astronomy

Article

Towards the Particle Spectrum, Tickled by a Distant

Massive Object

Mehdi Dehghani !

check for
updates

Citation: Dehghani, M.; A. Nejad, S.;
Mardaani, M. Towards the Particle
Spectrum, Tickled by a Distant
Massive Object. Astronomy 2024, 3,
304-318. https://doi.org/10.3390/
astronomy3040019

Academic Editor: Ignatios Antoniadis

Received: 12 October 2024
Revised: 21 November 2024
Accepted: 4 December 2024
Published: 12 December 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Salman A. Nejad 2*

and Maryam Mardaani !

1 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord 8818634141, Iran;
dehghani@sku.ac.ir (M.D.); m64mardaani@gmail.com (M.M.)

Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
Correspondence: abarghos@my.erau.edu

Abstract: To investigate the gravitational effects of massive objects on a typical observer, we studied
the dynamics of a test particle following BMS3 geodesics. We constructed the BMS3 framework
using the canonical phase space formalism and the corresponding Hamiltonian. We focused on
analyzing these effects at fine scales of spacetime, which led us to quantization of the phase space.
By deriving and studying the solutions of the quantum equations of motion for the test particle, we
obtained its energy spectrum and explored the behavior of its wave function. These findings offer a
fresh perspective on gravitational interactions in the context of quantum mechanics, providing an
alternative approach to traditional quantum field theory analyses.

Keywords: BMS;; first class constraints; canonical structure; quantum mechanics

1. Introduction

The symmetries of spacetime seen by an observer located far away from all sources of
gravitational field are given by the BMS group. By definition, the BMS group represents
the asymptotic symmetries of “asymptotically flat” spacetimes at future null infinity. These
spacetimes approach the Minkowski metric—a flat spacetime described by the metric of
special relativity, characterized by its zero curvature and global Lorentz invariance—near
the boundary of spacetime, which holds in regions far from heavy objects and without
imposing additional assumptions about spacetime, such as specific topologies or the
presence of a cosmological constant [1]. BMS group was introduced in 1962 by Bondi,
van der Burg, Metzner, and Sachs to study the flow of energy at infinity of a propagating
gravitational wave [2—4].

Before the discovery of the BMS group, the naive expectation for asymptotically flat
spacetime symmetries was to extend and reproduce the symmetries of flat spacetime of
special relativity via the Poincaré group, as a ten-dimensional group of three Lorentz boosts,
three rotations, and four spacetime translations [5]. Being curious about the physically sen-
sible boundary conditions to place on the gravitational field at light-like infinity, Bondi et al.
found the asymptotic symmetry transformations form a group with a structure indepen-
dent of any particular gravitational field present. This implies that at spatial infinity, it is
possible to separate the kinematics of spacetime from the dynamics of the gravitational
field [2], where general relativity does not reduce to special relativity in the case of weak
fields at long distances [6].

The resulting symmetry group, known as the BMS group, is an infinite-dimensional
extension of the finite-dimensional Poincaré group. While the Poincaré group, which is a
subgroup of the BMS group, includes Lorentz transformations as asymptotic symmetries,
the BMS group also introduces an infinite set of additional symmetries known as superro-
tations and supertranslations [4]. Since its inception, the BMS group has played a pivotal
role in the study of quantum gravity [1] and has garnered significant attention in recent
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years, particularly in the context of the AdS/CFT correspondence and its application to
flat-space holography [1,7-25].

The asymptotic symmetry groups of three-dimensional gravity have been studied by
Brown and Henneaux [26]. In general n-dimensional spacetime, the symmetry algebra
consists of the semi-direct sum of the conformal Killing vectors of a (n — 2)-dimension
sphere acting on the ideal of infinitesimal supertranslations [7,27].

Recently, the existence of unexplored degrees of freedom closely connected to the
BMS group has been proposed [1]. Studying such degrees of freedom may open new
windows to quantum gravity problems since the pure Einstein—Hilbert gravity in three
dimensions exhibits no propagating physical degrees of freedom [28-31]. Those degrees of
freedom may also account for the Bekenstein—-Hawking entropy of realistic black holes in
four dimensions [1]. In his 2015 talk, Hawking proposed that the information loss paradox
can be resolved by considering the supertranslation of the horizon caused by the ingoing
particles [32]. However, this is not all about those extra degrees of freedom. There is
another way to look at them via the context of usual quantum mechanics. As we know,
the Poincaré group plays an important role in the classification of particles according to
their spin and mass. In Minkowski spacetime, in the absence of gravity, all the quantities
form Poincaré representations, and this can be seen after the extraction of the quantum
Dirac equation.

Properties of the Poincaré group and their connection to BMS algebra have moti-
vated us to understand the group representations for particles. In this work, we aim to
examine the possibility of extracting the spin state for the particle in this background after
quantization is applied. In addition to its algebraic properties and the profound physical
implications of this symmetry, the BMS space can be investigated from the perspective of a
test particle and its phase space, which reveals and embodies the symmetric properties of
the spacetime.

This research serves as the foundation for this exploration. A free particle, devoid
of any external potential, is placed within this background, and we aim to quantize it by
analyzing the particle’s phase space to observe the effects of its presence in this space. In
classical mechanics, a particle lives on geodesics, and after quantization, it will live on the
quantized texture of spacetime. Thus, we interpret this work as the quantization of the
geodesics of the BMS space.

From the classical perspective, a particle’s trajectory is determined by geodesics, which
can be derived using standard general relativity methods. In this study, we focus on the
structure of this space—namely, its phase space, with the goal of quantizing it, which is
equivalent to quantizing the BMS3 geodesics. By investigating the quantized nature of this
spacetime, we aim to examine properties such as the spectrum of a free particle inhabiting
this space and to explore whether the spacetime reveals any additional physical insights
about the particle.

To achieve this goal, the paper is organized as follows. In Section 2, we construct
a quantized toy model in a (2 4 1)-dimensional framework, where a particle of mass m
exists in the three-dimensional BMS space, referred to as BMS; thereafter. In Section 3, we
formulate the corresponding Hamiltonian and study the phase space structure to develop
a quantized model. This approach involves quantizing the classical geodesics along which
the particle moves. Finally, we provide an initial analysis of the energy spectrum of the free
particle and the behavior of its wave function.

2. Model Structure

Bondi coordinates are established from an outgoing light cone congruence, with its
radial sections determined by the luminosity distance [33]. They are employed in the Bondi-
Sachs formalism of general relativity, as a metric-based approach to solving the Einstein
equations. This formalism uses coordinates tailored to the null geodesics of spacetime,
or null rays, which represent the trajectories of gravitational waves. The analysis of the
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Bondi-Sachs metric at infinity leads to the Bondi-Metzner-Sachs (BMS) group, a symmetry
group present at null infinity [27,34].

In our analysis, we chose to work in the Bondi-Metzner-Sachs (BMS) coordinate
system, as the BMS group serves as a natural extension of the Poincaré group. This choice
is not arbitrary: the Poincaré-invariant action inherently preserves BMS invariance, making
BMS coordinates particularly suitable for addressing the quantization problem.

The BMS; coordinates are defined via the set of retarded Bondi coordinates (r, ¢, u),

r=a\/x24+1y2,  ré¥=x+iy, u=t-r, 1)

where, as shown in Figure 1, u € R is the time-like coordinate, aka retarded time,
r € [0,400) is the distance to the observer which is located in the origin of the x — y
plane, having the polar angle ¢ € R according to the x coordinate with the identification
@ ~ @ + 27, forming a non-orthogonal curvilinear coordinates [16,35],

éy.éq) - O, Au.éq) - 0, Ar.Au —

2

The third scalar product refers to the emergence of a Lagrangian constraint between u and r.

A X’

Figure 1. The coordinates u and r in spacetime are shown as in [1], with the time coordinate x0
pointing upward. The wavy red line represents a massless particle emitted at » = 0 and traveling
outward along a light cone generator (1 = const) to a non-zero r. The circle of radius r represents a
sphere in four-dimensional spacetime.

In this coordinate system, the line element is rewritten as
ds?> = —du® — 2dudr + r*d¢®. 3)

By its construction, coordinate 1 will play the role of time evolution parameter.

Let us consider a particle with the rest mass m, living in such a spacetime. The action of
the model is the action of such a constrained particle, testing the BMS3 spacetime. In natural
units, I = ¢ = 1, for the particle with the proper time 7, the action can be expressed as

T
Alzy, 2] :m/ Y — 2ui 1 12¢R) 2T, 4)
T
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. . . . e . . dzy .
where z,, is a typical coordinate and its velocity is given by 2, = %. The corresponding
Lagrangian for our test particle is

L = m(—1? — 2ui + r2?) 2. (5)

This Lagrangian is first-order in terms of velocity and belongs to a singular model, meaning
that its phase space does not necessarily possess a symplectic structure, complicating its
quantization. The system is inherently constrained to be first class. As a result, the quanti-
zation process will not be straightforward, and the corresponding quantum mechanics of
the particle is expected to reveal novel physical properties that we aim to explore.

Taking the first step toward finding new physical properties, we calculate the corre-
sponding momenta,

m2r2 g
p=—"5 =1 z:T"’. (6)

Here, h is the canonical momentum corresponding to the time-like coordinate u, while
p and [ are the spatial coordinates, i.e., length and the angular dimensionless quantities.
Given that the system has a single first-class constraint, this is a gauge model. This becomes
evident when selecting the gauge t = u + r, which leads to the following primary constraint
in configuration space

u+i=1, (7)

acting as a first-class identity, indicating the existence of gauge symmetry in the model.
The spacetime-invariant action is formulated such that its invariance directly reflects
the underlying symmetry of spacetime. This symmetry can be understood through the
gauge symmetries point of view, where assigning a specific coordinate to measure time
(the transformation parameter) is effectively a form of gauge fixing.
In the Hamiltonian framework, the velocity relations can be solved using this con-
straint as follows:

._P . h—p .l
= F=—r 9= 8)

The Legendre transformation gives the canonical Hamiltonian as

2 2 12

oy P
H.=2p ? 2 9)
With the help of Equations (6) and (8), and the explicit form of Lagrangian (5), and by
assuming m # 0 and the identity

m?

2 _
=,

the phase space equivalent of the the primary constraint (7), previously represented in the
configuration space as H. = 0, defines a primary constraint,

® = H.. (10)

Since h is the canonical conjugate of the time-like coordinate u, to solve h from the rela-
tion (10) in the quantized phase space, one should replace it with id,, while preserving
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the usual representations for p,I,r, and ¢. Then, one should deal with the nonlinear
wave equation,

-1
. _ 2p

and find the proper interpretations for ¢ while getting rid of the non-physical parts of that.
This is an arduous task since two parts of the Equation (11) do not commute '

2
0. = (PAT+ AT p)y,  with  A=p w4 % (12)

Since the Hamiltonian function is not fully factorized in Equation (11), solving the eigen-
value equation

i0up = Ep. (13)

is not straightforward. To address this, we apply the gauge-fixing method and reduced
phase space quantization, selecting a gauge orbit in the full phase space (not limited to the
momentum space). By identifying the reduced phase subspace, we derive the canonical
Hamiltonian and phase space structure of the model, ultimately finding the wave equation
corresponding to the system’s energy eigenvalues.

3. Reduced Phase Space Quantization

In this approach, we aim to minimize the effect of the gauge degrees of freedom,
despite the inherent nonlinearity in our wave equation.
It is evident that the total Hamiltonian of the system,

Hr=(14+M1)®, (14)

does not generate new constraints via the consistency of ®, indicating that it is of the
first-class type. Consequently, there exists a gauge degree of freedom in the complete set of
phase space coordinates (7, ¢, u, p, 1, h). Rather than applying conventional gauge-fixing
methods—which are not particularly useful in this context—we solve the constrained
Equation (10) and derive a gauge-fixing condition for the deformed constraint

& = ho. (15)

We have chosen the parameter h here, since (7, ¢) and their corresponding momenta have
the usual spatial and angular interpretation, whereas u is the evolution parameter of the
system. The parameter £, in this case, aids in identifying the quantum operator form of the
system’s evolution function.

3.1. Fixing the Set (u,h)

Choosing the parameter u is a kind of clock regulation for the particle, which deter-
mines the Hamiltonian of the particle on the gauge orbit or one of the infinite copies of the
reduced phase space. Hence, a straightforward gauge-fixing constraint is

Do =u—at, O<a<l, (16)

which is the gauge that transforms the observer on the light cone (for a4 = 0) into a massive
observer. To have a complete gauge fixing, this constraint should make a second class
couple with &, and determine the undetermined Lagrange coefficient in Hr.

(0, ) =2p, Hr=_-o. (17)
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In the physical space where Hr = 0, the Hamiltonian of the particle can be found from the
relations (10) or (17). Consequently, the evolution parameter pair (u, 1) can be expressed as

h:i(z—m2+ﬁ) (18)
2p P r2’

This means that there exists a Hamiltonian for the particle which is independent of
the time evolution parameter, although it depends on the evolution parameter of the
Minkowski observer via the definition of the BMS; time, according to the time of the
Minkowski observer (1).

As can be observed, the Hamiltonian of the particle is defined over the entire phase
space. However, the structure induced on the reduced subspace behaves like an antisym-
metric metric, which is projected from the full phase space onto the reduced subspace along
the selected gauge orbit via the condition ®,. This structure, known as the symplectic
structure, is obtained by calculating Dirac brackets—analogous to an induced metric—
rather than Poisson brackets—similar to the metric of the entire space. The Dirac brackets
are calculated between second-class constraints, which define the separation of the induced
subspace from the full space, using the relation

« 1 - .
{A,BY" = {A,B} — £ ({A, ®HB, 0y} —{A, D }{B,B}), (19)
where for the second class pair, we derive directly
A= —-2p. (20)

This is the part where the ex-canonical couple (u, k) is distinguished from others as the
evolution parameters and the factor determining the evolution of the Hamiltonian of the
particle. The Dirac bracket of u with other phase space variables (or functions of them)
vanishes, as does the constraint ®, since u is part of the second-class constraint. Therefore,
the non-vanishing Dirac brackets of & with other principal variables are

h —I?

=12 Aphy = n e} = € 1)

These relations can also be derived from the reduced symplectic phase space structure
of (r,p, ¢,1),

AQ=drdp+de®dl, (22)

using the Jacobi and Leibniz identities, which remain valid for Dirac brackets. The sym-
plectic structure in Equation (22), interpreted as the reduced phase space structure on (22),
which is clarified as the reduced phase space structure on BMS; or the metric of that space,
reveals that both the full space and its spatial component (r, ¢) is not curved. In other
words, the particle quantization on the BMS;3 is the quantization over a flat space, i.e., the
coordinate part (7, ¢)), with no intrinsic curvature, and only the Hamiltonian of the particle
is in the form of (18). Dirac-quantized brackets (21) facilitate transforming the quantum
wave equation of this model from a differential-integral equation—caused by the presence
of % in h—into a purely differential equation. Although an exact solution might not be
readily attainable, it can be approached through approximation or iterative methods, as
will be discussed in the following sections.
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3.2. Quantization and Wave Equations

The quantized version of the model can be obtained by the Dirac procedure, using
Dirac brackets. Having a Hamiltonian and some principal commutators,

h= %l(pflA + qu),

[rpl=i  [ell=i (23)

The straightforward nature of this process lies in the standard form of the principal com-
mutators, which dictates that the momentum operators in the spatial section follow the
usual differential representations

However, the complexity arises from the presence of the inverse momentum operator in the
Hamiltonian, preventing it from being represented by a finite number of principal operators.

From a mathematical standpoint, due to the differential representation of the momen-
tum operator and the inclusion of both this operator and its inverse, the system’s wave
equation in relation (23) becomes a differential-integral equation. This equation can be
addressed through approximation and iterative methods, using the quantum algebra of the
principal variables and the Hamiltonian

i 133
[p ] = (p~ 1" +rp™),

[r, h] (hp™t +p~'h),

_i_i

72
il, )

o, ) = < (p~ ' +7%p71). (25)

The noncommutativity of the quantum operators A and k, due to (25), adds to the difficulty

of the problem. In general, although finding the geodesics in the classical form seems to be

easy and has exact solutions, finding geodesics in the quantum form is an arduous task.
Doing some algebra, we obtain the following iteration relations:

ph= i(ZA +[p, Alp™),
1
p’h= 1 2pA+[p, Al +p [p, Allp™),
' 1
p"th = 1@ A+ Al 4 [ ) AlLlp™h. (26)

Similar to Baker-Hausdorff lemma expansion, there is no way to stop the expansion without
having a kind of symmetry to make a commutator constant, which is not possible due to
the form of the operator A in (23).

3.3. Ultra-Relativistic Limit

In this model, the parameter m simultaneously represents the mass, energy, and
momentum scale. By multiplying the previous relations by the appropriate powers of m,
it becomes evident that all terms on the right-hand side have matching factors of £ and
%, except for the last term, which includes an extra % and, more significantly, an external
factor of % outside the quantum commutators.

In the ultra-relativistic limit, the presence of (%) < 1 in the last term allows us

to eliminate p~!. Using this approximation, one can find the wave equations from the
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Schrodinger equation hip = Eip, which can be expressed in the following form to obtain the
energy spectrum

1
P () ") = 2 (29" A+ p" 2, Al [ [l AT 9 (27)

The general form of the commutators in the right-hand side of the wave Equation (27) can
be calculated as

A
Lo, Ap.[p, ) ) = CEDEE )

indicating that in the ultra-relativistic regime—when the particle is sufficiently far from the
origin—the last term in Equation (26) becomes negligible.

Using (28), we can rewrite the (1 + 1)th term of the set of relations (26), while omitting
the last term as

1 2o )2
pn+1h — Z <2Pn+2 _ Zmzpn 4 pnﬁ + /Z:l Pn n ( rnljz ) (29)
n'=

Having the angular momentum operator /? and the corresponding quantum number j
Py=—osp=jy, jeir, (30)

the (n + 1)th order wave function can be read off as

(n+2) . (n+1) (n)
2y — HEP ) 20700
5 1 (Tl) 5 n , 1 n—n/
-] (rzlp(n+1)> -] Z (n + 1)! (T”/+2 lp(n+1)> =0, (81
n'=1

where the subscript index points to the order of the removed last term, and the superscript
index is the order of derivative with respect to the radial variable r.

Now, we attempt to solve Equation (31) for small values of # to obtain the energy
spectrum of the model. It is evident that the presence of the particle in BMS;3 has no impact
on its energy spectrum, and E remains unchanged after quantization. The system, with a
characteristic energy scale of m, has a continuous spectrum. As with other free systems,
whether relativistic or nonrelativistic, the energy is not discretized unless a boundary
condition, such as a finite length on the order of m~!, is imposed. However, it should be
noted that the system considered here does not include such a condition.

It is interesting to take a deeper look into the solutions for the cases with m = 0, which
introduce a photon. In this scenario, the energy condition is similar to that in Minkowski
coordinates, where E = +./p? + m2, but the dispersion relation (18) differs due to the

1
1 12
E:<p2—m2+az>. (32)

inclusion of the factor r—*.

The exact case of m = 0 case is not of primary interest, as it represents the vanishing point of
the model built from (4). Therefore, we will focus on the more interesting ultra-relativistic
regime instead.

3.4. New Phase in Quantum Mechanics

In addition to the discretization of physical quantities, such as the energy of a quantum
system, the emergence of new phases during the quantization process is an important
feature worth investigating in greater detail. The influence of these phases on the wave
behavior of the physical system can provide insight into the quantum nature of the model.
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This is why we aim to determine whether the wave behavior of the particle in the BMS3
background exhibits a new phase beyond the conventional e £
One might ask whether it would be easier to write the wave equation in momentum

space, avoiding the need to eliminate the operator % in h. It should be noted, however,

that the presence of the term %2 in h complicates the calculations. Furthermore, based on
the chosen gauge for u in Equation (16), the relation between this quantity in the BMS3
coordinates and the common polar coordinates in the plane, transitioning to Minkowski
space (i.e., proper time and polar coordinates in the spatial part), causes the wave function
to have a spatially dependent phase in the BMS; background, taking the form ¢, This
phase can be studied within the framework of the Berry phase in quantum mechanics [36].
In continuation, we will explore these effects by solving for specific values of n that appear
in the fundamental Equation (31), derived in this paper.

3.5. Differential Form of the Wave Equations and Their Solutions

The general form of the solutions that satisfy the wave equation is obtained in rela-
tion (31). While these equations are not explicitly in the form of eigenvalue-eigenvector
pairs for the energy or wave function of the system, both quantities still satisfy the con-
ditions imposed by them. Furthermore, solving this set of equations provides the wave
equation and the energy states of the system to the specified accuracy, as mentioned below
in Equation (31).

For n = 0, and the ultra-relativistic condition for our particles m — 0, Equation (31)
simplifies to,

" . ! 2
Yoy — 26E¢ ) + <m2 - iz)lp(l) =0. (33)

This linear differential equation has solutions in terms of known special functions—specifically,
the first and second kinds of Bessel functions—depending on the model’s conditions, such as
whether the particle is at the origin or at infinity (the non-regular singularity). By definition

=+ % and M = VE?2 + m?2, the general solution can be written as,

lP(l) = EiEr\/;(lejf(Ml’) + Cij(MT’)) (34)

For the cases where m = 0 and j = 0, the absence of intrinsic features of m and
extrinsic features of j indicates that neither is capable of confining the particle within a
specific region of space. The wave function of the particle, whether well-behaved at the
origin (in the case of |) or not (in the case of Y), remains non-normalizable over the entire
space, implying that the particle is free. This behavior is well-known in 3-dimensional
radial solutions, and we now observe that it also holds in BMS; spacetime, which consists
of a 2-dimensional spatial component. In fact, neither mass nor rotation can confine a
particle in this spacetime, and the particle’s continuous spectrum is given by Equation (32).

Nevertheless, the absence of an IR length, which could be imposed as a boundary
condition in the model, indicates a non-quantized energy spectrum. We observe that %
acts as a UV length scale, which quantizes the spectrum similarly to a free particle in a box
but disrupts the existence of a BMS; symmetry boundary condition. Comparing this with
the relativistic Dirac equation, we see that despite the inclusion of the UV length scale %,
two distinct energy states-matter and antimatter-are still obtained. This discrepancy may
be due to the incompleteness of the Hamiltonian factorization.

Now, we take the next step and calculate for n = 1. Given the real nature of the
order, the argument (variable), and the Bessel function itself, it is evident that no additional
phase will appear in the wave function. Therefore, this step in solving the quantum wave
equation in the BMS;3 background is an approximation of the zeroth order, and only the
energy dispersion relation in terms of momentum, as given by Equation (32), yields a new
result. This result arises from the nonlocality in momentum space.
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For the subsequent steps in finding solutions, previous results indicate that to ob-
serve more significant effects of a particle’s presence in this background field, we must
consider how the specific choice of BMS3 coordinates and their singularities are physically

meaningful. The term % has a singularity at = 0, but it is evident that this singularity is
not fundamental, as it resembles the typical behavior associated with angular momentum.
Analyzing relation (33) and its solutions confirms that the singularity at r = 0 is regular,
while the asymptotic behavior shows that 7 — oo is an irregular and fundamental singular-
ity. This singularity cannot be resolved physically, except by introducing a cut-off, which,
however, would break the symmetry of the BMS;3 framework.

Thus, to uncover more physical properties of the model, we examine the higher orders
for n = 1 in Equation (31). The n = 1 step results in a third-order linear equation with
complex variable coefficients, given by

" .

" 2 3

Yoy — 2EY]y) + (m? — %)4)(2) + r%tp(z) —0. (35)
In Equation (33), there is a regular singularity at * = 0 and a fundamental singularity at
r — oo. This indicates that the behavior of the solutions at these singular points remains
unchanged, though they become more precise. From this perspective, no new physics is
introduced compared to the previous set of solutions. However, the rate at which the solu-
tions decay or grow near the regular singularity at » — 0 may increase or decrease, while
the fundamental nature of the singularity is preserved. Notably, no intrinsic fundamental
length emerges in Equation (35) or in the other equations.

To gain a deeper understanding, we will solve Equation (35) using the Frobenius
method. In this approach, we substitute the expansion ¢ = Y"°  a,7** into Equation (35)
and reduce the equation by exploiting the linear independence of the terms r**. This leads
to a system of differential-algebraic equations in recursive form for the coefficients a,,. Here,
the A values serve as a control for the rate of convergence or divergence of the solution at
the singular points (particularly at # = 0 ). For the third-order differential Equation (35), in
addition to the indicial equation and the recursive relation, two other equations will also
be derived as follows:

AMA=1)(A —=2) — (A —=3) =0, (36)
“2iEapA(A —1) + a; ((A FDAA=1) — (A — 2)) =0, (37)
m2agh + a2<()\ +2)(A+1)A — (A — 1)) — 2iEa (A +1)A =0, (38)

—m?(V4+ 1+ A)ayq +2EV+1+A)(v+2+AN)ay, o
W3+ +24+AN)V+14+A)—2v+A)

The indicial Equation (36) for 1 < j < 4 has one real and two complex roots, as indicated in
Table 1. One may note that sgn(D) is the discriminant sign of the qubic Equation (36), i.e.,

ayi3 = v=20,1,2,.. (39

D = 4(1+372 - 24" + [°).

Due to the interaction with the specific shape of the potential in the wave Equation (35)
for 1 < j <4, an additional phase appears in the wave function near the origin, which is
distinctive and unique to BMS3. We consider this wave function to be associated with the
near-origin region because its real part consists of positive values. If we aim to observe
this behavior physically, we would need to configure a setup around that region. As a
conjecture, we propose that although A is introduced in the Frobenius method to define
the behavior of the radial wave function, and ¢ = Y;~, a, 7' is a radial wave function,
different values of A can be decomposed into real and imaginary parts. The real part
determines the convergence or divergence at the regular singularity (r = 0) and the
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Ay41 =

irregular singularity (r — co), while the imaginary part of A contributes a local phase to
the wave function, as follows:

i6(r) e(film()x) In(mr)) (40)

7

e

In this case, the approximate iteration of the wave Equations (31) and the higher orders
are closely related to the phase transition caused by the constant potential. This is achieved
through the iterative phase shift using the Born approximation method, with Equation (27)
resembling a Lippmann-Schwinger equation.

Table 1. This table demonstrates that in the regime governed by Equation (35) for 1 < j < 4, in addition

to the primary phase factor ¢/f”, a secondary phase factor emerges, as described by Equation (40).

j sgn (D) Real Roots Imaginarty Roots
0 + 0,1,2 -

1 — —0.77 1.88 £ 0.591

2 - —1.80 2.40 & 0.94i

3 - —2.83 292 £1.01i

4 — —3.86 3.43 £+ 0.83i

5 + —4.87,3.60, 4.28 -

6 + —5.89, 3.26, 5.63 -

In the quantum scattering problem with fixed and variable potentials, the phase transi-
tion is directly influenced by the potential and is calculated based on the potential, angular
states, and related quantum numbers. The situation is similar in this two-dimensional rela-
tivistic problem. The key difference is that, unlike in the non-relativistic case, the potential
and kinetic terms of the particle are not separated into distinct components. However, we
know that the factor %' behaves like a dimensionless potential of the model, interacting
multiplicatively with other terms, as seen in Equation (26). Another difference in this
scattering scenario is that, in addition to the inseparability of the scattered potential and
the kinetic part, the scattering (and the resulting phase transition) occurs only when j # 0.
Specifically, for j > 5, the term mszrz dominates the scattering potential. In the region
where j = 0, no scattering takes place, unlike in non-relativistic quantum scattering, where
scattering occurs even when j = 0. When m = 0, we encounter a fully ultra-relativistic
scenario, for which the Born approximation is applied.

3.6. Distortion near Light-Cone in BMS3

Solving the state, m — 0, provides at least a general idea to solve Equations (36) to (39).
From a physical point of view, it can reveal the dispersion or deformation of the light cone
in BMS; due to quantization. It suffices to find the wave function and use it to calculate the
mean of 7. The relation = u is the equation of a light cone and we need to put < r >=u
instead of E = w. However, the solution of sets (36) to (39) in this photonic regime is a
linear combination of hypergeometric functions.

(41)

(1+A—

ap(2iE)’ (A)y(A + 1),
1;{) (1+A+63d+ 13(””) <1+/\+e sd+e'3(1+”>
v v

v
withv =0,1,2,...,and

1

=3 ( V3D - ) @)

and D is the discriminant that is defined earlier, and (a),, is the usual Pochhammer symbol.
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Although we solved the recurrence relation for m — 0, the solution implies that at least
E is not discretized, as suggested by the form of expression (41). However, the appearance
of non-trivial phases in the wave function, and its dependence on the quantum number
j, provide a crucial clue for an observer at position m to infer events related to a distant
massive object.

While averaging might not yield a closed-form solution, it can still be computed
numerically. A more precise approach could involve calculating the evolution of the
operator r in the Heisenberg picture, as demonstrated in (21), which gives

dar® 1 1. 4 4
- —i(l—z(hp +p h)), (43)

In Ehrenfest form, it becomes
<iW>,=—i—i<p'>,E (44)

With negligence, we set the first term equal to 1 because the resulting wave functions
from (41), or more generally from (36) to (39), are divergent at r — co and require an IR
cut-off. To calculate the second term, after extracting the wave function with the help
of coefficients (41), we convert it to the momentum by the Fourier transform, where p’l
will be just a number (its representation is p~! itself), and by integrating, we obtain the
solution. However, this holds true only if p~! is considered in the Heisenberg picture.
In this case, during the calculation of the integral, in addition to the series expansion
of the wave function, the term p~! = ¢ p~le~"" must be expanded using the Baker—
Hausdorff lemma. We should also calculate the commutator [p~1, 4] from (23). Thus,
despite its simple appearance, calculating < p’l(h) >, is not straightforward, even for the
case m = 0. Hence, the approximations of the wave function obtained from (41) and the
approximations obtained via the Baker-Hausdorff lemma will not directly yield p~(").
Ultimately, the wave function, whose expansion coefficients around r = 0 are obtained
from Equations (36) to (39), takes the form of closed hypergeometric functions. While
many of these solutions exhibit regular behavior at r = 0, all diverge as r — oo, indicating
non-renormalizability across the entire space.

The structure of Equations (36) to (39), particularly the recurrence relation in (39),
along with the calculation of the first few coefficients, shows that the phase of the wave
function arises from the solution of the indicial Equation (36) for specific values of j. As
mentioned earlier in this section, at each level of the Born approximation, solving the
indicial equation leads to complex roots. The real part of these roots governs the regular
behavior of the wave function at ¥ = 0, while the imaginary part introduces a phase to the
wave function. When a complex number is a root of the indicial equation, its conjugate
is also a root. Consequently, the presence of complex roots causes a degeneracy in the
wave function, manifested as differing phases in the wave function. Although the phase
angles occur in negative pairs, they are not necessarily equal. This degeneracy in the wave
function, stemming from the diversity of complex As, can be interpreted as the existence of
spin in the model solutions.

Although this phase is directly related to both j and r, and the number of complex roots
depends on j, the total number of distinct phases can be attributed to the appearance of spin
in the wave function. This is because the factor ¢/ in the wave function corresponds to the
degree of freedom ¢, while the term rRe(M) " #Va, represents the well-tuned, convergent
radial part of the wave function at ¥ = 0 and its divergent behavior as r — oco. The
remaining part of the wave function can be linked to its internal degrees of freedom.

The direct dependence of the wave function (40) on j (as the quantum number of the
operator [) and  (as the quantum number of the operator 7) suggests an interaction between
an unknown spin operator and known particle observables, manifested in the detection of
this degeneracy (spin). This is analogous to the first discovery of spin in the Stern—Gerlach
experiment, where a spatially varying magnetic field revealed spin as spatial quantization.
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For higher orders of the Born approximation, as we observed for n = 1 in the previous
section, each iteration yields a differential equation of the form (31). From our experience
with the cases n = 0 and n = 1, we know that the energy spectrum remains unchanged at
each order. What introduces a semi-potential term % is the phase transition in the wave
function, which can be determined by deriving the wave function through series expansion
or the Frobenius method.

After converting the differential Equation (31) into a set of algebraic equations for the
series expansion coefficients, the first equation in this set, corresponding to the vanishing of
the coefficient 7~ ("*2), results in an indicial equation of degree 7 + 2. By the fundamental
theorem of algebra, this equation has 7 4 2 complex roots for A. These A values, which
depend on j, yield both real and complex roots. The real part of these roots governs the
behavior of the wave function at the singular points r = 0 and r — co. However, it is
impossible for any values of A to remove the singularity at r — oo, as it represents a
fundamental singularity.

The imaginary part of A introduces phases into the wave function, which can be
attributed to the hard potential present in the Hamiltonian (18). Although this potential is
not separable from the kinetic term, as in non-relativistic problems, it still influences the
phase structure of the wave function.

According to the fundamental theorem of algebra, the indicial equation in the nth
order of approximation has 7 + 2 roots, some of which are complex (in even numbers). In
general, the total number of these roots is tied to the order of the Born approximation and,
in particular, to the value of j. What is clear is that as the degree of approximation increases,
the number of complex roots also increases. If, as mentioned, we associate this degeneracy
of complex roots with the particle’s spin in the model, then approaching higher orders of the
Born approximation, i.e., as n — oo, predicts an infinite (but countable) spin for a particle
within this background. The higher the approximation studied, the more components of
this spin are uncovered. Notably, infinite spin is predicted even for near-photon particles
in this model.

4. Concluding Remarks

In this paper, we explore the behavior of a particle with mass m in the background
of BMS3 symmetry induced by a distant massive object. Under this setup, the particle’s
quantum wave function satisfies the unique wave Equation (31). Analysis of this equa-
tion in the first-order approximation reveals that the particle’s energy spectrum remains
continuous, with no indication of mass quantization at this level. However, in the next
order of approximation, although a full analysis of the wave equation and a discrete energy
spectrum was not completed, Equations (34) and (39) suggest that, upon normalization
of the wave function, energy quantization for the free particle does occur. This presents
a potential way for experimental verification of the particle’s effect on the BMS; back-
ground. These preliminary analyses indicate the need for a more detailed examination of
the wave function.

A noteworthy feature in both approximation regimes is the emergence of two-phase
factors, corresponding to the particle’s energy and angular momentum as it orbits the
distant massive object. Particularly intriguing is the phase associated with angular momen-
tum, which may correspond to an internal degree of freedom, such as spin, in higher-order
or more precise approximations. This suggests that further investigation of Equation (31) is
needed to obtain a more complete particle spectrum and clarify the nature of these phase
factors. By fully determining the particle spectrum and incorporating it into the scattering
function, quantum statistical mechanics methods can be employed to explore the informa-
tion carried by gravitational waves generated by the distant massive object. This could
provide new insights into the quantum-gravitational interplay within the BMS; framework.
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Note

1

Note: Equation (11) in the first attempt after quantization is written as a formal equation.
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