonstante [['S OS]B]
ga = g + AdigM? (6.3)

identifizieren, wobei dig einen Beitrag hoéherer Ordnung zur axialen Kopplungskonstan-

te bezeichnet. Betrachten wir uns dariiber hinaus die Pion-Nukleon-Kopplungskonstante

[FS 03]
m o
grN = ?N ga+2(2d1g — dlg)Mﬁ] , (6.4)

so stellen wir fest, das Term G proportional zu eben dieser ist. Hierbei spiegelt die Nieder-
energiekonstante dig die so genannte Goldberger-Treiman-Diskrepanz wider. Es gilt somit
also )

ie

Neben dem Term G lassen sich vier weitere ,Bausteine” der Funktionen F}* identifizieren:

d 20
pt _ _idee@ gamn. (6.6)
F
2ieQ?drg
po - _ZeQdigamy ;gAmN (6.6b)
sowie
Ei = —Z;%A [d6Q2 + QmN(€74Q2 + 46106M72)], (6.7&)
B = _w}gf [d7Q% + 2min (e54Q? + 4ero5M2)). (6.7b)
Betrachten wir zunéchst in allen vier Gleichungen die Terme proportional zu Q> = —k2.

In diesen Termen treten zum einen die Niederenergiekonstanten dg und d7 in dem Aus-
druck D® alleine auf und zum anderen in E® zusammen mit den Konstanten e74 bzw. esq.
Alle vier Konstanten sind geméf der Referenz [FGS 04] mit dem Ladungsradius und dem

®Beziiglich der in diesem Abschnitt betrachteten GroRen (94, g=nN, K usw.) ist anzumerken, dass wir
stets nur die ,ph&nomenologische Approximation“ derselben betrachten, d.h., die Schleifenbeitriage werden
vernachléssigt.
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magnetischen Radius des Nukleons verkniipft. Interessant ist des weiteren das Auftreten
der Niederenergiekonstanten ejgg und ejgs. Dazu betrachten wir uns jedoch zunéchst die
Funktionen F3 bzw. F}, die als

Ff = Fif=-2¢G+ F*, (6.8a)
F) = F)=—-¢;G+E° (6.8b)
gegeben sind. Setzen wir in diese Gleichungen G explizit ein bzw. zur besseren Ubersicht

lediglich die Pion-Nukleon Kopplung in niedrigster Ordnung und vernachlissigen in £ die
Terme proportional zu Q?, so erhalten wir

. MpN o

Fy o= zeTNgA (c6 —deroeM2) + ... (6.92)
. MpN o

Fg = 2627;;[914 (07 - 166105M72) + ... . (69b)

Die auftretenden Linearkombinationen der Niederenergiekonstanten kénnen wir als

56 = 06—46106M7%, (6.10&)
ér = cr— 16e195 M2 (6.10b)

zusammenfassen. Hinsichtlich dieser Linearkombinationen ist nun anzumerken, dass ¢g mit
dem anomalen isovektoriellen magnetischen Moment des Nukleons und ¢7 mit dem anoma-
len isoskalaren magnetischen Moment des Nukleons verkniipft ist [FGS 04]. Dafiir wurden
in dieser Referenz auch die numerische Werte bestimmt, die in Anhang [E] angegeben sind,
d.h., wir miissen nicht die Konstanten ejgs und ejgg bestimmen sondern konnen die bereits
bekannte Kombination verwenden.

Die weiteren Funktionen F}* lassen sich nun wie folgt durch die soeben diskutierten ,Bau-
steine beschreiben:

Ff = G+ D% (6.11a)
Y = G+ D° (6.11b)
und daraus folgend
2
Fif = —2FF =— Ff und (6.12a)
2 b t— M2t
2
F) = —2F) = ———_ ). (6.12b)
2 5 t _ Mg 1

Diese Resultate kénnen wir nun mit den Angaben in den Referenzen [PDT 07] und [EGS 04]
vergleichen. Geméf der erst genannten Referenz kénnen wir die Funktionen F}' und F¥
mit Formfaktoren in Verbindung bringen. Dabei gilt, dass

FY~ F(Q% wnd FEf ~ F(Q% (6.13)

bzw.

FY~ F§(QY) und Fy ~ Y (QY), (6.14)

wobei F° der isoskalare und F der isovektorielle Dirac- (i = 1) bzw. Pauli-Formfaktor
(1 = 2) ist. Fiir diese Formfaktoren gilt:

F50) =1, F5(0)=r% FY(0)=r". (6.15)
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Dabei sind #° und " das anomale isoskalare und isovektorielle magnetische Moment.
Ziehen wir nun Referenz [FGS 04] hinzu, so wissen wir, dass

k¥~ e und kY ~ G (6.16)

Betrachten wir nun in unseren Funktionen F}* und F¥ lediglich jene Terme, die proportional
zur axialen Kopplungskonstante E] 4 sind; so erhalten wir fiir Q% =0

F) o~ 1, (6.17a)
FE o~ 1, (6.17b)
F ~ &, (6.17c)
Ff ~ . (6.17d)

Dieses Verhalten entspricht exakt dem geméf der Gleichung (6.15). Weitere Eigenschaf-
ten unserer Ergebnisse kénnen wir ebenfalls mittels Referenz [FGS 04] testen; so besagen
die Ergebnisse dieser Referenz, dass bestimmte Niederenergiekonstanten in den einzelnen
Formfaktoren erscheinen; daraus ergibt sich in unserer Nomenklatur

FY: dy, (6.18a)
FE . dg, (6.18D)
FY: dr, ess, (6.18c¢)
Ff . ds, e (6.18d)

Uberpriifen wir daraufhin die oben erhaltenen Ausdriicke, so stellen wir fest, dass auch
diese Eigenschaften erfiillt sind.

Abschliefsend untersuchen wir noch das Verhalten der invarianten Isospinamplituden unter
der Vertauschung der Mandelstamvariablen s und u (,crossing“-Symmetrie) und erhalten
fiir die einzelnen Polbeitrige der Isospinamplituden

A(1+,O)Pol . Ag—i-,O)Pol’ Ag—)Poz . _Ag—)Pol’

Ag+,0)Pol - Ang,O)Pol’ Aéf)Pol . _Aéf)Polv

A:(;,O)Pol . _AéJr,O)Pol’ A:(;)Pol . A:(;)Pol’ (6.19)
A51+70)Pol . A51+,0)P017 AEL—)POZ . —Ai_)POI,

Ag+,0)Pol . _Aé+,0)Pol7 Aé—)Pol . Aé—)Pol.

Vergleichen wir dieses Verhalten unter der ,crossing“-Symmetrie mit dem erwarteten aus
Gleichung ([30]), so stellen wir fest, dass diese Relation erfiillt ist.

6.1.2 Nicht-Polbeitriage

Unter den so genannten Nicht-Polbeitrdgen der eichinvarianten Isospinamplituden verste-
hen wir diejenigen Anteile, die sich nicht gemif der Gleichungen (6.1I) schreiben lassen.

Betrachten wir zuerst die Amplituden Aga), wobei wir zur besseren Ubersicht zunichst

h = 2mf% — 2(s + w)mi + 2M2 + 5% + u® 4 (4m3 — 2(s + u)) M? (6.20)
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einfithren. Mit dieser Konvention ergeben sich die drei Nicht-Polanteile der Isospinampli-
tuden Aga) wie folgt:

ie e egoh
Agremeret = F { (668 - %) (—2m3 + s +u) + (er2 + gaers)Q° + 692
my
) | 2dst
+ 2M2(en3 + 2e10694) — c6[2M7(2d1s — dis) + g - } (6.21a)

~YohnePol ie
Ag JohnePol — _ m(s — u)(daompy — 4teyp), (6.21b)

0)ohnePol ie €51 g ¢soft
Ag JohnePol  _ T {2 <e49 - 7) (—=2mA + s +u) + 2Q%(es2 + 29 4€54) + 3mZ,

[e] o] 4d t
+ 4M?2(e112 + 4de1059 1) — c7[2M2(2d16 — dig) + g 4] + 9} )

Betrachten wir jeweils die zweite Zeile der Gleichungen (6.21al) und (6.21d), so ist der Term
in den eckigen Klammern proportional zur Pion-Nukleon Kopplungskonstante g, entspre-
chend Gleichung ([6.4)). Auferdem konnen wir die jeweilige zweite Zeile so umschreiben, dass
wir wieder die Niederenergiekonstanten ¢g und ¢7 erhalten

: . 2dst
A{FlohnePol _% { -+ 2MZens — Gglga + 2M7(2dis — dis)] + 8} , (6.22a)
my
A(O)ohnePol . e AM2 = 12 IMZ2(2d d Adot
| = 3% .+ 4AMzei1o — Crlgy + 2MZ(2d16 — 18)]+7N

(6.22b)

Dabei haben wir beziiglich des Terms M?2(2d1s — dig) einen ,Fehler hoherer Ordnung in
Kauf genommen, da ein Term ~ M32(2d16 — dis)e, mit n = 105 oder 106, der mit einzube-
ziehen wére, nicht explizit nicht gegeben ist. Neben diesen — bereits aus der Diskussion der
Polbeitrége bekannten — Niederenergiekonstanten treten eys und ess in den Gleichungen
([©21a) und ([62Id) auf. Diese sind aus der Berechnung des Pauliformfaktors des Nukleons
bekannt und wurden in Referenz [FGS 04] numerisch bestimmt. An dieser Stelle ist aufser-
dem anzumerken, dass die bisher betrachteten Konstanten lediglich in der Amplitude A
auftreten. Alle weiteren Niederenergiekonstanten sind aus anderen Rechnungen noch nicht
bekannt und entstammen Termen der Lagrangedichte, welche die Feldstirketensoren f,ﬁ}R
beinhalten und somit nicht mittels minimaler Substitution zu erhalten sind. Im besonderen
ist hinsichtlich der Niederenergiekonstanten aus Ag_) (6.21D)) anzumerken, dass diese je-
weils aus Kontaktwechselwirkungen stammen und somit separat eich- und chiral invariant
sind. Hinsichtlich der Konstanten e7y bzw. es4 ist erneut darauf hinzuweisen, dass diese
lediglich in den Ausdriicken der Isospinamplitude A§+) bzw. Ago) auftreten.
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Betrachten wir uns den nichsten Satz der invarianten Isospinamplituden Aga)

ohnePol e )
AfHotmebel - — Frw (M2 — 1) ((dﬁgA - 2672mN> Q% + 2egsmy (Q° — M2 +1)
+2ds (Q* + M2 —t)), (6.23a)
(—)ohnePol ie 1 N2 2 2 2 2
A, = g 5w 217 ((s —w)’eroF* (M7 —t) (Q* + M7 —t)
8§ Azgm;”’VM;%) : (6.23b)
ohnePo 2ie o
Agyenmerel - Frn (MZ—1) ((de - 652mN> Q° + eagmy (Q* — M2 +1)
+dy (Q* + MZ —t)), (6.23c)

so stellen wir fest, dass — abgesehen von l3 — keine neuen Niederenergiekonstanten auftreten.
Die Konstante I3 in Gleichung (6.23D]) stammt aus der rein mesonischen Lagrangedichte
vierter Ordnung und wurde von Gasser und Leutwyler in Referenz [GL 84| bestimmt. dg in
Gleichung (6.23a)) und dr in Gleichung (6.23d) hingegen kennen wir bereits aus der Diskus-
sion der Polbeitrége. Fiir die weiteren Niederenergiekonstanten gilt, dass dg, egg und ero
bereits in ASH E21al), e7o in Ag_) (6.21D) sowie dy, e49 und es2 in Ago) E21d) auftreten.
Dazu ist anzumerken, dass einige Niederenergiekonstanten dquivalent in den Isospinampli-
tuden AEJF) und AEO) erscheinen. Tritt beispielsweise die Konstante e7o in der Amplitude

Agﬂ auf, so steht in Amplitude Ago) der dquivalente Term mit ese. Dieses Verhalten erklart
sich aus der Struktur dieser Terme in der Lagrangedichte, die sich im Prinzip lediglich in
ihren Isospineigenschaften unterscheiden. Weitere Niederenergiekonstanten mit dieser Ei-
genschaft sind dg und dg, €68 und €49, €69 und €50, €71 und €51 sowie €113 und €112. Ein
ghnliches Verhalten zeigen auch die Niederenergiekonstanten dg und d7, jedoch erscheint
dg auch in den Isospinamplituden Aéf) und Aéf) und ist somit die einzige Niederenergie-
konstante die in zwei verschiedenen Kanilen auftritt.

Fahren wir jedoch mit unserer Betrachtung fort und wenden uns den Nicht-Polanteilen der
Amplituden Aéa) zu:

AfPlemePol =€ (s _u) (ego (Q + M2 +t) — 6 (7 + es) miy) » (6.24a)
12Fm3,
—)onner o Ze
AfommePel (4 (2dyy — dag) mi + dao (Q% + M2 + 1)), (6.24b)
8F'm3yy
A)ohmePel _T;e (s —u) (es0 (Q* + M2 +t) — 6 (eas + ea9) m%) . (6.24c)
my

Hinsichtlich dieser Amplituden l4sst sich feststellen, dass die Niederenergiekonstanten egy in
A;(;r), do1 1n Aé_) und e4g in Ago) lediglich in eben diesen auftreten. Alle weiteren wiederum
treten abgesehen von dao bereits in den bisher betrachteten Amplituden auf. Beziiglich
doo ist auberdem anzumerken, dass diese zum axialen Formfaktor des Nukleons beitrigt
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[SEGS 07]. Betrachten wir nunmehr

] soh
A(-i-)ohnePol _ e < _ @) —9m2 €69
h SFrin e6s — (=2my +s+u)+ 6m?,
+8dgmy + 26113M7% + 672@2} , (6.25a)
—ohnePol e
AEI JohnePo — 87Fm?v (S — u) (d20 — 16670777,]\[) y (625b)
] h
A(O)ohnePol _ e ( . 6&) —9m2 €50
h) SFmn €19 — (=2m3y + s +u) + 6m2,
+8domy + 26112M72 + 652@2} , (6.250)

) exakt dieselben Niederenergiekonstanten wie in Ag_)

so stellen wir fest, dass in Afl_ auf-

treten. Des weiteren erscheinen in den Amplituden Aff) und AELO) alle Niederenergiekon-

stanten, welche, wie oben beschrieben, ein Pendant in dem jeweils anderen Kanal besitzen.

In der jetzt folgenden Betrachtung der Isospinamplituden Aéa) tritt lediglich eine noch

nicht diskutierte Niederenergiekonstante — lg — auf.

(+)ohnePol e o
4 T 2Fmn (M2 —1) (s —u)[2ds + deg A + 2(ees — e72)mn], (6.26a)
(—=)ohnePol ie ° 3 50 ) )
4 C 2FmE (M2 —t) |~ 49.lomd + doF. (8m3, + M — ) my
+(S — u)2670F2] s (6.26b)
(0)ohnePol e o
o = Pz~ [+ diat (e —empma] (6260

Beziiglich lg ist anzumerken, dass diese Konstante lediglich in Aé_) auftritt und aus der rein
mesonischen Lagrangedichte stammt. Sie wurde in Referenz [GL_84] mittels des elektroma-
gnetischen Ladungsradius des Pions und in Referenz [BCT 98] aus dem Vektorformfaktor
des Pions bestimmt. Abschliefend betrachten wir die eichinvarianten Isospinamplituden

Aéa), die lediglich einen Nicht-Polbeitrag liefern:

onnet o /[/6
Aéﬂ hnePol —————(s—u) [-3mi(er2 + er3) + gy (Q° + M2 + )] ,(6.27a)
12Fm3,
_ ) o d
AlTomePol G+ 2dgg, — —22 (QF + M2+t 27b
6 oF 22 + 2d6g 5 4m?\7(Q + 7r+) ) (6 7)
onner o Ze
AQ)ohnePol Ty Chakl) [—3m3(es2 + e53) + es0 (Q% + M2 +1)] .(6.27c)
my

Neben den bereits behandelten Niederenergiekonstanten treten hierbei mit e73 in Aéa) und

es53 In Aéa) noch zwei weitere nicht bekannte Konstanten auf. Da sich in allen betrachteten

Amplituden — abgesehen von ¢g und ¢ in Aga) — keine weiteren Niederenergiekonstanten

zusammenfassen lassen, verbleiben 22 zu bestimmende Niederenergiekonstanten.

Abschliefsend betrachten wir noch das Verhalten dieser Amplituden unter der ,crossing-“
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Symmetrie und erhalten

ALFOPoL _ AG-O)Pol APl _ g(Pel
ALHOPoL _, AC-0)Pol ALl (Pl

ALFOPOL (0Pl 4Pl y()Pol -
ALFOPo _, 4(r 0Pl APl y(mel (6.28)
ALFOPOL (0Pl 4Pl 4()Pol

P G UL N L A S L

wobel wir wieder feststellen, dass dieses Verhalten dem erwarteten geméf Gleichung (4.30)
entspricht.

6.2 Erste Ergebnisse des chiralen MAID

In diesem Abschnitt werden wir nun die Ergebnisse diskutieren, welche durch das Einbauen
der in Kapitel [0l erhaltenen Ergebnisse in MAID (yMAID) berechnet wurden. Bei den
im Folgenden betrachteten Ergebmnissen handelt es sich jedoch nicht um Ergebnisse der
vollen Rechnung bis zur vierten Ordnung sondern lediglich um eine Rechnung bis zur
dritten Ordnung, da noch nicht alle Schleifendiagramme miteinbezogen wurder?. Ziel der
hier gezeigten Ergebnisse ist nicht ein Endergebnis zu présentieren, vielmehr soll gezeigt
werden, dass die in dieser Arbeit durchgefiihrten Rechnungen zu verniinftigen Ergebnissen
fiihren. Dazu wurden die s-Wellen Multipole Foy und Loy fiir verschiedene Prozesse der
Pionphotoproduktion und der so genannte ,cusp*-Effekt ausgewihlt.

Bevor wir die einzelnen Multipole diskutieren, einige Bemerkungen vorweg. Fiir die Berech-
nung der chiralen Kurven (rot und blau) in den Abbildungen [6.1] 2] und [6.3] wurden fiir

3 4 der physikalische Wert der axialen Kopplungskonstante g4 = 1, 2695, fiir die Nukleon-
masse die physikalische Masse des Protons m, = 938,27 MeV sowie fiir die Pionmasse
der physikalische Wert der Masse des 7° Mo = 134,98 MeV und fiir die Pionzerfalls-
konstante Fy = 92,4 MeV gewihltd. Des weiteren wurden die Niederenergiekonstanten
cg = 0,9875 GeV~! und ¢; = —0,0639 GeV ™! verwendet® sowie fiir die Massenskala I
die physikalische Protonmasse eingesetzt. Alle weiteren Niederenergiekonstanten wurden
im Folgenden als identisch Null angenommen. Die Referenzen zu den einzelnen Werten
der Niederenergiekonstanten finden sich in der Ubersicht derselben in Anhang [El Hinsicht-
lich der Farbgebung ist noch anzumerken, dass die rote Kurve jeweils den Imaginarteil
der chiralen Rechnung darstellt, wohingegen blau den Realteil bezeichnet. Innerhalb des
Realteils sind separat der Baumgraphenanteil (gestrichen) und der Schleifenanteil (punkt-
gestrichen) sowie die Summe der beiden (durchgezogen) abgebildet. Die griinen Kurven
sind die Vergleichskurven des ,klassischen* MAID.

In der Abbildung sind die Multipole Ep; und Lo, der Produktion eines 7% an einem
Proton fiir Q? = 0 dargestellt. Betrachten wir uns zunichst die Summe des Realteils der

*Es wurden die Baumdiagramme 86, 87, 88, 90, 91, 92 und 105 sowie die Schleifendiagramme 2, 7, 15,
25, 26, 29, 32, 41, 50, 60, 63, 64, 71 und 75 verwendet.

®Die elektrische Ladung ist durch e = /47 /137 gegeben.

®Diese Werte der Niederenergiekonstanten wurden mittels ¢s = «" /4m, und ¢z = k°/2m, an Hand
der physikalischen Werte fiir das anomale Moment des Protons x = 1,793 und " = —1,913 [Yao+ 06|
bestimmt. Dabei gilt: " = k — £™ und x° = x” + £". Da diese Konstanten in der hier durchgefiihrten
Rechnung nicht in den Schleifen beitragen, kénnen die anomalen magnetischen Momente fiir den Fall
Q? = 0 in dieser Niherung exakt reproduziert werden (Abschnitt B11).
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Abbildung 6.1: Die Multipole Eg; und Loy fiir den Prozess v +p — p + 7 der Pionpho-
toproduktion (Q? = 0) mit Wy, = 1073,25 MeV. Die experimentellen Daten fiir Ey, sind
Referenz [Sch+ 01] entnommen. Gestrichene blaue Kurve: Baumgraphenbeitrag der chiralen
Rechnung. Punktgestrichene blaue Kurve: Schleifenbeitrag der chiralen Rechnung (Realteil).
Durchgezogene blaue Kurve: Realteil der chiralen Rechnung (Summe aus Baumgraphen- und
Schleifenbeitrag). Rote Kurve: Imaginarteil der chiralen Rechnung. Griine Kurven: Real- und
Imaginarteil erhalten aus dem ,klassischen” MAID.

chiralen Rechnung des Multipols Foy, so stellen wir fest, dass diese im Bereich zwischen
der Schwellenenergie W = 1073,25 MeV — fiir 7° und Proton — und der Schwellenenergie
W = 1079, 14 MeV - fiir 7" und Neutron — deutlich von der entsprechenden MAID-Kurve
abweicht. Der Grund dafiir ist der so genannte ,cusp“-Effekt, welcher auf der Isospinbre-
chung beruht und somit im Rahmen unserer isospinsymmetrischen Rechnung zunéchst
nicht reproduzierbar ist. Oberhalb der Schwellenenergie W = 1079,14 MeV stimmen die
beiden Ergebnisse recht gut iiberein, wenn in Betracht gezogen wird, dass fiir die chirale
Rechnung streng genommen keine einzelne Linie sondern ein Fehlerband zu betrachten ist,
welches im Rahmen der chiralen Stérungstheorie mit ungefihr zehn Prozent abgeschitzt
werden kann. Vergleichen wir den Verlauf der Summe des Realteils mit den Messwerten
aus Referenz [Sch+ 01], so gelten diese Aussagen analog. Betrachten wir uns die beiden
dazugehorenden Imaginédrteile, so stellen wir fest, dass der Imaginéarteil der chiralen Rech-
nung bereits ab der Schwelle W = 1073, 25 MeV einen Beitrag liefert, wohingegen im Fall
von MAID dieser erst ab W = 1079, 14 MeV beitrégt. Der Grund dafiir liegt darin, dass
Terme, in deren Schleifen ein 7+ und ein Neutron laufen, dominant gegeniiber Termen
sind, in welchen ein 7° und ein Proton laufen. Da jedoch in der chiralen Rechnung stets
mit der Masse des 7° und des Protons gerechnet wird, liefert der Imaginérteil bereits ab der
dazugehérenden Schwelle von W = 1073, 25 MeV einen Beitrag. In MAID hingegen ist die
Dominanz von Schleifen mit 7+ und dem Neutron beriicksichtigt, so dass der [maginérteil
erst ab der zugehdrigen Schwelle W = m,, + M+ = 1079, 14 MeV einen Beitrag liefert. Im
Energiebereich ab W = 1093 MeV gehen die beiden Kurven in einander iiber.

Betrachten wir in analoger Weise den Multipol Lo+, so stellen wir wiederum die Abwesen-
heit des ,cusp“-Effekts im Realteil der chiralen Rechnung sowie das frithere Beitragen des
chiralen Imaginérteils fest. Des Weiteren gilt fiir den Vergleich der Realteile von MAID und
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xMAID, dass es wiederum eine deutliche Abweichung unterhalb der Energie W = 1079, 14
MeV gibt und sich die beiden Kurven oberhalb dieser Energie einander ann&hern, wobei
die Differenz bei W = 1079, 14 MeV grofer ist als im Fall des Multipols Ep. Die Kurven
der Imaginérteile schneiden sich bei ca. W = 1089 MeV und verlaufen danach nahezu
parallel. Insgesamt kann also festgestellt werden, dass die chirale Stérungstheorie oberhalb
der Energie W = 1079,14 MeV die beiden Multipole in befriedigendem Mafe beschrei-
ben kann. Dabei ist selbstverstdndlich zu bedenken, dass es sich hierbei um vorlaufige
Ergebnisse handelt, da noch nicht alle Beitrige eingeflossen sind.
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Abbildung 6.2: Die Multipole Eqy und Lq, fiir den Prozess v +mn — n + ¥ der Pionphoto-
produktion (Q? = 0), wobei Wy, = 1073,25 MeV. Bezeichnungen wie in Abbildung B.11

Kommen wir zu den in der Abbildung dargestellten Multipolen Eypy und Loy der
Photoproduktion eines 7° an einem Neutron, so stellen wir fest, dass das Verhalten der
Imaginérteile von MAID und yMAID das gleiche Verhalten zeigt wie im Fall der Produk-
tion eines ¥ an einem Proton. Die Griinde dafiir wurden bereits in diesem Zusammenhang
erldutert. Betrachten wir uns jedoch die Realteile, so stellen wir nicht nur fest, dass der
scusp“-Effekt im Rahmen der chiralen Rechnung erwartungsgeméf nicht auftritt, sondern,
dass in beiden Multipolen deutliche Abweichungen zu erkennen sind. Fiir den Multipol
Eo; liefert der Schleifenbeitrag des Realteils der chiralen Rechnung einen Beitrag der dem
Realteil von MAID ab W = 1079, 14 ungefihr entspricht, wohingegen die Summe des Re-
alteils der chiralen Rechnung einen viel groferen Beitrag als MAID liefert. Auferdem ist
die Kurve von xyMAID langsamer abfallend als jene von MAID. Im Fall des Multipols Lo+
haben die Steigungen der beiden Realteile sogar entgegengesetzte Vorzeichen; wihrend der
chirale Realteil eine positive Steigung besitzt, besitzt jener von MAID — oberhalb von
W = 1079, 14 — eine negative Steigung.

Bei den in Abbildung dargestellten Multipolen Foy der geladenen Produktionen stim-
men die Ergebnisse von MAID und xMAID weitaus besser iiberein als im eben betrachteten
Fall. Allerdings darf hierbei nicht vergessen werden, dass die Amplituden der geladenen
Produktionen um mehr als eine Gréfkenordnung grofier sind als jene der neutralen Produk-
tion. Aufserdem ist anzumerken, dass der fithrende Term in einer Entwicklung nach Pion-
massen durch das Kroll-Ruderman-Theorem modellunabhéngig festgelegt ist. Betrachten
wir also Abbildung [6.3] so stellen wir fest, dass die Imaginérteile von MAID und xMAID
in beiden Prozessen sehr gut {ibereinstimmen. Die einzige Ausnahme bildet das Verhalten
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Abbildung 6.3: Das linke Bild stellt den Multipol Ey; des Prozesses v +p — n + 7" der
Pionphotoproduktion (Q? = 0) dar. Das rechte Bild den Multipol Ey, des Prozesses v +n —
p+7~ der Pionphotoproduktion (Q? = 0). Bei beiden Prozessen gilt in MAID Wy, = 1079, 14
MeV. Die experimentellen Datenpunkte sind Referenz [Ada 76| entnommen. Bezeichnungen sind
wie in Abbildung E.11

kurz oberhalb der Schwelle Wy, = 1079,14 MeV, wo der chirale Imaginérteil mit einem
endlichen Wert startet, wohingegen der MAID Imaginérteil von Null kommend ansteigt.m
Der Grund hierfiir liegt darin, dass der chirale Imaginérteil, wie auch der Realteil, bereits
ab der Schwelle W = 1073, 25 einen Beitrag liefern, da diese mit der Protonmasse sowie
der Masse des ¥ berechnet wurden, was in Abbildung 6.3 allerdings nicht zu erkennen ist.
Fiir die Realteile lisst sich weiterhin feststellen, dass diese fiir die 7-Produktion am Neu-
tron in gutem Mafe iibereinstimmen, wenn eine Abweichung von bis zu zehn Prozent fiir
die chirale Rechnung zu Grunde gelegt wird. Auferdem ist festzustellen, dass der chirale
Wert mit dem Messpunkt aus Referenz [Ada 76| sehr gut iibereinstimmt. Betrachten wir
den chiralen Realteil fiir die 7~-Produktion am Proton, so stellen wir erneut fest, das sich
dieser in guter Ubereinstimmung mit seinem Pendant aus MAID befindet. Allerdings ist
die Ubereinstimmung nicht ganz so gut wie im zuvor diskutierten Fall, wo beide Realteile
parallel zu einander verliefen, da nun beide Realteile unterschiedliche Steigungen haben
und sich somit mit zunehmender Energie auseinander entwickeln. Wie im vorherigen Fall,
stimmt auch hier der chirale Wert mit dem Messpunkt aus Referenz [Ada 76| sehr gut
iiberein.

Schlieflich betrachten wir die beiden Abbildungen und In diesen Abbildungen
werden jeweils zwei mit Y MAID berechnete Realteile der Multipole Eo, der m-Produktion
am Neutron sowie der 7’-Produktion am Proton mit einander verglichen. Bei dem als
blaue Kurve eingezeichneten Multipol handelt es sich dabei jeweils um den im Rahmen der
Isospinsymmetrie bestimmten, wohingegen in dem rot verzeichneten die Isospinsymmetrie
gebrochen wurde. Diese Brechung der Isospinsymmetrie wurde dadurch erreicht, dass im
Fall der 7° Produktion am Neutron (Abb.[6.4) in den Schleifen statt der Neutronmasse
und der Masse des 70 die Massen des Protons und des 7 eingesetzt wurden. Analog wurde

"Wie der Abbildung 6.3 zu entnehmen ist, ist in MAID der Schwellenwert fiir beide Produktionen gleich
Winr = 1079, 14 MeV. Dies ist aber lediglich die Schwellenenergie des Prozesses v+ p — n + n". Fiir den
Prozesses 7 +n — p+ 7~ liegt Schwellenenergie eigentlich bei Wiy, = 1077,84 MeV.
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Abbildung 6.4: Der ,Cusp“-Effekt im Multipol Eg, fiir den Prozess v +n — n + 7° bei
Q? = 0 aufgetragen gegen die Photonenergie E. Blaue Kurve: Realteil der chiralen Rechnung.
Gerechnet wurde mit der Neutronmasse m, und der m-Masse M_o. Rote Kurve: Realteil
der chiralen Rechnung, wobei in den Schleifen die Protonmasse m,, und die w*-Masse M, +
verwendet wurden.

bei der Produktion des 7° am Proton (Abb. [63) in den Schleifen die Neutronmasse und
die Masse des 1 eingesetzt. Entscheidend ist dabei jeweils, dass die Schleifen, die ein 7
beinhalten, gegeniiber den Schleifen, in welchen ein 7° liuft, dominant sind® Sehen wir
uns die dadurch erhaltenen Multipole an, so stellen wir fest, dass der ,cusp“-Effekt erzeugt
werden konnte. Insbesondere in den Abbildungen [6.5 wird an Hand des Vergleichs mit den
Daten von [Sch+ 01] deutlich, dass die Form des ,cusp* gut reproduziert werden konnte.

Betrachten wir uns deshalb anhand von Abbildung nochmals die neutrale Produktion
am Proton. Links ist dabei der Multipol Eo; mit der Protonmasse m,, und der 7°-Masse
und rechts mit der Neutronmasse m, und der 7T-Masse berechnet worden. Der schraf-
fierte griine Bereich ist der Imaginérteil ImFEy; = £|¢] mit § = 2,43 £ 0,28 + 1,0, wie er
sich gemif Referenz [Sch+ 01] ergibt, wobei ¢ den Pionimpuls bezeichnet. Die rote Kurve
bezeichnet wiederum den Imaginérteil der chiralen Rechnung und die blauen Kurven den
Realteil, wie bereits erlautert. Wir erkennen auch hier wieder — analog zu Abbildung [6.5]
dass in dem rechten Bild® der ,cusp* gut reproduziert werden konnte. Dariiber hinaus be-
obachten wir aber, dass sich durch das Verwenden der m"-Masse auch der Imaginirteil nun
an der richtigen Stelle 6ffnet und im Rahmen der Fehler mit den Messdaten {ibereinstimmyt.
Bei einem Vergleich des linken und des rechten Bildes wird deutlich, dass der ,cusp“-Effekt
aus den Schleifenbeitrégen herriihrt und mit dem Imagindrteil zusammenhéngt. Die Ursa-
che dafiir ist eine Wurzelfunktion derart \/(M; + my)2 — s. Ist diese Wurzel reell trigt sie
zum Realteil bei und ist fiir den cusp” verantwortlich. Wird diese Wurzel jedoch imaginér
so bildet sich ein Imaginirteil.

®Dominant bedeutet in diesem Fall auch, dass es Schleifendiagramme gibt in denen kein 7° in der
Schleife auftreten kann, wie z.B. im Fall des Ankoppelns des Photons an eine Schleife.

“Streng genommen haben wir in dem rechten Bild von Abbildung 6.6 unterhalb der Energie W =
1079,14 MeV eine Fortsetzung in den unphysikalischen Bereich vorgenommen, da wir ausschlieflich die
Neutronmasse und 7 -Masse verwendet haben (Winr = 1079, 14 MeV).
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Abbildung 6.5: Der , Cusp“-Effekt im Multipol Eq fiir den Prozess y+p — p+7° bei Q? =0
aufgetragen gegen die Photonenergie E. Die experimentellen Datenpunkte sind hierbei Referenz
[Sch+ 01] entnommen. Blaue Kurve: Realteil der chiralen Rechnung. Gerechnet wurde mit der
Protonmasse m,, und der 7°-Masse M,.0. Rote Kurve: Realteil der chiralen Rechnung, wobei in
den Schleifen die Neutronmasse m,, und die 7-Masse M+ verwendet wurden.

Abschliefsend konnen wir feststellen, dass die im Rahmen der manifest Lorentz-invarianten
chiralen Storungstheorie durchgefithrte Berechnung der invarianten Amplituden uns er-
laubt — soweit dies im Rahmen dieser vorldufigen Bestimmung moglich ist — die Multipole
FEoy und Lo, der Photoproduktion (Q? = 0) im Rahmen eines Fehlerbandes von ca. zehn
Prozent sinnvoll zu beschreiben. Dies ergibt sich aus den entsprechenden Ubereinstimmun-
gen mit MAID bzw. den Messwerten der Referenzen [Sch+ 01)] und [Ada 76] fiir die neutrale
Produktion am Proton sowie den geladenen Produktionen. Die im Rahmen der neutralen
Produktion am Proton auftretenden Abweichungen sind dabei der Isospinsymmetrie in der
chiralen Rechnung zuzuschreiben, wobei wir in der Lage sind, mittels des Verwendens von
unterschiedlichen Massen in den Schleifen und der &ufieren Beine der Feynmandiagramme,
den ,cusp*“-Effekt zu reproduzieren. Nicht nachvollziehbar sind hingegen die Abweichungen
der Realteile der Multipole im Fall der neutralen Produktion am Neutron.
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Abbildung 6.6: ,Cusp”-Effekt: Beide Bilder stellen den Multipol Ey4 des Prozesses v 4+ p —
p+ 7 fiir Q2 =0 dar. Im linken Bild wurde mit der Protonmasse my und der 79-Masse Mo
gerechnet, im rechten Bild mit der Neutronmasse m,, und der 7™-Masse M_+. Die experimen-
tellen Daten sind wiederum Referenz [Sch+ 01] entnommen. Der schraffierte griine Bereich ist
der Imaginarteil ImEpy = [|q| mit § =2,434+0,28+1,0 [Sch+ 01]. Gestrichene blaue Kurve:
Baumgraphenbeitrag der chiralen Rechnung. Punktgestrichene blaue Kurve: Schleifenbeitrag
der chiralen Rechnung (Realteil). Durchgezogene blaue Kurve: Realteil der chiralen Rechnung
(Summe aus Baumgraphen- und Schleifenbeitrag). Rote Kurve: Imaginarteil der chiralen Rech-

nung.



Kapitel 7

Zusammenfassung und Ausblick

In dieser Arbeit wurde die elektromagnetische Pionproduktion im Rahmen der manifest
Lorentz-invarianten chiralen Stérungstheorie in einer Einschleifenrechnung bis zur Ordnung
O(q¢*) untersucht. Dazu wurden im Rahmen von Mathematica auf der Grundlage des Pa-
kets FeynCalc [MBD 91| neue Algorithmen zur Berechnung der Pionproduktionsamplitude
entwickelt. Bis einschlieflich der Ordnung O(g?) tragen insgesamt 105 Feynmandiagramme
bei, die sich in 20 Baumdiagramme und 85 Schleifendiagramme unterteilen lassen. Von den
20 Baumdiagrammen wiederum sind 16 als Polterme und vier als Kontaktgraphen zu klas-
sifizieren. Bei den Schleifendiagrammen hingegen wird zwischen 50 Diagrammen, die ab der
dritten Ordnung und 35 Diagrammen, die ab der Ordnung vier beitragen, unterschieden.
Im Rahmen der Einphotonaustauschniherung wurde die Pionproduktionsamplitude als das
Produkt des leptonischen und des hadronischen Vertex parametrisiert, wobei der leptoni-
sche Vertex (Polarisationsvektor des Photons) aus der QED wohlbekannt ist. Damit lag das
Interesse im hadronischen Vertex, welcher alle Abhéngigkeiten der starken Wechselwirkung
beinhaltet und wo somit auch die chirale Stérungstheorie ihren Eingang findet. Der hadro-
nische Vertex bzw. das Ubergangsstrommatrixelement M* wurde hierbei zunichst durch
acht nicht eichinvariante Amplituden sowie acht diesen zugeordneten Vierervektoren, wel-
che die gesamte Lorentzstruktur beinhalten, parametrisiert. Bei den acht Vierervektoren
handelt es sich um einfache Lorentzstrukturen der Form 5 X, Vierervektor”, wobei sich al-
le anderen auftretenden Lorentzstrukturen durch das Ausnutzen der Impulserhaltung, der
Diracgleichung sowie der Gammamatrizenalgebra in diese iiberfiithren lassen. In der Praxis
wurden diese Lorentzstrukturen mittels eines Algorithmus im Ubergangsstrommatrixele-
ment nach den entsprechenden Umformungen identifiziert, so dass die acht Amplituden
auf einfache Weise extrahiert werden konnten.

Mittels der Stromerhaltung wurde gezeigt, dass diese Strukturen nicht linear unabhéngig
sind und sich mit sechs eichinvarianten Amplituden verkniipfen lassen, was bereits seit
den ersten Untersuchungen der Pionproduktion [CGLN 57, [Den 61, BDW 67| bekannt ist.
Diese sechs eichinvarianten Amplituden wurden wiederum, wie es in der Einphotonaus-
tauschndherung und auf Grund der Isospinsymmetrie der starken Wechselwirkung moglich
ist, in drei Isospinamplituden A(+0:-) zerlegt, welche es erlauben, die vier physikalischen
Amplituden zu beschreiben:

A(y*p;na™) V2(A5) 4+ AD),
Ay mipr) = V2(=AD) + A0,
A(vpipr®) = AT 4+ A0
A(v'nsna®) = AF) — A0
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Fiir die Bestimmung der eichinvarianten Isospinamplituden der Baumgraphen sahen wir,
dass diese Uberlegungen bereits ausreichend und zielfithrend sind. In der Diskussion der
Schleifendiagramme hingegen wurde deutlich, dass auf Grund des Auftretens tensorieller
Integrale weitergehende Uberlegungen notwendig sind. Es wurde dabei die Problematik
aufgezeigt, dass es nicht einfach moglich ist, das Ubergangsstrommatrixelement M* in der
Form der bereits erwdhnten acht nicht eichinvarianten Amplituden und der zugeordneten
Lorentzstrukturen zu schreiben, falls tensorielle Integrale auftreten. Dies wurde jedoch er-
reicht, indem die Integrale mittels des Passarino-Veltman-Verfahrens [PV 79| dergestalt
umgeschrieben wurden, dass sie nunmehr in der Form einer Summe aus Lorentzstrukturen
und zugeordneten Koeffizienten vorliegen. Hierbei geschieht die numerische Berechnung
der Koeffizienten sowie der skalaren Integrale durch das Programm LoopTools [HP 98] in
dimensionaler Regularisierung. Durch diese Ausdrucksform der Integrale wurde es méglich,
wie zuvor beschrieben, die acht nicht eichinvarianten Amplituden und daraus folgend die
eichinvarianten Amplituden sowie die Isospinamplituden, nach entsprechenden Umformun-
gen in den Lorentzstrukturen, zu bestimmen.

Hinsichtlich der Integrale musste jedoch weiterhin beachtet werden, dass das Programm
LoopTools die Integrale bzw. die entsprechenden Koeffizienten der tensoriellen Integrale
zwar in dimensionaler Regularisierung unter Beriicksichtigung des modifizierten Abzugs-
schemas MS berechnet, diese aber in der Regel noch immer das chirale Zdhlschema ver-
letzen. Zur Renormierung dieser Ausdriicke wurden im Rahmen der reformulierten Infra-
rotregularisierung [SGS 03] die Abzugsterme der von LoopTools berechneten Koeffizienten
bestimmt. Dazu wurde das urspriingliche Integral zunéchst mittels der Schwingerparame-
trisierung umgeschrieben und anschlieffend iiber den Schleifenimpuls integriert. Danach
wurde der dadurch erhaltene Ausdruck reparametrisiert und die Integration {iber den er-
sten Parameter ausgefiihrt. Der nunmehr erhaltene Integrand wurde nach kleinen Gréfen
bis zur Ordnung O(¢3) entwickelt und Integration und Summation wurden vertauscht.
Schlieflich wurden die Integrationen iiber die verbleibenden Parameter termweise aus-
gefiihrt und jene Terme, welche durch das modifizierte Abzugsschema MS beriicksichtigt
wurden, subtrahiert. Letztlich wurden durch einen Koeffizientenvergleich an Hand der Lor-
entzstrukturen die Abzugsterme der einzelnen Koeffizienten identifiziert. Damit erhielten
wir durch das Subtrahieren der Abzugsterme von den urspriinglichen Koeffizienten die
renormierten Koeffizienten, womit auch die Isospinamplituden nunmehr in renormierter
Form vorliegen.

Die Summe der erhaltenen Isospinamplituden der Baumgraphenrechnung wurde in einen
so genannten Pol- und Nicht-Polbeitrag beziiglich der Mandelstamvariablen s und w auf-
gespalten. Ein Vergleich mit Referenz [PDT (7] zeigte, dass die in den Polbeitragen (Glei-
chung (6.1))) eingefithrten Funktionen F}* und Fy (a = +,0, —) proportional zu den Dirac-
bzw. Pauliformfaktoren sind, d.h., fiir den Fall Q? =0

FXr 1, FY~wS FfF ~ kY (7.1)

gilt, wobei x° und " das anomale isoskalare und isovektorielle magnetische Moment be-
zeichnen. Des Weiteren wurde das Verhalten dieser Isospinamplituden unter der ,crossing*-
Symmetrie getestet und festgestellt, dass die erwarteten Bedingungen aus Gleichung (4.30)
reproduziert werden.

Schliekslich wurden alle Isospinamplituden in einen FORTRAN-Code transskribtiert und in
das von Drechsel, Hanstein, Kamalov und Tiator erstellte Programm MAID [DHKT 99],
welches um LoopTools ergénzt wurde, eingebaut. Mittels des chiralen MAID wurden die
Multipole Eo; und Lo, der Pionphotoproduktion (Q? = 0) fiir die neutrale Produktion,
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sowie der Multipol Ey fiir die geladene Produktion berechnet. Dabei beschrinkten wir
uns jedoch auf eine Berechnung bis zur Ordnung O(q?), d.h., es wurden noch nicht alle zur
Verfiigung stehenden Isospinamplituden beriicksichtigt, so dass es sich bei den prisentierten
Ergebnissen ausdriicklich nur um vorldufige Ergebnisse handelt.

Ein Vergleich dieser Ergebnisse mit den Ergebnissen des ,klassischen* MAID zeigte jedoch
— abgesehen von einer Ausnahme — recht gute Ubereinstimmungen. So stimmen z.B. die
Realteile des Multipol Egy fiir die neutrale Produktion am Proton oberhalb der Energie
W = 1079, 14 MeV, innerhalb eines fiir die chirale Storungstheorie anzunehmenden Fehler-
bandes von ca. zehn Prozent, sowohl mit dem Ergebnis des ,klassischen® MAID als auch
mit den Messwerten aus Referenz [Sch+ 01| gut {iberein. Die Abweichungen unterhalb die-
ser Energie, welche die Schwellenenergie der Produktion eines 77 am Neutron darstellt,
erklaren sich durch den so genannten ,cusp“-Effekt, der auf isospinbrechenden Effekten be-
ruht und somit in einer isospinsymmetrischen Rechnung a priori nicht reproduziert werden
kann. Es konnte jedoch — ebenfalls am Beispiel des Multipols Ep der neutralen Produktion
am Proton — gezeigt werden, dass durch das Einsetzen der Neutronmasse und der Masse des
7T in den Schleifen der ,cusp“-Effekt generiert werden kann. Hinsichtlich der Imaginirteile
zeigte sich, dass der chiral berechnete Imaginéarteil stets ab der Energie W = 1073, 25 MeV
beitragt, wohingegen der durch MAID berechnete erst ab W = 1079, 14 MeV einen Beitrag
liefert. Der Grund hierfiir ist, wie im Fall des ,cusp“-Effekts, dass Schleifen, in welchen ein
7t lduft, gegeniiber Schleifen, in welchen ein 7° liuft, dominieren.

Es konnte demnach also festgestellt werden, dass die im Rahmen dieser Arbeit berechneten
invarianten Isospinamplituden es erlauben, die betrachteten Multipole innerhalb der Fehler
sinnvoll zu beschreiben. Des weiteren konnte aufgezeigt werden, dass die auftretenden
Abweichungen gegeniiber MAID sich auf Grund des isospinsymmetrischen Charakters der
Rechnung verstehen lassen und sich der ,cusp“Effekt mittels eines Tricks reproduzieren
lasst. Nicht verstanden wurden allerdings die Abweichungen bei der neutralen Produktion
am Neutron gegeniiber MAID. Da jedoch fiir die neutrale Produktion am Neutron keine
Messdaten vorliegen, kann auch keine Aussage dariiber getroffen werden, welche der beiden
Methoden den physikalischen Prozess besser beschreibt.

Diese Abweichungen von yMAID und MAID in der neutralen Produktion am Neutron
stellen aber auch einen Ausgangspunkt fiir weiterfilhrende Untersuchungen dar. So wird
zukiinftig darauf zu achten sein, ob diese Abweichungen lediglich in den hier betrachteten
vorldufigen Ergebnissen der dritten Ordnung auftreten oder ob sich diese Abweichungen
auch bei einer kompletten Rechnung bis einschlieblich der vierten Ordnung zeigen. Des-
halb sind als néchstes alle berechneten Isospinamplituden in yMAID einzubauen bzw. zu
aktivieren. Dazu ist es vorab allerdings notwendig, die 22 numerisch noch nicht bekannten
Niederenergiekonstanten, die hauptsichlich aus den Kontakttermen der dritten und vier-
ten Ordnung herrithren, z.B. durch Fits an Daten, zu bestimmen, um ein vollstindiges
Ergebnis zu erhalten. Nachdem dies gelungen ist — prinzipiell aber auch im Rahmen des
hier verwendeten vorlaufigen YMAID — kénnen nicht nur die elektromagnetischen Mul-
tipole, sondern auch die Antwortfunktionen, die CGLN- und Helizitdtsamplituden sowie
totaler und differentieller Wirkungsquerschnitt bestimmt werden. In dieser Hinsicht wird
es interessant sein, die dann erhaltenen Ergebnisse nicht nur mit MAID, sondern auch mit
den entsprechenden Messwerten, z.B. der Referenzen [Ber+ 96, [Fuc+ 96, Mer+ 01] oder
mit den Resultaten der ;Heavy-Baryon“ chiralen Stérungstheorie [BKM 96al BKM 01] zu
vergleichen.

Dariiber hinaus kann sicherlich zur Untersuchung der Fubini-Furlan-Rosetti Summenregel
[FER_65, PDT 04, BKM 05| beigetragen werden, welche das anomale magnetische Moment
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des Nukleons mit der Pionphotoproduktion am Nukleon in Verbindung setzt.

Einen weiteren interessanten Aspekt stellt die Untersuchung des inversen Prozesses — des
Pioneinfangs — dar. Da zwischen beiden Prozessen, wie in den Referenzen [FHLU 00,
FHLU 01] dargelegt, ein einfacher Zusammenhang besteht, konnte eventuell auch hierzu
ein Beitrag geleistet werden.

Als nichster Schritt bietet sich die Bestimmung des Q% Verhaltens der Multipole aus der
Elektroproduktion an, da aus der Berechnung der elektromagnetischen Formfaktoren und
des axialen Formfaktors bekannt ist, dass die ,traditionelle “ chirale Stérungstheorie derar-
tige Q%-Abhingigkeiten nur sehr unzureichend beschreibt. Deshalb wire es naheliegend, die
Elektroproduktion von vornherein mit expliziten Vektor- und Axialvektorfreiheitsgraden
[FSGS 03, [SEGS 07] durchzufiihren. Dariiber hinaus bietet sich mittelfristig der Einbau
der A(1232)-Resonanz an [HWGS 05], um die Pionproduktion in der A(1232)-Resonanz-
Region [PV_05] zu untersuchen.

Fiir eine genaue Untersuchung des ,cusp“ hingegen kénnte die Rechnung unter Beibehal-
tung der Isospinbrechung, d.h., fiir sich unterscheidende Massen des up- und des down-
Quarks, wiederholt werden.

Abschliekend l&dsst sich also feststellen, dass diese Arbeit und insbesondere die neu ent-
wickelten Programm-Pakete eine Basis fiir weitere Untersuchungen der Pionproduktion im
Rahmen der manifest Lorentz-invarianten chiralen Stérungstheorie geliefert hat, auf die in
Zukunft zuriickgegriffen werden kann.



Anhang A

Paulimatrizen

Bei der folgenden Darstellung werden wir uns an Referenz [BRS 93] orientieren.

Definition und Eigenschaften der Paulimatrizen

Die Paulimatrizen 7; (i = 1,2, 3) sind die Erzeuger der Gruppe SU(2) und lauten

(O e (V) e ()

Die hermitischen, spurlosen (2 x 2)-Matrizen 7; haben die folgenden Eigenschaften:

7’; = T, (A.2a)
Trr, = 0, (A.2b)
det, = -1, (A.2c)
TiTj = i€kTk + 0ij, (A.2d)

wobei fiir den vollstdndig antisymmetrischen Tensor €;; (Levi-Civita) gilt:

+1, falls (4,7, k) eine gerade Permutation von (1,2, 3) ist,
eijk = § —1, falls (4,7, k) eine ungerade Permutation von (1,2, 3) ist, (A.3)
0, falls (mindestens) zwei Indices gleich sind.

Verwenden wir die Eigenschaften (A.2)) der Paulimatrizen, so erhalten wir fiir den Kom-
mutator und den Antikommutator

(75, 7] = 2i€j5Tk, (A.4a)
{ri, 7} = 26;. (A.4b)
Weiterhin erhalten wir die folgenden Relationen fiir die Spur {iber Produkte von Paulima-
trizen:
Tr[nm] = 20, (A.5a)
TrlriTjTi] = 2ieiu, (A.5Db)
Trimimymen] = 2(6i50k + 0l — 0irdjr)- (A.5¢)
Auferdem gelten die folgenden Relationen:
o= 1, (A.6a)
TiTiTe = i€kl + 0ijTh — OinTj + 01T (A.6b)
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Die Matrizen 7. und 7_

Im Zusammenhang mit der Behandlung des Isospins werden in der Literatur oftmals die
Matrizen 74 und 7_ eingefiihrt (siehe z.B.[4.3)); diese sind wie folgt definiert:

S \2(71+¢72)=<8 \(/f) (A.Ta)
S \jim_z-m)—(% 8) (A.TD)

und besitzen folgende Eigenschaften:
(re)f =75, Trre=0, detrs—0. (A.8)

Mittels der im vorherigen Abschnitt aufgefiihrten Relationen fiir die Paulimatrizen lassen
sich folgende Relationen fiir den Kommutator zeigen:

e, 7] =+V213, [re,m]=iV27, [rem]=F27¢, [r,7] =27 (A.9)

Wir verwenden hier weiterhin die Nomenklatur mit der Matrix 73; in der Literatur wird
diese in Zusammenhang mit 7 und 7_ zumeist in 79 umbenannt.
In Bezug auf die Antikommutatoren gelten die nachfolgende Relationen:

{re, 71} = V21, {r4, 12} = +iv2 1, {re, 3} =0, {rp, 7} =21. (A.10)

Des Weiteren lassen sich folgende Relationen zeigen:

Ter = 72 =0, (A.11a)
T4T3 = —T3 Ty = —Ty, (A.11b)
T_T3 = —T3T_ =T, (A.llc)
n—1

4T = l4+m= <;) (Tyr2)", (A.11d)
1 n—1

1y = l—m3= <2> (T—14)", (A.lle)

wobei n € N.



Anhang B

Diracmatrizen

Die folgende Darstellung orientiert sich an Referenz [BRS 95].

Die Haupteigenschaften der Diracmatrizen

Die Haupteigenschaften der Diracmatrizen sind folgende:

"} = 29"

(O)?=1, (v)?=-1,

() =+, () =—+"
Der Kommutator der Diracmatrizen lautet

i

o= L] o = ot
Die 4° Matrix ist wie folgt definiert:
. i
v =7" ="' = = eapur ™"

Die 7° Matrix erfiillt folgende Eigenschaften:

{y*,4"} =0,
()P =1, (") =+"

Die Dirac-Konjugation einer beliebigen (4 x 4)-Matrix ist definiert als
A :=~04140

Damit erhalten wir

T =,

VP =+,

yagB g =P

YO iy = (AP )Py = g ieP

(B.1a)
(B.1b)
(B.1c)

(B.2)

(B.3)
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Produkte von Diracmatrizen

Folgende Relationen fiir die Produkte von Diracmatrizen sind von Nutzen:

’7”’7” — glw—io‘lw, (B?)
1
Py = g+ e o,
,YSO.;W — %Euyaﬁaaﬁ, (B.9)
P =i = g + P, (B.10)
o = (g = g+ N, (B.11)
PP =gy = g ) + N, (B.12)
PP = ("M — g O) + N . (B.13)

Fiir den hierbei eingefithrten total antisymmetrischen Tensor e#*®% gilt analog zu €ijk

—1 falls (i, v, , B) eine gerade Permutation von (0, 1,2, 3) ist,
€uwap = +1 falls (4,7, a, B) eine ungerade Permutation von (0,1,2,3) ist,  (B.14)
0  falls (mindestens) zwei Indices gleich sind.

Zudem fithren wir den total antisymmetrische Tensor v** ein; dieser ist wie folgt definiert:
174 1 17 17 v v v v
P = 2 (PP AP P = = =) (BAS)

Im Zusammenhang mit v*** sind folgende Relationen hilfreich:

VA = A4 g = g 4 g (B.162)
,y,u,uz\ — —’L'E'uyka’}ﬁ'ya, (B16b)
NN %EO“WA%W)\. (B.16¢)

Die Diracmatrizen in n Dimensionen

Im Rahmen der Dimensionalen Regularisierung wird die Dirac-Algebra auf n Dimensionen
verallgemeinert. In diesem Zusammenhang sind folgende Relationen giiltig:

Tr1 = n, (B.17a)
9" 9w = n, (B.17b)
{2 = 29" (B.17¢)
YWY = (2—n)y" (B.17d)



Anhang C

Amplituden und Multipole

C.1 Multipole

Multipolentwicklung der CGLN-Amplituden

Die CGLN-Amplituden kénnen in eine Multipolreihe nach den Ableitungen der Legendre-
Polynome entwickelt werden

o0

A= LM+ B R @)+ (0 DM B R ] (Ol
A - iuunMHHMzm'(w), (1)
. lf;[(El+—Mz+)Pz+1”(3«“)+(El—+Ml—)Pz—1"($)], (.19
Fi o= 2[Ml+—El+—Ml_—El_]P/’(x), (C.1d)
- i[<z+1>Lz+Pz+1'<x>—sz_Pl_mxn, (C.1¢)
- EULZ_—<Z+1>LZ+1P/@>, (can
Fr = lf;[zsl—aH)SHJB’(x), (C.1g)
Fe = SO0+ 180 B (a) — 1P (). (C.1h)

~
Il
=)

Hierbei ist x = cos(6*) = k* - ¢* der Kosinus des Streuwinkels im physikalischen Bereich
und P/ = dP//dx die Ableitung der Legendre-Polynome.

Alle Multipole sind dabei Funktionen der Pionenergie und des quadrierten Vierer-Photon-
impulses. Die longitudinalen (L;) und die Ladungs- (,charge “) (S;) Multipole sind durch
die Eichinvarianz verkniipft: kiF; = |k*|Fs und kiFs = |k*|Fs.

Zur Definition der Multipole im Rahmen der Pionelektroproduktion betrachten wir uns den
Gesamtdrehimpuls J. Im Endzustand koppelt der Relativbahndrehimpuls [ mit dem Spin
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1/2 des Nukleons zu J =1 £+ 1/2. In der Nomenklatur der Multipole wird der Faktor 1/2
vernachlissigt, so dass [+ angegeben wird. Die Grofbuchstaben E, M und L bezeichnen die
elektrische, magnetische und longitudinale Multipolstrahlung des virtuellen Photons. Ein
transversal polarisiertes Photon fiihrt zu elektrischen und magnetischen Ubergiingen, wo-
hingegen ein longitudinal polarisiertes Photon zu longitudinalen oder Coulomb-Ubergéingen
fiihrt. Die Multipole der Pionelektroproduktion gehéren zu den folgenden elektromagneti-
schen Ubergingen:

E =E(l+1), 1>0, Ly=C(l+1), 1>0, My=M(I), [>1,

EL2E(—1), 1>2, LL2C(—-1), 1>1, Mu=M({), 1> 1. (C2)
Auferdem ist anzumerken, dass in der Literatur haufig die so genannten fiinf P-Wellen
verwendet werden; dabei handelt es sich um folgende Linearkombinationen von Multipolen:

Py =3B + My — M_, Py=4Lyy + L1,
Py =3By, — My, + My,  Py=Ly_—2Li,. (C.3)
Py =2My + M,

Multipole und Antwortfunktionen

Die Antwortfunktionen lassen sich im Rahmen der S- und P-Wellenndherung wie folgt
beziiglich Multipolen ausdriicken [BKM 96al:

1
Ry = |Eoy 4 cos P> + 3 sin? 0. (| P> + | P %), (C.4a)
Rp = |Loy 4 cosO, Py + sin® 0, | P5)?, (C.4b)

Ry, = —sinb;Re[(Eot + cos0,P1)P; + (Lot + cos 0, Py) Py], (C.4c)

1
Rrr = 5 sin? 0, (| Po|? — | P3)?). (C.4d)

Allgemeiner ist dieser Zusammenhang im Anhang von Referenz [DT 92| gegeben.

C.2 CGLN- und invariante Amplituden

Entwicklung der CGLN Amplituden beziiglich der invarianten Amplitu-
den

Die CGLN-Amplituden sind durch die folgenden Gleichungen mit den invarianten Ampli-
tuden verkniipft [Den 61, BDW 67]:

W —m

F1 = TM/N (EZ —i—mN)(Ef + mN)
t— M+ Q* Q*

X{A1+(W_mN)A4_2(VV—TTLN)(AS_A4)+VV—WLNA6}7 (C.5a)
~F_VV—F?TLN E;, —mpy
2T 8w W E +my

t_M2+Q2 QZ
~ A A= =TT Ay — A+ ——— A .
x{ 1+ (W +mpy) Ay 2(W+mN)( 3 4)+W+mN 6},(05b)
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W +mpy
F3= ——— T q\/ —my)(Ef +mn)

2W? — 2m3 + Q? Q?
As+ A3 — Ay — —— A :
{ 2(W +mp) 2+ 43 4 W +mpy 5}’ (C.5¢)

J,,_._W—mN o [ Ei+mpn
1 8r W 4 Ef+mpy
2W2 — 2m3% + Q? Q?
— Ay + A3 — A4+ ——A )
X{ 2 — my) o+ Az 4+W—mN 5}, (C.5d)

£ o— ko Ef+mN
5_87TW Ei—i-mN

X{(Ei +my) A+ [(t — M2+ Q) (W — 3ko) — W + qo(W? — m%, + $Q%)] A

+[qo(W + mN) + %(t - ]\472r + QQ)] Ag + [(El + mN)(W - mN) - QQ(W + mN)
—5(t = M2+ Q)] Ay + [ (t — M2+ Q%) — Q] A5 — (Ei + mn)(W — mN)Ab’}

(C.5e)
koq

87TW\/(Ef + mN)(EZ — mN)

Fo=

= (B ) 0+ W = (0= 2224 QAW — o) — (7 = i, + 502 2
+ao(W —mn) + 3(t — M2 + Q)] A3 + [(E; — mn)(W +mn) — go(W — my)
—L(t— M2+ Q)] As+ [q0Q% — o (t — M2+ Q%)) A5 — (E; — mn)(W + my) Aﬁ} )

(C.5f)



Anhang D

Winkelabhangigkeit des
hadronischen Tensors

Die Winkelabhéngigkeiten cos(¢) und cos(2¢r) des symmetrischen hadronischen Tensors
WH in Gleichung (£.59) bzw. (L.57) konnen wir an Hand folgender Betrachtung nachvoll-
ziehen. Zunichst konstruieren wir den allgemeinsten symmetrischen hadronischen Tensor
WH” mit den Bausteinen

pt, k", ¢" und g"” (D.1)
und erhalten
W = g" fi + D'} fo + KFEY f3 + ¢q" fa
(PEEY + pi kM) f5 + (D' q” + pi ¢") fo + (K" + K q") f7. (D.2)

Verwenden wir jetzt die Stromerhaltung (#22)), so bekommen wir
kW =0
K (f1+ K fs+pi-kfs +q- kfr)
+0Y(pi- kf2+ K f5+q-kfe)
+ ¢ (k- qfs+pi-kfe+ kK fr). (D-3)
Da die Impulse k, p; und ¢ linear unabhingig voneinander sind, miissen die jeweiligen
Koeffizienten Null sein, so dass wir drei Bedingungen erhalten. Damit kénnen wir den

symmetrischen hadronischen Tensor, wie folgt mit vier Strukturfunktionen eichinvariant
parametrisieren:

3} Kbk
WH = W <—g,u, + kQ)

Diese Form des hadronischen Tensors werten wir jetzt im Laborsystem mit

i =0, §=|q(cosdrsinby,sin gy sin by, cosd)T, k= (0,0, k)T (D.5)
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aus und erhalten

2
wit = W1+%0082 by sin? 0, Wi, (D.6a)
my
2
w22 = W+ |‘ﬂ2 sin ¢ sin” 0, W. (D.6b)
my
Daraus ergibt sich
1 [
—“(WH W) = Wy + —-sin? 6, (D.7a)
2 2m?\,
| 22 |q1? 2 . 2 . 2
i(W -W*) = 52 cos” ¢ — sin” ¢, | sin” 0. (D.7b)
my
cos(2¢x)

Fiir die beiden verbleibenden Groflen bekommen wir

k|2 ko -\ 2 ko - q-k -
33 _ 1 | o W0 O — — |k
w Wi ( + 12 + Ws 12 || ngNk2 |k| { |q] cos 2 |k|
Wy < g k=\?
+ — [ |q] cos O — ——|k]| (D.8a)
m3; k2
1 ko, » -k -
Re(W'3) = — [— Re(I/Vg)ml:f2 0|k| + Re(Wy) <|(j] cos O, — qu]k\)] |q] cos ¢ sin O
N

(D.8b)

Damit haben wir die in Gleichung ([L.57) angegebenen Winkelabhingigkeiten gezeigt.



Anhang E

Ubersicht der
Niederenergiekonstanten

In der folgenden Ubersicht werden die numerischen Werte der in dieser Arbeit verwendeten
Niederenergiekonstanten aufgelistet, sofern diese bekannt sind. Insbesondere im baryoni-
schen Sektor gibt es ab der dritten Ordnung viele Niederenergiekonstanten, die noch nicht
numerisch bestimmt wurden. Des Weiteren gibt es fiir bestimmte Konstanten nicht nur
einen bekannten Wert, sondern abhéngig von dem betrachteten Prozess mehrere. In diesen
Fillen sind die verschiedenen Zahlensets aufgelistet.

E.1 Die Niederenergiekonstanten der mesonischen Lagrange-
dichten

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(q?)

Wert Referenz
Fr | 92,42 MeV | [[Yao+ 06]]
My, | 139,57 MeV | [[Yao+ 06]]

Mz, | 134,98 MeV | [[Yao+ 06]]

Im Rahmen dieser Arbeit verwenden wir fiir F' den physikalischen Wert der Pionzerfalls-
konstante Fy. F' ist wie folgt mit Fy verkniipft: Fr = F(1 4+ O(/m)) mit F ~ 86.5 MeV
[CD_04], wobei v = (my, + mq)/2.

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(¢*)

Im SU(2) x SU(2)-Sektor werden hiufig die Skalen-unabhiingigen Parameter [; verwendet,
welche wie folgt definiert sind:

2

ro__ 71 7 Mﬂ' .
li_w[hﬂn(;ﬂ)] Vo i=1,--- .6 (E.1)

Dabei ist p die Massenskala; im baryonischen Sektor setzen wir diese gleich der physikali-
schen Nukleonmasse m .
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Im Rahmen dieser Arbeit sind die folgenden Niederenergiekonstanten dieser Ordnung von
Bedeutung.

[GL 84] [BCT 98] Vi
I3] 2,9+2,4 —
I,] 4,3+0,9 4,440,3 2
lg |16,5+1,1]16,0+0,5+0,7 | —3

In Anhang D von Referenz [Sch 02] findet sich eine Ubersicht mit bekannten Werten zu
allen ;.

E.2 Die Niederenergiekonstanten der baryonischen Lagran-
gedichten

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(q')

In der niedrigsten Ordnung des baryonischen Anteils der Lagrangedichte treten als neue
Niederenergiekonstanten die Masse des Nukleons im chiralen Grenzfall m sowie die axiale
Kopplungskonstante 5 4, gleichfalls im chiralen Grenzfall, auf.

Wert Referenz
m | 882,8 MeV | [[FGS_03]]
ga| 1,21 | [[BMO6]

Da in dieser Arbeit auch die physikalischen Werte verwendet werden, sind diese nachfolgend
aufgefiihrt. Fir die Nukleonmasse wird dabei in der Regel der Wert der Protonmasse
verwendet.

Wert Referenz

my(Proton) | 938,27 MeV | [[Yao-+ 06]]

my (Neutron) | 939,57 MeV | [[Yao—+ 06]]
gA 1,2695 [[Yao-+ 06]]

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(¢?)

[Mei 05] [ [EGS 03] [FGS 04]
ca| —0,9GeVv!|—0,9my
s 3,3GeV-1| 2,5my
cs| —4,7GeV | —4,2my
ci|  3,5GeV | 2,3my
cs | —0,09 GeV 1
6 1,36 GeV !
cr —0,23 GeV !

AuRerdem werden in dieser Arbeit die Linearkombinationen

66 = C¢ — 4M7%€106, 57 = C7 — 16M72r€105 (EZ)
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verwendet.
Wert Referenz
G | 1,26 GeV 1 [[FGS 03]
ér | —0,18 GeV ! | [FGS 03]

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(¢?)

Wert | Referenz
de | 0,54 GeV~2| [FGS 04
d7 | —0,73 GeV~2 | [FGS 04]
dig | —1,93 GeV~2 | [EBM_00]
dig | —0,80 GeV 2 [BL 01]

Der Wert fiir die ist leider nicht sicher bestimmt. Das Resultat aus Referenz [FBM 00]
beruht auf der Analyse der Reaktion 7N — 7w N. Vergleichen wir diesen Wert fiir dig mit
dem Resultat von McGovern und Birse [MB 06|, welche einen Fit an Gitterdaten vornah-
men und als Wert dig = 4,11 GeéV~2 erhieltend, so ergibt sich eine deutliche Diskrepanz.

Die Niederenergiekonstanten aus der Lagrangedichte der Ordnung O(q*)

Wert | Referenz
ess | 0,25 GeV 2 | [FGS_04]
ers | 1,93 GeV 3 | [FGS 04]

Die Niederenergiekonstanten ejgs und ejos treten in Kombination mit den Niederenergie-
konstanten cg bzw c7 auf. Diese Kombination wird in dem Abschnitt ,Die Niederenergie-
konstanten aus der Lagrangedichte der Ordnung O(q?)“ behandelt.

'Hierbei wurde = mn gewdahlt.



Anhang F

Ubersicht der Feynmandiagramme

F.1 Die Schleifendiagramme: Diagramme 1 - 85

,7* T Y s
Y
k,e 7
Y
7
N l.c //
\\ ,7qa
\\\ \I //
Y
k=1b N )7
N ; Q/ ?3 N N p=1 klj ; N
Diagramm 1 (O(g?)) Diagramm 2 (O(¢%))
v 7T 7 m

N i — 1 pr N N pi — 1 by
% i // % pi //
\\’,’ \\’//
l,c l,c
Diagramm 3 (O(¢?)) Diagramm 4 (O(q*))

N L pr—lo g by N
\\\’—/, \\’//
l,c l,c
Diagramm 5 (O(g?)) Diagramm 6 (O(g%))
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F.1. DIE SCHLEIFENDIAGRAMME: DIAGRAMME 1 - 85

-~
le

Diagramm 7 (O(g?))

’
>

)
Diagramm 11 (O(q*))

’

pi pitk " pitk ps

Diagramm 13 (O(q*))

Di pi+k—1 by

Diagramm 15 (O(¢?))

Di

)
it k-1 prtq by

Diagramm 17 (O(¢?))

\ 7’
S
Lo

Diagramm 8 (O(¢%))

Diagramm 10 (O(¢?))

5 ™
N pi pi +k pi+k pf N
Diagramm 12 (O(¢%))

v T
N pitk T pitk ps N
Diagramm 14 (O(¢%))

7 T
N N

pi pi+k—1 ps

Diagramm 16 (O(q))

pr

pi+k pr+q-—1I
Diagramm 18 (O(¢?))
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pitk prtg-l
Diagramm 19 (O(q*))

Yy ™
N N
pi \pifl/, prt+4q Py

l,c
Diagramm 21 (O(q?))

7 T
N N
pi+k pf—l
AR
l,c

Diagramm 23 (O(q*))

\ L
- q,a
; D

N N
Pi \.‘./1)+k )\./pf IU rr

/!

\

R
lc

Diagramm 25 ((’)(q?’))
pi \_I/ pi — lUpf+<1 M Py N

\

c—--
le
Diagramm 27 (O(q%))
, ™
7z
l+kd i
-
, \ . ea
N Di : pi—1 : pf N

Diagramm 29 (O(q?))

UBERSICHT DER FEYNMANDIAGRAMME

pitk prtq-l
Diagramm 20 (O(q*))

Diagramm 26 (O(q®))

o
! ,
p
ke (//
S
p
/

N N
i \_‘/ pi—1 Up,+q M Ps
/

\
\

-
lc

Diagramm 28 (O(q*))
ke

/7T
)
l, N l+kd 7
“f o,

7 s

\ s
N_’._®_’_@_’_N

Di pi—1 by

Diagramm 30 (O(q*))
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! \\ . o q\.; S
Noop pi—l T pi+k pr N o
Diagramm 31 (O(¢?)) Diagramm 32 (O(¢%))
7 m v 7T
4 /
k,e ,/ ke )/
/ /
// //
e / e /
3 Haa 3\ Haa

\ \
/ /
kfl,b\ / / kfl,b\ / J
\N_/ AP
N — (> N N — > N

pi pit+k b Dbi pit+k Ps

Diagramm 33 (O(¢?®)) Diagramm 34 (O(q%))

N N - N
i Ptk g T Prta pf
Diagramm 35 (O(¢?)) Diagramm 36 (O(q*))
~* s A T
/ /
// //
ke //l‘b“ //1111@
i+ k-1 . i+ k1 /
N 1 lp 1 /ﬁ N N G\ 21) 1 fﬁ N
N\ AL\ A T
\\\ ,/ \\\ S
\\\’——,’ \\\\’——,/
l,c l,c
Diagramm 37 (O(q?®)) Diagramm 38 (O(q%))

~ep—" S
l,c l,c
Diagramm 39 (O(¢?)) Diagramm 40 (O(q*))
v LT v m
ke ,///(1«0
~ T AN
1 1 1 1
N NN NN e Y N N
\
N //'
\\ //
S

le le

Diagramm 41 (O(q?)) Diagramm 42 (O(q%))
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Diagramm 43 (O(q?)) Diagramm 44 (O(q*))

) b
Diagramm 47 (O(q?)) Diagramm 48 (O(q"))

)
Diagramm 49 (O(q*)) Diagramm 50 (O(q?®))

Diagramm 51 (O(q*)) Diagramm 52 (O(q?®))
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- _v
ke g ke 7.0
) 1 O 2
: Pi \W{M*l*llv el N \W{pﬁlfq\,'/ VR = T
\\”/ \\V/
l,c l,c
Diagramm 53 (O(q*)) Diagramm 54 (O(q%))

N DPi \}/Pﬁ(l 11),711*1»1/ pf N N pi pi—l 7 pi—4 by N
\\\*’,’ \\'//
lc l,c
Diagramm 55 (O(q?®)) Diagramm 56 (O(q?))
7 ™ 7 u

N N N —> N
Pi pi—l 7 pi—q by pi Pl 7T pi—a by
\\',’ \\',’
l,c l,c
Diagramm 57 (O(q*)) Diagramm 58 (O(q*))

l,c le

Diagramm 59 (O(¢?®)) Diagramm 60 (O(q¢?))

S 3 —// \\§>_f
l,c le

Diagramm 61 (O(q*)) ~ Diagramm 62 (O(q*))

~< -7 N
l,c ™

Diagramm 63 (O(q?®)) Diagramm 64 (O(q?))
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v *

. b
lie ~AL L+Ed
,c( A lCl \\l+k,d

/pi—l—q~ i .
: R SR - : pi -
N I O N N »>(D)—>—1O)——1)» N

\\\\ pi S pi—l—gq by
Tra TTeal
g,a S~ e TS~
\\\ ™ \\\ s
Diagramm 65 (O(q*)) Diagramm 66 (O(q®))
™ m
N - @’ ng/@‘ - N N - \./’ p;q/@ - N
v | . 1
-7 k—=ld 277 k=ld
/ /
’ /
ke l,c ke l,c
v 7
Diagramm 67 (O(¢%)) Diagramm 68 (O(q*))
N 0 1;’7 B ’ N N 0 Z; - b N
S \\\V/
le lc
Diagramm 69 (O(q?)) Diagramm 70 (O(q*))

RN St
L lc

Diagramm 71 (O(¢?)) Diagramm 72 (O(q*))

N N o O e N
S I
Diagramm 73 (O(q?)) Diagramm 74 (O(q*))
N N N

T T
lc le

Diagramm 75 (O(q¢?)) Diagramm 76 (O(q*))
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N -— Kl\ -— N
7 W b
Diagramm 77 (O(¢?))

v T

k,e ga __--
/’,/

q- k,b+
C?):::/)IAC
q— k.,d+

R N
N p,iu

q—/sxc*

i pi—1 12
. 7

o
1,b

Diagramm 83 (O(¢?))
VUV INIVVIIING T L "

‘
‘
i
D O O
i N i b=l N Py
| )
N
T -
Lb

Diagramm 85 (O(q?))
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v ke 0 T
P o
\
a-koh
|
- m - N
N Z . 7
/ \\
/ \
1
! \
'
;
S
Le

Diagramm 78 (O(¢%))

Lb
P

II \\
. ke k—lc > aa
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|

q—k,dA
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|
|

N i 2/ I N
Diagramm 80 (O(q?))
v «\/\/\/\/\/\/\/\iﬁ\/\/\/\/\/\/\/\@f*fﬂ:f*** ”
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Di pi—1 ; Py
\

\\_»_’,
1b

Diagramm 82 (O(q%))
7 M ””””” (: 7777777777 "

|
iored

S
Lb

Diagramm 84 (O(q%))
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Die Baumdiagramme: Diagramme 86 - 105

Diagramm 86 (O(q'))

e

q—k,b

A

Diagramm 88 (O(q!))

N b pi—4q Py
Diagramm 90 (O(q}))

Diagramm 87 (O(¢?))

e

q—k,b

A

Diagramm 89 (O(q?®))

N b pi—q py N
Diagramm 91 (O(q?))

Diagramm 92 (O(q'))

Diagramm 93 (O(¢?))



F.2. DIE BAUMDIAGRAMME: DIAGRAMME 86 - 105 111

Diagramm 94 (O(q*)) Diagramm 95 (O(¢%))

Diagramm 96 (O(q*)) Diagramm 97 (O(¢%))

N b pi—4q vy N
Diagramm 98 (O(q*)) Diagramm 99 (O(¢?))

Noop Pi—q pr N N opi Pi—q pr N
Diagramm 100 (O(q%)) Diagramm 101  (O(q?))
7 T
ke ga -7
.4
:
|
4q—km
v s I
|

pi by
N Di pi—q pf N N N
Diagramm 102 (O(q?)) Diagramm 103 (O(¢?))
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Diagramm 104 (O(¢?)) Diagramm 105 (O(¢?))



Anhang G

Feynmanregeln

G.1 Die Feynmanregeln allgemein

Feynmanregeln [BD 67al Ryd 96] erlauben es, Feynmandiagramme direkt in mathema-
tische Ausdriicke zu iibersetzen. Die Faktoren fiir jeden Graphen ergeben sich aus der
Lagrangedichte der zu Grunde liegenden Theorie. Im folgenden sind die fiir diese Arbeit
notwendigen Feynmanregeln aufgefiihrt. Die Herleitung der Feynmanregeln fiir die Vertices
wird aukerdem in Abschnitt [5.1] diskutiert.

1. AUSSERE LINIEN

e Fiir jedes einlaufende Nukleon im Anfangszustand wird ein Faktor v/Zyu(p, s)
(Diracspinor) bzw. fiir jedes auslaufende Nukleon im Endzustand ein Faktor
u(p, s)v/Zn angefiigt. Zy ist dabei die Wellenfunktionsrenormierungskonstante
des Nukleons [BL._99]:

Zy = —

02 02
9 g4 M? [1 <Mﬂ 9 g M3

A el e | JIATT
3on2pz |3 70 647 F2m

+ O(M*Y). (G.1)
Die Nukleonisospinoren y; im Anfangs- und X} im Endzustand werden als in
den Diracspinoren impliziert betrachtet.

o Fiir jede dufere Photonlinie tritt ein Faktor €, (Polarisationsvektor) auf. Aufier-
dem benétigen wir in dieser Arbeit lediglich eine dufsere Photonlinie. Deshalb
wird der Polarisationsvektor in den Feynmanregeln fiir die Vertices beriicksich-
tigt bzw. als genereller Vorfaktor betrachtet. Da wir beziiglich der elektromagne-
tischen Wechselwirkung in niedrigster Ordnung der Stérungsrechnung arbeiten,
tritt hier kein Z-Faktor auf.

e Fiir jede dukere Pionlinie wird mit dem Faktor v/Z, — der Wellenfunktionsre-
normierungskonstante des Pions — multipliziert.

2M? [ 1 M

2. INNERE LINIEN (PROPAGATOREN)
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e Fiir jede innere Nukleonlinie mit Impuls p steht folgender Faktor (Nukleonpro-
pagator): ‘
i
S ="
i9r(p) p—mpy +i0T
Dazu findet sich in Abschnitt noch eine gesonderte Erlauterung.

(G.3)

e Fiir jede innere Pionlinie mit Impuls g steht folgender Faktor (Pionpropagator):
i

‘A v

(G.4)

wobei M? die Pionmasse in niedrigster chiraler Ordnung und im Isospinlimes ist.
3. SCHLEIFEN

e Fiir jeden unabhéngigen inneren Impuls [ steht folgender Faktor:

i1
/(%)4. (G.5)

4. VERTICES

Bei der Ableitung der Feynmanregeln der Vertices aus der gegebenen Lagrangedichte
ist wie folgt vorzugehen: Zuerst wird die Lagrangedichte mit ¢ multipliziert. Dann
werden alle denkbaren Kombinationen der Indices der Lagrangedichte mit den Indi-
ces des Diagramms kontrahiert und alle Ableitungen durch den Impuls des jeweiligen
Teilchens p ersetzt, wobei fiir ein einlaufendes Teilchen der Faktor —ip,, und fiir ein
auslaufendes Teilchen der Faktor ip, verwendet wird. Um eine Schleife zu erhal-
ten, werden die Indices der zu verbindenden Linien und die entsprechenden Impulse
gleichgesetzt.

5. SYMMETRIEFAKTOR

Die erhaltenen Beitriige miissen nun mit einem Symmetriefaktor S—! multipliziert
werden. S ist dabei gegeben als [CL._84]:

S=g [ 2°(mH, (G.6)

n=2,3,

wobei g die Anzahl der Permutationen der Vertices mit festen dufseren Linien ist, wel-
che die Diagramme unberiihrt lassen; (3 ist die Anzahl der Schleifen mit einem Vertex
und o, die Anzahl der Paare von Vertices, die durch n (innere) Linien miteinander
verbunden sind. Der Symmetriefaktor resultiert daher, dass es fiir Schleifendiagram-
me weniger Kombinationsméglichkeiten gibt, die Indices auf die Linien zu verteilen.

G.2 Die Feynmanregeln aus der mesonischen Lagrangedichte

Beziiglich der Nomenklatur ist vorweg anzumerken, dass die Indices rechts des Semiko-
lons den Anfangszustand und jene links des Semikolons den Endzustand bezeichnen. Der
Photonimpuls ist im folgenden stets einlaufend gewéhlt.
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G.2.1 Ordnung 2

M72'r;'y71' = 6€3ab€,u(pg + pl;)

T

Mgm;m = ﬁ{_ulpug [5bd6ac - 25cd5ab + 6bc ad]

N o7 +u1,0) [0bd0ac — 20bc0ad + OcdOab)

1,05 [0pe0ad — 20pa0ac + Oeddqb)

us b\\ e + 2,01 [00dObe — 20ac0bd + OcdOab)

R o i +u2/ﬂ)5[6ac($bd 264d0bc + Ocadab)
Uy, a v, d !

— 01,0 [0be0ad — 20ab0cd + dacOba) }
+ 575 M?*{0ap0cd + Saadbe + OacOba}

[0bc€d3a + Obd€c3a + Ocd€p3al
U [6ac€azp + Oad€csb + Ocd€asb)
V1 [6ad€p3e + Obd€ase + ab€asc]
V5 [0ac€r3d + Ovc€asd + dab€csal }

2 _ I
Mmr ymmwoo T 3F2 E,u{ ul

ki

G.2.2 Ordnung 4

e @ M = 2 (1M 4 1y (M2 — )

Min = —egmeu] = WM (0] +p) + Lok (0P — YD) €30

G.3 Die Feynmanregeln aus der baryonischen Lagrangedich-
te

Analog zum vorherigen Abschnitt ist hinsichtlich der Nomenklatur anzumerken, dass die
Indices rechts des Semikolons den Anfangszustand und die links des Semikolons den End-
zustand bezeichnen.
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G.3.1 Ordnung 1

1 oA, T3+l
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N \1/ N
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// 1 g
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N W N
1 g
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G.3.2 Ordnung 2

N &% N
T T
B
\\ //
N ’
\\ ,
U@\ //U,b
~ 7’
N 7’
N
&
N P = s N
v* T
B
B
B
e
€ ,’(r]‘a
’
’
N &% N
o
ke
N 2 N
P /,\J\\\\pf
v a
LT wa v,b S~
T T

G.3.3 Ordnung 3

2 _ v cr
MNWN = ee koM (cem3 + F1)

M72rN;7rN - FL‘2{7461M25017
+2;;72§\7 (pip Pic + Pto pfa)vpug(sab
+2 c3v,uP 0

—c4uPV7 0 pr€apeTe
2 —
MWN;'yN =0
M72TN;’77TN = EM%{_Z.Q;??V (pu/ + pfu)(vuuy + U'uvy)Csab(T?, + ]1)

+ b (0P + Py (vn + wy)esap
+ 2c3(v* + ut)egqp
—C4 [sz (53177-& - 5ab7-3)
—y, (0347 — dapT3)]OH
+ Cjﬁk‘y((sagTb + 0p3Tq — 25(11)7'3)0'/“/}

My = i (9 +21) B2 = Wk (o +0)) (doms +2 1 )

M3y = =57 4 (2dis — dig) M?7,



118 ANHANG G. FEYNMANREGELN

, . M?TN;'yN = i%eu { - mQ—Nkl,qa(pig + pfg)e’“'aﬁwgdag + doTa)
+ [M?4#(2d16 — dis)
e L —dao 57k (7” (p?pf +p}p’;> — (p?pi” +p}p§)>
N P \3-‘// I N +d21kl’ (qufyu - qﬂﬁyy)

—daog ((q-k — k) v* + (k" — q") K) |75 €300 7 }

G.3.4 Ordnung 4

M%V;'yN = ee kPot? (k‘2 (6747'3 + 265411) —4 (61067'3 + 216105) M2)

Mer;'yN =
emqj
x{ " k[ —3q- (pf + pi) (2¢"(easTa + Legrd3a)
—k‘“(€537'a + ﬂ67353a)) m?v
+p' (4(a - py)*(es07a + Legodza)
—3m3 (k- q(es17a + Ler103q)
—2M?(e1127a + Le113634)))
+pif (4 (q-pi)? (es07a + legodaa)
—3m?\, (]C : q(e517'a + ]l67153a)
—2M?(e1127q + Le11303q))) |
—Py* [=3q - (py + pi) (2k - q(easTa + Legrdsa)
¢a —k2(6537'a + 167353a)) m?\,
ax , +k - ps (4 (¢-ps)? (e507a + Legodsa)
—3m3y (k- q(es17a + Leq103q)
—2M?(e1127a + Le113634)))
+k - pi (4(q - pi)?(es0Ta + Leggdsa)
—3m?\, (]C . q(e517'a + ]l67153a)
—2M?(e1127q + Le11303q))) |
+3my [7° gmn (P (2k - q(eaga + Tegsdza)
—k’2(€527'a + 1672(53a))
+pt' (2k - q(ea97a + Legsdsa) — k*(es527a + Ler2dsq))
—k - (ps + pi) (26" (e497a + Legsdza)
—k‘u(€527'a + ]l67253a)) )

—8k7qT " T myeng (q prpfta- pipf) €3ab ]}
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Abbildung G.1: Der volle Nukleonpropagator als Summe irreduzibler Selbstenergieeinschiibe.

G.4 Der Nukleonpropagator

Im obigen Abschnitt [G.1] wurde der Nukleonpropagator mit der physikalischen Nukleon-
magsse my angegeben, dort miisste im Rahmen der chiralen Stérungstheorie jedoch die
Nukleonmasse im chiralen Grenzfall m stehen. Um die Verwendung des Propagators in
obiger Form zu verstehen, betrachten wir uns den vollen Nukleonpropagator.
Der volle Nukleonpropagator kann als eine Summe iiber Selbstenergieeinschiibe Xy ( p),
wie in Abbildung [G.1] gezeigt, dargestellt werden, wobei die Selbstenergie wiederum die
Summe einteilchenirreduzibler Diagramme ist. Einteilchenirreduzibel bedeutet dabei, dass
ein solches Diagramm durch einen beliebigen Schnitt nicht in zwei Diagramme zerlegt
werden kann. Fiir den vollen Propagator erhalten wir demnach
—i% _— 4.
Fmiior o mrar Nl e t
i
= A . G-7
p—m—Xy(§) +i0t ( )

Die Selbstenergie Xy (§) konnen wir nun nach der physikalischen Nukleonmasse entwickeln
und bekommen

isN(p) =

Sn(B) = En(my)+ (B - my)Sy(my) + En(p
= Xn(mn)+ (B —mn)EN(P)- (G-8)
Diese Entwicklung kénnen wir jetzt in Gleichung (G.7) einsetzen.

?

iSN(p) = = :
(®) p—m—Xn(my)— (§—mn)En(P) +i0F
7
— _ G.9
p—my — (¥ —mn)EN(p) +i0F (G-9)
Von dem nunmehr erhaltenen Ausdruck subtrahieren wir
! (G.10)

$p—mpy +i0t"

Den durch die Subtraktion verbleibenden Rest entwickeln wir in der Schleifenordnung, was
einer Entwicklung in % entspricht [Ryd 96], bis zur ersten Ordnung und bekommen

L se+ou). (G.11)
p—my

Somit erhalten wir schlieflich fiir den vollen Propagator
! + YN (p) (G.12)
p—mpy + 10 p—mn N '

Dies bedeutet in der Konsequenz, dass bei der Verwendung des Propagators mit der
physikalischen Nukleonmasse, in Schleifenintegralen mit Selbstenergieeinschiiben diesel-
ben durch den Anteil (G.I1)) ersetzt werden miissen (,on-mass-shell Renormierung®). Diese
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Uberlegung ist in dieser Arbeit jedoch lediglich fiir die Baumgraphen relevant, da fiir die
physikalische Nukleonmasse

my =m — 4y M? + ... (G.13)

gilt und somit bei Schleifenintegralen, welche ab der dritten Ordnung beitragen, die Kor-
rekturen erst ab der fiinften Ordnung relevant sind. Die Rechnungen in dieser Arbeit sind
jedoch nur bis einschlieflich der vierten Ordnung durchgefiihrt worden.



Anhang H

Ubersicht der Isospinamplituden

In diesem Anhang sind die Beitridge der einzelnen Baumdiagramme zur invarianten Iso-
spinamplitude aufgefiihrt. Auf eine analoge Darstellung beziiglich der Schleifendiagramme
muss allerdings verzichtet werden, da diese Ausdriicke in der Regel zu umfangreich sind.

Zu der folgenden Auflistung sind zwei Anmerkungen zu machen: Zum einen sind die hier
aufgefithrten Amplituden in der Parametrisierung nach Kapitel Bl geméf Gleichung (5.11)
angegeben und zum zweiten gilt, dass alle nicht explizit aufgefithrten Amplituden gleich
Null sind. Dies gilt insbesondere auch immer dann, wenn fiir ein Diagramm keine Amplitude

angegeben ist.
Diagramm 86
A(+)

1,(86)

(+)
Az,(ses)

(+)
As,(se)

1egAMN

2(s—mi) F

iegamy (k‘2 + M2 — t)

(s —u) (s =m%) F (t — M3)

1egAmN

2(m3, —s)F(t— M32)

1egAmN

2(s—mi)F

iegamy (k2 + M2 — t)

(s —u)(s—m3) F (t — M32)

1egamy

2(m% —s) F (t— M)

1egaAmy

2(s—m%) F

iegamy (k:2 + Mg — t)

(s —u) (s =m}) F (¢ — M3)

egamy

2(m% —s)F(t— M2)

121

(H.1a)

(H.1b)

(H.1c)

(H.1d)

(H.le)

(H.1f)
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Diagramm 87

(+) _ iecgga
AR = o (H.2a)
(h)  _  fecegamn
e T 2 —9F (2
(+)  _  feCegamy
Aen T 2 o F (12
(=) _iecgga
A1,(87) _ o (H.2d)
() - fecegamn
Az g1y = (m3% —s)F (f:2e)
(-) - fecegamn
Ay = (m% —s)F (120
0) _ lecrga
Aen = F (2
A4©) _ _tecrgamnN H.2h
3,(87) 2 (m?\, — s) F ( )
40 __tecrgamn H.2i
4,(87) 2(m3% —s)F (12
Diagramm 88
_ diegam
PG I H.
2,(88) (s —u)F (t — M2) (1
Diagramm 89
_ Siegalamy M2
2,(89) (s —u)F3 (M2 —t) (e
() _  2Zicgalemn
A5 w0 = F3(t— M32) (HA0)
Diagramm 90
A _tegamn :
1,(90) 2(u—m3)F (152
A _ iegamn (k2 + M7~ t) (H.5b)
2,(90) (s —u)(u—m3)F (t— M32) '
ne _ tegamy H.
5,(90) 2(u—m3)F (t— M32) (139
() - tegamn
Al,(go) 2(m% —u)F (o0
A) _ tegAmn (k2 + M7 - t) (H.5e)
2,(90) (s —u) (u—m3) F (t — M2) .
) B iegamy
As000 = 3 (m3 —u) F (t— M?2) -



Diagramm 91

Diagramm 93

o _ 1egAmN
1,(90) 2(u—m3)F
A(O) _ iegampy (k2 + Mg — t)
200 = ) (u - mR) (6 M)
40 _ egaAmy
500 = 3(u—m3) F (t— M)
+)  _  lecega
Aoy = oF
A _ iecggamn
HO0 T (u—m3) F
A _ lecggamn
LON T (md —u) F
(=) __tecgga
Aoy = oF
40) _ iecggamn
HOD T (m3 —u) F
4 _ decggamn
4,(91) (u—m%) F
(0) _iecrga
A17(91) - 4F
40 _ 1eCTgAmN
3,(91) 2(u—m3) F
o, _ _tecrgamn
4,(91) 2(m% —uw) F
A _ 2ietds
1,(93) — myF
2,(93) myF (t — M2)
(+) _ 4iedg
A4,(93) - F
A _ ie(s — u)ds
5,(93) myF (t — M2)

123

(H.6a)

(H.6b)

(H.6¢)
(H.6d)

(H.7a)
(H.7b)

(H.7¢)

(H.7d)
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Diagramm

(+) _
Al,(94) -

(+)
Az,(94)

(+) _
A3,(94)

(+) _
A4,(94) =

(+) _
A5,(94) =

(+)
AG,(94)

ie(s — u)dao

ANHANG H. UBERSICHT DER ISOSPINAMPLITUDEN

2ie (eqs (k* + M2 —t) — k?er2)

(H.7e)
ie (4 (2da1 — da2) m3; + dao (*kQ + M2+ t)) (H.7f)
Sm?\,F .
ie(s — u)dy (H.7g)
e (d20 (—kQ + M,,% + t) - 4d22m?\7)
. (H.7h)
N
Qietdg
o H.71i
" (H.71)
2iedg (k* — M2 +t) H7i
mnF (t — M2) (1)
4i€d9
_ H.7k
e (H.7k)
ie(s — u)dyg
e T H.71
myF (t — M2) ()

lego (2my — 2 (—2M2 + s + u) my + 2M3 + s> + u? — 2(s +u) M2)

— 3m?\, (2672/6‘2 — 46113]\472r — 2668 (—QTTL?V + s+ U) +er (—2m?\; + s+ u))]

(H.8a)

71'6(8 —u) (669 (—k2 + M2 + t) — 6 (eg7 + e6s) m?\,)

(H.8b)

_ie(s —u) (egs — €72)

_ie(s - U) (669 (7]{'2 + ME + t) -3 (672 + 673) m?\,)

(H.8c)

lego (2my — 2 (—2M72 + s+ u) m3 + 2M3 + s> +u® — 2(s +u)M?)

_ Sm?\, (2672]§2 — 46113M7% — 2668 (—Qm?\[ + s+ 'LL) +ern (—Qm?\[ + s+ u))]

_2Fm?v (k2 +2m3, — s — u)

(H.8d)
(H.8e¢)
(H.8f)

iet(s — u)ero
—_—— (H.8g)

m3 F
ie(s — u)ero (—2k? — 2m3, + s+ u) (HL.8h)
Fm3 (—k? = 2m3% + s+ u) '

2ie(s — u)ero .
E— (H.81)
ie(s — u)?ero (HL.8j)



Diagramm

125

95

_ﬁ [es0 (2mly — 2 (=2M7 + s +u) miy + 2Mg + > +u® — 2(s + u) My)
N
—3m3 (2e50k® — de1aM?2 — 2e49 (—2m3% + 5+ u) + €51 (—2my + s+ u))]
(H.8k)
2 k%4 M2 —t) — k?
ie (ea9 (K* + M2 —t) €52) (H.81)
F(t— M2)
L K2 M2t)—6 2
_ie(s —u) (es0 ( + w:‘ ) (eas + eag) ;) (H.8m)
12my
ie
— g 60 (2 = 2 (<2M7 + s u) my + 2M7 + 5 + u — 2(s + u)My)
N
— 3m% (2e50k? — der1aM2 — 2ea9 (—2m% + s +u) +es1 (—2m3 + s +u))]
(H.8n)
ie(s —u) (es9 — €52)
3 H.
Ft - M2) e
_ie(s —u) (eso (—K* + MZ +t) — 3 (es2 + e53) my) (H.8p)
12m3 F o
() - _ iekidsgamy
A17(95) — (m?v — 8) 7 (Hga)
iek?dsga (3m3
My = tanbrr @
. 2my (s —m3,) F (t — M2)
iek2d ga
AL o __erdeda H.9
3,(95) 2(s— m?\,) F (H9)
iek2d ga
A e degA H.9d
4,(95) 2(s—m3) F (a0
ed 3m2 M?2 —t—
A?EZ%) _ le 694 ( mN2+ s) (M3 +s . u) (H.9e)
) dmpy (mN_S)F(t_M‘n')
(+) N iedﬁgA
Py - (H.91)
(-) o i€k2dﬁgAmN
Al,(95) = W (H.9)
B iek?d, 3m?3
Af (2)5) = . GgAz( iy +o) 2 (FL.9h)
. 2mpy (s —m3,) F (t — M2)
_ iek?d ga
AD) o _ehdega H.91
3,(95) 2(s—m3)F (20
_ iek?dgga
AL o _ehTGegA H.9]
4,(95) 2(s—mi) F ()
B jedgga (3my +s) (M2 45—t —
A 8%) _ iedsga ( mN2 s) (Mz +s . u) (H.9k)
’ dmpy (mN*S)F(t*Mw)
(_) o Zed(ng
Ay = - - (H.91)
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2iek?drgamy

(0) _
A17(95) - W (H.9m)
ne _ iek?drga (3m3 + s) (H.9n)
2,(95) my (s —m%) F (t — M2) .
iek?d ga
A©) _ o _lekrdrga (H.90)
509 = TGomi)F
(0) o 'Lek2d7gA
Aios) = (s—m%)F (Hop)
"o _ dedrga (3m3 +s) (M2 +s—1t—u) (HL.9)
5,(95) 2my (m% — s) F (t — M32) .
(0) _ Z.€d79A
AG,(95) - T F (H.9r)
Diagramm 96
. 2 2
+) _dega (k?e74 — 4e106M2)
Al,(%) _ 7 (H.10a)
. 2 2
@) iegamy (K?ers — de1osM?)
A = e (H.10b)
+) _ degampy (k2€74 - 46106M7'2r)
AR = kS F (H.10c)
(H.10d)
. 2 2
() _dega (k erq — 46106M7r)
Al,(96) _ 7 (H.10e)
. 2 2
(- _ degampy (k era — 46106M7r)
Az 000 = (m3 —s)F (100
B iegamy (k2674 - 46106M2)
40— m :
4,(96) (m3 —s) F (H108)
(H.10h)
. kQ —4 M2
e a0
A(O) _ 2iegamp (kf2€54 - 46105M7%) (H 10')
3,(96) (m3 —s) F o
2iegamy (k2esq — 4 rMQ)
(0) - gAmN ( €54 €105 My
Apos) = (m3 —s) F (10
Diagramm 97
(4) _ie(2dis — dig) my M}
Al,(97) _ Ty (H.11a)
A6 2ie(2dig — dig) my M7 (K + M7 — 1) (H.11b)
2,00 = (s—u) (s —m%) F (t — M2) '
je (2d16 — d M?2
A ie(2dic — dig) my My (H.11c)

200 T (s mR) F (M2 1)
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ie (2d16 — dlg) mNMg

(=) _
Alony = (5 —m%) F (H.11d)
A(_) _ 2i6 (2d16 — dlg) ’/77,]\]]\472r (]{32 + Mz — t) (H.lle)
2(m) (s —u) (s —miy) F (t — M)
_ je (2d16 — dig) my M2
A( ) _ 16( 16 18 ™ .
00T G wRIF (MR- 1) (D

(0) - ie (2d16 — dlg) mNME
Ao = (s —m2)F (H.11g)
2ie (2dyg — dig) my M2 (k* + M? —t
O, = B = d)myly (K + M~ 1) (H.111)
’ (s —u) (s —my) F (t — MZ)
e (2d1g — d ) mNM2 .
40 ie(2dis —dis x H.11
M0 T G mR T F (MR- 1) (A
Diagramm 98
(+) _ decs (2dig — dig) M7
A1,(98) = I3 (H.12a)
(+) _ 2iec (2dig — dis) mn M7
A3’(98) = (m2, —s) F (H.12b)
(+) _  2iece (2dig — dig) mn M7
Alosy = (% —s)F (H.12¢)
(H.12d)
— 7:606 (2d16 — dlg) Mg
Ag,(zas) = I3 (H.12e)
(-) - 2i606 (2d16 - d18) mNMg
A37(98) = (m2 —s) F (H.12f)
(=) - 2i606 (2d16 — dlg) ’ITLNM,,%
Ayos) = (% —s)F (H.12g)
(H.12h)
(0) o i€C7 (2d16 — dlg) MTQF .
Al,(98) = oF (H.12i)
(0) - tecy (2d16 - dlg) 7’)7,]\]]\472r .
Az o8 = (% —5)F (H.12j)
(0) - i607 (2d16 — dlS) mNMz
A4’(98) = (mZ — ) F (H.12k)
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Diagramm 99

6,(99)

iek?dggamy
(m3 —u) F

iek?dgga (3m?\, + u)
2mpy (u—m3) F (t — M2)

iek?dgga
2(u—m3)F

iek?dgga

“2(u—m%)F

iedsga (3m% +u) (M2 —s—t+u)

dmpy (uw—m3%) F (t — M2)
tedgga (k2 + M2 s 7t+u)
4(u—m3) F

iek?dggamy
(u—m%) F
iek?dsga (3m%\, + u)
2my (m% —u) F (t — M32)
iek?dsga
2w —m3)F
iek?dsga
2(u—m3)F

iedgga (3m?\, + u) (—MTQr +s+t— u)

dmpy (u —m3%) F (t — M2)
iedgga (k‘2 + M2 —s —t+u)
4(u—m3) F

2iek?drgamy
(m3 —u) F
iek?drga (3m?\, + u)
mpy (u—m%) F (t — M2)
iek?drga
(u—ni3) F
iek?drga
“w-m3)F

iedrga (3m% +u) (M2 —s—t+u)

2my (u —m3) F (t — M32)
tedrga (k2 + M? 75—t+u)
2(u—m%)F
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(H.13a)
(H.13b)
(H.13c)
(H.13d)
(H.13e)

(H.13f)

(H.13g)
(H.13h)
(H.13i)
(H.13))
(H.13k)

(H.131)

(H.13m)
(H.13n)
(H.130)
(H.13p)
(H.13q)

(H.13r)
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Diagramm 100

. 2 2
) iega (K?ers — deios M?)
A1,(100) _ o7 (H.14a)
) _degamy (k%ers — de106M2) H.14b
3,(100) = (u—m2)F (H140)
j k?ers — de106M2)
A _ egamn ( il H.14
4’(100) (m%/' — u) F ( C)
. 2 2
) B iega (k €74 — 46106Mﬂ)
A1,(100) _ 57 (H.14d)
_ j k2ers — de106M2)
A) _ egamn ( il H.14
3,(100) (m3, —u) F ( ?
N iegamy (k*erq — dero6M2)
A _ s H.14f
4,(100) (u—m3%) F ( )
(H.14g)
. 2 2
© ~dega (k?esq — deq05M2)
A = = (H.14h)
40 _ Ziegamn ( €54 €105 ﬂ) (H.14i)
3,(100) (w—m2)F
2% k2esy — deqos M2
Az(xo()loo) - = (2 Cou — de10s M) (H.14j)
: (m3yy —uw) F
Diagramm 101
(+) . ie (2d16 — dlg) mNME
Al,(lOl) - (=) F (H.15a)
2ie (2dy6 — d M2 (K* 4+ M2 —t
Aé+)101 _ ie (2d1g — dig) mN2 = ( z 1) (H.15b)
,(101) (s —u) (u—m%)F (M2 —t)
e (2d16 — dig) my M2
A _ ie (2d16 18 7 )
5,(101) (w—m3%) F (t — M2) (H15¢)
) _ie(2dys — dis) my M?
Al,(lOl) — (m?\, —WF (H.15d)
- 2ie (2dig — d M2 (k*+ M2 —t
e _ 2ie(2dig — dig) ma My ( ) (H.15e)
2,(101) (s —u) (u—md) F (t — M2)
3 je (2d16 — dig) my M2
40 de(2dis —dis E: H.15f
5,(101) (w—m3%) F (M2 —1t) (150
40 _ie(2dys — dig) my MZ H.1
O = TRy (H.15g)
%e (2d:e — d M2 k2 + M2 —t
A;o)w1 _ ie (2d16 — dis) mN2 = ( 1) (H.15h)
,(101) (s —u) (u—m%) F (M2 —t)

je (2d1g — dig) my M2 '
A(o) _ 26( 16 18 ™ H.1
5,(101) (u—m%) F (t — M2) (1150
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Diagramm 102

Diagramm 103

Diagramm 104

ANHANG H. UBERSICHT DER ISOSPINAMPLITUDEN
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(=) _
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Anhang 1

Beispiel eines skalaren Integrals

In Abschnitt 53] haben wir gezeigt und begriindet, dass im Rahmen der Infrarotregulari-
sierung Integrale, welche lediglich von Nukleonpropagatoren abhéngen, entfallen. An Hand
des einfachen Beispiels Iy(0) haben wir mittels der reformulierten Infrarotregularisierung
den Abzugsterm bestimmt und gezeigt, dass dieser mit dem analytisch berechneten Aus-
druck fiir das Integral iibereinstimmt. Deshalb wird in diesem Anhang kurz demonstriert,
wie im Rahmen der dimensionalen Regularisierung dieses Integral analytisch zu berechnen
ist. Die folgende Darstellung orientiert sich an den Referenzen [Vel 94] und [Sch_02].

Betrachten wir zunéchst eine allgemeinere Form des Typs des zu diskutierenden Integrals

d*k 1
— (1.1)
(2m)4 k2 — m? +40F

wobei m z.B. die Nukleonmasse my oder die Pionmasse M, sein kann. Dieses Integral
kénnen wir analog zu Referenz [Vel 94| als

4
| o (12)
2m) &2 — A2 4 {0+

schreiben, wobei A eine beliebige reellwertige von k unabhingige Funktion ist, so dass
A? > 0 gilt. Betrachten wir zuniichst den Nenner des folgenden Integranden:

k? — A% 400" = [ko + (a — i0")][ko — (a —i0T)], (1.3)

a:=1\k2+A2>0 (1.4)

definiert haben. Wir erhalten somit fiir den Integranden

wobel wir a als

1
[ko + (a —i07)][ko — (a —i01)]"

J (ko) = (1.5)
Jetzt betrachten wir die Integration iiber die nullte Komponente. Durch die so genannte
Wickrotation [Vel 94] gehen wir vom Minkowski-Raum in den Euklidischen Raum iiber,
d.h., durch die Verwendung des Cauchy-Theorems aus der Funktionentheorie, schreiben
wir die Integration iiber die Re(kq)-Achse auf eine Integration tiber die Im(ko)-Achse um:

+o0 +oo
/ dkoJ(ko):z'/ dkaJ (ky), (1.6)

—0o0 —0o0
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wobei k4 = tkg. Daraus folgt

d*k 1 , d*k 1 d*k i
4 7 . —1 45,9 = = - 179 = .
(2m)* k2 — k2 — A2 +i0+ (2m)* k2 — k2 — A2 (2m)* k2 4 k2 + A2
(1.7)
Da der Integrand nunmehr — nach Durchfithrung der Wickrotation — keinen Pol mehr
besitzt, kann die Feynman-Stiickelberg Randbedingung +i0" entfallen. Als niichster Schritt
folgt die Verallgemeinerung des Integrals von vier Dimensionen auf n Dimensionen,

d"k 7
p [ S (1)

wobei wir den Faktor u*~" eingefithrt haben, damit jedes Integral fiir ein beliebiges n die
gleiche Dimensionalitét besitzt. Fiithren wir nun Polarkoordinaten ein:

e 21 T T
/d"q:/ w”_ldw/ d91/ sinegdﬁg.../ sin”20,,_1d0,,_1. (1.9)
0 0 0 0

Dabei gilt: ¢? = q% +...+ ¢
Weiterhin konnen wir verwenden, dass

ﬂ r (=)
0

Somit erhalten wir

d"k i 2n/2 dk k1
_4n -~ ° _ _,4-n ; ) .11
a / eorkE+a - M orEy / (2m)" k2 + A2 (L11)

Es verbleibt also noch die Losung des Radialintegrals. Dazu betrachten wir das folgende
allgemeinere Integral:

/ dk kot (112)
(2m)" (k2 4+ A2)>’ '
Dieses Integral kénnen wir umformen und so auf die Form der Betafunktion bringen:

et I'(z)T(y)

B(z,y) :/0 dt<1+t)m+y = Tz ty) (L.13)

wobei I'(z) die I'-Funktion bezeichnet. Die Idee hierbei ist es, eine analytische Fortsetzung
fiir ein komplexes n durchzufithren. Wir erhalten demnach fiir das Radialintegral

' 1 owmpee D (B) T (= 3)
/dkw = 5(A?) /2 2 o) 2/ (1.14)

Hiermit bekommen wir fiir das zu berechnende Integral (o = 1):

3 A"k i o (AQ)n/2—1 n
_,4-n v 4—n\ ) e
s / (2m)" k2 + A2 W gy b 1 2)
A% [dmp? €/2
= —i (1n)? < 12 ) I'(—e+1), (I.15)
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wobei wir € = (n — 4)/2 eingefiihrt haben. Entwickeln wir dies fiir kleines €, indem wir
[(z+1) =20(2), D(z+1) = T(1) +2I"(1) + O(2?), a® = exp(In(a)x) = 1 +zin(a)+ O(z?)
und die geometrische Reihe (1—2)71 = 1+ 2+ O(2?) verwenden, so erhalten wir schlieflich

d"k { A? A?
_,,4-n _ -
" /(2 B 5 = Zl6 2[R+ln< 2>+O(6):|, (1.16)

wobei R = 1 + 45 — 1 — In(47m) den divergenten Anteil bezeichnet, der im MS-Schema
absorbiert wird. Setzen wir jetzt fiir A die Nukleonmasse my ein, so erhalten wir das
gesuchte Ergebnis

In(0) = —ifgzvz :R+ In (ﬁ) + (’)(e)] . (1.17)

Analog kénnen wir fiir A auch die Pionmasse M, einsetzten und erhalten

I(0) = —iljg’i :R +1n <A§) + O(e)] . (1.18)
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