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ABSTRACT

The subject of this dissertation is the presentation of a surface code, the string-net sur-

face code, based on the exactly-solvable Levin-Wen model for doubled topological phases.

We construct the circuits needed to encode quantum information in the many-body states

of a two-dimensional network of qudits, as well as circuits to measure and manipulate

the encoded states. This framework serves as both a quantum error-correcting code and a

quantum simulator of Abelian doubled topological phases.

What distinguishes the string-net surface code from present surface code prototypes

is the feature of topological symmetry in the Levin-Wen model. We will use a discrete

formulation of the topological symmetry to construct quantum circuits that realize these

transformations. This enables encoded quantum gates to be, in principle, achieved solely

in terms of quantum circuits, contrasting with the current methods utilizing code deforma-

tion and lattice surgery. We describe the encoding of quantum information using gapped

boundaries and demonstrate how to perform gates from the generalized Clifford group in

a topologically protected manner, including the use of defect lines.

Our proposal suggests that from the quantum information perspective, the fusion alge-

bra is the proper generalization of the Pauli algebra.
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NOTATION AND SYMBOLS

R The set of real numbers
C The set of complex numbers
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CHAPTER 1

INTRODUCTION

“It from bit”

-John Archibald Wheeler [202]

The motivations driving the pursuit of quantum computation trace back to the remarks

made by Feynman in 1981 [79]. Here he recognized the inherent intractablity of simulating

quantum mechanics with classical computers based on the disparate rates at which the

state spaces of the respective physical models grow. At the end of the paper, he rises to his

crescendo:

“And I’m not happy with all the analyses that go with just the classical theory,
because nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.”

Therefore, not only is the nature of a physical theory related to the complexity of simulat-

ing it, but perhaps it is also related to the power of a computational model built upon the

elements of that theory.

Seventeen years later, Freedman [87] advanced this notion even further. He observed

that Witten’s formulation [207] of a manifestly covariant gauge theory and the subsequent

identification of expectation values for certain observables in the theory with evaluations

of the Jones polynomial [123] lead to a physical model that may have the power to solve

all problems in #P [121], a classically intractable class, in polynomial time. Specifically,

Witten’s theory is a pure Chern-Simons theory, and it must have a non-Abelian gauge
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group1 to possibly realize its computational potential. Therefore, Freedman conjectures

that a physical system whose low-energy effective theory is described by a Lagrangian

containing a non-Abelian Chern-Simons term is capable of solving NP-hard or even #P-

hard problems in polynomial time.2

This is a bold claim to say the least, and certainly one that will not be addressed in

this paper. Rather, our goal is to begin making inroads of computational complexity into

the realm of physical theories. To this end, we present a quantum error-correcting code,

the string-net surface code, that will draw a direct connection between a discrete, exactly-

solvable physical model and the quantum circuit model of computation.

The physical model is called the Levin-Wen model [150], and it is a Hamiltonian-based

approach to the class of topological phases known as “doubled” topological phases, which

includes all doubled Chern-Simons theories. Topological phases are systems where the low-

energy theory is gapped and described by a topological quantum field theory [7, 206] such

as Witten’s previously noted construction. Such systems have degenerate ground states

when placed on a surface with nontrivial topology, and the quasiparticle excitations are

the exotic anyons [204, 205], which fall outside of the usual classification in terms of bosons

and fermions.

Mathematically, the Levin-Wen model is a physical model whose ground state sub-

space corresponds to a topological invariant, the Turaev-Viro invariant [129, 188, 189]. The

work of Turaev and Viro provided a discrete, combinatorial construction of the topological

quantum field theory, leading to the construction of a family of (quantum) knot invariants,

which are generalizations of the Jones polynomial.

The Levin-Wen model also furnishes a discrete formulation of what is known as topo-

logical symmetry [113, 114]. One of our objectives in constructing the string-net surface

code is to illuminate the role and meaning of topological symmetry from the perspective

of quantum information theory. In addition, we also obtain a new framework for quantum

error-correction.

1specifically the q-deformation of SU (2) at root of unity, which is an example of a quantum group [127]

2NP and #P cannot be directly compared because they relate to different types of questions, see e.g., [1] for
more details.
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1.1 Do we really need another surface code?
Surface codes [47, 62, 81, 90, 172] are a promising class of quantum error correcting codes

that marry together Gottesman’s stabilizer codes [95, 96] with a nontrivial two-dimensional

topology. They involve an array, or network, of quantum systems (such as spins) arranged

on a two-dimensional surface such that they only interact locally. They were first intro-

duced by Bravyi and Kitaev [47] as a variation of Kitaev’s original toric code [131] designed

to be implementable on a surface with open boundaries. Since that paper much effort has

been devoted to the development and analysis of techniques to improve the performance

of these codes, and they have grown into a larger class of topological and homological

quantum codes [35, 36, 54]. Tools of the trade include topological twists [32, 154, 209], code

deformation [33, 38], and lattice surgery [49, 110].

The physical model underlying these surface codes was introduced by Kitaev [131]

and is known as the quantum double model. This model falls into the same universality

class as the Levin-Wen model, in fact the two models are known to be dual to one another

[50, 51, 114, 125]. Moreover, all surface codes have been shown to be contained within the

same universality class [34].

These results prompt the question “why bother with another surface code?” The an-

swer is features, namely the different techniques for encoding and manipulating quantum

states that come along with each incarnation of the surface code universality class. For

the string-net surface code, the feature that we wish to introduce is that of topological

symmetry, which we will demonstrate is a versatile tool for not only the encoding of

quantum information into the many-body Hilbert space of a qudit array, but also for the

manipulation of that encoded state. In particular, we will show that topological symme-

try can be used to braid gapped boundaries using only quantum circuits. Our method

contrasts with the sort of “catepillar crawl” [187] method of [81, 82, 192] and the lattice

surgery method [49, 110] typically employed in surface code constructions and whose

computational resources are difficult to quantify [105].

It should be noted that a form of topological symmetry has previously appeared in

[62]; however in that context, it was only used for encoding quantum states into a growing

network but not for the implementation of logical operations. Topological symmetry in

the Levin-Wen model has also appeared in the context of wave function renormalization
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[55, 102] and entanglement renormalization [141], but these do not explicitly deal with the

coherent manipulation of encoded data.

We should also mention a scheme that is closely related to ours, the “Turaev-Viro code”

[140], which is also based on the Levin-Wen model and utilizes topological symmetry.

Their work focused on the topological aspects of realizing encoded operations, and real-

ized braiding with quantum circuits, but it was not fully developed into a surface code

with a clear description of error detection and correction procedures. The problem of

detecting errors in a Levin-Wen based code was solved in [41]; however, it does not ad-

dress how errors could be corrected or the error models for the physical (i.e., microscopic)

degrees of freedom to which such a code would be applicable. Due to the non-Abelian

nature of the theory they considered it is likely that such a code would be incompatible

with the traditional error models for a qubit array. Additionally, as pointed out in [129],

there was some issue with the treatment of the boundary theory in [140] (though this may

not have impacted the related surface code). We will use a fully gapped and protected

boundary theory [115, 117], consistent with the points mentioned in [129].

Finally, we would like to mention the works [39] and [57, 58]. In [39] the idea of using

islands of condensed anyons1 to realize topological degeneracy is introduced. This idea

is then refined in [57, 58] by replacing the islands of condensate with gapped boundaries,

i.e., domain walls between the bulk and vacuum topological orders. Their treatment of

gapped boundaries beyond the usual Z2 case was a great inspiration for our design. They

also propose that domain walls, or defect lines, could play some role in manipulating states

in a surface code. We will put these ideas into action, though the use of defect lines is not

new, as topological twists are an example defect lines. However we will be utilizing the

defect line to realize a duality transformation, as opposed to its previous use for encoding.

1.2 Simulating topological phases
The manner in which the string-net surface code can be used to simulate topological

phases can be understood at two different levels. Firstly, we can consider the simulation of

certain transformations of the ground state subspace of a system realizing topological order.

Beyond this we have the characterization of the excitations of such a system, which are

1realized by reducing the gauge symmetry to a subgroup
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anyonic quasiparticles.

The former notion of simulation is that proposed in [88], which is to realize unitary op-

erations acting on the ground state subspace (a.k.a. the encoded subspace) corresponding

to any element of the mapping class group of the punctured surface. In other words, we

have a quantum circuit representation of the so-called (unitary) topological modular functor

(or UTMF for short) [16, 89]. This requires circuits corresponding to the generators of the

mapping class group, the Dehn twist and braiding, which we introduce in Chapter 5.

As noted in [88], given such a simulation of the UTMF via quantum circuits, the UTMF

takes on the role of a high-level language for the construction of quantum algorithms,

for example those relating to the evaluation of the Jones polynomial [2, 87, 123, 128, 173,

184, 207]. Furthermore, our construction of transformations that correspond to changes

in the topology of the surface suggest that our framework can be extended to simulate

topological quantum field theories as well [88].

For the latter concept of simulation, that of a system of anyons, we need protocols

realizing the fusion, twisting, and braiding of the anyons. The string-net surface code

provides two methods for this, which differ on how the anyons are encoded. If we encode

the anyons in the bulk degrees of freedom, where they are interpreted as quasiparticle

excitations of the Levin-Wen model, we can compute the properties for generic anyons

as in [48, 54]. On the other hand, the simulation of the topological modular functor can

also be interpreted as a calculation of the amplitudes for various configuration-preserving

processes (i.e., braidings) for a many-anyon system. Here the anyons correspond to labels

for the degenerate ground state subspace of the Levin-Wen model on a surface with bound-

ary. In the gapped boundary encoding, calculation is more robust than the bulk encoding;

however, we can only compute the properties for a certain subset of “condensable anyons”

that can be encoded with the gapped boundaries of a surface.

1.3 Outline of the dissertation
Roughly speaking, our approach to the material is as follows. The string-net surface

code will be viewed as a quantum simulator of anyonic systems, that is, a prescription for

engineering the topologically ordered states characteristic of such systems, so we begin by

discussing the quantum circuit model and then the algebraic structure of anyonic systems.
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The Levin-Wen model, a physical model that supports anyonic excitations, will then be

introduced. In particular, we identify the concrete physical operators that represent the

manipulation of anyons within such a system. Finally, we will translate the operations

of the Levin-Wen model into quantum circuits, which will culminate in the collection of

encodings and protocols that define the string-net surface code.

In more detail, the contents of each chapter are as follows. Chapter 2 will present

the basic goals and strategies of quantum error correction. Of utmost importance is the

notion of encoding quantum information nonlocally, that is, in the quantum correlations

(entanglement) of a many-body (two or more) quantum system. This is what allows for

the protection of quantum information from local errors. We will also frame the conditions

for quantum error correction in terms of the structure of the Hilbert space of the physical

system encoding the data. Finally, we review the formalism of stabilizer codes, which pro-

vides a convenient language for talking about a large family of quantum error correcting

codes. For our purposes, the most relevant examples of stabilizer codes are in the class of

(topological) surface codes, into which the string-net surface code falls.

Chapter 3 explores the world of anyons, with special attention paid to Abelian anyons.

We introduce the algebraic structures that underly a consistent model of anyons, namely

fusion algebras with some additional data (amounting to a unitary fusion categories [16,

77]). We will then explore the concept of anyon braiding; in particular its effect on the

state of a many-anyon system. Then we address the idea of anyon condensation, which is

needed to formulate a theory of anyons on a surface with boundary. This will naturally

lead to the concepts of domain walls and defects within such systems. The Wilson loop

algebra will also be introduced and immediately employed to show that systems with

Abelian anyonic excitations have degenerate ground states on a surface with boundary.

The degenerate ground state subspace will serve as our encoding space, and the Wilson

loop algebra will provide some of our encoded operations.

Chapter 4 introduces the Levin-Wen model, which realizes the anyonic systems de-

scribed in Chapter 3. This model is defined for a two-dimensional array of qudits that

interact locally through two types of terms. We go over the Levin-Wen Hamiltonian and

describe the structure of the resulting local Hilbert spaces, especially with regards to the

excitations. Then we describe the extension of the Levin-Wen Hamiltonian to the case of



7

a surface with boundary, and we present the explicit form of topological symmetry for

the Levin-Wen ground state on a surface with boundary. Boundary excitations are also

discussed in detail, especially the interplay of their quantum numbers with the boundary

topological symmetry, as well as how bulk excitations map to the boundary.

In Chapter 5, we will finally be in position to set forth the framework for the string-net

surface code. Circuits for measuring stabilizer operators will be constructed, as well as

those realizing the topological symmetries of the Levin-Wen model. Protocols for the

initialization and measurement of the encoded state will be described, as well as those

for constructing circuits that braid gapped boundaries. Since the errors our code can

correct correspond to the excitations of the Levin-Wen model, we will also demonstrate

how to construct circuits that manipulate anyons, allowing for the correction of errors.

We will also discuss how to initialize a defect line, which can be used to realize a duality

transformation that generalizes the Hadamard gate.

Chapter 6 will summarize our results and provide some directions for future develop-

ments and applications of the string-net surface code.



CHAPTER 2

THE BASICS OF QUANTUM COMPUTATION

AND QUANTUM ERROR CORRECTION

“It’s okay to make mistakes,

Try to fix them, and learn from them, too.”

-Daniel Tiger’s Neighborhood

In this chapter we review some of the basic concepts of quantum error correction

and encoded operations. We will highlight some of the differences between classical and

quantum information, in particular the notion of distinguishability. For quantum systems

distinguishability is tantamount to orthogonality, which is therefore one of the notions at

the core of quantum error correction.

We will then consider what happens when a quantum computer is allowed to (weakly)

interact with its environment. The framework of quantum error correction will allow us

to determine under what circumstances we can recover quantum information that has be

damaged due to noise incurred from the environment, given some error model describing

those interactions that are deemed most likely to occur. This will culminate in a list of

basic conditions that are required for the given error model to admit a procedure for error-

correction [27, 76, 136].

One of the most common assumptions in quantum error models is that the errors are

local, that is, the coupling between the quantum system and its environment are dominated

by interactions between the environment and a single-qubit (or qudit). The observation of

Shor [179] and Steane [182] was that if one wishes to protect a Hilbert space, say that

of a qubit, from local errors, then this can be accomplished by encoding it into a higher
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dimensional Hilbert space of some larger quantum system (like that of several qubits).

Stated in another way, to protect quantum information from local noise, it should then

be encoded nonlocally throughout a quantum system. We consider some examples to un-

derstand what it even means for information to be nonlocal, which is described by the

quantum phenomenon of entanglement [75].

Finally, we will introduce the stabilizer formalism for quantum error correction due to

Gottesman [95, 96]. The framework of stabilizer codes provides a straightforward prescrip-

tion for error-detection and data recovery. Furthermore, it will also address an important

element for encoded data processing, the implementation of logic gates. This component

of the theory is nontrivial; since our strategy to protect a quantum state from local noise

is to encode it nonlocally, we must then determine how do we manipulate the state of a

nonlocal entity. For the case of stabilizer codes, we give a brief description of the range

of transformations that can be realized on the encoded state, as well as what additional

resources are necessary to extend that range to full universal gate set [96, 97].

These ideas may seem disjoint from the field of condensed matter physics, but one of

the things we hope to accomplish by presenting these ideas side-by-side is the identifica-

tion of some threads that connect topological phases with quantum error correction. While

the theory of quantum error correction has advanced significantly by adopting concepts

related to topological order, we envision an exchange of ideas in the reverse direction could

be at least equally beneficial.

2.1 What can your quantum computer do for you?
Fundamentally, the tasks one may ask a quantum computer to perform are no different

than those we ask of a classical computer. Namely, both types of computers represent

models of computation and both are designed with the goal of computing functions. Where

quantum and classical computers differ is in the types of physical systems in which the

input data is encoded, then manipulated, and ultimately read-out. This point-of-view

emphasizes the fact that information is physical. From this perspective, we shall take our def-

inition of quantum computation to be a family/class1 of computational models in which

the (classical) input is encoded in a quantum system. The quantum system can then be

1but not complexity class
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manipulated in accordance with the axioms of quantum mechanics, after which a mea-

surement is made (also in accordance with the axioms of quantum mechanics) yielding

our (classical) output. 1

The difference between the classical and quantum models of computation boils down

to the comparison of classical information and quantum information.

To examine the nature of quantum information, we need examples of simple quan-

tum systems. Abstractly, the simplest quantum system is a generalization of the classical

two-state bit, called a quantum bit, or qubit [178]. This prompts the question “In what

physical systems can we find suitable two-dimensional Hilbert spaces with the ability to

manipulate them?” One of the most common (and easiest to think about) is the spin state

of a spin-1/2 particle, which can be measured in either the up or down state. We could

also consider the value of a quantum number such as electric charge, flux quanta, or the

superconducting phase parameter. In this dissertation, we will be primarily concerned

with encoding data in two types of systems. One of these is a two-dimensional array,

or network, of qubits that can be of any physical origin, though the closest to exhibiting

the required level of control are ion-traps [103, 163] and superconducting qubits [18, 122,

153]. The other physical system we will consider is one composed of anyons [15, 132, 205],

which possess many-body Hilbert spaces with rich structure captured by the notion of

topological order [196–198, 201]. We will describe such systems and their encodings in detail

in Chapter 3. In either case, we will make use of the language of quantum circuits, which is

a convenient way of describing complex quantum computations.

Note the contradicting qualities desired of a quantum memory (long coherence times

and weak interaction with the environment) with those of a quantum computer (accessi-

ble qubits that can be manipulated and measured and requires some interaction with an

experimental apparatus). This observation would seem to limit the feasibility of quantum

computation; however, we will see that the technology of quantum error correcting codes

brings hope to resolving these differences.

1which in principle may be subject to further classical processing before the final answer to our question is
determined
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2.1.1 Axioms of Quantum Mechanics

The axioms of quantum mechanics are largely attributed to Dirac and von Neumann.

These axioms provide a mathematical framework with which to describe quantum sys-

tems. Therefore, the features of quantum information should one way or another trace

back to this starting point.

1) To every isolated quantum system, we associate a Hilbert space, H, with each unit

vector in the space associated to a possible state of the system.

2) The transformation of a closed quantum system is described by a unitary transfor-

mation1 on the associated Hilbert space.

3) Quantum measurements consist of a complete collection of orthogonal projections,

{Π̂i}, acting on the state space such that

– Π̂iΠ̂j = δi,jΠ̂i

– ∑i Π̂i = ˆIdH

– If the state of the system is |ψ〉 ∈ H, then the probability of measuring i is given

by 〈ψ|Π̂i|ψ〉.

– After a measurement yielding the outcome i, the state of the system is described

by the vector ∣∣ψ′〉 = 1
〈ψ|Π̂i|ψ〉

Π̂i |ψ〉 . (2.1)

4) Given a composite system AB, the associated Hilbert space isHAB = HA ⊗HB.

The first axiom is what leads to the idea of the quantum superposition of states. The

simplest classical system with nontrivial information content is a bit, which can be in one

of two states, either 0 or 1. The quantum analogue is a quantum-bit, or qubit, which can be

1or antiunitary transformations if we allow for time-reversal transformations [203]
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in a superposition of these states, |ψ〉 = c0 |0〉+ c1 |1〉 such that it has unit norm 〈ψ|ψ〉 =

|c0|2 + |c1|2 = 1. We can write the Hilbert space of a qubit as

Hqubit = {|ψ〉 = c0 |0〉+ c1 |1〉 | c0, c1 ∈ C, and |c0|2 + |c1|2 = 1}. (2.2)

Thus, quantum information consists of complex linear superpositions of classical infor-

mation, so when we say that we wish to preserve the quantum information content of a

system, we mean that we wish to preserve this superposition. Note that we will often

write (2.2) as

Hqubit = spanC{|0〉 , |1〉} (2.3)

with the unit norm condition implied.

We can think of measurement as the extraction of classical information from a state.

Thus to measure the state of a bit, we observe whether it is a 0 or a 1. To measure the state

of a qubit, we make the same observation as well, which produces a 0 with probability |c0|2

or a 1 with probability |c1|2, and the postmeasurement state of the qubit is either |0〉 or |1〉,

respectively. In terms of how we describe the state of the system, one can think of this as

a transition from the quantum information encoded in the state to classical information

extracted from the state.

We can think about a quantum measurement more concretely by considering observ-

ables, self-adjoint (i.e., Hermitian) operators Ô† = Ô acting on the Hilbert space of a quan-

tum system. Since they are self-adjoint, observables have real eigenvalues {λi} with cor-

responding (orthogonal) eigenstates {|ψi〉}. Thus, an observable Ô can be expressed in its

eigenbasis as Ô = ∑i λi |ψi〉〈ψi|. The collection of orthogonal projections corresponding

to the measurement of an observable is then {Π̂i = |ψi〉〈ψi|}, and an outcome i or a

measurement indicates that the observable was measured to have the value λi.

To illustrate the last axiom, we consider the Hilbert space for a system consisting of two

qubits

H2 qubits = Hqubit ⊗Hqubit = spanC{|00〉 , |01〉 , |10〉 , |11〉}, (2.4)

where we have employed the shorthand notation |ij〉 := |i〉 ⊗ |j〉. The basis we have used

is known as the computational basis, and it consists of bitstrings of all possible observable

outcomes of measurements on all of the individual qubits.
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The fourth axiom is required to extend the linearity of isolated quantum states to

composite systems, and consequently leads to the phenomenon of entanglement, that is,

the existence of states of a composite system that cannot be written as a tensor product of

states of isolated systems. We say that a state, |Ψ〉AB ∈ HAB, is entangled if there is no

choice of states, |ψ〉A ∈ HA and |φ〉B ∈ HB, such that |Ψ〉AB = |ψ〉A ⊗ |φ〉B.

It is the linearity of quantum states that opens up the possibility to realize speed-ups

using quantum computation, and it is entanglement that makes quantum error correction

possible.

2.1.1.1 Distinguishability of Quantum States

As framed by the axioms of quantum mechanics, the fundamental difference between

classical and quantum information lies in the linear structure of the quantum state space.

This is what gives rise to the two signature qualities of quantum states, namely interference

and entanglement. It also leads to the question “how does one distinguish between two

quantum states?”

The notion of distiguishability is central to information theory, and so we must give it

a proper meaning within the context of quantum mechanics. For our purposes, we will

take the following perspective: If two quantum states are distinguishable then they must be

orthogonal.

In the physical context, we consider two states |ψ〉 and |φ〉 to be distinguishable if there

exists an observable, Ô, such that

Ô |ψ〉 = λ1 |ψ〉 and Ô |φ〉 = λ2 |φ〉 with λ1 6= λ2.

This condition implies the existence of a measurement that will distinguish with certainty

between the two possible states. Note that this does not mean that any measurement will

distinguish the two states, rather the measurement distiguishing the states is special to

some extent.

As an example, consider the two states

|+〉 = |0〉+ |1〉√
2

|−〉 = |0〉 − |1〉√
2

.

Suppose we prepared one qubit in the state |+〉 and another in the state |−〉. We then

measure the observable σz for each qubit. With probability, p = 1/2, each qubit will
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return the same value, which would suggest they are in the same state. However, with

the same probability, each qubit will return opposite values, suggesting that they are in

different states. Note that neither state is an eigenstate of σz, so that the measurements of

the observable lead to a probability distribution of possible values. In fact, both states will

give identical probability distributions for the outcomes of the σz measurement, although

even if they had different probability distributions, obtaining the statistics to probe these

distributions would require using many qubits, all identically prepared in the same state.

For our purposes, we will be more interested in procedures that can be performed with a

single copy of a state.

If we pivot to the observable σx, we will find that |+〉 always returns the value +1 while

|−〉 always returns the value −1. This means that σx is a suitable witness to distinguish

the two states, while σz is not.

What we should take away from this is that while two states may not be distinguished

by all observables, there may be some that do distinguish them. Requiring that they

are distinguishable in this sense means that they must both be eigenstates of the same

observable, but with different eigenvalues.

The relevant statement from the information-theoretic perspective is the following:

Two quantum states are in principle distinguishable if and only if they are orthogonal

This should be contrasted with the physical perspective that

if two quantum states are distinguishable, they must be orthogonal. However, orthogonality does

not guarantee distinguishability.

It may be the case that two states are orthogonal in the Hilbert space of a system, but that

there is not any physical observable or procedure that distinguishes them. For instance,

if we consider the spin states of the electron in a helium-4 ion (the nucleus has spin-0),

then based on their energies we would not be able to distinguish the two states as they are

degenerate. However, if we put the atom into a magnetic field, the Zeeman splitting will

then “break the degeneracy” and render the two states distinguishable.
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It will also be valuable to consider this from the perspective of fault-tolerant quantum

processing, where we may not have a robust protocol that can distinguish the two states.

Maybe what we do have is a noisy operation that distinguishes them; however, this may

not be a reliable method, which clouds there distinguishability.

To recap, we have two notions of the distinguishability of two quantum states:

• There is the notion of “in principle” (or mathematical) distinguishability, in the sense

of the Hilbert space and being able to realize any observable we can imagine (for in-

stance we can always construct Ô = |ψ〉 〈ψ| − |φ〉 〈φ|, which will always distinguish

orthogonal states).

• In contrast, we can make the stronger statement of “in practice” distinguishability,

which demands that there is some physical operator that recognizes them as distinct

with certainty.

In either case, orthogonality of the two states is necessary.

We should note that in either case, an overall, global phase factor will not have any

effect on distinguishability. That is |ψ〉 and eiα |ψ〉, with α ∈ R, should still be considered

identical states.

2.1.1.2 Quantum Circuit Model of Computation

The quantum circuit model of computation can be thought of as a modular strategy

for describing the transformations of a composite quantum system, potentially containing

many pieces. To each wire, we associate a single quantum system, and each pair of wires

represent a tensor product of such systems. We then describe unitary transformations

acting on the system in terms of quantum gates acting on some subset of these wires, see for

example Figure 2.1.

If only one wire enters and exits the gate, then it describes the transformation of a single

subsystem as if it were isolated from the rest of the system. If multiple wires enter and exit

the gate then it describes the interaction of different subsystems.

We represent a measurement with a meter box that may have double lines emanating

from it. These double lines represent the transmission of classical information from one

part of the system to another.
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|ψ0〉

Figure 2.1: A generic quantum circuit

The quantum circuit model of computation can be boiled down to the following essen-

tial components:

1) A system of N qubits (or qudits), or more generally a Hilbert subspace of some larger

system, that is protected from errors and isomorphic to the N qubit Hilbert space.

2) A procedure to prepare the state |00...0〉.

3) The ability to reliably perform a universal quantum gate set.

4) The measurement of states in the computational basis, that is, the set of states that

are classically observable.

Given that the unitary (i.e., inner product preserving) transformations of a particular

Hilbert space constitute a continuum of possibilities, we cannot possibly represent them

using a finite number of primitive quantum gates only acting on certain collections of

subsystems. Rather, the best we can hope for is to approximate a given unitary in terms of

a finite collection of gates, acting on a finite number of subsystems at a time. Remarkably,

the Solovay-Kiteav theorem [59, 135] states that given a finite set of single-qubit gates having

an image that is dense in SU (2), then that set fills SU (2) quickly. Here SU(2) is the group

of unitary transformations with unit determinant acting on the single qubit Hilbert space.

This result can be extended to SU(2N), the space of unitary transformations with unit

determinant acting on an N-qubit Hilbert space.
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This means that it is possible to approximate a desired transformation efficiently on the

N-qubit Hilbert space, and the proof can be framed as an algorithm, or quantum compiler,

for breaking down the transformation [59, 162]. Thus, the task is to determine what unitary

transformations can be used to compute functions of interest, which is certainly nontrivial.

Such a transformation is often built out of many pieces that may or may not be in a given

experimentally realizable gate set, so it must then be compiled in terms of the limited gate

sets that can be experimentally performed reliably, and this is where the computational

cost of computation can start to grow out of hand, adding a significant wrinkle to the

design of quantum algorithms.

2.2 Quantum error correction primer
It is generally assumed, especially within the quantum circuit model, that errors act

locally, that is they are single-qubit operators, and that errors acting on different qubits are

not correlated. Due to the locality assumption, it is sufficient to restrict our attention to the

correction of errors that are single-qubit Pauli operators.

Given these assumptions, the landmark observation that paved the way for quantum

error correcting codes was that if we want to protect quantum information from local

errors, then we should encode that information in nonlocal degrees of freedom [179, 182],

that is in the quantum correlations of many qubits. But what does it mean to distribute

information nonlocally?

2.2.1 Local Versus Nonlocal Data/Entanglement

Suppose that we wrote down a message on a piece of paper then cut it into two pieces.

We give one piece to, let us say Alice, and the other to Bob. In order to understand the full

message, Alice and Bob must come together and combine their pieces of paper to read the

full message. However, that is not the only way for them to decipher what was written on

the full piece of paper. If it was hot out, or they just did not feel like leaving their respective

offices,1 then one of them could just call (or text) the other and communicate what was on

their piece of paper. Through this communication they could decipher the message that

was written on the full piece of paper.

1or homes...but what is the difference?
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Now there is nothing strange about what we just described and that is because the

paper the message was written on was some normal, good-old classical paper. Suppose

instead the same scenario was played out, except that they used a piece of quantum paper.

In this case, after the pieces of quantum paper have been distributed to Alice and Bob,

when they try to read their respective pieces of the message they see only jabberwocky.1

This means when they try to communicate what their respective pieces of the message

say, they come up with something unitelligible. If they want to determine what was

initially written on the quantum paper, they must meet in person2 and bring their pieces of

quantum paper together, at which point the original message mysteriously emerges. What

was so special about this quantum paper that led to this nonintuitive phenomenon? The

answer is a uniquely quantum effect called entanglement [26, 75, 176, 177].

Entanglement is a consequence of the fourth axiom of quantum mechanics, which

states that the proper state space for a composite quantum system is the tensor product

of the Hilbert spaces for the individual subsystems. This axiom is needed to extend the

linearity of the pieces to linearity of the whole, but it also has the fascinating consequence

where states for the composite system cannot be decomposed into a simple tensor product

of states for the subsystems. We will now give a more precise mathematical treatment of

the phenomena we just described.

The simplest system in which the phenomenon of entanglement can be observed is that

of two qubits (recall the single (2.2) and two-qubit (??) Hilbert spaces introduced earlier).

In this framing of the situation, the classical piece of paper corresponds to encoding a

two-bit message in the state of the two qubits. We then give one qubit to Alice and the other

to Bob. They could then measure their respective qubits in their own labs to determine its

state, either |0〉 or |1〉. Then by classically communicating with each other, they can infer

the two-bit message.

What about that fancy quantum paper?

There is another basis for the two qubit Hilbert space, known as the Bell basis

H2−qubits = spanC{|even+〉 , |even−〉 , |odd+〉 , |odd−〉},

1nonsense

2or use some other quantum protocol, such as teleportation
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where the Bell states are defined as

|even±〉 =
|00〉 ± |11〉√

2
|odd±〉 =

|01〉 ± |10〉√
2

.

What is special about these states is that they cannot be written as |a〉 ⊗ |b〉 for any states

|a〉 , |b〉 ∈ Hqubit.

Suppose now we encode our two-bit message not as before, but as even or odd (the

parity bit) and plus or minus (the phase bit), corresponding to the preparation of one of the

Bell states. One qubit is then given to each party.

In an effort to determine the parity bit, Alice and Bob measure the state of their respec-

tive qubits in their own labs, each obtaining either |0〉 or |1〉. They can now communicate

with one another to determine whether their results matched, implying even parity, or

their results do not match, implying odd parity. Let us assume for concreteness, that they

each determined their qubit to be in the state |0〉, so that after conferring they conclude

that the first bit of the message was “even.” This in and of itself is not that strange; the

weirdness lies in what follows.

Having determined the parity bit of their states, Alice and Bob now turn their attention

to the phase bit, but something is not quite right. The question of the phase bit seems to

have lost its meaning.

You see, the measurements Alice and Bob made to determine the parity bit left the two

qubits in the state |00〉. That state is a simultaneous eigenstate of the commuting operators

σz ⊗ 1 and 1⊗ σz. In fact, the eigenstates of these operators are exactly the computational

states, NOT the Bell states! By doing a little algebra, we see that |00〉 can be written in the

Bell basis as

|00〉 = |even+〉 − |even−〉√
2

which tells us that there is a 50% chance that the phase bit is +, and a 50% chance that

it is −. While Alice and Bob will have certainty about the first bit of the message, even

versus odd parity, the information of the phase bit will have been completely lost.1 Their

strategy, using local measurements to determine the encoded two-bit message, was only

able to extract one bit of information.

1This would be analogous to losing one of the pieces of paper in the classical scenario.
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One might claim that Alice and Bob did learn two bits of information, since they know

that the state of the two qubits is |00〉. The point is, what Alice and Bob found was not

the information originally encoded in the state.1 They were given a message in the form

of (even,plus), so the answer (0,0) is nonsensical.

What can we take away from this little thought experiment? For one, this illustrates

that measuring local observables will collapse an entangled state, leading to the loss of

part of the nonlocally encoded data. This loss of information highlights the importance of

dealing with mutually commuting observables. In particular, the Bell states are eigenstates of

the observables σz ⊗ σz and σx ⊗ σx. While the local measurements of σz ⊗ 1 and 1⊗ σz

commute with σz ⊗ σz, they do not commute with σx ⊗ σx. This translates to the fact that

they were able to deduce the value of σz ⊗ σz with their local measurements, but not that

of σx ⊗ σx. On the other hand, if they had instead measured σx ⊗ 1 and 1⊗ σx, they would

have been able to deduce the phase bit, but left to blindly guess the parity bit.

This scenario does bring up one important question...how do Alice and Bob extract the

information that has been encoded nonlocally? The key is that they must come together

and allow their qubits to interact, for instance with the quantum circuit in Figure 2.2.

This circuit maps the Bell states to the computational states so that the first bit of the

computational state corresponds to the parity of the Bell state and the second bit to the

state’s phase. One can think of this circuit as a protocol that takes nonlocal data and

transforms it into a suitable local form that can then be measured and interpretted.

It should be noted that this measurement will decode the message, but it has the side-

effect that the initial two-qubit state is changed, ultimately ending up as a computational

basis state. Since the initial quantum superposition is collapsed into a computational basis

state, we call such a protocol a destructive measurement.

1Beware the substitution heuristic!

Alice

Bob • H

Figure 2.2: A circuit for measuring states in the Bell basis. Here H denotes the Hadamard
gate, written in the computational basis as H = 1√

2

(
1 1
1 −1

)
.
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There is another way to extract this information without disturbing the state’s delicate

superposition, a so-called nondestructive measurement. In order to extract the nonlocal

information nondestructively, Alice and Bob need a system in which this information can

be recorded and then observed. It will suffice for them to employ one extra qubit, or ancilla,

which they know to be in the state |0〉 (our tabula rasa). They will carefully let the ancilla

interact with their two qubits as depicted in Figure 2.3a. At the end of the circuit, if the

state of the ancilla is measured to be |0〉, then they know that the state of the two qubits

has even parity, that is |ψ〉 ∈ spanC{|00〉 , |11〉}. If instead the ancilla is measured to be in

the state |1〉 then they know that their state has odd parity, |ψ〉 ∈ spanC{|01〉 , |10〉}.

After determining the parity bit, they still have no idea what the phase bit is. Luckily,

the state has not been destroyed by the previous measurement so they can run it through

an additional circuit with another initialized ancilla, as in Figure 2.3b. At the end of this

circuit, if the ancilla is measured to be in the state |0〉 they infer that their state has positive

phase, and if it is |1〉 they infer that their state has negative phase.

Note that Alice and Bob are able to verify the state of their two qubits without disturb-

ing the state itself. This is crucial if they would like to subsequently use their entangled

state as a resource for a quantum computation or a quantum communication protocol such

as teleportation.

One last point is that if one wishes to prepare one of these Bell states, they can do so by

reversing the measurement circuit in Figure 2.2, and passing a state in the computational

basis through it, as shown in Figure 2.4.

•

(a)

•
•

|0〉
(b)

H • H

H • H

|0〉
(c)

Figure 2.3: Circuits for (a) the CNOT gate, written in the computational basis as CNOT =(
1 0
0 0

)
⊗
(

1 0
0 1

)
+
(

0 0
0 1

)
⊗
(

0 1
1 0

)
, and for nondestructive measurement of the (b) parity bit

and (c) phase bit.
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|i〉

|j〉 H •

Figure 2.4: Circuit for preparing a Bell state given a computational basis state as input.

2.2.2 A Simple Quantum Code

Now that we have some understanding of the notions of local and nonlocal informa-

tion, we can construct a quantum error correcting code. To do this, we will actually start

with a classical code and see what problems may arise in trying to apply its principles to a

quantum system.

Perhaps the most ubiquitous classical code is the repetition code. For messages encoded

in bits, the type of error we are primarily concerned with is a bit-flip, which switches a zero

to a one and vice versa. To protect our data from this type of error, we can use a string of

three bits to encode a single logical bit, defining

0̄ = 000 1̄ = 111.

After exposing our message to a possible error, we decode our message via majority voting.

This means that even if one of the bits happens to get flipped, we can still recover the

original message. Majority voting associates all of the possible three bit strings with a

logical bit as

{000, 001, 010, 100} 7→ 0̄ {111, 011, 101, 110} 7→ 1̄.

It is worth noting that the two sets of strings that are associated to the logical bits are

disjoint. This is crucial in having a well-defined decoding procedure.

With this new encoding in place, two bits would have to be flipped in order to corrupt

the message. Should two bits flip, the decoding algorithm will associate the damaged

bitstring to the incorrect logical bit. If the probability that one of the bits flips is ε < 1/2,

then the probability of corruption is on the order of ε2. This means that we have improved

the reliability of our communication channel at the cost of some extra bits and the time to

decode.

This classical code has some obstacles we must address before we can cast it into a

suitable quantum code. First of all, we are trying to protect the state of a qubit, which

is generically a superposition of the states |0〉 and |1〉. However, in quantum mechanics,
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there is the “no-cloning theorem” [65, 124], which states there is no protocol that can take

an arbitrary qubit state and perfectly produce multiple copies of it. Using a fixed “cloning”

procedure,1 we cannot take a generic quantum state |ψ〉 and produce the state |ψ〉 ⊗ |ψ〉 ⊗

|ψ〉with perfect fidelity. However, we can duplicate with perfect fidelity a fixed set of basis

states (basis states correspond to “classical states”, i.e., no superpositions). If we choose

the computational basis, then we can can define the protocol (represented by the circuit in

Figure 2.5) that acts on the basis states as

|0〉 7→ |000〉 |1〉 7→ |111〉

and for a generic quantum state has the effect

α |0〉+ β |1〉 7→ α |000〉+ β |111〉 .

While we have not duplicated the quantum information, we have spread it out into a larger

system, that is, we encoded it nonlocally.

Now that we have addressed the proper manner to encode our quantum information,

we need to address the decoding procedure. Classically, we could just ask what the value

of each bit was and take the majority vote to see which logical bit is most likely. This will

not work for a quantum system, since measuring each qubit individually would project the

state into one of the computational states, ruining the superposition. Instead of asking each

qubit its state individually, we have to be more clever. What we really want to know is if

the state is inHcode = spanC{|000〉 , |111〉} orH⊥code = spanC{|001〉 , |010〉 , |011〉 , |101〉 , |110〉}.

To determine this, instead of asking each qubit its state, we will ask qubits 1 and 2 if they

agree, and ask qubits 2 and 3 if they agree. If the answer to both questions are in the

affirmative, then we know that we are still in the codespace. If one or both of the answers

is “no,” then we know that an error has occurred. Table 2.1 summarizes the possible

outcomes, called error syndromes, and the resulting error diagnoses.

1Strictly speaking, we can define a cloning procedure for any fixed orthonormal basis.

α |0〉+ β |1〉 • •
|0〉 α |000〉+ β |111〉

|0〉


Figure 2.5: Circuit that encodes a state for the three-qubit code.
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Table 2.1: Table summarizing the possible syndromes and their corresponding error
diagnoses

σz ⊗ σz ⊗ 1 1⊗ σz ⊗ σz Diagnosis
1 1 No error
1 -1 qubit 3 flipped
-1 1 qubit 1 flipped
-1 -1 qubit 2 flipped

After diagnosing the error, we can recover the original state by flipping the appropriate

qubit with σx. Just as in the case with the classical repetition code, this three-qubit quantum

code will fail if two or more qubits underwent a bit-flip error. We have thus improved our

error rate from O(ε) to O(ε2).

It should also be noted that this procedure allows us to correct more general errors

than just a single bitflip acting on one qubit. Instead we could imagine a process that led

to a large superposition that included a state where just the first qubit was flipped, a state

where just the second qubit was flipped, and a state where just the third qubit was flipped.

This would be represented by a unitary error of the form

U = 1 + i(ε11⊗ 1⊗ σx + ε21⊗ σx ⊗ 1 + ε3σx ⊗ 1⊗ 1) 0 ≤ εi << 1 ∀i. (2.5)

The key point is that the measurements we make to diagnose the error forces the state into

one where a specific qubit was flipped (i.e., a particular local error occurred). This shows

how even though there is a continuum of possible unitary errors, the measurement of the

syndromes “discretizes” the errors, leaving us with a state with a definite error that can be

corrected.

Before we finish with this three-qubit code, we should point out how one may manip-

ulate the encoded data. In this case, the operator X̄ = σx
1 ⊗ σx

2 ⊗ σx
3 acts as the logical bitflip,

mapping |000〉 ↔ |111〉. This operator commutes with all of the syndrome measurements,

so it maps an encoded state to another encoded state.

Note that if two qubits of an encoded state undergo a bitflip, then following the pre-

scription of Table 2.1, we would perform a bitflip on the third qubit. In such a scenario, the

net result of the error plus the error recovery procedure would realize a logical bitflip of

the encoded data. The reason for this is that an error recovery procedure takes a damaged

state and maps it to an encoded state, with the hope that it is the same as the encoded
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state before the error occurred. It is possible that distinct errors may lead to the same

syndrome. For example, the errors σx
1 ⊗ σx

2 ⊗ 13 and 11 ⊗ 12 ⊗ σx
3 both produce the same

syndrome. For this code, the particular recovery procedure we prescribe for the syndrome

relies on the assumption that the most likely error producing that syndrome occured, so if

a less likely error occurred, the recovery procedure can map the damaged state back to a

different encoded state than we started with. If this is the case, the original encoded state

will be mapped to another encoded state, that is, a logical operation has been performed

on the encoded state.

There is one issue with this primitive quantum code, it does not protect the data from

phase errors. In particular, if we were to define the orthogonal quantum states

|+〉 = |000〉+ |111〉√
2

|−〉 = |000〉 − |111〉√
2

(2.6)

then an error that acts on a single qubit with a σz will map these states into one another.

Therefore, our quantum version of the repetition code is still just a classical code, and it

does not preserve superpositions.

To further protect our data from the possibility of phase errors, we can use the coding

concept of concatenation. Namely, we will encode three qubits each with three qubits [179].

∣∣0〉 = 1
23/2 (|000〉+ |111〉)⊗3 ∣∣1〉 = 1

23/2 (|000〉 − |111〉)⊗3 (2.7)

In order to diagnose the errors in this code, we use the same idea as before to measure

the parity of the states |000〉 and |111〉 within each three-qubit block. We additionally

check that each pair of blocks have the same phase, which can be done by measuring the

operators σx
1 σx

2 σx
3 σx

4 σx
5 σz

6 and σx
4 σx

5 σx
6 σx

7 σx
8 σz

9 [179].

With this new encoding for our qubit state, a bitflip error will only occur if there is more

than one bitflip within the same block, or if there is a single phase error in more than one

block.

The logical bitflip operator, X, for this code maps the encoded 0 and 1 into one another.

By inspecting the codewords, we see that this operator should flip the phase within each

three-qubit block, which would be the effect of the operator

X = σz
1 σz

4 σz
7 .
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Note that, in fact, any product of three σz operators, one from each block, would also have

the same effect. When there is more than one operator that has the same effect on the

logical states, we say that they are equivalent logical operators.

Similarly, we can change the phase of a state written as |ψ〉 = α
∣∣0〉+ β

∣∣1〉 through use

of the operator

Z = σx
1 σx

2 σx
3

or any other product of three σx’s acting within the same code block.

To summarize, we started with a classical error-correcting code, the repetition code,

and elevated it to a quantum error-correcting code by addressing these three issues:

1. The no-cloning theorem in quantum mechanics does not allow us to copy an ar-

bitrary quantum state multiple times. The solution is to encode the information

nonlocally, that is, distribute it across the degrees of freedom of a larger Hilbert space.

2. Measurement of the individual qubits leads to a collapse of the quantum superposi-

tion. We got around this issue by changing the questions asked to extract a syndrome

from our quantum state.

3. Realistic noise models for qubits include errors beyond the bitflip. By utilizing a

second layer of coding, we could protect the quantum state from single-qubit phase

errors in addition to the bitflip.

2.2.3 Conditions for Quantum Error Correction

We now present the necessary and sufficient conditions for the existence of an error re-

covery procedure. These should be viewed as conditions constraining both the codespace,

Hcode, and the set of errors we aim to correct, E . The basic principles underlying the

conditions for the existence of an error recovery procedure are [27, 136]:

(1) Errors must maintain the distinguishability of codewords as well as act on them in a

generic fashion. In other words, errors are linear operators, in particular they must

preserve superpositions, i.e., quantum information.

(2) Distinct errors must map the codespace to distinguishable (i.e., orthogonal) sub-

spaces of the physical subspaceH⊗n
qubit.
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Suppose that our orthonormal codewords1 are given by {|ψ1〉 , |ψ2〉 , ..., |ψk〉} and that

we wish to protect them from the set of errors E = {E1, E2, ..., Er}. How could we deter-

mine whether or not this was even possible?

Let us first consider the action of a single error, say Ea, on the codewords. By applying

our first principle, that the codewords should remain orthogonal under the action of an

error, we arrive at the condition

Ea |ψi〉 ⊥ Ea
∣∣ψj
〉
⇒

〈
ψj
∣∣E†

a Ea
∣∣ψi
〉
= Caaδi,j, (2.8)

where Caa can be some (irrelevant) overall phase that is independent of i and j. It is impor-

tant that Caa is independent of i and j, otherwise its value would reveal some information

about the encoded data2.

Another way to interpret condition (2.8) is to think of E†
a as the recovery operator for

the error Ea. Then E†
a Ea should take an encoded state back to itself, with no component

along any other direction.

Next, we compare how two distinct errors, Ea and Eb, act on the same codeword.

Appealing to our second principle, we need the states resulting from the actions of Ea

and Eb to be distinguishable, that is

Ea |ψi〉 ⊥ Eb |ψi〉 ⇒ 〈ψi|E†
a Eb|ψi〉 ∝ δa,b. (2.9)

This means that when different errors act on the same state, the resulting states can be

distinguished, and we can therefore choose the appropriate recovery operator.

The two conditions (2.8) and (2.9) are often wrapped-up into the concise statement

〈
ψj
∣∣E†

a Eb
∣∣ψi
〉
= Cabδi,j. (2.10)

One subtlety that should be addressed is that these conditions are appropriate for a

nondegenerate code, which is a code such that different errors have different effects on the

codespace. Shor’s nine-qubit code that we previously introduced was a degenerate code,

1i.e., orthonormal basis of the encoded Hilbert space

2Essentially, the error must treat the codewords in a nondiscriminatory manner, so that the error itself
does not reveal any information about the encoded data. We could also say that such errors would damage
the quantum information, because if the Caa were different for distinct values of i, then the error acting on a
superposition of |i〉’s will change the state.
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which is a code such that some errors have the same effect on the codespace. This can

be seen, for instance, by comparing the effect of the single-qubit errors σz
1 and σz

2 on the

encoded states in equation (2.7). The string-net surface code that we will later introduce is

also a type of degenerate code, as are all stabilizer codes.

Given these considerations, we define equivalent errors as errors that have an identical

effect on all codewords.1 The equivalence class of an error Ea is the collection of all errors

that are equivalent to it:

[Ea] := {Eb| Eb |ψ〉 = Ea |ψ〉 , ∀ |ψ〉 ∈ Hcode}. (2.11)

This definition implies that equivalent errors have identical recovery procedures, that is, to

correct an error from the equivalence class [Ea] one can use an operator E†
b for any Eb ∈ [Ea].

With this modification, we say that the condition (2.10) must hold for any errors, Ea and

Eb, that are not equivalent. In the future when we speak of an error Ea, it can be implicitly

assumed that we are referring to the equivalence class of errors [Ea] when applicable.

It is insightful to phrase the conditions for error correction from the perspective of

Hilbert subspaces. To these ends, we define the error subspace, Ha, as the image of the

codespace under the error Ea

Ha := Ea[Hcode]. (2.12)

Since each error Ea has its own distinct recovery operation E†
a , we need the subspaces Ha

to be orthogonal to one another so that we can prescribe a unique recovery operation to be

performed. This means we must have

Ha ∩Hb = {~0} for a 6= b (2.13)

so that taking a direct sum of the error subspaces makes sense. The sum of all these

subspaces must still lie in the Hilbert space of the physical system we are using to encode

the data ⊕
a
Ha ⊆ H⊗n

qubit. (2.14)

Given this decomposition of the Hilbert space, we can understand the procedure of

syndrome measurement as a projection of the state onto one of the subspaces Ha. The

1Note that this equivalence is different than the previously discussed notion of errors with the same
syndrome. In particular, equivalent errors always have the same syndrome; however, errors with the same
syndrome are not necessarily equivalent.
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question we are asking during the error diagnosis is “what error subspace is the state in?”

that reveals nothing about the particular superposition of the encoded state.

This perspective makes it straightforward to understand the discretization of errors in a

general sense (as opposed to just for the single qubit errors discussed previously). Suppose

that our quantum code can correct errors from the set E = {Ea}. We then define a generic

error to be a linear combination of errors from E

E = ∑
a

caEa , with ca ∈ C. (2.15)

When a qubit is acted on by this error, or in other words subjected to the quantum channel

E, the resulting (unnormalized) state is

E |ψ〉 = ∑
a

ca(Ea |ψ〉). (2.16)

After our state has been passed through the quantum channel, we can perform a syn-

drome measurement to see if an error occurred. Enter the quantum magic. Upon measure-

ment of the syndrome a, the state E |ψ〉 is projected onto exactly one of the subspaces Ha.

Even though the state had decohered into possibly many syndrome subspaces, measure-

ment of the syndrome not only leaves us with the state Ea |ψ〉, which lies entirely in one

subspace, but it will also tell us which subspace, allowing us to recover the original state!

We summarize the error-correction conditions with the statement that correctable er-

rors must preserve the orthogonality of the codespace, and inequivalent errors map the

codespace to orthogonal subspaces. A fortuitous consequence of these conditions is the

discretization of errors; if we can correct a discrete set of errors, we will automatically be

able to correct the continuum of all linear combinations of such errors.

2.3 Stabilizer codes
We will now proceed with our goal for quantum error-correction being reformulated as

a search for decompositions of the physical Hilbert space into orthogonal subspaces. One

way to achieve our goal is to use a concept familiar to physicists, that of mutually com-

muting operators, otherwise known as “good quantum numbers.” The resulting family of

quantum codes, called stabilizer codes, were introduced by Gottesman [95, 96].

When a set of operators {M1, M2, ..., Ml}mutually commute, that is Mi Mj = Mj Mi for

all i and j, we say the operators are simultaneously diagnolizable. Under these circum-
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stances, we can define a basis of the Hilbert space in terms of states |λ1, λ2, ..., λl〉, labeled

by their eigenvalues under the action of the various Mi

Mi |λ1, λ2, ..., λl〉 = λi |λ1, λ2, ..., λl〉 ∀ Mi ∈ {M1, M2, ..., Ml}.

In the event that the corresponding eigenspaces are degenerate, we should include an

additional parameter to label an orthonormal basis within each degenerate eigenspace.

The existence of a set of mutually commuting operators leads to the following decom-

position of the physical Hilbert space

Hphys =
⊕

λ1,λ2,...,λl

H(λ1,λ2,...,λl), (2.17)

where

Mi |ψ〉 = λi |ψ〉 ∀ |ψ〉 ∈ H(λ1,λ2,...,λl) and Mi ∈ {M1, M2, ..., Ml}. (2.18)

For stabilizer codes we assume that our physical system consists of n qubits, so our physi-

cal Hilbert space is

Hphys = [Hqubit]
⊗n. (2.19)

2.3.1 The Stabilizer Codespace

We will approach the task of finding a set of mutually commuting operators by using

group theory. In particular, a set of commuting operators can be constructed by defining

a representation of some Abelian group on the physical Hilbert space. For a system of n

qubits, a natural place to begin our search is in the n-qubit Pauli group1

Pn := {±1,±X,±Y,±Z}⊗n,

where

Y := iσy =

[
0 1
−1 0

]
.

Pn is not an Abelian group; however, it does have the following properties:

• For each element, P ∈ Pn, P2 = ±1. If P2 = +1 then P is Hermitian. If P2 = −1 then

P is anti-Hermitian.

1Strictly speaking, we are using the 2n dimensional, unitary representation of the n-qubit Pauli group [170].
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• For every pair of elements P1, P2 ∈ Pn, they either commute, P1P2 = P2P1, or they

anticommute P1P2 = −P2P1.

• Elements of Pn are unitary matrices acting on [Hqubit]
⊗n.

In order to realize the desired structure (2.17) on our Hilbert space, we want to find an

Abelian subgroup, S ⊂ Pn, such that all of its elements are Hermitian. The requirement

of Hermiticity ensures that the group elements are observables, so that in principle we

can measure the eigenvalues of any group element, which then allows us to identify the

subspaces in (2.17).

In order to construct such a subgroup, known as a stabilizer group, it suffices to choose

a set of suitable operators from Pn, say {S1, S2, ..., Sl}, that all commute and are indepen-

dent.1 The group generated by these operators is a stabilizer group

S =< S1, S2, ..., Sl > . (2.20)

The stabilizer codespace associated to S is defined to be the simultaneous +1 eigenspace of

all the stabilizer generators, or equivalently, the Hilbert subspace fixed by the action of the

stabilizer group

HS := {|ψ〉 ∈ Hphys | S |ψ〉 = |ψ〉 , ∀ S ∈ S}. (2.21)

It should be noted that each element of the stabilizer, with the exception of the unit matrix,

has two eigenvalues, ±1, each occuring with equal degeneracy. This implies that each

stabilizer constraint divides the physical Hilbert space in half. Thus, given a system of n

qubits subject to the constraints of the stabilizer group S =< S1, S2, ..., Sl >, the codespace

HS has dimension 2n−l , implying that we have k = n− l encoded qubits in the stabilizer

codespace.

Note that within the convention of the previous equation, the stabilizer leads to a

decomposition of the Hilbert space

Hphys =
⊕

λi=±1

H(λ1,...,λn−k), (2.22)

where λi refers to the eigenvalue of each stabilizer generator

H(λ1,...,λn−k) = {|ψ〉 ∈ Hphys | Si |ψ〉 = λi |ψ〉 for i = 1, 2, ..., n− k}.

1Independent in the sense that no Si can be written as a product of the other Sjs.
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In this notation, the stabilizer codespace is expressed asHS = H(+1,+1,...,+1).

2.3.2 Error Detection and Correction

Given the nice description of our physical Hilbert space in (2.22), we should now ask

which sets of errors can such a decomposition detect and correct? To fully leverage this

decomposition, we want an error to map the codespace to a different subspace wherein

the eigenvalue of at least one of the stabilizer generators is −1. This occurs when an error

operator anticommutes with at least one of the stabilizer generators

{Si, E} = 0 ⇒ Si(E |ψ〉) = −E(Si |ψ〉) = −E |ψ〉 .

This observation leads to a correspondence between the set of stabilizer generators that

anticommute with a given error operator and the label of the error subspace in (2.22)

E[HS ] = Hλ(E), (2.23)

where λ(E) is the syndrome of error E defined as

λ(E) := (λ1, λ2, ..., λn−k) where λi = −1⇔ {E, Si} = 0. (2.24)

We will say that an error is detectable if it anticommutes with at least one generator of

the stabilizer group, or equivalently, it has a nontrivial syndrome

λ(E) 6= (+1,+1, ...,+1). (2.25)

Taking into account the conditions for error correction, in particular for inequivalent errors,

we arrive at the condition

〈ψ|E†
a Eb|ψ〉 = 0 ∀ |ψ〉 ∈ HS . (2.26)

This equation will be satisfied if |ψ〉 and E†
a Eb |ψ〉 are in orthogonal subspaces, which will

be the case if E†
a Eb is a detectable error, i.e., it anticommutes with at least one stabilizer

generator.

Recall that a property of the group Pn was that every pair of elements either commute

or anticommute. We have just established that detectable errors in Pn anticommute with

at least one generator of the stabilizer group S . This means that an undetectable error must
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commute with all of the stabilizer generators and therefore the entire stabilizer group. This

leads us to consider the centralizer of S in Pn:

CPn [S ] := {E ∈ Pn | [E, S] = 0 , ∀ S ∈ S}. (2.27)

Since S is Abelian, it is automatically in CPn [S ]; however, elements in S are “trivial errors”

in that they act trivially on the encoded data. On the other hand, errors in CPn [S ] \ S are

undetectable and act on the encoded data nontrivially. When implementing a stabilizer

code, we need the errors in CPn [S ] \ S to be highly unlikely in order for the code to be

effective. Given these considerations, define the distance of a stabilizer code as

d = min
P∈CPn [S ]\S

w(P) (2.28)

where w(P) is the weight of the operator P, namely the number of qubits on which it

acts nontrivially. The distance gives the minimum number of single qubit errors that

must occur in order for the syndrome to become trivial, that is, the cumulative error is

undetectable.

Being able to detect an error does not necessarily mean that we will be able to correct it.

For instance, suppose that two errors, Ea and Eb, have the same syndrome. The product,

E†
a Eb, will have a trivial syndrome (that is, syndromes follow a multiplicative structure).

This implies that E†
a Eb ∈ CPn [S ]. We then have two cases:

(1) E†
a Eb ∈ S , which implies that E†

a corrects the error Eb. This means that Ea and Eb are

equivalent errors.

(2) E†
a Eb ∈ CPn [S ] \ S , which together with equation (2.26) implies that attempting to

correct the error Eb with the operator E†
a will lead to a nontrivial manipulation of the

codespace. This is the case when Ea and Eb are inequivalent errors.

Now suppose that we are given a syndrome, our task is then to compute an error (using

a classical, “controlling” computer) with the same syndrome so that we can correct it.

One plan of attack, similar to that employed in our three-qubit code, is to find the error

with the minimum-weight that is consistent with the observed syndrome [80, 84, 135]. The

advantage of the minimum-weight heuristic is that there is an efficient (classical) algorithm

that implements it [73]. However, this heuristic is only accurate for low (physical qubit)

error rates.
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The ideal decoding is based on maximum-likelihood [62, 191], in which we do not look for

a single error with minimum-weight, rather, we consider the equivalence classes of errors

and seek the equivalence class with the greatest probability of producing the observed

syndrome. Unfortunately, there is no known algorithm to realize such a scheme exactly,

and the calculations of [62, 191] rely on Monte Carlo simulations.

For a special class of stabilizer codes, called topological codes (which includes the

string-net surface code), there are algorithms that employ ideas of renormalization to

speed up decoding for systems of qubits [43, 69, 71] and qudits [5, 70]. The recursive nature

and efficiency of these algorithms make them attractive, yet we emphasize they still do not

always find the most likely error equivalence class.

2.3.3 Manipulating Encoded Data in Stabilizer Codes

As noted in the previous section, elements in CPn [S ] \S act nontrivially on the codespace.

While from the perspective of protecting the data, the existence of such operators con-

strains the error sets that the stabilizer code can correct; if we look at this from the per-

spective of manipulating the data, these operators are essential and are known as logical

operators. Such is the ongoing struggle between the quantum memories and quantum

computers.

There is a standard form into which operators in CPn [S ] \ S can be brought, namely

{X1, Z1, ..., Xk, Zk}. These logical operators constitute a representation of the k-qubit Pauli

group supported on the 2k dimensional stabilizer subspaceHS , showing that we truly can

view the codespace as encoding a system of k qubits.

Now we expand our consideration beyond the n-qubit Pauli group and consider the

group of all unitary operators acting on the physical Hilbert space, U (2n). One subgroup

of U (2n) of particular interest is the n-qubit Clifford group, which is defined to be the nor-

malizer of the n-qubit Pauli group in U (2n):

Cn = NU (2n)[Pn] := {U ∈ U (2n) | UPU† ∈ Pn , ∀P ∈ Pn}. (2.29a)

One generating set for the n-qubit Clifford group consists of the CNOT, Hadamard (H),

and Phase1 (S) gates:

1Conforming to most conventions, we use S to denote the phase gate. We will not refer to this gate
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Cn =< CNOT, H, S >, (2.29b)

CNOT =
(

1 0
0 0

)
⊗
(

1 0
0 1

)
+
(

0 0
0 1

)
⊗
(

0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, S =

1√
2

(
1 0
0 i

)
. (2.29c)

Note that S2 = Z and HZH† = X, so those generators will yield the Pauli group, which is

a subgroup of the Clifford group.

The Clifford group is important for stabilizer codes because it is the set of operations

preserving the error sets1 that we consider in the stabilizer formalism, namely subsets of

the Pauli group. From (2.29), we see that the Clifford group effectively acts as permutations

on the Pauli group, which is what leads to this nice property.

The Gottesman-Knill theorem [96, 97] is a fundamental result regarding the computa-

tional power of stabilizer codes. It applies to quantum computations that utilize the fol-

lowing set of computational primitives:

• State preparation in the computational basis.

• Ancillas initialized in the state |0〉.

• Gates from the Clifford group.

• Measurements of observables in the Pauli group and adaptive (or postselected) quantum

protocols, that is, classical control based on the outcome of measurements.

The theorem then states that such a computation may be efficiently simulated on a classi-

cal computer. This is done by noting that errors that are Pauli operators map stabilizer

generators to generators of a new stabilizer group. For instance one can simply map

Si 7→ −Si, defining a new stabilizer group and associated code in a procedure known

as code deformation [33, 38, 62, 97, 172].

Based on the various groups that we have considered in this section, one may be left

to wonder, “where are the logical operators that realize universal quantum computation?”

The answer is the normalizer of the stabilizer group in the group U (2n). In particular, as

elsewhere, so it should not be confused with Si used for stabilizer generators, or S, which will be used for
the generalized Hadamard in later chapters.

1That these operations preserve the error sets, means that they do not map correctable errors into uncor-
rectable errors. Such operations are also called protected, which will be discussed in more detail later at the end
of the chapter.
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a corollary to the Gottesman-Knill theorem we see that any genuine “quantum speed-up”

realized using stabilizer codes must come from gates laying in NU (2n)[S ] \ NU (2n)[Pn].1

Therefore, what is the big deal? Why not just realize those operations? The problem

is that such encoded operations are not protected by the stabilizer code, in that they may

take a correctable error (from Pn) and turn it to an uncorrectable error (outside of Pn). This

means that any errors occuring during the application of an unprotected operation can

corrupt the computation.

We can circumvent the Gottesman-Knill theorem [96, 97] by simply including addi-

tional resources to the above list. One possibility, formulated by Bravyi and Kitaev [44],

is to include the preparation of logical ancillas in certain states that are not in the com-

putational basis. More specifically, states that are not stabilizer states: encoded states that

can be reached by starting with the state
∣∣0〉 and acting on it with the above mentioned

operations. They specify a certain set of states, known as magic states, which possess two

notable properties: (i) they can be used in conjunction with adaptive quantum protocols

to realize certain logic gates outside of the Clifford group, and (ii) they can be “purified”

using adaptive quantum protocols from many copies of a mixed state. With this addi-

tional resource, universal quantum computation is achievable using the stabilizer set-up

for error-correction.

2.3.4 Elements of Fault Tolerant Quantum Computation

The existence of quantum error correcting codes demonstrate that, in principle, an en-

coded quantum state can be protected from interactions with the environment. However,

we must now ask can we protect it from ourselves?

In order to answer this question, let us identify the instances in which we must interact

with the quantum system. For these purposes, it is helpful to look at the two functions

of our quantum system: the quantum memory, which preserves the state of our quantum

system, and the quantum computer, which manipulates that state.

We first consider the case of realizing a fault-tolerant quantum memory, for which

there are two schemes. Active error correction requires the user to frequently measure

and manipulate the quantum system in order to carry out error detection and correction,

1Since S ⊂ Pn, the normalizer of the Pauli group is more restrictive than that of the stabilizer group.
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respectively. In contrast, passive error correction relies on the properties of the physical

systems itself to maintain the coherence of the encoded data. Kitaev’s toric code [131] was

the first code of this kind, and it involves encoding data in the Hilbert space of anyonic

systems, which will be discussed in Chapter 3.

A basic consideration for fault-tolerance is that when a single qubit is afflicted with an

error, and that qubit subsequently interacts with other qubits, the error can spread. Recall

that our quantum error-correcting codes are designed to handle local errors, namely those

acting on a single qubit. Thus our goal is to “corral” the errors, preventing the spread of

local errors into nonlocal (i.e., uncorrectable) errors.

For the goal of a fault-tolerant, active quantum error correcting code, we will restrict

our attention to the case of stabilizer codes. Error detection requires nondestructive mea-

surements of the stabilizer generators. In particular, we want to effectively and reliably

transfer error syndromes from our system into an ancillary qubit called the measurement

ancilla. Such a procedure involves the interaction of the quantum system with the ancilla.

Since we must consider that this ancilla is itself subject to errors, we must make sure

that these errors do not propagate back to the quantum system in a form that cannot be

corrected. We consider two strategies for achieving this goal; we can either modify the

circuit used for measuring the stabilizer generators, or we can consider a special class of

stabilizer codes possessing some advantageous properties.

The modification of the measurement circuits was first introduced by Shor [180] and

further developed by Gottesman [98] and Shor and Divincenzo [67]. A given stabilizer

generator involves several qubits, which must all interact with the measurement ancilla in

order to extract the syndrome. This is problematic, since an error acting on the ancilla can

propagate to all of the physical qubits involved in the measurement, effectively creating

several errors in the quantum system. To remedy this, the measurement ancilla is itself

encoded in a multiqubit state. The measurement can then be made in a manner where

each ancillary qubit interacts with only one of the physical qubits, thereby narrowing the

extent to which a single error in the ancillary system can affect the physical system.

An alternative approach, introduced by Kitaev [130, 135], is the use of local check codes,

which are families of stabilizer codes with the following properties:



38

1. Each stabilizer generator1 involves a bounded number of qubits.

2. Each qubit is involved in a bounded number of stabilizer generators.

3. The family contains codes of arbitrarily large distance.

As a consequence, errors arising from the measurement of stabilizer generators in local

check codes are guaranteed to be local (i.e., correctable), implying that the basic measure-

ment procedure is inherently fault-tolerant.

These two methods for fault-tolerant measurement of stabilizer generators prevent

local errors from spreading into nonlocal errors. However, this does not mean that we

can trust the results of these measurement. On the other hand, recall that measurements

provide us with classical information. Therefore, by viewing the results of syndrome

measurements as coming from a noisy classical channel, we can interpret them by using

the techniques of classical information theory, for instance majority voting. This only

requires that we repeat the fault-tolerant syndrome measurement enough times that we

can confidently conclude what is actually the syndrome.

Turning our attention to the implementation of fault-tolerant encoded logic, we recall

that any unitary operation can be approximated through a sequence of single-qubit and

two-qubit gates. Since we would like to consider encoded unitaries, it is helpful to clarify

the correspondence between the physical qubits and the encoded qubits. Define a code

block to be a set of physical qubits that are connected through stabilizer generators. In

particular, for two distinct blocks, there is no stabilizer generator involving qubits from

both blocks. It is crucial that we limit the spread of errors within each block, since roughly

speaking, each block forms its own code.

Having established the notion of code blocks, let us first suppose that each block en-

codes one logical qubit. Since errors on isolated physical qubits are exacerbated through

the interaction with other physical qubits, a natural solution is the idea of a transversal en-

coded logic gate [96, 169], that is one that does not involve any interactions between physical

qubits within the same block. A transversal single-qubit logic gate would then consist of

a tensor product of single-qubit operators acting on physical qubits within a code block.

1also known as check operators
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For a transversal two-qubit logic gate, we would pair up physical qubits from each block,

and then act with tensor products of two-qubit operators acting on each pair.1 Note that

transversal logic gates are highly parallelizable and can be implemented in one time-step.

Now consider the case that each block encodes multiple logical qubits. This means

that in order to implement a two-qubit gate, we have no choice but to have physical

qubits in the same block interact. In parallel to the problem of fault-tolerant stabilizer

measurements, the alternative to modifying how our circuits are constructed is to consider

a more refined class of codes, namely topological stabilizer codes [35, 62, 172]. These are codes

in which the physical qubits can be arranged on some lattice in D dimensions in such a way

that all stabilizer generators are geometrically local, meaning that they only act on qubits

within a region with a radius2 bounded by some constant. Furthermore, these codes exist

in families, that similar to local check codes, contain codes of arbitrarily large distance.

For topological stabilizer codes, we define encoded gates known as topologically pro-

tected logic gates [45]. These are encoded gates realized by constant-depth circuits (meaning

they can be implemented in a constant number of time steps) comprised of geometrically

local Clifford gates. Due to the locality of these circuits in both space and time, the extent

to which a local error can spread due to the interactions of physical qubits within the same

block can be bounded by some constant. Therefore, such constant-depth circuits preserve

the set of local errors, implying that they are inherently fault-tolerant.

This concludes our discussion of quantum error correcting codes and fault-tolerant

quantum computation. While there is much more to this story, for instance the scope of

transversal [72] and topologically protected gates [45], we have said enough to place the

string-net surface code within the landscape of quantum error correcting codes. Namely,

the string-net surface code is a two-dimensional topological stabilizer code that has a

(nonuniversal) set of topologically protected logic gates. Moreover, it has a feature not

yet known to exist in other surface codes; namely the two-qubit logic gates corresponding

to the braiding of defects in the lattice are explicitly realized using only constant-depth

circuits involving geometrically local gates.

1While such a two-qubit logic gate may spread errors from block to block, they do not spread errors within
the same block.

2using, say, the graph metric



CHAPTER 3

ANYONS AND TOPOLOGICAL ENCODINGS

“Anyons, anyone?” -John Preskill [170]

“Yes, please!” -Me

In the previous chapter, we learned that an important concept for error correction

was the orthogonality of error subspaces and that errors maintain the orthogonality of

codewords. It was also argued that a reasonable assumption for quantum systems over

which we have experimental control is that the errors most likely to occur are local, and

that is only acting nontrivially on a subsystem of bounded size. Thus, it seems the most

prudent path towards realizing a quantum computer leads to the consideration of physical

systems whose Hilbert spaces1 admit a decomposition of the form

H =
⊕

k

Hk (3.1)

with the property that the subspaces Hk do not mix under local operations. In this case, a

state of the form

|Ψ〉 = ∑
k

ck |ψk〉 ck ∈ C, |ψk〉 ∈ Hk (3.2)

would be well protected from local errors. In effect, what we are doing is elevating the

collection of orthogonal basis to a collection of orthogonal Hilbert subspaces.2

But what kind of physical system would have these properties we desire? For one,

there should not be any long-ranged interactions between distant regions of the system.

1in particular, low-energy effective Hilbert spaces

2a “categorification” of the quantum state, see the page 7 footnote of [139]
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Such interactions are associated to gapless excitations, such as sound waves, which may

mix the sectors (which are only protected from short-ranged interactions). We can rule

out such possibilities by looking to physical systems exhibiting a gapped spectrum. In

particular, it should require a finite amount of energy to excite the system out of its ground

state.

In a system without any long-ranged interactions, how can we still realize any kind of

nontrivial transformations of the data that we have encoded nonlocally? Recall that from

our discussions in the previous chapter, regarding the balancing act of protecting encoded

data from errors while still leaving open means for physically implementing logical op-

erations. In this case, we have a system with no long-ranged interactions so we are left

with only local interactions, which by assumption do not mix the sectors of the theory.

However, (luckily?) local noise may indeed corrupt encoded data if a correlated “chain”

of local errors occur along a path connecting distant regions of the system. The probability

of such errors are suppressed exponentially by their length, so for systems at enough low

temperatures we will have reasonable confidence that our data is well protected. At the

same time, this means that there may yet be a path1 to realizing operations on the encoded

data.

Since we have ruled out any gapless excitations, all energy transitions in the system

must be finite. This in turn implies that any excitation must be localized; there can be

no kinetic energy, a continuous quantity. Thus all dynamical degrees of freedom are

“frozen out” so to speak, leaving the system to be completely described by its space of

configurations.

We will now look at the space of configurations more carefully to formalize the above

notions, adopting Wu’s model-independent formalism from [208].

Consider a system of n particles in (d + 1)-dimensional spacetime. A configuration of

the particles is a tuple of points in Rd, (~r1,~r2, ...,~rn), where each~ri represents the location

of one of the particles, and we impose that no two particles may be located at the same lo-

cation. The configuration space of the system, denotedMn, is the collection of all possible

configurations of the n particles and has the structure of a real manifold of dimension nd.

1intended as a double entendre
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Mn := {(~r1,~r2, ...,~rn)|~ri ∈ Rd, and ~ri 6=~rj for i 6= j}

To each configuration, we assign a Hilbert space to represent the space of states with

the given configuration. This is equivalent to defining a complex vector bundle overMn.

What we would like to do now is realize some type of manipulations on these Hilbert

spaces.

Suppose that we wish to alter the location of the jth particle just slightly. We can

accomplish this by acting with an operation (corresponding to one of the local errors) that

is supported in a small region around~rj. Such an operation will map~rj 7→ ~rj + δ~r, while

preserving the sector of Hilbert space in which the state lives.

We must keep in mind that there is a Hilbert space associated to each distict configura-

tion, so altering the configuration will in principle move us to a different, but isomorphic

Hilbert space. The issue is that there is no preferred way of comparing these Hilbert spaces

associated to different configurations of the particles. This is analagous to defining the

Berry phase of an adiabatic evolution of a Hamiltonian [28, 107, 181]. In particular, we can

make a canonical identification of the two Hilbert spaces so long as they correspond to

the same configuration. This means that if we traverse a closed path through configuration

space, so that the final configuration is identical to the initial one, we can then make sense

of the transformation on the Hilbert space.

We conclude that the operations that we can perform on the Hilbert space correspond-

ing to a fixed configuration are related to the closed paths in the space of all configurations.

Mathematically, the space of all closed paths in the (path-connected) manifold Mn is

captured by its fundamental group, denoted π1(Mn) [104]. The transformations of the

Hilbert space realized by different paths through configuration space constitute a unitary

representation of this group.

If all n particles are indistinguishable, then in spatial dimensions d ≥ 3, the correspond-

ing fundamental group is isomorphic to the permutation group, Sn. On the other hand,

if all n particles are distinguishable, then the corresponding fundamental group is trivial

[208].

If instead d = 2, then for n indistinguishable particles the fundamental group is iso-

morphic to the braid group on n strands, denoted Bn. For n distinguishable particles, the

fundamental group is isomorphic to the pure braid group on n strands, Pn ∼= Bn/Sn [6, 30].
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We have not mentioned much about what kind of structure the Hilbert space for a

fixed configuration should have. In fact, based on this discussion, we conclude that the

Hilbert space must itself be a representation (space) of π1(Mn). Thus for n distinguishable

particles in d ≥ 3 dimensions, the Hilbert space must be a direct sum of copies of C on

which π1(Mn) acts trivially, meaning there are no interesting transformations to consider.

If instead the n particles are indistinguishable, then the Hilbert space must be a direct sum

of copies of irreducible representations of Sn. Two of these representations are one dimen-

sional: the trivial representation (bosons) and the alternating representation (fermions).

However, to encode the state of a qudit, we need a higher dimensional representation

space, which in this case leads to the consideration of parastatistics [101]. We will not

explore this possibility, for which there are reasons to believe [68] that it will not lead to

sufficiently rich transformations of the associated Hilbert spaces.

Therefore, we are led to the conclusion that if any scheme for quantum computation

is to be realized in a physical system with a discrete spectrum, particle-like excitations,

and no long-range interactions, then it must happen in d = 2 spatial dimensions. The

irreducible representations of the n-strand braid groups are either [208]:

(a) One dimensional, in which case we call the particles Abelian anyons

(b) Multidimensional, in which case we call the particles non-Abelian anyons

Based on this discussion, it seems that non-Abelian anyons, with their multidimen-

sional representation spaces, are the best suited for robust quantum computation [89, 131,

194]; however, there is a loophole. Namely, the space in which the particles live may

have some nontrivial topology or possess some defects. In these cases, Abelian anyons do

provide the potential for realizing some interesting topologically protected operations that,

while insufficient for universal quantum computation, can be supplemented with other

operations (that are not topologically protected) to realize universal quantum computation

[44, 57, 58].

One remark of physical interest is that we have made minimal assumptions regarding

the symmetries of the physical systems under consideration. We have implicitly assumed

that the systems possess no continuous symmetries that may lead to gapless excitations.

Therefore we do not assume the existence of any conserved charges that arise from such
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symmetries. All quantum numbers that we invoke come purely from the topological

considerations of the configuration space [208].

3.1 Anyon models
In this section, we shall set aside the question of whether or not anyons can be ex-

perimentally realized and focus on their algebraic properties. After all, their ability to be

experimentally observed is immaterial for our purposes, which is to simulate a universe

in which they do exist.

The defining characteristics of an anyon model are the fusion rules for anyonic charges,

topological spin, and braiding. We will give special attention to the algebraic elements of

the theory, as they will be the foundation of the string-net surface code. We will attempt to

convey some of the physical intuition underlying the theory of anyons, partly because this

is a dissertation for physics, but more importantly because the geometric picture should

prove helpful in the design and implementation of the quantum circuits underlying our

code.1

3.1.1 Anyon Fusion Rules

Our starting point will be a finite set of labels denoting anyon types or anyonic charges,

written as2 I = {0, 1, ..., N − 1}. Each anyon type represents a value of a locally conserved

topological charge that is carried by anyons of that type. For an anyon that is sufficiently

well-separated from any others, this topological charge will not change its value. This can

be viewed as a superselection rule and has the important consequence that the Hilbert

space of an anyonic system is structured into superselection sectors, orthogonal subspaces

as in (3.4), with each sector carrying a distinct label from I .

A fusion rule describes how anyons with various topological charges combine to form

a composite charge, much like the rules for the addition of angular momentum or of spin.

A fusion rule is expressed in the form

i× j = ∑
k

Nk
ijk, (3.3)

1The broader algebraic structures, contained in category theory, lead to a “graphical calculus,” which is a
powerful way of turning statements in pictures into statements in algebra.

2conveniently mirroring the indexing conventions of C++ and Python
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where the numbers Nk
ij ∈ Z+ are nonzero integers, known as the fusion coefficients. At

times we may simply refer to the collection of numbers {Nk
ij} as the fusion rule, with (3.3)

implied.

We are being quite abstract at this point, the reason being that these labels could be

attached to many different objects in various contexts. They could be labels for actual

excitations in a system that carry the particular charge, or for collections of excitations that

all carry the same charge, or even a region or boundary of a system containing excitations.

These labels can even be associated to degenerate ground states. For this reason, we refrain

from expressing the fusion rule (3.3) using the tensor product notation, reserving⊗ for the

tensor product of vector spaces.

In the context of local Hilbert spaces, the fusion rules have the following interpretation.

Suppose that we have an anyon of type i and an anyon of type j sitting in a regionR with

no other anyons as in Figure 3.1. The Hilbert space corresponding to the region R will

have the form

HR =
⊕
k∈I
H
⊕Nk

ij
k . (3.4)

Furthermore, the subspaces associated to different values of k cannot be mixed by any

operator acting solely withinR. This is the essence of local, or topological, invariance.

The procedure depicted in Figure 3.1 can be thought in terms of coarse graining. On the

left, we have a detailed picture where anyons i and j are located in subregions of R, and

by “zooming-out” we obtain the picture on the right, where we see just the net anyonic

charge ofR.

Since we want the superselection sectors to be robust with respect to local operations,

we will require that the topological charge resulting from the fusion of i and j should be

i j

R

k

R

Figure 3.1: Anyons with types i and j in a region R and the coarse grained picture where
R just has a net-charge k.
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order independent.1 That is i× j = j× i, which in terms of the fusion coefficients means

that

Nk
ij = Nk

ji . (3.5)

It should be noted that this does not imply that (locally) swapping the positions of two

anyons is a trivial transformation of the quantum state. Rather, the effect of this exchange

is only required to preserve the superselection sector in which the state resides, as in (3.4).

The label 0 is reserved for the distinguished anyon type corresponding to trivial topo-

logical charge, i.e., the “vacuum.” This anyon type behaves as the identity element of the

fusion rule

0× i = i× 0 = i ∀ i ∈ I . (3.6)

In terms of the fusion coefficients, this gives the following identities

N j
i0 = N j

0i = δi,j . (3.7)

For every anyon label, we require the existence of a dual label. For a fixed anyon type

i ∈ I , its dual is the unique type i∗ ∈ I that fuses with it to give the trivial type. Moreover,

this fusion to the trivial label happens in a unique way, i.e., N0
ii∗ = 1. This implies the

relation

N0
ij = δj,i∗ . (3.8)

The dual of the trivial label is also trivial, 0∗ = 0, and i∗∗ = i. Furthermore, the existence

of dual labels leads to the following cyclic property of the fusion rules

Nk∗
ij = Ni∗

jk = N j∗

ki . (3.9)

Just as an anyon and its dual can fuse to the vacuum, if we create an excitation from the

vacuum, it must be of the form ii∗, since this preserves the local net charge of the region

into which the anyon pair was introduced.

Given a pair of anyon charges, they must fuse to something, in other words ∑k Nk
ij ≥ 1.

A theory of anyons is said to be Abelian if ∑k Nk
ij = 1 for all anyon types i, j ∈ I . This

implies that the result of fusing two Abelian anyons is deterministic, that is given two

1It is essential that we are working in two dimensions. In one dimension, i.e., on a circle, we need a nonlocal
transformation in order to swap the position of two anyons.
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anyons there is only one result for their fusion. On the other hand, should ∑k Nk
ij > 1

for at least one pair of labels the theory is called non-Abelian and fusion of two anyons

is in general probabilistic. Our primary concern in this dissertation will have to do with

Abelian anyons, so we will relegate our discussion of non-Abelian anyons to Appendix B.

3.1.2 Associativity of Fusion Rules

Thus far we have only considered the process of fusing two anyons together. However,

in order to address the matter of the associativity of fusion, we need to consider systems

of three or more anyons.

Associativity of the fusion process means that given three anyons, i, j, and k, the net

charge resulting the fusion of all three anyons is independent of the order in which the

fusion is carried out. Once again, this is a statement of the topological invariance of fusion;

for a region containing all three anyons, fusing the anyons is a local process and therefore

must not affect the net charge of the region.

To be more concrete, consider a system of three Abelian anyons1 lying along the hori-

zontal axis, with fixed charges i, j, k ∈ I , as in Figure 3.2a. The fusion space corresponding

to a net charge l is given by

V l
ijk = spanC{|ij, m; k, l〉 | Nm

ij , Nl
mk 6= 0}, (3.10)

1The non-Abelian generalization can be found in the appendices.

i

m

j k

l

i j k

(a)

i j k

n

l

i j k

(b)

Figure 3.2: Fusion trees along with physical depictions below for (a) fusing left-to-right
and (b) fusing right-to-left.
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where the basis elements correspond to processes where anyons i and j fuse to an anyon

with charge m, which then fuses with anyon k to produce an anyon l. Since we are dealing

with Abelian anyons, the space V l
ijk is one-dimensional; there is only one pair of indices

(m, l) that satisfy the condition in (3.10). This process of fusing “left-to-right” can be

depicted by a fusion tree, as in Figure 3.2a.

Alternatively consider the process of fusing “right-to-left” as depicted by the fusion

tree in Figure 3.2b. This process leads to an alternative decomposition of the three-anyon

fusion space

V l
ijk = spanC{|jk, n; i, l〉 | Nn

jk, Nl
in 6= 0}. (3.11)

Once again, for Abelian anyons there is a unique pair of indices (n, l) that satisfy the con-

dition in (3.11). Comparing the equations (3.10) and (3.11) leads to the following constraint

on the fusion rules

∑
m

Nm
ij Nl

mk = ∑
n

Nl
inNn

jk . (3.12)

Local charge conservation insists that these two procedures must produce the same

result. Therefore the two states |jk, n; i, l〉 and |ij, m; k, l〉 can only differ by a phase,

|jk, n; i, l〉 = [Fl
ijk]

m
n |ij, m; k, l〉 , [Fl

ijk]
m
n ∈ U(1). (3.13)

This relationship is a statement about the associativity of the fusion rules, and the corre-

sponding unitary transformation is often referred to as an F-move or recoupling move.

We have defined the U(1)-number [Fl
ijk]

m
n in the context of a three anyon system. How-

ever, in order to ensure that the transformation is self-consistent, we must consider systems

with more anyons.

For four anyons placed along the horizontal axis, there are five different orders for

fusing adjacent anyons until they have all been fused, corresponding to five different

fusion processes. Consider starting with a state in the standard fusion basis, that is pairwise

fusion from left-to-right as in Figure 3.3. We want to relate this state to one in the fusion

basis where we fuse pairwise from right-to-left, but only through use of the F-move trans-

formations for the fusion of three anyons. There are many1 different combinations of these

F-moves that relate the two bases. A remarkable result, known as MacLane’s (monoidal)

1in fact a countably infinite number of
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i1 i2 i3 in

j

. . .

. . .

Figure 3.3: The standard fusion tree.

coherence theorem [156], states that any combination of F-moves realize the same unitary

transformation so long as the two combinations depicted in Figure 3.4 are equivalent. This

theorem leads to a constraint on the F-symbols, the aptly named pentagon equations

[Fm
akl ]

b
c [F

m
ijc]

a
d = ∑

e
[Fb

ijk]
a
e [F

m
iel ]

b
d[F

d
jkl ]

e
c . (3.14)

Furthermore, the coherence theorem implies that for any n-anyon system, if equation (3.14)

is satisfied then the equality of all transformations realized by any combination of F-moves

mapping one fusion basis to another is guaranteed.

3.1.3 The Fusion Algebra

In this section, we will introduce the fusion algebra associated to a fusion rule. This

algebra will be essential to our construction. The ability to simulate the fusion algebra on

an individual quNit is a prerequisite to implementing the string-net surface code.

We start by elevating the anyon labels to vectors and consider the vector space AC =

spanC{|i〉 |i ∈ I} with inner product 〈i|j〉 = δi,j. AC becomes an algebra by equipping it

with a multiplication map defined to be the linear map m : AC ⊗ AC → AC whose action

on the basis elements is given by

m(|i〉 ⊗ |j〉) = ∑
k

Nk
ij |k〉 . (3.15)

By eq. (3.5) this multiplication is commutative. Equipped with this multiplication, AC is

called the fusion algebra or Verlinde algebra [190] associated to the fusion rules {Nk
ij}.

Multiplication in the fusion algebra can also be formulated in terms of matrices acting

on AC. Given an anyon label i, its fusion matrix, N̂i, is defined by its action on the basis
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Figure 3.4: The different ways of relating fusion tree bases using F-moves.

elements

N̂i |j〉 = ∑
k

Nk
ij |k〉 . (3.16)

Thus, the multiplication in the algebra takes the form m(|i〉 ⊗ |j〉) = N̂i |j〉 = N̂j |i〉.

Now we will explore some of the properties of the fusion matrices, the first of which is

that the operator algebra generated by the the fusion matrices {N̂i}i∈I is a representation

of the fusion algebra. To demonstrate this, we verify that the fusion matrices obey the

fusion rule

〈n|N̂iN̂j|m〉 = ∑
l
〈n|N̂i|l〉 〈l|N̂j|m〉 = ∑

l
Nn

il Nl
jm = ∑

k
Nk

ijN
n
km = ∑

k
Nk

ij 〈n|N̂k|m〉

where we have made use of equation (3.12). Furthermore, equation (3.5) implies that the

fusion matrices all mutually commute and therefore can be simultaneously diagonalized.

The unitary matrix diagonalizing the fusion matrices is known as the S-matrix [16, 77].

Λ̂i = ŜN̂iŜ† (3.17)

For non-Abelian anyon theories, the fusion matrix N̂i with i 6= 0 has a unique, nonde-

generate eigenvalue that dominates all other eigenvalues. This eigenvalue is known as
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the quantum dimension of the anyon type i, and it is always a positive real number.1 More

details regarding this relationship can be found in Appendix B.

In the Abelian case, all of the fusion matrices are permutation matrices. Therefore, all

of the eigenvalues of the fusion matrices are roots of unity, and the quantum dimension is

1 for all anyon labels.

3.1.4 The RepZN Fusion Algebra

The fusion algebra of primary interest in this dissertation will be that based on the

representations of the finite Abelian group ZN . In this theory the anyonic charges are

given by the irreducible representations of ZN , which are in one-to-one correspondence

with the elements of the group. Thus, the label set is I = {0, 1, 2, ..., N − 1}.

The fusion rule corresponds to decomposing the tensor product of two representations

into a direct sum of irreducible representations. In the present case we have

i× j = ∑
k

δ(i+j),k k ⇐⇒ Nk
i,j = δ(i+j),k . (3.18)

It should be understood that all sums are taken modulo N unless otherwise stated.

The corresponding fusion matrices acting on the fusion algebra are just permutation

matrices with the following action

N̂i |j〉 = |i + j〉 . (3.19)

The unitary matrix diagonalizing the fusion matrices is

Ŝ =
1√
N

∑
j,k∈ZN

(
ξN
)jk |j〉 〈k| where ξN = e2πi/N . (3.20)

The eigenstates of the fusion matrices will be denoted

|[i]〉 = Ŝ† |i〉 = 1√
N

∑
j∈ZN

(
ξN
)ij |j〉 , (3.21)

and we will refer to them as conjugate (basis) states. Here the terminology and notation [i]

are meant to mimic the notation for conjugacy classes of a group, since for a non-Abelian

1Here it is important that the set of anyon labels, I is finite; otherwise it is possible to have a zero quantum
dimension.
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group the conjugacy class is the dual concept to an irreducible representation [94]. The

eigenvalues of the fusion matrices are then computed to be

N̂i |[j]〉 =
1√
N

∑
k∈ZN

(
ξN
)jkN̂i |k〉 (3.22)

=
1√
N

∑
k∈ZN

(
ξN
)jk |k + i〉

=
1√
N

∑
k′∈ZN

(
ξN
)j(k′−i) ∣∣k′〉

N̂i |[j]〉 =
(
ξN
)ij |[j]〉 . (3.23)

Thus, the diagonalized fusion matrices act on the standard basis as

Λ̂i |j〉 =
(
ξN
)ij |j〉 (3.24)

while their action on the conjugate basis is

Λ̂i |[j]〉 = |[j− i]〉 . (3.25)

We can use the actions of the fusion matrices to define the projectors

Π̂i :=
1
N ∑

j∈ZN

(
ξN
)ijΛ̂j , Π̂i |j〉 = δi,j |j〉 , (3.26a)

Π̂[i] :=
1
N ∑

j∈ZN

(
ξN
)ijN̂j , Π̂[i] |[j]〉 = δi,j |[j]〉 . (3.26b)

An important relation that will be used is the commutation of the fusion matrices

and their diagonalized counterparts. This can be determined based on the following

calculation

Λ̂iN̂j |k〉 =
(
ξN
)i(k+j) |k + j〉

=
(
ξN
)ij(

ξN
)ikN̂j |k〉

=
(
ξN
)ijN̂jΛ̂i |k〉

which implies that

Λ̂iN̂j =
(
ξN
)ijN̂jΛ̂i . (3.27)

Since the irreducible representations of ZN are all one-dimensional, so too are all of the

resulting fusion spaces. This greatly simplifies the form of the F-symbols. Even so, there

are multiple solutions to the pentagon equations (3.14) [118]. We will default to using the

simplest, given by

[Fn
ijk]

l
m = δ(i+j),l δ(l+k),n δ(j+k),m δ(i+m),n . (3.28)
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3.2 Topological transformations
The Hilbert spaces corresponding to anyon system that we have just discussed give

us a class of physical systems, which have properties that are impervious to low levels of

local noise. We now turn our attention to the dynamics of such a system. This leads to the

notion of topological operations that can be performed on anyon systems.

We should briefly clarify what is meant by dynamics in this case. Systems exhibiting

topological order have low-energy effective field theories that are (2 + 1)D topological

quantum field theories (TQFTs) [7, 206]. The Hamiltonians of these gauge theories1 are

trivial, Ĥ = 0. In that regard, dynamics in the sense of the time-evolution of the system

are trivial.

However, when such a theory is placed on a closed surface with genus g > 0, the

ground state becomes degenerate, with the degeneracy dependent upon the genus of

the surface as well as the gauge group of the theory. The triviality of the Hamiltonian

implies that an orthonormal basis of the ground state subspace defines superselection

sectors, namely if you start with one ground state, time-evolution will never take you

out of that state. Yet, we can still measure expectation values of operators other than the

time-evolution operator.

The operators acting on the Hilbert space can be split into two types: local and topo-

logical (i.e., nonlocal). Let {|Φa〉} be an orthonormal basis for the ground state subspace.

A local observable does not mix the different ground states, while a topological observable

can.

Ô is local ⇒ 〈Φb|Ô|Φa〉 ∝ δa,b (3.29)

〈Φb|Ô|Φa〉 6= 0 for distinct a and b ⇒ Ô is topological (3.30)

Thus, the dynamics of the model are given by vacuum expectation values of topological

observables.

From the gauge theory perspective, local observables relate to small gauge transforma-

tions, that is transformations that can be continuously connected to the identity transforma-

tion. Topological observables are related to large gauge transformations, those which cannot

1such as Chern-Simons theories
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be continuously connected to the identity and hence are descriptions of nonperturbative

effects, such as topological solitons.

These topological observables can also be viewed from the picture described in the

introduction to this chapter: the adiabatic braiding of quasiparticles. In mathematical

language, what we are describing is the mapping class group of a surface with punctures

[30, 31]. Physically, the punctures represent the locations of anyons. This group can be

described in terms of some basic generating transformations: twists and braids [31, 61,

152].

3.2.1 Twists

The first process we consider is called the Dehn twist or just twist of a region.1 A twist

corresponds to rotating a region with net anyonic charge i by 2π radians counterclockwise.

This operation acts locally on a given region, so it cannot change the value of the topolog-

ical charge. For Abelian anyons, since all of the fusion processes have a unique outcome,

the state corresponding to a region with charge i will incur a phase, θi ∈ U(1) upon being

twisted (see Figure 3.5).

Here we make note of two properties of twists. One is the stability of the vacuum, that

is the twist of the trivial charge is always trivial, θ0 = 1. The other is that the twist of a

charge i and its dual i∗ are equal θi∗ = θi.

3.2.2 Braiding

The other type of topological transformation we will consider is the exchange of two

anyons. Suppose two anyons with types i and j exchange positions, realizing a half-braid

around one another as in Figure 3.6. The resulting transformation is represented by the

1Technically the region should contain at least one puncture/anyon in order for twist to be topologically
nontrivial.

i

= θi

i

Figure 3.5: The twist operator.
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k

= Rk
ji

j i

k

Figure 3.6: The half-braiding operator

half-braiding operator, a matrix that maps the two-anyon Hilbert space, Vij to Vji.

Since the braiding of two anyons is local with respect to any region containing both of

them, it must preserve their fusion channel label. For Abelian anyons, the fusion channel of

two labels i and j specifies a state, |ij; k = i + j〉. This implies that the half-braiding operator

R maps a one-dimensional Hilbert space into another R : spanC{|ij; k〉} → spanC|ji; k〉.

The action of R can therefore be written as

R |ij; k〉 = Rk
ji |ji; k〉 , Rk

ji ∈ U(1). (3.31)

In order for the braiding to be stable with respect to the vacuum, the trivial charge

should always braid trivially, that is

Ra
a0 = Ra

0a = 1. (3.32)

Furthermore, to have a well-defined braiding, it must be consistent with the fusion rules.

From equation (3.31), the effect of the braiding of two anyons depends on the fusion

channel of the two anyons; therefore, we need the braiding to be consistent with respect to

the F-moves. In particular, for a system of three anyons, we require that the sequences of

moves depicted in Figure 3.7 realize the same effect. This leads to what are known as the

hexagon equations

Rp
ik[F

n
jik]

l
pRl

ij = ∑
m
[Fn

jki]
m
p Rn

im[F
n
ijk]

l
m . (3.33)

Similar to the way in which solutions to the pentagon equations guaranteed that any

set of F-moves from one fusion tree to another produces the same transformation, the

solutions to the hexagon equations guarantee the same thing for sequences of braidings

and F-moves. This is known as MacLane’s braided coherence theorem [156].

Finally, there is also a compatibility condition for the braiding and twisting operations

that can be understood as follows. Suppose we twist a region in which there are two
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Figure 3.7: The hexagon identity.

anyons with charges i and j that fuse to a net charge k. The effect of twisting the region

should be to act with θk. However, such an operation can also be seen to realize a full

counterclockwise braid of the two anyons, but with each anyon also undergoing a full

counterclockwise twist of its own (see Figure 3.8). That these two ways of realizing this

operation should be the same leads to the balancing equation

θk = Rk
ijR

k
jiθiθj . (3.34)

3.2.3 Anyonic Ribbons

The collection of parameters {I , Nk
ij, Fn

ijk, Rk
ij, θi}, along with the condition that the S-

matrix is nondegenerate, constitute what is known as a modular tensor category [16, 194],

which is the mathematical object that captures the essence of an anyonic system. They

can also be phrased as ribbon fusion categories with nondegenerate braiding. We would like to

comment on the notion of “ribbons” associated to anyons and what it corresponds to in

the physical picture of such particles.
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k

i j

=

i j

k

Figure 3.8: Equivalence of the twisting of a composite anyon, k, with the braiding and
twisting of its component anyons, i and j.

We start by noting that the twist quantum number has an important implication for

how we view the evolution of anyons. It says that to each anyon we should include a

degree of freedom that measures the extent to which an anyon has rotated as we track its

evolution in time. The assignment of such a parameter is often called a framing [206, 207]

of the anyon worldline. Geometrically, a (2 + 1)D worldline with a framing appears as a

ribbon.

Just as we must have a framing for a single excitation to keep track of its twisting, we

must measure the relative position of two anyons in order to keep track of their braiding.

Consider the local creation of an anyonic particle-antiparticle pair out of the vacuum, say

i and i∗. We can monitor their relative positions through the use of a directed ribbon,

pointing from the i∗ anyon and toward the i anyon1 and with the label i. We may reverse

the direction of the ribbon so long as we change the label to i∗. Such a ribbon will not only

track whether the anyons braid with each other or any other anyons, it will also indicate

whether the anyon has twisted or not. This is one way to view why an anyon and its

dual have the same twist quantum number; the twisting of an anyon or its dual can be

equivalently viewed as the twist of the ribbon connecting them.

Due to the fusion of anyons, there must be a corresponding operation for the ribbons. In

fact we can use diagrams much like the fusion trees introduced earlier, except that the lines

should be fattened up into ribbons. Thus, we can follow the braiding, twisting, and fusion

1Note that the ribbon between anyons lies in the space manifold, while the ribbon used for the time
evolution of a single anyon lies in the spacetime manifold
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of anyons through the use of ribbons. They will prove to be an important guide of intuition

when dealing with anyon systems and for the calculation of topological processes. In fact,

we will see in a later section that for surfaces with nontrivial topologies (i.e., something

other than the real plane or the sphere), the ribbons will be essential in describing their

degenerate ground states. Thus, ribbons are in a way more fundamental than anyons, as

ribbons may be present without excitations.

3.2.4 Example: D[ZN] Anyons

D[ZN ] is known as the Quantum-Double of ZN (or RepZN ). The anyons can be thought

of as charge-flux composites, labeled by ([i], j). The anyon system consists of the following

data:

• Label set: L = {([i], j)|i, j ∈ ZN}

• Fusion rules: N([m],n)
([i],j),([k],l) = δi+k,mδj+l,n

– Trivial charge: ([0], 0)

– Duality: ([i], j)∗ = ([i∗], j∗) = ([−i],−j)

• F-symbols: F([i1],i2),([j1],j2),([k1],k2)
([l1],l2)([m1],m2)([n1],n2)

= Fi1 j1k1
l1m1n1

Fi2 j2k2
l2m2n2

with both (chiral) F-symbols given

by Fijk
lmn = δ(i+j),l δ(l+k),n δ(j+k),m δ(i+m),n

Note that we have switched conventions, going from F-matrices to F-symbols with

the correspondence [Fn
ijk]

l
m = Fijl∗

kn∗m .

• Twist: θ([i],j) =
(
ξN
)ij

• Half-braiding R([i+k],j+l)
([i],j),([k],l) =

(
ξN
)il−jk

3.3 Anyons on a surface with boundary
For systems of non-Abelian anyons, the fusion of two labels will generally yield a

variety of possible fusion channels. These fusion channels are topologically protected and

naturally provide a robust Hilbert space in which to encode quantum states.

On the other hand, two Abelian anyons with fixed labels have only one possible fusion

channel, which is not sufficient for encoding quantum states. However, it is known that a

system supporting Abelian anyonic excitations on a nontrivial topology possess a robust
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ground state degeneracy [116, 195, 200], which is one of the hallmarks of topological order

[196]. Thus, there is a path to topologically protected, nontrivial Hilbert spaces associated

to systems with Abelian anyons.

The argument for this degenerate ground state was traditionally stated in the case of a

closed (nonspherical) surface [131, 200], but the design of such a system would seem to be

quite challenging to realize experimentally. For this reason, we would like to understand

the properties of an anyon system on a plane-like surface with boundary [12, 13, 25, 47].

In particular, if we go back to our motivations for studying anyons from the quantum

information perspective, we seek conditions in which the boundary is gapped [115, 117, 119,

133, 144, 149]. We will see that gapped boundaries are effectively placeholders representing

locations where any of a number of possible anyons could occupy and thus allowing for a

robust, nontrivial Hilbert space [39, 58, 120].

In addition, we will introduce the (generalized) Wilson loop algebra for a manifold

with boundary. This will provide us a nice geometric picture with which to understand

the ground state degeneracy. Furthermore, it will also afford us the means to manipulate

and measure the degenerate ground states.

3.3.1 Gapped Boundaries

There are a number of ways to formulate the conditions for a system of anyons to have a

gapped boundary. Here, we will just address it within the framework of anyon condensation

[12, 13, 25, 139], which deals with the question of what happens when we bring an anyon

close the the boundary of the surface.1 The general theory of anyon condensation is quite

rich, but we will restrict our considerations to the case of systems of Abelian anyons.

One can think of anyon condensation as a result of exposing some component of the

anyonic system through the introduction of a boundary, or in other words, the topological

symmetry of the bulk is broken in the vicinity of the boundary. This requires the choice

of a “boundary vacuum” [12, 13, 139], which is specified by some subset of anyon labels

allowed to freely occupy the boundary. The state of the system must be stable to this new

vacuum; in particular, we consider the following processes that are local to the boundary

1Anyon condensation also deals with the question of topological (gauge) symmetry breaking in the bulk
[9, 11, 37, 39].
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and must map the state of the system into itself:

a) A condensed anyon tunnels from the boundary into the bulk, twists itself, and then

condenses back onto the boundary.

b) Two condensed anyons tunnel from the boundary into the bulk, braid in the bulk,

and then condense back onto the boundary.

c) Two condensed anyons tunnel from the boundary into the bulk, fuse together, and

then the resulting anyon condenses back onto the boundary.

The requirement that the state of the system is invariant under these vacuum-to-vacuum

processes leads to the conclusion that anyons can condense to the boundary if and only if

they are each bosonic with bosonic mutual statistics, and furthermore they form a subfu-

sion algebra of I . Phrasing these observations in terms of properties of the set of anyons,

letA ⊂ I be some collection of condensable anyons, i.e., anyons that are allowed to condense

to the boundary. Amust have the following properties [149]:

a) θa = 1 for all a ∈ A, that is the condensable anyons are bosonic.

b) The braiding for all pairs a, b ∈ A is trivial, Ra+b
ab = 1, that is the condensable anyons

are all mutually bosonic.

c) For a, b ∈ A, the result of their fusion a× b = c must also be in A.

d) For every i ∈ I \ A, there exists some a ∈ A such that i and a braid nontrivially,

Ri+a
ia 6= 0.

The last condition implies that the setA is maximal with regards to conditions a)-c), that is

every anyon that can condense consistently with the other anyons in A must also be in a.

This implies that for a ∈ A, we also have a∗ ∈ A. Therefore, A forms a subfusion algebra

of I . Moreover, a set A satisfying all of the conditions a)-d) is known as a Lagrangian

subalgebra [56, 58, 133, 139, 144, 149], and it can be shown that the dimension of this algebra

satisfies |A| =
√
|I|.

Now we formalize what happens to anyons in I \Awhen they approach the boundary.

Suppose the excitations on the boundary are described by a set of labels, IA, with its
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own fusion rule, N̄c
ab. The fundamental piece of data for the gapped boundary is the

bulk-to-boundary map, describing what happens when a bulk anyon approaches a gapped

boundary

i 7→ ∑
a∈IA

Ya
i a, Ya

i ∈ {0, 1, 2, ...}. (3.35)

A bulk anyon i can condense to the boundary if Y0
i 6= 0.

This map must be compatible with the bulk and boundary fusion rules, which can be

phrased as follows. Given two anyons in the bulk i, j ∈ I , we can consider bringing them

each to the boundary first and then fusing them, resulting in the process:

(i, j) 7→ ∑
a,b∈IA

Ya
i Yb

j (a, b) 7→ ∑
a,b,c∈IA

Ya
i Yb

j N̄c
ab c . (3.36)

Alternatively, we could first fuse i and j in the bulk, and then bring the resulting anyon to

the boundary. This process is given by

(i, j) 7→ ∑
k∈I

Nk
ij k 7→ ∑

k∈I
c∈IA

Nk
ijY

c
k c . (3.37)

Topological symmetry demands that these two procedures must result in the same bound-

ary state. This leads the following constraint on the N̄c
ab and Ya

i symbols

∑
k∈I

Nk
ijY

c
k = ∑

a,b∈IA

Ya
i Yb

j N̄c
ab . (3.38)

3.3.2 The Wilson Loop Algebra

When considering the stability of an anyon condensed state, we invoked the notion of

“vacuum-to-vacuum” processes, of condensed anyons tunneling from the boundary, into

the bulk, and then back onto the boundary. We can consider other such procedures that

map the ground state subspace into itself, formally known as the Wilson loop algebra, which

generally refers to operations occuring purely in the bulk, but we will extend this notion

to the boundary.

In particular, we first consider the procedure of creating a loop of anyonic ribbon by

creating a pair of anyons (i, i∗), then taking them along a circular path, α and finally

annihilating them. If α is a contractible loop around a region of net anyonic charge j, the

result is a factor (Ŝ)ij applied to the state. We will call this the loop-i procedure, denoted

Wi(α).
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Now suppose that we have two gapped boundaries such that the anyon a is condens-

able to both. We can then consider a process where the anyon a tunnels from one gapped

boundary to the other along the path γ connecting one boundary to the other. We will call

this the tunnel-a procedure, denoted Wa(γ).

The (generalized) Wilson loop algebra consists of the set of all loop-i and tunnel-a

operations; however, we will take a moment to recognize a couple more procedures that

preserve the ground state subspace but fall outside of this algebra.

From this basic picture, we can consider the following transformations preserving the

ground state subspace. First, we can create a pair of anyons (i, i∗) in the bulk, twist one of

the anyons,1 and then annihilate the pair. This gives us an overall twist phase, θi, and the

matrix defined as (T)ij = δijθi is called the modular T-matrix.

Now consider creating two anyon pairs, (i∗, i) and (j, j∗), we then braid i around j,

before annihilating the two pairs. When braiding i around j, we are performing the loop-i

procedure previously mentioned, so the result is the factor (S)ij. The matrix associated

with this process is called the modular S-matrix, and it coincides with the S-matrix that

diagonalizes the fusion rules.

3.3.3 Topological Degeneracy

Using the Wilson loop algebra, we can verify that the ground state must be degenerate

for a system supporting anyon excitations on the plane with multiple gapped boundaries.

This will be important, as it will produce a multidimensional Hilbert space that is topo-

logically protected, and thus allowing us to encode quantum states using a system with

Abelian anyon excitations.

We start with two gapped boundaries, B1 and B2, both with the same condensable

algebra A. Let γ be a path connecting the two boundaries, and α be a closed loop around

B1. For a ∈ A, we consider the tunnel-a operator Wa(γ), in which an a anyon tunnels

through the bulk from B1 to B2 along the path γ (see Figure 3.9a). For i ∈ I \A, we consider

the loop-i operator Wi(α), which corresponds to the creation of an (i, i∗) pair, followed by

taking i along the loop α, and then finally annihilating the pair (see Figure 3.9b).

Starting from the ground state configuration where there are no anyon ribbons con-

1As previously mentioned, it does not matter which one.
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Figure 3.9: Depiction of the (a) tunnel-a process followed by the (b) loop-i process.

necting the two boundaries, we can perform Wi(α) and Wa(γ) in different orders. Based

on our description of these operators, it can be shown that

Wa(γ)Wi(α) = ŜiaWi(α)Wa(γ). (3.39a)

Equation (3.39) states that we have two transformations, each preserving the ground

state, that do not generally commute; this implies that the ground state must be degen-

erate [47, 74, 175, 200]. In particular, we denote our initial configuration by |0〉, so that

Wa(γ) |0〉 = |0〉. Letting |a〉 = Wa(γ) |0〉, we then have Wi(α) |a〉 = (Ŝ)ia |a〉. Since for the

given a there is always an i ∈ I \A such that Ŝia 6= 1, we conclude that |a〉 is orthogonal to

|0〉, since they have different eigenvalues under Wi(α). This means that the ground state

is degenerate, and furthermore it can be shown that the set {|a〉 |a ∈ A} is an orthonormal

basis for the ground state subspace. Such a Hilbert space is suitable for encoding a single

|A|-level quantum system.

If we consider the case where the two gapped boundaries have different condensable

algebras, A1 and A2, then the analagous basis is given by {|a〉 |a ∈ A1 ∩ A2}. As long as

|A1 ∩A2| > 1, such a system will also provide an encoding for a quantum system.

Also note that the commutation relation in (3.39a) for I = ZN matches that of (3.27),

with the exception that we have the restriction of a ∈ A and i ∈ I \ A. We also have the

relations

Wa(γ)Wb(γ) = W(a+b)(γ), (3.39b)

Wi(α)Wj(α) = W(i+j)(α). (3.39c)

Thus, the Wilson loop algebra can be thought of as a restriction of a representation of the

fusion algebra, though this is partly dependent upon the topology. Consideration of an
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analagous construction on the torus, where α and γ are the two homology generators for

the torus, yields a full representation of the fusion algebra.

The encodings we have just introduced will be the bedrock of the string-net surface

code, and the Wilson loop algebra will be one of the fundamental tools for manipulating

those encoded states.



CHAPTER 4

THE LEVIN-WEN MODEL

“Is not the space between Heaven and earth like a bellows?

Empty yet inexhaustible!

Work it and more will come forth.”

-The Daodejing, Chapter 5

In this section, we will give an introduction to the nuts and bolts that we will use

to build our surface code, namely the Levin-Wen model [150]. It is a discrete model

built to realize systems with topological order [196, 197, 200, 201]. The key feature of this

model that we will leverage in our design of our code is the notion of topological symmetry

[113, 116, 145, 150]. From the information viewpoint topological symmetry is a means of

equating different quantum codes, based on local modifications to the Hilbert space and

stabilizer group. This equivalence will make computation via code deformation [33, 38, 96]

straight-forward, and it allows us to follow the path of our codewords through a discrete

sequence of deformations, much like a connection allows us to compare vectors at different

points on a manifold. We will provide a novel interpretation of this model, one that focuses

on its information-theoretic properties.

The Levin-Wen model is more rightly called a family of models, and these models are a

class of parity and time-reversal invariant topological phases known as doubled topological

phases. These models are a generalization of gauge theories on a lattice [131, 150], and

just as a gauge theory requires the specification of a gauge group, the Levin-Wen model

requires some algebraic data to be fixed at the start. That algebraic data are what are

known as a unitary spherical fusion category [23, 77, 194], which corresponds to a fusion
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algebra along with specified F-symbols,1 {L, Nk
ij, Fn

ijk}. The dynamics of the model then

produce gapped quasiparticle excitations with nontrivial braiding properties. It should

be emphasized that the braiding is an emergent property [113] in that it is not provided

with the initial algebraic data, but rather a consequence of the topologically ordered states

engineered by the Hamiltonian.

In this chapter, we will be working exclusively with the case of the Levin-Wen model

with input being the unitary fusion category RepZN [118, 145], the category of represen-

tations of ZN ; however, it will be presented utilizing some of the notation of the general

model. This is to make it clear where elements of the model fit into the current scheme,

and what problems would need to be solved when generalizing to a non-Abelian surface

code. The generic formulation of the model is presented in Appendix C for completeness

and to indicate the direction of possible research in string-net surface codes.

We start by studying the model on a closed surface, paying close attention to the local

Hilbert spaces and the details of how the terms in the Hamiltonian act on these spaces and

how these Hilbert spaces are cut and pasted through a series of topological symmetries

[113]. The excitations will be classified and the operators for creating, manipulating, and

annihilating them will be discussed. Then the same program will be repeated for the

gapped boundary theory of the model. This theoretical toolkit will be essential to the

construction of the surface code in the next chapter.

4.1 The Levin-Wen model on a closed surface
To define the Levin-Wen model, we begin with a directed trivalent graph, Γ, embedded

on a closed surface (see Figure 4.1), as well as the RepZN fusion algebra

L = {0, 1, 2, ..., N − 1}, Nk
ij = δi+j,k, i∗ = N − i = −i (4.1)

where the sum i + j is taken modulo N. Instead of writing L, we will instead use ZN as a

set and accompanying fusion rule. Note that we will often maintain the notation i∗, and

for the most part only using the particular form in (4.1) when needed for a computation.

We consider the set of all ways to label the edges of the graph with the labels coming

from ZN . A particular labeling will be treated as a state in the Hilbert space of the system.

1For a particular fusion algebra, there can be many solutions Fn
ijk to the pentagon equations, see [40, 145].
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Figure 4.1: Example of a directed trivalent lattice suitable for the Levin-Wen model.

Equivalently we can say that to each edge we associate a quNit , that is an N-dimensional

Hilbert space

Hedge := spanC{|i〉 |i ∈ ZN} ∼= C[ZN ] (4.2)

and the generic Hilbert space consists of all possible labelings

HΓ := H⊗|E|edge , (4.3)

where |E| is the number of edges in the graph Γ.

Recall that the fusion algebra has a duality map acting on ZN , i 7→ i∗. This duality can

be used to reverse the direction of edges along the graph, as indicated in the Figure 4.2,

and will be used often.

One last piece of algebraic data we will need is a six index symbol Gijm
kln , known as

the symmetrized (quantum) 6j-symbol [108, 113, 145, 188, 189], which will be important for

formulating the topological symmetry of the model [114, 116]. It is related to the F-symbol

previously noted, but it has convenient symmetry properties (known as full tetrahedral

symmetry). For Abelian fusion algebras these two notions coincide; however, we will

use the G-symbol to conform with our preferred presentation, as given in Appendix C.

Another simplification for Abelian fusion algebras is that the quantum dimension is unity

i ∗ i∗

Figure 4.2: We can reverse the direction of an edge by taking the dual of its label.
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for all labels in ZN . This must be kept in mind when comparing the definitions, equations,

and results of this chapter to those in Appendix C and in the literature.

For the Levin-Wen model with RepZN data, the G-symbols are required to satisfy the

following conditions:

Gijm
kln = Gmij

nk∗ l∗ = Gklm∗
ijn∗ = Gj∗i∗m∗

l∗k∗n (4.4a)

∑
n

Gmlq
kp∗nGjip

mns∗G
js∗n
lkr∗ = Gjip

q∗kr∗G
riq∗

mls∗ (4.4b)

∑
n

Gmlq
kp∗nGl∗m∗i∗

pk∗n = δi,qδm+l,q∗δk∗,i+p . (4.4c)

The first condition is the statement of full tetrahedral symmetry, while the second con-

dition is the previously discussed pentagon equation. Generalizations of the model that

relax some of these constraints are discussed in [145].

For the present case, equations (4.4) have a degenerate set of solutions [40, 118, 145]. We

will focus our work on the simplest solution:

Gijm
kln = δi+j+m,0 δk+l−m,0 δi+l+n,0 δj+k−n,0 . (4.5)

4.1.1 The String-Net Hilbert Space and Hamiltonian for a Fixed Graph

In order to obtain a Hilbert space of string-nets, we must impose a local constraint that

prevents any “dangling edges” [150]. For a trivalent vertex as in Figure 4.3a, this constraint

takes the form:

Q̂v |ijk〉 := δi+j+k,0 |ijk〉 . (4.6)

If the direction of the incident edges varies from that in Figure 4.3a, we can adjust the edge

directions using the edge duality (see Figure 4.2).

The constraint (4.6) says that the fusion of the three incoming labels must result in the

trivial label, or equivalently that the labels i and j can fuse to k∗.1 Since its eigenvalues are

either +1 or 0, Q̂v is a projector.

When Q̂v |ψ〉 = |ψ〉, we say that the vertex v is stable for the state |ψ〉. For a given

configuration, if Q̂v = +1 for all vertices v, we say that the configuration is stable, or in

1or j and k can fuse to i∗, or k and i can fuse to j∗
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Figure 4.3: Assumed edge orientations for (a) a single vertex for the Q̂v operator defined
in equation (4.6) and (b) a plaquette for the B̂s

P operator defined in equation (4.8).

other words, constitutes a string-net. Restricting to the ∏v Q̂v = +1 eigenspace, we obtain

the string-net Hilbert space defined as

HSN :=
(
∏

v
Q̂v
)
[H], (4.7)

which is spanned by the set of all stable labelings of the graph.

For a label s ∈ ZN , we define the local operator B̂s
P acting on the Hilbert space corre-

sponding to an arbitrary plaquette P (see Figure 4.3b) as

B̂s
P |i1i2...in〉 ⊗ |j1 j2...jn〉 :=

(
N̂⊗n

s |i1i2...in〉
)
⊗ |j1 j2...jn〉

= |(i1 + s)(i2 + s)...(in + s)〉 ⊗ |j1 j2...jn〉 . (4.8)

The effect of this operator is to fuse a string labeled by s with each of the internal edges

of the plaquette, and it is often depicted as the insertion of a loop in the middle of the

plaquette [129, 150]. A feature that is generic to all Levin-Wen models is that the B̂s
P

operators do not change the values of any of the external legs of the plaquette.1

Before determining the eigenstates of B̂s
P, we set some notational conventions. P will

be used to refer to an arbitrary plaquette with all of its external legs directed inwards

and the internal legs directed counterclockwise, as in Figure 4.3b. We will also make the

1We should note that generally, if any of the vertex stabilizers are not satisfied (indicating the presence
of a charge excitation), B̂s

P is defined to be zero. However, for the case of Abelian input data this can be
disregarded. See [114] for an extension of the Levin-Wen model that circumvents this issue.
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assumption that all vertices of the plaquette are stable. The Hilbert space corresponding

to such a plaquette is given by

HP := spanC{|i1i2...in〉 ⊗ |j1 j2...jn〉 | ik, jk ∈ ZN , in+ jn−i1=0,

ik+ jk−ik+1=0, k = 1, ...n}. (4.9)

Note that every ik appears in two of the conditions in the definition (4.9), once with a

positive sign and another with a negative. If we take the sum of all the conditions in (4.9),

we are left with the condition ∑k jk = 0 (mod N), which must be satisfied for the plaquette

to be stable.

Fix a string of values~ = j1 j2...jn, jk ∈ ZN , k = 1, ..., n that sum to zero modulo N. We

will refer to the plaquette with the fixed set of values as P(~). The corresponding Hilbert

space of stable configurations is

HP(~) := spanC{|i1i2...in〉 | ik, jk ∈ ZN , in+ jn−i1=0, ik+ jk−ik+1=0, k = 1, ..., n}. (4.10)

This leads to the following decomposition of the plaquette Hilbert space into orthogonal

subspaces:

HP =
⊕
~

HP(~). (4.11)

This coupled with (4.8) means that we can write B̂s
P = ∑~ B̂s

P(~), which should be interpreted

as a direct sum of matrices.

Note that with ~ fixed, once we set the value for any internal label, let’s say i1, the

remaining labels are fully determined by the conditions in (4.10). Define the state:

|i; j1 j2...jn〉 := |(i1= i)(i2= i+ j1)(i3 = i+ j1+ j2)...(in = i+ j1+...+ jn−1)〉 . (4.12)

We will refer to this state interchangeably as a state in HP(~) or a state in HP, where in the

latter case it will be implicitly tensored with |j1 j2...jn〉. We then have the following bases

for the plaquette Hilbert spaces:

HP(~) = spanC{|i; j1 j2...jn〉 | i ∈ ZN}, (4.13a)

HP = spanC{|i; j1 j2...jn〉 ⊗ |j1 j2...jn〉 | i, j1, ..., jn ∈ ZN , and ∑
k

jk = 0}. (4.13b)

The conjugate states are defined to be

|[i]; j1 j2...jn〉 :=
1√
N

∑
i′∈ZN

(
ξN
)ii′ ∣∣i′; j1 j2...jn

〉
. (4.14)
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These are eigenstates of the B̂s
P(~) operator, with eigenvalue

(
ξN
)is. Details of this calcula-

tion can be found in Appendix A.1.

The set of operators {B̂s
P(~)|s ∈ ZN} acting onHP(~) forms a representation of the fusion

algebra, that is the following conditions are satisfied:

B̂0
P(~) = IdHP(~)

(4.15a)(
B̂s

P(~)
)†

= B̂s∗
P(~) (4.15b)

B̂r
P(~)B̂

s
P(~) = ∑

t
Nt

rsB̂t
P(~) . (4.15c)

Using the standard methods of representation theory [94], we can construct the projector

from C[ZN ] onto the trivial representation:

B̂P(~) =
1
N ∑

s
B̂s

P(~). (4.16)

From the calculation (A.1), we see that |[0]; j1 j2...jn〉 is the unique B̂P(~) = +1 eigenstate.

Since the fusion coefficients satisfy Nt
rs = Nt

sr, we have that [B̂r
P, B̂s

P] = 0. On the

other hand, using the properties (4.4), it can be shown that [B̂r
P1

, B̂s
P2
] = 0 when P1 and

P2 are neighboring plaquettes. By definition the B̂s
P operators preserve the stability of the

impacted vertices, and therefore they commute with Q̂v.

Given the above definitions and considerations, we arrive at the Levin-Wen Hamilto-

nian

ĤLW := ∑
v
(1− Q̂v) + ∑

P
(1− B̂P). (4.17)

By construction, B̂P is a projector, and based on our discussion in the previous paragraph,

it commutes with all Q̂v operators and any other B̂P′ operator. Therefore (4.17) is a Hamil-

tonian made of a sum of commuting local projectors, hence exactly solvable and gapped.

It is known that the Hamiltonian (4.17) defined on a closed manifold has a degenerate

ground state subspace that depends only on the genus of the underlying surface, not on

the particular trivalent graph used [113, 116, 145]. Thus the ground state degeneracy is a

topological invariant and a signature of the topological order in the system. It was shown

in [113, 116] that the ground state degeneracy can be computed by taking the trace of the

operator ∏P B̂P over the spaceHSN .
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4.1.2 Bulk Topological Symmetry

Beyond the exact solvability of the Levin-Wen Hamiltonian (4.17), it possesses another

remarkable property, that of topological symmetry [113, 116, 150]. This “symmetry” traces

back to the arbitrary choice of a trivalent graph for our surface that we made when defining

the Hilbert space and Hamiltonian. We could have chosen a different trivalent graph,

which would have come with a different Hilbert space and a different Hamiltonian. The

topological properties of the theory should be those that are independent of the details of

the graph we choose. This means that topological symmetry is most accurately viewed

as a property of a family of Hilbert spaces paired with Hamiltonians, indexed by trivalent

graphs, {(HΓ, ĤΓ)} [113, 211].

To formalize this notion of topological symmetry, we need to first describe how to relate

one trivalent graph to another. This can be done through a series of topology preserving

graph mutations known as the Pachner moves1 [113, 116, 165]. There are three basic Pach-

ner moves (see Figure 4.4) from which any trivalent graph on a surface can be morphed

into another while preserving the topology of the graph. One of the salient features of the

Pachner moves is that they are local, only altering the graph slightly within a region, and

leaving it unchanged outside of that region.
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Figure 4.4: The three Pachner moves acting on a directed trivalent graph.

1Technically the Pachner moves are defined for a triangulation, so we are using “dual” Pachner moves to
be precise.
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Each Pachner move is a map between graphs Γ 7→ Γ′. Corresponding to such a map,

we need a linear transformation of Hilbert spaces HΓ → HΓ′ [113, 116]. This linear trans-

formation should restrict to a unitary transformation between the ground state subspaces

of the Hamiltonians ĤΓ and ĤΓ′ , respectively.

We define the linear transformations based on their action on the local Hilbert spaces

[113, 116], with the labeling conventions consistent with those in Figure 4.4

T̂1 |ijkl〉 ⊗ |m〉 := ∑
n

Gijm
kln |ijkl〉 ⊗ |n〉 (4.18a)

T̂2 |ijk〉 :=
1√
N

∑
lmn

Gijk
n∗ lm∗ |lmn〉 ⊗ |ijk〉 (4.18b)

T̂3 |lmn〉 ⊗ |ijk〉 :=
1√
N

Gj∗i∗k∗

m∗ ln∗ |ijk〉 , (4.18c)

where the transformations are understood to be zero should any of the vertex constraints

be unsatisfied. Thus, the bulk symmetries commute with the Q̂v operators.

Note that T̂1 is analagous to the F-move introduced in the context of fusion trees. The

topological symmetry transformations are also well-defined and unitary when acting on

states without any excitations in the region where the map is applied.

Another point worth highlighting is in regards to the other two generators, T̂2 and

T̂3. In particular, using the G-symbol in equation (4.5) we explicitly compute the state

in (4.18b):

1√
N

∑
lmn

Gijk
n∗ lm∗ |lmn〉 :=

1√
N

∑
lmn

δi+j+k,0 δl−k−n,0 δi+l−m,0 δj+m−n,0 |lmn〉

=
1√
N

∑
l
|l(l + i)(l + i + j)〉

= |[0]; ijk〉 , (4.19)

where |[0]; ijk〉 is recognized by equation (4.14), which, as previously noted, is the unique

B̂P(ijk) = +1 eigenstate in HP(ijk). Thus we could alternatively write the transformation as

T̂2 |ijk〉 = |[0], ijk〉 ⊗ |ijk〉. In an adjoint manner, we can write (4.18c) as

T̂3 |lmn〉 ⊗ |ijk〉 = 〈[0]; ijk|lmn〉 |ijk〉 , (4.20)

making it clear that T̂3 ◦ T̂2 |ijk〉 = δi+j+k,0 |ijk〉 as should be expected. In addition, we have

T̂2 ◦ T̂3 = B̂P, where P is the triangular plaquette being acted on by the corresponding

Pachner moves.
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The set T of operators generated by compositions of the maps (4.18) formalizes our

notion of topological symmetry operators [113]:

T := {T̂| T̂ is a product of T̂1, T̂2, and T̂3 operators}. (4.21)

While it comes as no surprise that the local states introduced through the topological

symmetry of the ground states should be a B̂P(ijk) = +1 eigenstate, the fact that it is unique

is important. This is because it leaves us with no choice of what state to inject with the T̂2

move because of the condition that it must map a ground state on one graph to the ground

state of another.1

The reason we belabour the point regarding the uniqueness of the local state is that

we will use a similar logic in constructing maps generalizing the topological symmetries

(those for inserting and removing gapped boundaries and defect lines). Another property

of the local state being injected is that it carries a trivial anyonic charge; it is the vacuum.

This too is just another manifestation of the topological symmetry in terms of the anyonic

charge; one cannot add a net anyonic charge through any local operation.

Now that we have a suitable definition of topological symmetry operators, we can

formulate the notion of topological observables [113]. Such an observable is in fact a family

of observables {ÔΓ} such that for any topological symmetry T̂ from a graph Γ to another

Γ′, we have

ÔΓ′ T̂ = T̂ÔΓ. (4.22)

Thus, if we know the matrix elements of a topological observable for one particular graph,

we can use the topological symmetries to find its elements for any other graph.

For example, since the dimension of the ground state subspace is a topological invari-

ant, the operator ∏P∈Γ B̂P is a topological observable [113, 116]. To see how this notion

relates to the action of topological symmetries on states, consider the torus, for which there

is a basis for the ground state subspace where the basis states are labeled by the quantum

double charges of ZN [113, 116]. These states are preserved under topological symmetries,

〈Φ′a|T̂|Φb〉 ∝ δa,b; however, linear combinations of these states may be altered.

1For fusion rules that are not multiplicity free, there is a choice of such a state. This leads to additional
gauge degree of freedom in how the topological symmetry operator is realized in the system, which could
have nontrivial implications, see [145] and Appendix C of [113].
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This discussion of topological symmetry harkens back to the picture described at the

beginning of Chapter 3 regarding the transformations of the configuration space of a sys-

tem of anyons. If we consider all maps in T that map a given graph Γ back to itself,

then we have a foundation from which we can make that sketch concrete. All that we are

missing are the anyons! These can be added by considering the excited states of (4.17) as

we shall do next in the next subsection, or even better, through the consideration of gapped

boundaries, which will later follow.

4.1.3 Bulk Excitations

In this section, we will examine the properties of quasi-particle excitations in the Levin-

Wen model [113, 114, 145], in particular their fusion, twisting, and braiding. We will also

construct the operators needed to create and move excitations from one location to another.

This presentation leans heavily on the general theory and formalism presented in [113,

114].

The excitations of (4.17) are classified as either fluxons, charges, or more generally

dyons (charge-flux composites), based on which term they violate. A state |ψ〉 for which

B̂P |ψ〉 = 0 is said to have a fluxon at plaquette P, while if Q̂v |ψ〉 = 0 we say that there is a

charge at vertex v. If B̂P |ψ〉 = Q̂v |ψ〉 = 0 with v adjacent to P, then we say there is a dyon

at the cilium (v, P). For Abelian theories a dyon can always be split into its charge and flux

components.1

4.1.3.1 Charges

Consider two adjacent vertices as in Figure 4.5. If the labeling for the left vertex is given

by |ijk〉, then there is an excitation at the vertex if i + j + k 6= 0. In this case, the charge at

the vertex is given by the value of i + j + k.

Suppose that both vertices in Figure 4.5 have no charge, this implies the equalities:

i + j + k = l + m− k = 0 .

Suppose we act on the edge labeled by k with the operator N̂n:

ˆId
⊗2 ⊗ N̂n ⊗ ˆId

⊗2 |ijklm〉 = |ij(k+n)lm〉 . (4.23)

1This phenomenon seems to be more general, extending to models where the input UFC can be supple-
mented with a braiding as noted in [114].
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Figure 4.5: Two adjacent vertices.

Afterwards the charge on the left vertex is i + j + k + n = n, while that on the right vertex

is l + m− (k + n) = −n. This operation has created a charge pair out of the vacuum. Note

that the net charge of the two vertices is still trivial, as we should again expect since we

acted with a local operation.

Now let us consider the case in which there is a charge at one of the vertices. Suppose

that the charge at the left vertex in Figure 4.5 is given by i + j + k = n, while the right

vertex has no charge −k + l + m = 0. We can move the charge from the left vertex to the

right vertex by acting with the fusion matrix N̂−n on the common edge:

ˆId
⊗2 ⊗ N̂−n ⊗ ˆId

⊗2 |ijklm〉 = |ij(k− n)lm〉 . (4.24)

After this operation, the charge on the left vertex is i + j + (k− n) = 0, while the charge on

the right vertex is −(k− n) + l + m = n.

If we did not know the value of the charge at the left vertex, but we wanted to move

all charge at the vertex over to the right vertex, we would first act with the operator ∑n N̂n

followed by Q̂vL on the left vertex, realizing the charge hopping operator:

(
Q̂vL ⊗ ˆId

⊗2) ◦ ( ˆId
⊗2 ⊗∑

n
N̂n ⊗ ˆId

⊗2) |ijklm〉 = ∑
n

Q̂vL |ij(k + n)lm〉

= ∑
n

δi+j+k+n,0 |ij(k + n)lm〉

= |ij(−i− j)lm〉 . (4.25)

After this operation, the charge on the left vertex is i + j + (−i − j) = 0, while the right

vertex now has charge l + m − (−i − j) = i + j + l + m. In total, this procedure moved

i + j + k units of charge from the left vertex to the right. By stringing together many such

operators one can create a state with two distant conjugate charges as in Figure 4.6.

4.1.3.2 Fluxons

Now considering a state |ψ〉 with a fluxon excitation at a plaquette P. This means that

B̂P |ψ〉 = 0, which by (4.17) means that the state has a nonzero energy. However, we want
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[j]

[j∗]

i

i∗

Figure 4.6: Depiction of the bulk excitations. The red lines represent application of N̂i
along the path, while the blue lines represent applying Λ̂†

j on the edges it crosses. The
orientation of the graph edges have been surpressed for clarity.

to know more about this excitation, namely its associated flux.

By fixing the external legs j = j1 j2...jn of the plaquette, we restrict our attention to

HP(j), which is N-dimensional. As previously emphasized, B̂P(j) projects onto the one-

dimensional subspace spanC{|[0]; j1 j2...jn〉}. In order to have a “complete” projective mea-

surement of the system, we need a set of projectors that sum to the identity. The remaining

projectors are defined for i ∈ ZN by [113, 114]

n̂[i]
P(j) :=

1
N ∑

s∈ZN

(
ξN
)isB̂s

P(j) , (4.26)

where the value [i] indicates the flux through the plaquette. Note that n̂[0]
P(j) = B̂P(j). It is

then a straightforward calculation to verify the following properties

n̂[i]
P(j)n̂

[k]
P(j) = δi,kn̂i

P(j), and ∑
i∈ZN

n̂[i]
P(j) = IdHP(j)

, (4.27)

which confirms that {n̂[i]
P(j)}i∈ZN constitutes a complete set of orthogonal projectors.

Now that we can identify when a fluxon is at a particular plaquette, as well as identify

the corresponding flux quantum number, we proceed to find how to create such a state

from the vacuum. Based on the properties of the fusion algebra determined in section

3.1.4, in particular equation (3.25), we should act in some way with a Λ̂†
i operator. This

also agrees with the intuition that flux should be created with an operator that is dual to

the fusion matrices.
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The detailed calculations for the following fluxon operators can be found in Appendix

A.2, but we summarize the results here. To create a pair of fluxons ([k], [k∗]) across the

edge labeled by i (see Figure 4.7a), we act on that edge with the operator Λ̂†
k [113, 114].

This operator creates a [k]-fluxon in the plaquette to the right of the edge, as determined

by the orientation of the edge, and also a [k∗]-fluxon in the plaquette to the left. We shoud

make sure that this picture is not disrupted if we use the duality of the fusion algebra

to reverse the direction of the edge. It is important to note that the duality is taken on

the entire fusion algebra, operators included, so not only does i 7→ i∗, but we also have

Λ̂†
k 7→ Λ̂†

k∗ . Since 〈i|Λ̂†
k |i〉 =

(
〈i∗|Λ̂†

k |i∗〉
)∗

= 〈i∗|Λ̂†
k∗ |i∗〉 reversing the direction of the

edge will have the effect of creating a ([k∗], [k]) fluxon pair placed according to the new

direction of the edge (see Figure 4.7b); we conclude the picture is indeed invariant.

If the plaquettes already possessed some nontrivial flux, then this process will increase

the flux by [k] units in the plaquette to the right, and decrease it by [k] units in that to the

left. We can also construct the fluxon hopping operator [113, 114]

∑
k

B̂P ◦ Λ̂†
k (4.28)

that will remove any flux that exists in the right plaquette and insert it into the left plaque-

tte.

Recall equation (3.27) regarding the commutation relation of the fusion algebra matri-

i
Λ̂†

k |i〉
i

[k∗] [k]
[k]

(a)

i∗
Λ̂†

k∗ |i∗〉
i∗

[k∗] [k]
k∗

(b)

Figure 4.7: The fluxon pair produced is independent of the (arbitrarily assigned) direction
of the edge.
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ces N̂i and Λ̂j. Since these are the two operators for creating/moving charges and fluxons,

respectively, the commutation relation dictates the half-braiding relation of charges and

fluxons. In particular, we have N̂iΛ̂†
j =

(
ξN
)ijΛ̂†

j N̂i, indicating that the half-braiding of an

i-charge and a [j]-fluxon is
(
ξN
)ij consistent with the data in Section 3.2.4.

4.2 The Levin-Wen model on a surface with boundary
When designing the bulk terms for the theory, the guiding principles were the follow-

ing:

(1) The Hamiltonian should be gapped and exactly soluble. Furthermore, it can be

written as a sum of local commuting projectors.

(2) The (potentially degenerate) ground state should possess a topological symmetry,

that is it should be insensitive to the local details of the graph.

This is what leads to the set of data, the unitary fusion category, required to define the

bulk theory [150]. By following these same principles, as well as the additional constraint

that the boundary theory should be compatible with the bulk theory [115, 133, 145], one

finds that the algebraic data needed to define the boundary theory is a Frobenius algebra

[91, 92, 117, 137, 159], which is a special object in the unitary fusion category describing the

bulk.

The string-net surface code will be based on the Levin-Wen model with an Abelian

fusion category as the input, and in this case the formulation of the boundary theory

greatly simplifies. In order to stay focused on our ultimate goal, we will bypass the general

boundary theory, and instead focus on the case of a boundary theory where the bulk theory

has data from RepZN . The formulation of the generic boundary theory we use can be found

in Appendix C as well as [115]. A dual formulation to the one we use is introduced in

[133, 145], while a mathematically precise statement can be found in [129].

4.2.1 Boundary Theory for RepZN Fusion Algebra

The boundary of the Levin-Wen model for RepZN can be phrased in terms of the con-

densation of charge [133]. In order to capture the topology of a surface with boundary,

we should allow the graph to have external “dangling” edges at the boundary [129], see

Figure 4.8. In the bulk, such an edge would produce the violation of some operator Qv,
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Vacuum

Figure 4.8: The local picture of the boundary. Boundary edges are thickened in this picture.

indicating the presence of a charge at the vertex v. In order to allow for string-nets where

these boundary edges carry some nontrivial label, our boundary Hamiltonian must be

modified to allow for some subset of labels for the bulk degrees of freedom to occupy the

boundary without energetic cost.

Yet it is not sufficient to choose any subset of labels S ⊆ ZN , we must demand consis-

tency with respect to topological symmetry. In particular, if we have two boundary edges

with labels a, b ∈ S, we need a rule to describe what happens when we view these two

edges at length scales where they appear as one [115]. This aggregate label must be in

S as well, otherwise this (local) scaling transformation would have created a boundary

excitation in a region that initially had none. Therefore, we need some type of addition, or

fusion, for the boundary edges. Such a consideration leads us to consider a subgroup of

ZN [145].

For each connected component of the boundary of our surface, we allow elements from

one of these subgroups to occupy the boundary edges with no energy penalty. The corre-

sponding topological symmetry will be determined by the group operation (a, b) 7→ a+b.

To specify a subgroup of ZN , we find a factorization N = KM, with K and M both

positive integers. We will even allow the trivial factorization K = N, M = 1, known as the

“smooth boundary”, and K = 1, M = N, known as the “rough boundary” [47]. The group

KZM := {0, K, 2K, ..., (M− 1)K} ∼= ZM is a subgroup of ZN , and we will use it to build the

boundary theory of our model. In particular, A =
⊕

a∈KZM
a is a Frobenius algebra in the

fusion algebra RepZN . Multiplication in A is just that induced from RepZN .1

1Although this is more subtle for non-Abelian fusion categories.
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The cosets of KZM in ZN are

ZN/KZM := {KZM, KZM + 1, ..., KZM + (K− 1)}. (4.29)

Each coset is the collection of elements of ZN that all have the same value modulo K. For

r ∈ ZK, define the associated coset

Cr := KZM + r = {KiM + r|iM ∈ ZM}. (4.30)

In particular, C0 = KZM.

Since ZN is an Abelian group, KZM is automatically a normal subgroup, and therefore

the cosets are a partition of ZN :⋃
r

Cr = ZN and r 6= s ⇒ Cr ∩ Cs = ∅. (4.31)

This then implies that the single-quNit Hilbert space can be decomposed as

C[ZN ] =
K−1⊕
r=0

C[Cr]. (4.32)

In addition, ZN/KZM is a quotient group isomorphic to ZK, with identity C0.

4.2.2 The Boundary String-Net Hilbert Space and Boundary Hamiltonian

Define a new boundary charge operator that takes into account the discussion of the

previous subsection. This operator acts on a single boundary edge as follows

Qe |i〉 := ιKZM(i) |i〉 , (4.33)

where ιKZM is the indicator function for the subgroup KZM.

The Hilbert space associated to the graph is once again HΓ := H⊗|E|edge , but the Hilbert

space of string-nets that satisfy the boundary conditions is now

HSN := ∏
v∈Γ

Q̂v ∏
e∈∂Γ

Qe
[
HΓ
]
. (4.34)

We will also need an operator analagous to the bulk plaquette operator, that acts on

the “half-plaquettes” found at the boundary (see Figure 4.9). The following operator, for

t ∈ KZM, does the trick:

Bt
P̄ |ab〉 ⊗ |lm〉 = |(a + t)(b + t)〉 ⊗ |(l + t)(m + t)〉 . (4.35)

In addition, Bt
P̄ is defined to be zero if any of the edges violate Qe or any of the vertices

violate Q̂v.
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ba

i l
j

m k

Figure 4.9: Depiction of a boundary half-plaquette, with edge orientations used to define
the Bt

P̄ operator.

To determine the Bt
P̄ eigenstates, we will focus on the local half-plaquette Hilbert spaces.

The notation P̄ will be used to denote a generic boundary plaquette,1 and P̄(~) to denote a

boundary plaquette with fixed boundary labels. We can then fix the edges of a boundary

plaquette P̄(ijk) as in Figure 4.9. The stable configurations with boundary edges in KZM

span the local Hilbert space

HP̄(ijk) := spanC{|ab, lm〉 | a, b ∈ KZM and δail∗ = δl jm∗ = δmkb∗ = 1}, (4.36)

where the vertex constraints imply that we have i + j + k = a − b. Since the edge con-

straints demand a, b ∈ KZM, we conclude that i + j + k ∈ KZM for a stable boundary

plaquette configuration. For fixed values of ijk satisfying this constraint, we only need to

specify one edge label, say a ∈ KZM, and then the conditions in (4.36) take care of the rest.

For m ∈ ZN define the state:

|m; ijk〉 := |m(m + i + j + k), (m + i)(m + i + j)〉 ∈ HP̄(ijk). (4.37)

We can then rewrite (4.36) as

HP̄(ijk) := spanC{|a; ijk〉 |a ∈ KZM}. (4.38)

In order to determine the BP̄ eigenstates, we define the operator

SM |i〉 :=
1√
M

∑
t∈KZM

(
ξM
) it

K2 |t〉 , (4.39)

which is an extension of the S-matrix for the RepZM fusion algebra to RepZN . Restricting to

a ∈ KZM, define the boundary conjugate state inHP̄(ijk):

|[a]M; ijk〉 := S†
M |a; ijk〉 = 1√

M
∑

b∈KZM

(
ξM
) ab

K2 |b; ijk〉 . (4.40)

1We will use “boundary plaquette” as shorthand for “boundary half-plaquette.”
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It is an eigenstate of Bt
P̄(ijk) for t ∈ KZM:

Bt
P̄(ijk) |[a]M; ijk〉 =

(
ξM
) at

K2 |[a]M; ijk〉 , where
(
ξM
)
= e2πi/M . (4.41)

Just as in the bulk case, define the projector from C[KZM] onto its trivial representation:

BP̄ =
1
M ∑

t∈KZM

Bt
P̄ . (4.42)

The unique BP̄ = +1 eigenstate is |[0]M; ijk〉 = 1√
M ∑t∈KZM

|t; ijk〉.

The operator BP̄ is a projector that commutes with all of the Qe, Q̂v, and B̂P operators.

This leads to the exactly solvable, gapped, boundary Hamiltonian:

Hbdry = ∑̄
P

(1− BP̄) + ∑
e∈∂Γ

(1−Qe) . (4.43)

Similar to the bulk Hamiltonian, this boundary Hamiltonian has a degenerate ground state

subspace. The ground state degeneracy is independent of the trivalent graph used [25, 58,

115, 133, 144], and thus a topological invariant. However, the degeneracy does depend on

the subgroups assigned to each boundary component, which can be understood in terms

of the picture of anyon condensation [120, 193], as discussed in Section 3.3.3.

4.2.3 Boundary Topological Symmetry

As it is one dimensional, the boundary has a simpler (i.e., more restricted) set of graph

mutations preserving the underlying topology [115, 133]. These two mutations are shown

in Figure 4.10.

a a

b c

(a)

a

b c

a

(b)

Figure 4.10: The topology preserving mutations of the boundary



84

To define the symmetry T̂4 corresponding to Figure 4.10a, we take a boundary edge

labeled by a ∈ KZM and map it to a state with all possible combinations of ways that a can

split into two elements b, c ∈ KZM.

T̂4 |a〉 :=
1√
M

∑
b∈KZM

|a〉 ⊗ |(a− b)b〉 (4.44)

At first glance, such a map seems natural because we need the vertex stabilizer to be

satisfied, but there is in fact a deeper notion at work, one that justifies that the super-

position should be uniform. In particular, adding the additional edges also has the effect

of adding an additional boundary plaquette that has a single external edge a. Therefore,

we must ensure that the state we are injecting is a B̄P̄(a) = +1 eigenstate, and that is

why the superposition must be uniform. We can alternatively state the symmetry as

T̂4 |a〉 = |a〉 ⊗ |[0]M; a〉.

Conversely, for the operator T̂5, corresponding to Figure 4.10b, we take a stable vertex

with all edges in KZM and simply “trim it,” that is remove the two outermost edges.

Adjointly to the case of the T̂4 transformation, we should think of T̂5 as a transformation

that removes a boundary plaquette with trivial flux, and such that T̂4 ◦ T̂5 = 1. This

determines the action of T̂5 to be

T̂5 |a〉 ⊗ |(a− b)b〉 := 〈[0]M; a|(a− b)b〉 |a〉 = 1√
M
|a〉 . (4.45)

4.2.4 Boundary Excitations

Looking at equation (4.43), there are two ways of creating excitations. If Qe |ψ〉 = 0, we

say that the state |ψ〉 has a boundary charge on the boundary edge e. If we have BP̄ |ψ〉 = 0,

we say that the state |ψ〉 has a boundary fluxon located at the boundary plaquette P̄.

In this section, we will find the quantum numbers that characterize the boundary

excitations. We will also give the operators needed to create, fuse, and hop boundary

excitations. In addition, we will determine the bulk-to-boundary map describing what

happens when a bulk quasiparticle is brought to the boundary. This map is needed to

determine condensable anyon ribbons for a given boundary, which will be essential for

describing the degenerate ground states used for encoding quantum information.



85

4.2.4.1 Boundary Charges

When viewing the boundary edges as charges, we set the convention that we always

measure the edges with respect to an orientation directed away from the bulk. In order to

discuss the creation of boundary charges, we need to extend the definition of the operator

B̄s
P̄(ijk) to all s ∈ ZN .

As previously mentioned, boundary excitations correspond to a boundary edge violat-

ing a Qe term, that is possessing a label i /∈ KZM. However, since boundary edges with

labels in KZM serve as the “vacuum” on the boundary, only the component of i that is

stable with respect to the action of KZM constitutes a good quantum number.

Recall that the cosets of ZN/KZM have the form:

Cr := KZM + r = {Kq + r| q ∈ ZM, r ∈ ZK}. (4.46)

Furthermore, these cosets have a well defined group action (Cr, Cs) 7→ Cr+s isomorphic to

ZK for which C0 = KZM serves as the identity element. Thus, the boundary charges and

their fusion operation are given by the group ZK.

Consequently, the bulk-to-boundary map for charge excitations is given by i 7→ i (mod K).

We must check that this map properly relates the bulk and boundary fusion rules. Given

two bulk charges i, j ∈ ZN , suppose that they each move to the boundary individually, and

then fuse on the boundary. This gives rise to the process

(i, j) 7→ (i (mod K), j (mod K)) 7→ (i (mod K)) + (j (mod K)) = ri + rj , (4.47)

where the sums are both modulo K, and ri and rj are each label’s value modulo K.

If instead we first fuse the charges in the bulk, then bring the resulting charge to the

boundary, we would have the process:

(i, j) 7→ i + j 7→ (i + j) (mod K) = ri+j . (4.48)

Due to the group action on the cosets, we have the equality ri + rj = ri+j, and so this

bulk-to-boundary map is consistent with the fusion rules of the bulk and the boundary.

Now consider the action of the matrix Λ̂h for h ∈ MZK. Write i = Kq + r for q ∈

ZM, r ∈ ZK and compute

Λ̂h |i〉 =
(
ξN
)hi |i〉 =

(
ξN
)hKq+hr |i〉 =

(
ξN
)hr |i〉 , (4.49)
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where we used that hK is a multiple of N. This tells us that only the value of i (mod K)

matters for the action of Λ̂h with h ∈ MZK. Using the identity for i ∈ ZN

1
K ∑

s∈MZK

(
ξN
)is

= δri ,0 , ri = i (mod K), (4.50)

we can write the projector onto the coset Cr, the space of r-charges, as

Π̄r :=
1
K ∑

s∈MZK

(
ξN
)rsΛ̂s . (4.51)

Note that Π̄0 = Qe.

Finally we construct the operations to manipulate the boundary charges. Given a

plaquette as in Figure 4.11, acting with B̄s
P̄(ijk) has the effect of removing s (mod K) units of

charge from the left edge and adding it to the right edge in the figure, and thus serving as

our boundary charge creation operator. Hopping an arbitrary boundary charge from one

tail to the next is the realized with the operator:

1
K ∑

s∈MZK

Π̄0 ◦ B̄s
P̄(ijk) . (4.52)

4.2.4.2 Boundary Fluxons

In order to identify the boundary fluxon quantum numbers, we will construct projec-

tors using the operators {Bt
P̄}t∈KZM , which form a representation of KZM. For a ∈ KZM,

define the operator:

n̄[a]M
P̄ =

1
M ∑

t∈KZM

(
ξM
) at

K2 B̄t
P̄ . (4.53)

j
m

a

i k

b

l

s
s s

s

Vacuum

Fuse s j

m+s

a−s

i k

b+s

l+s

Vacuum

Figure 4.11: The operator B̄s
P̄(ijk) fuses charge s along the edges of the boundary plaquette

P̄(ijk), transferring s (mod K) units of charge from the left edge to the right.
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The set of operators {n̄[a]M
P̄ }a∈KZM} obey the following relations:

n̄[a]M
P̄(ijk)n̄

[b]M
P̄(ijk) = δa,bn̄[a]M

P̄(ijk) (4.54a)

∑
a∈KZM

n̄[a]M
P̄(ijk) = IdHP̄(ijk)

(4.54b)

n̄[a]M
P̄(ijk) |[b]M; ijk〉 = δa,b |[a]M; ijk〉 . (4.54c)

We conclude that the boundary fluxons are labeled by elements of the group KZM.

Recall that from (4.41), the boundary conjugate states |[a]M; ijk〉 are the Bt
P̄(ijk) eigen-

states for a, t ∈ KZM. If we act on the edge of a boundary plaquette, as indicated in Figure

4.12, with the operator Λ̂†
l with l ∈ ZN , the action on the Bt

P̄(ijk) eigenstates is

Λ̂†
l |[a]M; ijk〉 =

(
ξN
)il |[a + Ksl ]M; ijk〉 , (4.55)

where sl = l (mod M), and the phase factor on the right-hand side is indicative of a bulk

fluxon present at the adjacent plaquette. We see from this calculation that if l ∈ MZK (i.e.,

sl = 0), then the corresponding bulk fluxon condenses at the boundary. More generally,

we have the bulk-to-boundary map:

l 7→ Ksl , where sl = l (mod M) . (4.56)

Thus, the bulk-to-boundary properties of the bulk fluxons are dictated by the cosets ZN/MZK ∼=

ZM. As in the case for the charges, the group properties of these cosets ensure the compat-

ibility of the bulk and boundary fusion rules.

j

a

i k

[l∗]

[Ksl ]

l

Vacuum

Figure 4.12: Fluxons near the boundary.
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Given the boundary fluxon creation operators, {Λ̂†
Mk}k∈ZK , and the fluxon projection

operators, {n̄[a]M}a∈KZM , we can now hop a boundary fluxon from boundary plaquette P̄1

to P̄2 using the operator
1
M ∑

t∈KZM

BP̄1
◦ Λ̂†

t , (4.57)

where Λ̂†
t acts on the edge shared by P̄1 and P̄2.

4.2.5 Boundary Topological Quantum Number

In this section, we will address the ground state quantum numbers of a gapped bound-

ary without any excitations. We are particularly interested in this case because that is the

Hilbert subspace in which we will be encoding our information in the string-net surface

code. Quantum numbers that distinguish different states of a gapped boundary will be

essential in making measurements of the quantum state.

When an excitation reaches the boundary and condenses, it leaves no trace that can be

locally detected. However, nonlocally we know that there should still be a remnant of this

excitation, namely the ribbon that is attached to it [25, 58, 81, 82]. By detecting the label

of such a ribbon, we can infer how much condensate has accumulated at the boundary.

Based on our discussion in the previous sections, we know that a condensed charge is

some element of KZM while a condensed fluxon is an element of MZK.

Measuring the condensed charge is straightforward, we just measure the net charge

of the boundary edges. This can be done in analogy with equation (4.51) by defining the

following projector for i ∈ ZN

¯̄Πi :=
1
N ∑

s∈ZN

(
ξN
)is[Λ̂†

s
]⊗n, (4.58)

where the n factors of Λ̂†
s each act on one of the boundary edges. Note that for fixed s,[

Λ̂†
s
]⊗n creates boundary fluxons across each boundary edge, but in such a way that the

net flux in each boundary plaquette is trivial, see Figure 4.13a.

Using a similar form as the boundary net charge operator (4.58), we define the “conju-

gate” projectors that identify the net flux [i] for i ∈ ZN

¯̄Π[i] :=
1
N ∑

s∈ZN

(
ξN
)is ∏̄

P

B̂s
P̄ , (4.59)

where the product is over all boundary plaquettes of the particular gapped boundary.

For fixed s, the operator ∏P̄ B̂s
P̄ creates charge excitations between each pair of adjacent
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[s]
[s∗] [s]

[s]
[s∗]

[s]

[s]

[s∗]

[s]

(a)

s

s

s

(b)

Figure 4.13: Terms used for the boundary measurements. (a) The operator
[
B̂P̄
]⊗n ◦

[
Λ̂†

s
]⊗n

used to measure charge and (b) the operator ∏P̄ B̂s
P̄ used to measure flux.

boundary edges, but in such a way that no net charge accumulates at any edge, see Figure

4.13b.

4.2.6 Topological Surgery Operators

The final topological procedures we need to address are not symmetries, since they

alter the topology of the graph. Rather, they may be considered as the surgery opera-

tions of cutting open, and sewing closed, holes in the underlying topology [16]. In terms of

Hilbert spaces, these operations correspond to injections and projections, respectively, of

the ground state subspaces of the corresponding topologies (for instance, see lemma 3.7 in

[129]).

Physically, such transformations are reasonable so long as the boundary that is created

or annihilated possesses a trivial anyonic charge, in the sense of Section 4.2.5. One can

think of the sewing procedure in terms of the Aharanov-Bohm effect [3] when there is no

flux through the forbidden region. Without any flux, there will be no phase difference

between the paths going to one side or the other, and hence no observable effects due

to the forbidden region. We could then shrink the region until it was arbitrarily small

without any noticeable effect. Thus, our sewing closed procedure can be thought of as

“zooming-in” on the microscopic hole that contains no flux or charge, while the cutting open

procedure is the adjoint, “zooming-out” from the microscopic hole.

Denote the Hilbert space for the gapped boundary with bulk edges ijk (see Figure 4.14)
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l3 l4

b

i

j k

l5

l6

c

l1

l2

a

Figure 4.14: A gapped boundary with labeling conventions. The labels a, b, and c denote
boundary edges, while i, j, k, and l denote bulk edges.

and all vertex and boundary edge stabilizers satisfied byH ¯̄P(ijk). It can be written as

H ¯̄P(ijk) := spanC{|l1l2l3l4l5l6, abc; ijk〉 |a, b, c ∈ ZM, l1, l2, l3, l4, l5, l6 ∈ ZN

δil6l1∗ = δl1a∗ l2∗ = δl2 jl3∗ =

δl3b∗ l4∗ = δl4kl5∗ = δl5c∗ l6∗ = 1}. (4.60)

Enforcing all of the vertex conditions leads to the following constraint between the external

edges ijk and the boundary edges abc:

i + j + k = a + b + c. (4.61)

Define the following states that spanH ¯̄P(ijk)

|l, ab; ijk〉 := |l(l−a)(l+ j−a)(l+ j−a−b)(l+ j+k−a−b)(l−i)〉 ⊗ |ab(i+ j+k−a−b)〉 ,

(4.62)

as well as the following conjugate states:

|[l], [a]M[b]M; ijk〉 :=
1

M
√

N
∑

l′∈ZN
a′,b′∈KZM

(
ξN
)ll′(

ξM
) aa′+bb′

K2
∣∣l, a′b′; ijk

〉
. (4.63)

The state |[0], [0]M[0]M; ijk〉 is the unique, charge and flux free state of the entire gapped

boundary, as can be confirmed by using the operators in (4.58) and (4.59); this is the state

we wish to inject when introducing a gapped boundary corresponding to the subgroup

ZM.
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Starting with a stable vertex with labels ijk, define the transformation, T̂M
6 , that pairs

with the graph mutation in Figure 4.15a as

T̂M
6 |ijk〉 = |ijk〉 ⊗ |[0], [0]M[0]M; ijk〉

=
1

M
√

N
∑

l′∈ZN
a′,b′∈KZM

|ijk〉 ⊗
∣∣l′, a′b′; ijk

〉
. (4.64)

In the case that M = 1, i.e, the “smooth boundary,” we recover the bulk topological

symmetry: T̂1
6 = T̂2.

Following the pattern of our other topological transformations, define the transforma-

tion, T̂M
7 , corresponding to the graph mutation in Figure 4.15b as

T̂M
7 |ijk〉 ⊗ |l, ab; ijk〉 = 〈[0], [0]M[0]M; ijk|l, ab; ijk〉 |ijk〉

=
1

M
√

N
δi+j+k,0 |ijk〉 .

(4.65)

This operator also recovers the bulk topological symmetry for the smooth boundary: T̂1
7 =

T̂3. Furthermore, these two surgery operations are adjoint: T̂M
7 ◦ T̂M

6 |ijk〉 = δi+j+k,0 |ijk〉.

4.3 Gapped defect lines
Here, we briefly present the formalism describing defect lines in the Levin-Wen model

[9, 19, 21, 22, 32, 58, 91, 93, 133, 144]. We will be specifically interested in defect lines that

realize the electro-magnetic symmetry of the underlying doubled-anyon theory [24, 51,

138]. Under this type of symmetry, when a charge crosses the defect line, it becomes a

fluxon on the other side, and vice versa (see Figure 4.16a).

For a stable configuration (using the labeling convention in Figure 4.16b), we define the

state:

|n; ijklm〉 := |n(n+i)(n+i+ j)(n+i+ j+k)(m+l)〉 ⊗ |ijklm〉 . (4.66)

j

i

k

i

j k

(a)

i

j k
j

i

k

(b)

Figure 4.15: The topological surgeries (a) T̂M
6 and (b) T̂M

7 .
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Figure 4.16: (a) A gapped defect line, with a charge crossing to become a fluxon. (b) The
configuration corresponding to the state |n1n2n3n4n5〉 ⊗ |ijklm〉.

Define the following operator acting on such configurations as

B̃s
P̃ |n; ijklm〉 :=

(
ξN
)s(l+m) |n+s; ijkl〉 . (4.67)

One can think of B̃s
P̃ as acting with N̂s on edges with labels na for a = 1, 2, 3, 4 in Figure

4.16b, and acting with Λ̂†
s on n5. The action of B̃s

P̃ on the conjugate states is then

B̃s
P̃ |[n]; ijklm〉 =

(
ξN
)s(l+m+n) |[n]; ijklm〉 . (4.68)

Define the projector B̃P̃ = 1
N ∑s∈ZN

B̃s
P̃. From equation (4.68), we see that the B̃P̃ = +1

eigenstates are conjugate states with l+m+n = 0, that is |[l∗+m∗]; ijklm〉. Furthermore,

the excitations along the defect line are labeled by the value of l+m+n. These excitations

are neither charges nor fluxons, as this distinction becomes ambiguous along the defect

line.

From the set of operators {B̃s
P̃|s ∈ ZN}, we can construct a complete set of projectors.

For each r ∈ ZN , define the projector:

ñr
P̃ :=

1
N ∑

s

(
ξN
)rsB̃s

P̃ . (4.69)

This set includes the projector ñ0
P̃ = B̃P̃. The projectors act on the B̃s

P̃ eigenstates as

ñr
P̃ |[n]; ijklm〉 = δl+m+n,r |[n]; ijklm〉 . (4.70)

An excitation on the site P̃(ijklm) may be created by acting with Λ̂†
s along either of

the edges in Figure 4.16b with a label na for a = 1, 2, 3, 4, or by using N̂s along the edge

labeled n5. These creation operators can then be combined with the projectors to realize

hopping operators and annihilation operators in the same manner as was done for charge
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and fluxon excitations. Notice also that a charge excitation can hop onto the defect line,

as in Figure 4.16a, but in order to cross onto the other side, it must do so with a fluxon

creation operator. In other words, the defect line realizes a duality between charges and

fluxons [32, 133] known as “electric-magnetic duality” [24, 51].



CHAPTER 5

TECHNOLOGY IMITATES NATURE: THE

STRING-NET SURFACE CODE

“What I cannot create, I do not understand”

-Richard Feynman

The ideas and tools built in the previous three chapters will now culminate in the

construction of the string-net surface code. The ground state subspace of the Levin-Wen

model on a surface with gapped boundaries will be our codespace, and the terms ap-

pearing in the Levin-Wen Hamiltonian will serve as our stabilizer generators.1 We will

also unleash topological symmetry, which will prove to be a powerful tool for realizing

encoded operations.

Just as in the Levin-Wen model, we start with a trivalent directed graph on a surface

and fix a value N, representing the local fusion algebra, RepZN . For the surface code, this

trivalent graph is not an actual graph in physical space, but some data to be stored on a

classical computer that controls the quNits . This data must include the vertices, edges,

plaquettes, boundary plaquettes, and defect lines as well. Additionally, this data must

be tracked as it is dynamically manipulated throughout a computation. Simply put, the

classical computer must keep track of the stabilizers of the code as we deform it through

use of the topological symmetry operations. These topological symmetries will provide a

means of implementing code deformation [33, 38, 62] with circuits.

Since we need a degenerate ground state subspace to encode nontrivial Hilbert spaces,

1One may say that technically, e.g., ∑N−1
s=1 Bs

P are the stabilizer generators, since they have eigenvalues equal
to ±1.



95

the topology of the graph/surface must be nontrivial. The most likely scenario to be re-

alized experimentally would be some type of open surface. Although we should mention

that in principle, a two-dimensional array is not necessary. What is essential is the way

that the individual quantum systems are correlated with one another,1 not the specifics of

how they are positioned in space (so long as the interactions between the quNits can be

controlled precisely). Fundamentally, what we are trying to accomplish is the engineering

of a long-range entangled state in a quantum network. Granted, there is good reason to

believe that a two-dimensional array is the most likely system to become practical in the

near future, but in the push to realize quantum computation (and communications), it

seems reasonable to keep an open mind.

5.1 Computational primitives
A prerequisite for employing the string-net surface code will be the ability to perform

the fusion matrix N̂1 as well as the S-matrix gate on a single quNit. Given these primitives,

we can realize any fusion matrix (N̂j), diagonalized fusion matrix (Λ̂j), the duality matrix

(∗), and the inverse S-matrix using the following identities:

∗ = Ŝ2 , Ŝ† = Ŝ3 , N̂j =
(

N̂1
)j , Λ̂j = ŜN̂jŜ†. (5.1)

In addition, it will be necessary to perform the two-quNit gate called the controlled-fusion

gate (see Figure 5.1a), defined by

ĈFUSE = ∑
i∈ZN

|i〉 〈i| ⊗ N̂i = ∑
i,j∈ZN

|i〉〈i| ⊗ |i + j〉〈j| . (5.2)

This operator is a generalization of the ĈNOT gate, which is recovered from this definition

when N = 2.

Another primitive operation that will be needed is the ability to measure a single quNit

in the computational basis. Recall that the conjugate basis is the eigenbasis of the fusion

matrices, defined by |[i]〉 := Ŝ† |i〉. Thus, we can also measure a single quNit in the

conjugate basis by using Ŝ.

Figure 5.1 presents two circuits that realize nondestructive projective measurements of

a state in the computational and conjugate bases through use of an ancilla. The circuit for

1The features of the graph, i.e., vertices, plaquettes, etc. represent these correlations between quNits placed
at edges.
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|ψ〉 •

|0〉 N
(a)

|ψ〉 S • S†

|0〉 N
(b)

Figure 5.1: Two measurement circuits employing the controlled-fusion gate. (a) Circuit for
projective measurement in the computational basis. (b) Circuit for projective measurement
in the conjugate basis.

projective measurement in the computational basis is straightforward. To verify that the

circuit for measurement in the conjugate basis (Figure 5.1b) has the desired effect, suppose

that the state to be measured is written in the conjugate basis as |ψ〉 = ∑j ψj |[j]〉. The

circuit then realizes the transformation:(
Ŝ† ⊗ 1

)
◦ ĈFUSE ◦

(
Ŝ⊗ 1

)
|ψ〉 ⊗ |0〉 = ∑

j
ψj
(
Ŝ† ⊗ 1

)
ĈFUSE

(
Ŝ |[j]〉 ⊗ |0〉

)
= ∑

j
ψj
(
Ŝ† ⊗ 1

)
ĈFUSE

(
|j〉 ⊗ |0〉

)
= ∑

j
ψj
(
Ŝ† |j〉

)
⊗ |j〉

= ∑
j

ψj |[j]〉 ⊗ |j〉 .

(5.3)

From this computation, we see that if we measure the ancilla to be in state |j〉, then the

input state is projected onto |[j]〉.

5.2 Measurement of the stabilizers
5.2.1 Measurement of the Bulk Stabilizers

We will now address the projective measurements of the bulk stabilizers. Our standard

assumption will be that the vertices and plaquettes appear as in Figures 5.2b and 5.2d. In

implementation of the code, it is not possible to have all edges directed as in the figures;

however, it is easy to adjust for this by conjugating the circuits with duality transforma-

tions acting on the appropriate edges.

First we examine the effect of the circuit shown in Figure 5.2a, which performs a pro-

jective measurement of the vertex stabilizer. Its effect on the computational basis states

is

|ijk〉 ⊗ |0〉 7→ |ijk〉 ⊗
(

N̂kN̂jN̂i |0〉
)
= |ijk〉 ⊗ |i + j + k〉 . (5.4)

Therefore, the result of the measurement of the ancilla gives us the value of i+ j+ k (mod N),
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|i〉 •
|j〉 •
|k〉 •

|0〉 N N N
(a)

j

i

k

(b)

|l〉 N

|m〉 N

|n〉 N

|0〉 Ŝ • • • Ŝ†

(c)

j

i

k

l

m

n

(d)

Figure 5.2: The circuits and corresponding graph labelings for measuring the (a,b) vertex
and (c,d) plaquette syndromes.

which is the charge syndrome of the vertex. If the charge is zero, then the stabilizer condition

is satisfied, otherwise an error has been detected.

For simplicity we consider measuring the stabilizer associated to a triangular plaquette

with external edges directed inwards and labeled ijk and internal edges directed counter-

clockwise and labeled lmn, with the generalization to other plaquettes straightforward.

Recall that the effect of the B̂s
P operator is to fuse the label s to each of the internal edges.

With this in mind, we compute the effect of the circuit in Figure 5.2c:

|[l]; ijk〉 ⊗ |0〉 7→ 1√
N

∑
s
|[l]; ijk〉 ⊗ |s〉

7→ 1√
N

∑
s

Bs
P(ijk) |[l]; ijk〉 ⊗ |s〉

=
1√
N

∑
s

ξ ls |[l]; ijk〉 ⊗ |s〉

7→ 1
N ∑

ss′
ξ ls ξ̄ss′ |[l]; ijk〉 ⊗

∣∣s′〉
= ∑

s′

( 1
N ∑

s
ξs(l−s′)) |[l]; ijk〉 ⊗

∣∣s′〉
= |[l]; ijk〉 ⊗ |l〉 .

(5.5)

Therefore, measurement of the ancilla at the end of the circuit returns the flux syndrome,

[l], for the plaquette. As in the case for the vertex, a trivial flux implies the stabilizer is
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satisfied, otherwise there is an error.

5.2.2 Measurement of the Boundary Stabilizers

We now turn our attention to the projective measurements for the boundary stabilizers,

with conventions for the edge directions as in Figures 5.3b and 5.3d.

First we will construct a circuit to measure the boundary edge stabilizer. This operator

should detect whether or not a particular state is within the subspace C[KZM]. In order to

construct the circuit, we make use of the fact that the elements of KZM all are of order M.

This means that if we fuse an element of KZM with itself M times, we will get the identity,

so the ancilla will remain in the state |0〉. If the control element falls outside of ZM, then

the ancilla will be in a state other than |0〉, which will tell us the boundary edge syndrome.

Explicitly, the effect of the circuit in Figure 5.3a is

|i〉 ⊗ |0〉 7→ |i〉 ⊗ |Mi (mod N)〉 . (5.6)

Upon measuring the ancilla, we obtain the value of Mi mod N. Recall that the cosets in

ZN/KZM partition ZN , so that every element i ∈ ZN can be written uniquely as

i = KiM + ri where iM ∈ ZM, ri ∈ ZK, (5.7)

hence we have

Mi (mod N) = (MKiM + Mri) (mod N) = Mri (5.8)

This means the measurement of the ancilla identifies the coset Cri and the value ri ∈ ZK

describes the boundary charge excitation.

To measure the boundary plaquette operators, we will need to construct a circuit im-

plementing the operator SM, the extension of the S-matrix for the group ZM to ZN . The

tricky part is to do so while only using the primitive operations coming from ZN . This will

require the inclusion of measurements and operations controlled by the results of these

measurements as shown in Figure 5.4. The calculation verifying the function of the circuit

can be found in Appendix A.3.

We now compute the effect of the circuit in Figure 5.3c (up until the measurement of

the ancilla):
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|a〉 •

|0〉 NM

(a)

a

(b)

|a〉 N

|l〉 N

|m〉 N

|b〉 N

|0〉 SM • • • • S†
M

(c)

ba

i l
j

m k

(d)

Figure 5.3: The circuits for and corresponding graph labelings for measuring the (a,b)
boundary edge stabilizer for subgroup ZM and (c,d) the boundary plaquette stabilizer for
subgroup ZM.

|Ka〉 ŜM ŜM |Ka〉 = |Ka〉 Ŝ • Ŝ†

|0〉 N̂K Λ̂ ŜM |Ka〉

Figure 5.4: Circuit for the SM operator.
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|[a]M : ijk〉 ⊗ |0〉 7→ 1√
M

∑
t∈KZM

|[a]M; ijk〉 ⊗ |t〉 (5.9)

7→ 1√
M

∑
t∈KZM

(ξM)
at
K2 |[a]M; ijk〉 ⊗ |t〉 (5.10)

7→ 1
M ∑

u,t∈KZM

(ξM)
t(a−u)

K2 |[a]M; ijk〉 ⊗ |u〉 (5.11)

= |[a]M; ijk〉 ⊗ |a〉 . (5.12)

Upon measuring the ancilla, we identify the value of a ∈ KZM, the boundary flux syn-

drome.

5.2.3 Measurement of the Defect Line Stabilizers

Recall from Section 4.3, the eigenstates |[n]; ijklm〉 of the defect-line operator B̃s
P̃ had

eigenvalues
(
ξN
)s(l+m+n). This defect-line operator can be interpreted as the fusion of a

line of charge s along n1, n2, n3 and n4 followed by hopping a fluxon [s] across n5 (see

Figure 5.5b). The corresponding circuit for measuring B̃P̃ is shown in Figure 5.5a.

5.3 Circuits realizing the topological symmetries and surgeries
In this section, we introduce the circuits for the topological symmetries presented in

the previous chapter. The F-move transformation, T̂1, is particularly important, as it will be

the key ingredient to realizing the twisting and braiding operators. The transformations T̂2

and T̂4 will be useful for incorporating additional physical quNits into the system, making

the encoded states more robust. On the other hand, T̂3 and T̂5 can be used to simplify

|n1〉 N̂

|n2〉 N̂

|n3〉 N̂

|n4〉 N̂

|n5〉 •

|0〉 Ŝ • • • • Ŝ† N̂
(a)

i
j

k

n1

n2 n3

n4

n5

m l

(b)

Figure 5.5: The (a) circuit for measuring the defect stabilizer, and (b) the corresponding
labeling of quNits.
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the system as needed. Finally, the surgery transformations, T̂M
6 and T̂M

7 , will be used

for the initialization and annihilation of boundaries in the system, which correspond to

introducing new encoded qudits (including logical ancillas).

5.3.1 Bulk Topological Symmetries

To describe the circuit for the T̂1 transformation, we begin by writing (4.18a) in more

detail. By using (4.5), and enforcing that the initial vertices of the graph are stable, we have

T̂1 |ijkl〉 ⊗ |m= k+l〉 = |ijkl〉 ⊗∑
n

Gijm
kln |n〉 = |ijkl〉 ⊗ |j+k〉 . (5.13)

Based on this calculation, we see that the T̂1 circuit can be realized by subtracting l from

the m register and adding to it j. This circuit is shown in Figure 5.6a.

Recall that the T̂2 transformation injects a plaquette and initializes the internal edges

into a B̂p = 1 eigenstate. Its associated circuit (see Figure 5.7a) will require three quNits

starting in the state |0〉. The circuit then converts these quNits into the B̂P(ijk) = +1

eigenstate, realizing the transformation |ijk〉 7→ |ijk〉 ⊗ |[0]; ijk〉.

We now address the T̂3 transformation, which at first glance would seem to be achieved

by first verifying that the flux through the plaquette is trivial, for instance using the bulk

plaquette measurement circuit followed by simply “throwing out” the three quNits cor-

responding to the edges labeled lmn. However, a delicate touch is required if we wish to

prevent unintended decoherence of the resulting state. In particular, quantum correlations

between the external edges ijk and the internal edges lmn demand a more careful excision

of these quNits,1 which can be seen as follows.

1otherwise some type of “spooky action” may occur

|i〉
|j〉 •
|k〉
|l〉 ∗ • ∗

|m〉 N N
(a)

j

i

m

l

k
j

i

n

l

k

(b)

Figure 5.6: The (a) circuit for the T̂1 transformation and, (b) the corresponding labeling
conventions for the graphs.
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|i〉 • •
|j〉 •
|k〉

l |0〉 Ŝ • •

m |0〉 N̂ N̂

n |0〉 N̂ N̂ N̂
(a)

|i〉 ∗ • • ∗

|j〉 ∗ • ∗
|k〉

|l〉 Ŝ†

|m〉 N̂

|n〉 N̂ N̂
(b)

j

i

k j

i

k

l

m

n

(c)

Figure 5.7: The (a) T̂2 circuit and, (b) T̂3 circuit for the ZN fusion algebra and (c) the
corresponding labeling conventions.

Let the edges ijk take on arbitrary values, so that a state with zero flux through the

plaquette should be of the form |ψ〉 = ∑ijk ψijk |ijk〉 ⊗ |[0]; ijk〉. In such a state, the external

edges of the plaquette are entangled with the internal edges. If we merely continued on,

ignoring the quNits on the internal edges, then any operator (i.e., error) acting on those

quNits could in principle alter the state of the remaining quNits. For instance, if one were

to measure the values of l, m and n, the values of ijk could be deduced, destroying the

superposition of the state |ψ〉. Thus, we seek to disentangle these degrees of freedom (as

in the entanglement renormalization formalism [55, 78, 141]) before recycling the internal

edge quNits .

The circuit in Figure 5.7b realizes the following sequence of transformations, which

remove the i and j dependencies from the bottom two registers of a state with trivial flux:

|ψ〉 = ∑
ijk

ψijk |ijk〉 ⊗ |[0]; ijk〉

=
1√
N

∑
ijkl

ψijk |ijk〉 ⊗ |l(l+i)(l+i+ j)〉

7→ 1√
N

∑
ijkl

ψijk |ijk〉 ⊗ |l00〉

7→
(
∑
ijk

ψijk |ijk〉
)
⊗ |000〉 .

(5.14)
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Recall that we had previously metioned that if all of the vertex stabilizers of the plaquette

P(ijk) are satisfied, then we automatically had that i+ j+k = 0. This guarantees that after

the plaquette is removed, we are left with a stable vertex.

It should be emphasized that prior to implementing the T̂3 circuit the flux through the

plaquette should be verified to be trivial.1 If this preprocessing step is not followed and it

turns out that there was indeed a fluxon there, then this circuit could critically harm the

decoding procedure.

5.3.2 Boundary Topological Symmetries

The principles for constructing the circuits for the boundary topological symmetries

are the same as those for the bulk symmetries T̂2 and T̂3, though we replace the bulk Ŝ

with ŜM. The circuits for T̂4 and T̂5 are given in Figures 5.8a and 5.8b, respectively.

5.3.3 Boundary Creation and Annihilation Topological Surgeries

The final topological symmetry we need to address is the injection of a KZM-boundary

within what was initially a bulk region. Such an operation is only reasonable so long as

the state of the boundary that is introduced possesses a trivial anyonic charge.

1Although in principle, this should always be the case when performing logical operations on the encoded
space.

|a〉 •

b |0〉 N̂ N̂

c |0〉 ŜM ∗ • ∗
(a)

|a〉 ∗ • ∗

|b〉 N̂

|c〉
(b)

a a

b c

(c)

Figure 5.8: The circuits for realizing the (a) T̂4 and (b) T̂5 topological symmetries for the
Levin-Wen model with RepZN fusion algebra. The labeling conventions are provided in
(c).
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The T̂M
6 operation is defined similar to T̂2. We begin with a stable vertex and introduce

9 additional quNits, with the graphs labeled as in Figure 5.9c. The mapping that we need

to perform is

T̂M
6 |ijk〉 7→ |ijk〉 ⊗ |[0], [0]M[0]M; ijk〉 = 1

M
√

N
∑

l′∈ZN
a′,b′∈KZM

∣∣l′, a′b′; ijk
〉

, (5.15)

which is the transformation carried out by the circuit in Figure 5.9a.

As with the previous topological symmetries that remove quNits , we must first disen-

tangle those degrees of freedom from the quNits that will remain after the transformation.

Of course we must also verify that the gapped boundary has no excitations and that its

associated condensed charge is trivial (i.e., there are no nontrivial ribbons terminating on

the boundary). To remove the ijk dependence from the internal edge quNits , we seek to

“undo” those parts of the circuit in Figure 5.9a where the external edges interacted with

the internal edges. For this purpose it suffices to ignore the bottom three registers abc,

leading to the circuit in Figure 5.9b.

5.3.4 Creation and Annihilation of Defect Lines

A concrete topological symmetry to introduce a defect line has not yet been formalized.

This means that we will have to use a cruder approach, where we first identify a region

for the defect line to encircle. In order to prevent any unintended transformations of the

encoded state, the defect line should only encircle a simply-connected region with trivial

charge and flux.

The defect line can then be initialized by simply changing the stabilizers measured

along the line, switching from B̂P to B̃P̃. This code deformation occurs at the software level,

that is we tell the controlling (classical) computer to change what stabilizers to monitor.

This is analagous to the procedure used for braiding in [81, 82]. What happens is that the

state which is initially in the B̂P = +1 codespace will project into a random distribution

of excitations along the defect line. We then proceed to match up the excitations until

they all annihilate. That we can annihilate all of the excitations without any damage to the

underlying encoded state is guaranteed because we started with a trivially charged region.

The annihilation of the defect line is similar; we simply switch our stabilizers from B̃P̃ to

B̂P, measure the excitations and proceed to annihilate them all, returning to the codespace.



105

|i〉
|j〉 • • • •
|k〉 • •

l1 |0〉 Ŝ • • • • •

l2 |0〉 N̂ N̂

l3 |0〉 N̂ N̂ N̂

l4 |0〉 N̂ N̂ N̂ N̂

l5 |0〉 N̂ N̂ N̂ N̂ N̂

l6 |0〉 N̂ N̂ N̂

a |0〉 ŜM ∗ • • • • • ∗

b |0〉 ŜM ∗ • • • ∗

c |0〉 N̂ N̂
(a)

|i〉
|j〉 ∗ • • • • ∗

|k〉 ∗ • • ∗

|l1〉|l2〉
|l3〉 N̂

|l4〉 N̂

|l5〉 N̂ N̂

|l6〉 N̂ N̂
(b)

j

i

k

i

j k

(c)

Figure 5.9: Circuits realizing (a) the T̂6, and (b) T̂7 gate using the labeling conventions
demonstrated in (c).
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5.4 Topologically protected operations
In this section, we present the methods for realizing topologically protected operations

on the string-net surface code. In order to specify the effect these operations have on the

encoded data, we must discuss how the information is to be encoded.

Following [57, 58], we encode a single quantum state using two gapped boundaries (see

Figure 5.10a). The dimension of the encoded Hilbert space is dependent upon how many

ribbons can condense at both gapped boundaries. Likewise, the effect of the topologically

protected operations is dependent upon the charge and flux quantum numbers associated

to those ribbons.

We will also discuss the various means of manipulating these encoded states through

use of the topological symmetry circuits, which produce topologically protected opera-

tions. We will demonstrate how to perform the Wilson loop algebra acting on a pair of

gapped boundaries encoding a quantum state. We will also show how to perform the

twist of one boundary as well as the braiding of two.

5.4.1 Anyon Hopping

Anyons, both charges and fluxons, can be created, moved about the lattice, and annihi-

lated using strings of the single quNit operators N̂j, Λ̂j as well as the vertex and plaquette

measurement operators, as discussed in Chapter 4. While performing these operations, the

vertex charge syndromes and plaquette flux syndromes should be frequently measured to

ensure we remain in the intended state.

Through use of these operators, we can implement the Wilson loop algebra on the

codespace. This allows for the logical fusion gates N̂b (boundary-to-boundary tunneling,

see Figure 5.10b) and Λ̂j (anyon looping, see Figure 5.10c) to act on the state encoded by

two gapped boundaries.

5.4.2 Twisting and Braiding Operations

The key ingredient to the implementation of the twisting operation is the T̂1 operation.

This operation will be considered in rather generic terms, using the terminology of a

“region,” which should be thought of as containing a gapped boundary, or an anyon

excitation. This procedure for realizing the twist, or “Dehn twist,” and its use for braiding



107

B1

B2

a

(a)

B1

B2

a b

B1

B2

c

(b)

B1

B2

a

i

(c)

Figure 5.10: Depcitions of the encoded state and action of the Wilson algebra on the
encoded state. (a) Two gapped boundaries encoding the logical state |a〉 (b) The logical
fusion operation N̂a |b〉 = δa+b,c |c〉. (c) The logical operation Λ̂i |a〉.

has previously been described in [140].

Consider a region A that we wish to twist, as in Figure 5.11. Denote the collection of

external edges by ∂A and all others by A0. The twisting of the region in the dotted lines

proceeds by performing T̂1 transformations along the boundary. The edges outside of A

are to remain fixed, so that as the twist is performed, the region will rotate counterclock-

wise.

Consider one “round” of T̂1 transformations as depicted in Figure 5.11. After the

transformations are performed, each edge with a kn labeling will have moved past one

of the edges with an im labeling. Therefore, if |∂A| = L, we will need L rounds of T̂1

transformations to bring the region back to its original orientation, which indicates the

completion of the twist operation.

Here, we will again emphasize the difference between the graphs we draw and the

A

(a)

A

(b)

A

(c)

Figure 5.11: The twisting of the region A with three external edges. In each figure the
thickened lines indicate where T̂1 transformations will be applied: (a) initial configuration,
(b) configuration after one round of T̂1-moves, (c) configuration after two rounds.
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actual physical system being used to encode the data. The graphs only depict patterns of

(short-ranged) entanglement between the local degrees of freedom. Mutations of the graph

represent changes to how the quNits are coupled. However, changes to the graph do not

imply changes to, for instance, a rigid array of spins. In such a case, these operations can

be supplemented by SWAP operations that switch the quantum state of two quNits .

Now that we have demonstrated how to twist a region, we move on to the braiding

of two regions A and B. The key to our implementation of the braiding operator is

the monodromy equation (a.k.a. the balancing condition). This tells us that a twist of a

region C, containing both A and B realizes a braid of the two regions with an additional

counterclockwise twist of each region. However, since any anyon ribbons present in the

system are anchored to gapped boundaries, they must be condensable, implying that their

twists are trivial. Therefore, we need not bother with compensating for those twists, and

simply twisting the region C will be sufficient (see Figure 5.12).

The braiding operation can also be used to realize the “loop” operator of the Wilson

loop algebra with gapped boundaries. This procedure involves using the topological sym-

metry to introduce two gapped boundaries, or one ancillary qudit. The anyon tunneling

operator would then be used to encode the particular ribbon we would like to loop. Then

one of the encoding gapped boundaries is braided with one of the ancillary boundaries.

After the braiding is complete, the ancillary boundaries are returned to their charge-free

state and finally individually annihilated.

This way of realizing the loop operator may prove more robust, as the state of a gapped

boundary would seem more robust than a single plaquette; however, it comes with greater

B1

B2

a

B3

B4

b

C

B1

B2

B3

B4

ab

Figure 5.12: The braiding operation acting on two encoded states. The twist is performed
on a region C that contains two of the gapped boundaries, each for a different encoded
qudit.
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overhead. Along these same lines, one may hope to realize a process of gapped boundary

fusion, where two gapped boundaries can be merged into one. Once such a process is

developed, the anyon tunneling operator could also be performed with ancillary gapped

boundaries, though whether this provides a better-protected procedure than anyon hop-

ping would still need to be rigorously verified.

5.4.3 Electro-Magnetic Duality Transformation With Defect Lines

The use of defect lines [32] allows us to realize an electro-magnetic duality transforma-

tion [24, 51, 133, 139], similar to the Hadamard transformation used in other surface codes

[142]. The reason for invoking defect lines is that we cannot use the transverse method

traditionally used for the surface code on square lattices [62] because the trivalent lattice is

not self-dual (the dual of a trivalent lattice is a triangulation).

Consider two gapped boundaries as in the Figure 5.13, connected with a ribbon labeled

([i], j). If we take the boundary of a simply-connected region R surrounding both of

these gapped boundaries, then there should be no ribbons crossing this boundary (this

is equivalent to saying the region has a trivial net charge). After initializing the defect line,

the ribbon connecting the two boundaries still maintains the same label; however, if one

were to measure the label of the ribbon from outsideR, we would find it to be ([j], i), that

is the charge and flux labels have been switched. This realizes the generalized Hadamard

transformation of the encoded data.

5.4.4 Measurement of the Boundary Quantum Numbers

The logical quantum state of our system is encoded in the condensable ribbons con-

necting different boundaries. To produce the final output of a quantum computation, we

B1

B2

a

B′1

B′2

[a]

Figure 5.13: Two gapped boundaries and a defect line surrounding them are equivalent to
the conjugate state with different boundary algebras.
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need to be able to measure the logical state, or equivalently project it into some encoded

computational state. This is achieved through measurement of the boundary quantum

numbers, which are generalizations of the vertex and bulk plaquette measurements.

Measurement of the boundary charge quantum number is straightforward, namely

perform a circuit similar to that for performing the vertex charge measurement, but with

the boundary edges as inputs, see Figure 5.14a.

Measurement of the boundary flux is similar to the procedure for plaquette flux mea-

surement. In the gapped boundary case, we fuse s along the internal edges, but not

the boundary edges. So for instance, for the triangular boundary in Figure 5.14c, we

would fuse the to the edges labeled l1, l2, l3, l4, l5, and l6, treating them as effectively a bulk

plaquette and ignoring the boundary edges. The circuit is shown in Figure 5.14b.

|a〉 •
|b〉 •
|c〉 •

|0〉 N N N
(a)

|l1〉 N̂

|l2〉 N̂

|l3〉 N̂

|l4〉 N̂

|l5〉 N̂

|l6〉 N̂

|0〉 Ŝ • • • • • • Ŝ†

(b)

l3 l4

b

i

j k

l5

l6

c

l1

l2
a

(c)

Figure 5.14: Circuits for the measurement of the gapped boundary (a) charge and (b) flux,
with labeling conventions set in (c).
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5.5 Quantum computation with the string-net surface code
We now summarize how to compute with the string-net surface code. At the logical

level, these methods are the same as those demonstrated in [62, 81] and Section 5 of [58].

What is new for the string-net surface code is how we implement the braiding transforma-

tions, namely through the use of circuits for topological symmetries and surgery.

5.5.1 State Preparation

Each logical qudit is encoded into a pair of gapped boundaries with subgroups KZM

and K′ZM′ . The dimension of the qudit is given by the number of ribbons that can condense

to both boundaries, which can be determined by applying the results of Section (4.2.4).

We envision the computation beginning with a small disk, having a boundary B with

some chosen subgroup. If possible, one should choose the subgroup of this boundary to

have as few condensable ribbons in common with the boundaries that will be used for

encodings, which will minimize the number of potential tunneling operators between the

encoding boundaries and the large boundary.

The disk is then grown by incorporating additional quNits through the topological

symmetries T̂2 and T̂4. Once the disk is as large as desired, gapped boundaries should

be introduced and grown to the necessary sizes using the associated topological transfor-

mations T̂M
6 and T̂4.. To minimize tunneling (i.e., logical) errors, the gapped boundaries

should be inserted reasonably far away from one another. Throughout this procedure,

the stabilizer operations are to be monitored and corrected by using the anyon hopping

operators to pair up and annihilate errors. The result at the end of this procedure is the

state |00...0〉, which can be confirmed by measuring all of the boundary charge and flux

operators (except for the large boundary B). Logical ancillas should be initialized in a

similar manner.

5.5.2 Measurement of Observables in the Fusion Algebra

As mentioned in the first item, measurements in the computational basis can be done

by measuring the charge and flux of all boundaries. In addition, we can use the circuits in

Figure 5.1, employed at the logical level, to measure the computational basis and conjugate

basis states.
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5.5.3 Implementing Encoded Clifford Gates

Single qudit gates from the Clifford groups can be realized using the Wilson loop oper-

ators (3.39), in addition to the defect-line implementation of the encoded Ŝ transformation

(generalized Hadamard). Two-qudit gates can be realized through braiding operations, as

demonstrated in [58, 62, 81]. In addition, the measurement of boundary charge and flux

make it possible to implement encoded two-qudit gates via topological charge projections

[20], as described in [57, 58].

5.5.4 Preparation of Noisy Encoded Ancilla States

Initialization of a noisy encoded ancilla state can be achieved starting with an ancilla

state
∣∣0〉, then performing controlled-anyon-tunneling and loop operators. This can be

done with a single (physical) qubit initialized to the desired state acting as the control qubit

for the anyon fusion along a path connecting the two boundaries representing the ancilla.

In order for such a controlled-path operator to be realizable, the two boundaries should

be close together (unless we have many high-fidelity copies of the desired control qubit).

Once the controlled operation is completed, we proceed to quickly grow the distance

between and length of, the two boundaries using the topological symmetry operator T̂2

and T̂4, respectively.

Certainly there is still much work left to do in order to optimize these operations

and evaluate the level of fault-tolerance for this scheme. Beyond this, a closer look at

the possible encodings and the realizable gate sets within this framework is an important

question. In particular, can any universal gate sets be realized? However, we have given a

base-level proof-of-principle that this surface code has the potential to operate at the same

level as other surface codes. Furthermore, we have established that topological symmetry

has the potential to empower surface codes with the ability to perform logical operations

exclusively through the use of circuits at the physical-quNit level.



CHAPTER 6

CONCLUDING REMARKS AND OUTLOOK

“We live on an island surrounded by a sea of ignorance.

As our island of knowledge grows, so does the shore of our ignorance.”

-John Archibald Wheeler [109]

In this dissertation, we presented a surface code for quantum error correction, the

string-net surface code, based on the exactly-solvable Levin-Wen model for doubled topo-

logical phases. This code shows promise for a unified framework of fault-tolerant quantum

computation using topological charge projections and noisy ancillas with logical braiding

operators implemented purely by quantum gates. It has also established a new perspective

on topological symmetry, namely its role as a computational resource. In particular, we

have constructed and/or described the following:

• Circuits for measuring the stabilizer syndromes for bulk vertices, bulk and boundary

plaquettes, boundary edges, and defect line sites.

• Circuits realizing local topological symmetries in the bulk and on the boundary.

• Circuits for the measurement of the net anyonic charge of a boundary, in other words,

measurement of the encoded state.

• Circuits realizing topological surgery, that is, the cutting open and sewing closed of

gapped boundaries on a surface.

• Protocols for state initialization and the preparation of noisy ancilla states.
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• Protocol for initializing a defect line, which realizes electro-magnetic duality (i.e., the

generalized Hadamard transformation) of the emergent anyon theory.

• Protocol for the braiding of gapped boundaries, which can be used for realizing

entangling gates, such as the CNOT gate, between logical qudits.

• Protocols for the hopping of anyon excitations, or errors, which are necessary for the

recovery stage of the error-correction code.

Directions for future research regarding the refinement of the code and its applications

to fault-tolerant quantum computation include the following:

• Development of topological surgeries, and the accompanying circuits, that initialize,

grow, and fuse gapped defect lines. This would allow for the realization of the

encoded duality (Ŝ) operation entirely in terms of quantum circuits.

• Development of the circuits to measure and manipulate the endpoints of a defect line

segment.

• Development of more general defect lines associated to any automorphism of the

anyon theory (as in [24]) as well as the associated measurement and topological

symmetry circuits.

• Development of circuits to measure and manipulate gapped domain walls, especially

those that may live at the interface between two gapped boundaries with different

Lagrangian subalgebras.

• Development of a protocol realizing the fusion of two gapped boundaries and the

fusion of a gapped boundary with a defect line.

• Analysis of thresholds for reliable quantum error-correction and the development of

any decoders that may be afforded by features unique to the string-net surface code.

• Analysis of the resource costs for using the code, in particular the optimization of

braiding operations in terms of the number of gates needed for implementation.

• Optimization of the bulk plaquette sizes, namely, a hexagonal plaquette has six quNits

that must be operated on; however, to optimize the accuracy threshold of the code,
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minimizing the size of the plaquettes would be helpful. Such an analysis should be

feasible using the tools of combinatorics and graph theory.

• Looking into the development of analogues to our topological symmetry operators

for other surface codes and determining if such a tool represents a useful improve-

ment on the performance of those codes, especially logic gates.

• Development of a non-Abelian generalization of the code, especially the doubled

Fibonacci phase that may be capable of universal quantum computation. It seems

that such a construction would need a substantially new way of representing the

local degrees of freedom since the fusion matrices of non-Abelian fusion algebras are

generically nonunitary. Instead of using systems of quNits and engineering topolog-

ical correlations, looking to quantum systems with intrinsic topological order (e.g.,

systems supporting Majorana zero modes [174]) may present a feasible scenario.

Finally we suggest some possible directions (ranging from the tame to the irresponsibly

speculative) for future research into applications of the string-net surface code to physics

include the following:

• Advancing the “it from (qu-)bit” paradigm by strengthening the ties between com-

putation and physics, in particular TQFTs and doubled topological phases. Our

scheme allows the dynamics of these theories to be directly translated into the lan-

guage of (local) quantum circuits acting on microscopic degrees of freedom. It seems

that such an accord could lead to a quantitative measure of the information and

computational content of these theories in terms of circuit complexity. Given such

a measure, it would be interesting to explore what types of correspondences emerge

between different theories that are currently unknown.

• Along the same lines as the previous item, what can we learn from the topological

superselection structure of Hilbert spaces as it pertains to the protection of quantum

numbers and the role that topological symmetry plays in relating Hilbert spaces of

configurations that differ only by a small local deformation? For instance, could this

provide a novel viewpoint to the Laughlin-Tao-Wu charge-pump argument [120, 147,
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186] for the quantization of the Hall conductance, in terms of the language of Hilbert

spaces and adiabatic gauge transformations via topological symmetries?

• What can our information-theoretic framework say about the bulk-boundary corre-

spondence, or more strongly, holography [4, 167, 168] as it relates to quantum codes?

Topological quantum error-correcting codes highlight that from the information the-

oretic perspective “topology” is something that emerges from the correlations of a

collection of degrees of freedom; how these degree of freedom sit in real-space are,

in principle, independent of the topology described by their quantum state. Can

we make any concrete connections by working with discrete Hilbert spaces and the

quantum circuits realizing operations acting on the bulk or boundary degrees of

freedom?

• The topological surgery transformations, and their associated circuits, introduce gapped

boundaries from the vacuum and appear to have stable footing in the context of

quantum codes, but how do these notions fit within the larger framework of physics,

especially quantum field theories?

There is a wide horizon of possibilities beginning to materialize as we further incorpo-

rate computational and information theoretic concepts into our understanding of physics.

In the present work, we point to the structure of Hilbert space as a direct sum of locally-

protected subspaces, and the transformations of this space realized by sequences of dis-

crete topological symmetries, as examples of the ideas emphasized by quantum error-

correction and computation that can inform our analysis of the physical world. In this

regard, it may be that universal quantum computation, physically realizable or not, is

merely a drop in the bucket of inspiration that is just waiting to be spilled out onto the

theoretical landscape.



APPENDIX A

DETAILED CALCULATIONS

A.1 Calculation of B̂s
P eigenstates and eigenvalues

B̂s
P(~) |[i]; j1 j2...jn〉 =

1√
N

∑
i′∈ZN

(
ξN
)ii′ B̂s

P(~)

∣∣i′; j1 j2...jn
〉

=
1√
N

∑
i′∈ZN

(
ξN
)ii′ ∣∣i′ + s; j1 j2...jn

〉
=

1√
N

∑
i′′∈ZN

(
ξN
)i(i′′−s) ∣∣i′′; j1 j2...jn

〉
=
(
ξN
)is 1√

N
∑

i′′∈ZN

(
ξN
)ii′′ ∣∣i′′; j1 j2...jn

〉
B̂s

P(~) |[i]; j0 j1...jn−1〉 =
(
ξN
)is |[i]; j1 j2...jn〉 (A.1)

A.2 Calculation of the fluxon hopping operators
Recall the B̂s

P eigenstates given by (4.14). By using the definition (4.37), we see that the

mth tensor factor in the state |i′; j1 j2...jn〉 is i′m = i′ + ∑m−1
l=1 jl .

|[i]; j1 j2...jn〉 =
1√
N

∑
i′∈ZN

(
ξN
)ii′ ∣∣i′(i′ + j1)...(i′ + j1 + ... + jn−1)

〉
, (A.2)

where the mth tensor factor in the state |i′; j1 j2...jn〉 is i′m = i′ + ∑m−1
l=1 jl . So acting on the mth

internal edge with Λ̂†
k yields

ˆId
⊗(m−1) ⊗ Λ̂†

k ⊗ ˆId
⊗(n−m) |[i]; j1 j2...jn〉 =

(
ξN
)k(∑m−1

l=1 jl) |[i + k]; j1 j2...jn〉 , (A.3)

which shows that we have increased the flux through the plaquette by k units (see Figure

A.1). The phase factor on the right-hand side of (A.3) is due to the fact that while the flux

increased in the plaquette, the flux in the neighboring plaquette across the mth internal

edge has decreased by k units, in accordance with the conservation of topological charge.

The calculation in (A.3) can also be used to move fluxons from one plaquette to a

neighboring plaquette. Suppose that the state of the plaquette is |[i]; j1 j2...jn〉. If we act
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i
Λ̂†

k |i〉
i

[k∗] [k]
[k]

Figure A.1: Creation of a fluxon pair across the edge labeled i.

on the mth internal edge with the operator Λ̂† := ∑k Λ̂†
k followed by the projector B̂P, then

we have

B̂P ∑
k

Λ̂†
k |[i]; j1 j2...jn〉 = ∑

k

(
ξN
)k(∑m−1

l=1 jl)B̂P |[i + k]; j1 j2...jn〉 =
(
ξN
)−i(∑m−1

l=1 jl) |[0]; j1 j2...jn〉 .

(A.4)

We see that the projector picks out the term that removes the flux through the plaquette

and adds that flux to the plaquette on the other side of the mth internal edge, as in Figure

A.1.

A.3 Verification of the ŜM circuit
Recall that when restricted to C[C0], ŜM has the following action:

ŜM |i〉 = ∑
j∈KZM

(ξM)
ij

K2 |j〉 where i ∈ KZM and ξM = e2πi/M. (A.5)

This operator can be realized by the postmeasurement adaptive circuit in Figure A.2.

To verify the function of the circuit, let x ∈ ZM, so that Kx ∈ KZM, the circuit then

carries out the following manipulations

|Kx〉 ⊗ |0〉 7→ 1√
N

∑
j∈ZN

(ξN)
Kxj |j〉 ⊗ |Kj〉 7→ 1

N ∑
j,k∈ZN

(ξN)
Kxj(ξN)

jk |k〉 ⊗ |Kj〉 . (A.6a)

Now we write j and k as

j = Ms + z, k = Ky + r, with s, r ∈ ZK, and y, z ∈ ZM. (A.6b)

|Ka〉 Ŝ • Ŝ†

|0〉 N̂K Λ̂ ŜM |Ka〉

Figure A.2: Circuit for the SM operator.
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Continuing the calculation we have

1
N ∑

j,k∈ZN

(ξN)
Kxj(ξN)

jk |k〉 ⊗ |Kj〉 = 1
N ∑

y,z∈ZM
r,s∈ZK

(ξN)
Kx(Ms+z)(ξN)

(Ms+z)(Ky+r) |Ky + r〉 ⊗ |KMs + Kz〉

=
1
N ∑

y,z∈ZM
r,s∈ZK

(ξN)
Kxz(ξN)

Msr(ξN)
Kyz(ξN)

rz |Ky + r〉 ⊗ |Kz〉 .

Now compute the sum

∑
s∈ZK

(ξN)
Msr = ∑

s∈ZK

(ξK)
sr = Kδr,0 , (A.6c)

which leads to

1
N ∑

j,k∈ZN

(ξN)
Kxj(ξN)

jk |k〉 ⊗ |Kj〉 = K
N ∑

y,z∈ZM

(ξM)xz(ξN)
Kyz |Ky〉 ⊗ |Kz〉 . (A.6d)

Now we measure the first quNit , revealing the value of Ky, or equivalently just y. This

leaves us with the state (after postmeasurement renormalization)

1√
M

∑
z∈ZM

(ξM)xz(ξN)
yKz |Kz〉 . (A.6e)

We are almost there; we just need to correct for the phase factor
(
ξN
)yKz. Since we know

the value of y, we can apply the gate Λ̂y, which maps |Kz〉 7→
(
ξN
)yKz |Kz〉, leaving us

with the desired state.



APPENDIX B

NON-ABELIAN ANYONS

The mathematical structure underlying non-Abelian anyons is significantly richer than

that of Abelian anyons. We do not try to provide a complete overview, rather we aim to

present some of the properties that make non-Abelian anyons an attractive candidate for

quantum computing [87, 131, 160]. In particular, in contrast to the Abelian case, the many-

anyon Hilbert space for non-Abelian anyons is multidimensional, making it suitable for

the encoding of quantum information without the need for defects or gapped boundaries.

The braiding and twisting of non-Abelian anyons then gives means for encoded operations

on these spaces.

B.1 Non-Abelian fusion spaces
To generalize our discussions from Chapter 3 to the non-Abelian case, we need to

incoporate more possibilities for the result of fusing two anyons. This means that we

should allow ∑k Nk
ij > 1, meaning that the result of fusing labels i and j could be one

of several values of k. If i and j have always have a unique way of fusing into k, we say

that the anyon theory is multiplicity free; however, this need not be the case. There may be

more than one way in which i and j fuse into k, so that we should allow Nk
ij > 1. Introduce

the label µ ∈ {1, 2, ..., Nk
ij} to denote each of these distinct ways in which i and j fuse into

k. In this case the fusion spaces are presented as

V k
ij = spanC{|ij; k, µ〉 |µ = 1, 2, ..., Nk

ij},〈
ij; k, µ′|ij; k, µ

∣∣ij; k, µ′|ij; k, µ
〉
= δµ,µ′ .

(B.1)

We can then define the two-anyon Hilbert space as the direct sum of all fusion spaces

for i and j

Vij =
⊕

k

V k
ij (B.2)〈

ij; k, µ|ij; k′, µ′
∣∣ij; k, µ|ij; k′, µ′

〉
= δk,k′δµ,µ′ , (B.3)
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where the set of basis elements correspond to all of the distinct ways in which the two

anyons fuse.

Note that the Hilbert space defined in (B.2) does not have the form of a tensor product

of two Hilbert spaces, Vab 6= Ha ⊗Hb. In fact, the dimension of Vab may even be a prime

number, which would forbid such a decomposition. This feature is arguably the most

essential in allowing non-Abelian anyonic systems1 to support robust entangled states.

The associativity constraints for non-Abelian anyons are similar to those discussed for

Abelian anyons in Chapter 3, except that the F symbols should be elevated to matrices,

with additional indices accounting for any multiplicities.

B.2 The fusion algebra of non-Abelian anyons
The fusion algebra for an anyon theory is the vector space AC = spanC{|i〉 |i ∈ I}with

the multiplication:

m(|i〉 ⊗ |j〉) = ∑
k

Nk
ij |k〉 . (B.4)

If we consider the space built off the same basis, but over the non-negative integers, we

end up with the Grothendieck Ring of the anyon theory:

K(AC) = spanZ+
{|i〉 |i ∈ I}. (B.5)

The significance of this space is that it encodes all possible finite dimensional fusion spaces

constructed by using tensor products or direct sums. In particular, consider the set of all

elements in K(AC) that result from the application of a finite number of fusion matrices to

the basis vectors:

A = {N̂in ...N̂i2 |i1〉 |ik ∈ I}. (B.6)

We claim that the space A encodes all fusion space decompositions or equivalently, all

standard fusion trees.

This claim can be verified by induction. Start by noting that dim(V k
ij) = Nk

ij = 〈k|N̂i|j〉

and therefore dim(Vij) = ∑k 〈k|N̂i|j〉, this serves as our base case. Observe the identity:

V k
i1i2...in

=
⊕

j

V j
i1i2...in−1

⊗ V k
in j . (B.7)

1For Abelian anyons, there is only one V c
ab that is nonzero, and its dimension is always 1.
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Suppose that dim(V k
i1i2...in−1

) = 〈k|N̂in−1 N̂in−2 ...N̂i2 |i1〉. Invoking equation (B.7), we write

dim(V k
i1i2...in

) = dim(
⊕

j

V j
i1i2...in−1

⊗ V k
in j)

= ∑
j

dim(V j
i1i2...in−1

)dim(V k
in j)

= ∑
j
〈j|N̂in−1 N̂in−2 ...N̂i2 |i1〉 〈k|N̂in |j〉

= ∑
j
〈k|N̂in |j〉 〈j|N̂in−1 N̂in−2 ...N̂i2 |i1〉

= 〈k|N̂in N̂in−1 N̂in−2 ...N̂i2 |i1〉 .

We therefore conclude that

dim(V k
i1...in

) = 〈k|N̂in N̂in−1 ...N̂i2 |i1〉 . (B.8)

In order to further explore the properties of the fusion matrices for non-Abelian anyons,

we will invoke the following result from linear algebra [77].

Theorem 1 (Frobenius-Perron theorem). Let M be a square matrix with non-negative entries.

Then the following hold

(1) M has a non-negative real eigenvalue. The largest non-negative eigenvalue, µ, is equal to the

spectral radius of M, that is |λ| ≤ µ for all other eigenvalues λ of M. In addition, there is an

eigenvector of M with non-negative entries and eigenvalue µ.

(2) If M has strictly positive entries then µ is a positive eigenvalue with algebraic multiplicity

1, and the corresponding eigenvector can be normalized to have strictly positive entries. We

also have |λ| < µ for all other eigenvalues λ of M.

(3) If a matrix M with non-negative entries has an eigenvector with strictly positive entries, then

the corresponding eigenvalue is µ.

Since all of the elements of the fusion matrix N̂a are non-negative integers, the Frobenius-

Perron theorem guarantees that N̂a has a maximal, non-negative real eigenvalue. We

denote this eigenvalue da and refer to it as the quantum dimension of a.
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Now construct the matrix M̂ = ∑a∈I N̂a. Its matrix elements are strictly positive:

〈c|M̂|b〉 = ∑
a∈I
〈c|N̂a|b〉 = ∑

a∈I
Nc

ab > 0 .

By the Perron-Frobenius theorem, M̂ has a unique eigenvector with maximal eigenvalue

µ, and this vector can be normalized to have strictly positive entries. We will denote this

normalized vector |R〉 ∈ AC.

Since N̂a commutes with M̂, we have

M̂(N̂a |R〉) = N̂a M̂ |R〉 = µ(N̂a |R〉). (B.9)

Therefore, N̂a |R〉 is an eigenvector of M̂ with eigenvalue µ. By its uniqueness, this vector

must be proportional to |R〉, which then means that |R〉 is an eigenvector of N̂a with strictly

positive entries, from which we conclude that N̂a |R〉 = da |R〉.

We have just determined that all of the fusion matrices {N̂a} have a common eigen-

vector |R〉 with eigenvalues {da}. Since the fusion matrices follow the fusion rules, we

have

N̂aN̂b |R〉 = ∑
c

Nc
abN̂c |R〉 , (B.10)

dadb |R〉 = ∑
c

Nc
abdc |R〉 . (B.11)

This expression gives us the following identity for the quantum dimensions:

dadb = ∑
c

Nc
abdc . (B.12)

Hence, the assignment a 7→ da is a one-dimensional representation, i.e., a character, of the

fusion algebra.

Note that N̂0 is just the identity matrix, and therefore d0 = 1. By the symmetries of the

fusion coefficients, we have that Nc
ab = Nb

a∗c. Thus, (N̂a)T = N̂a∗ , implying that da∗ = da,

that is the quantum dimension of an anyon and its dual are equal. Equation (B.12) then

implies that all quantum dimensions are greater than or equal to 1 and that for Abelian

anyons all quantum dimensions are equal to 1.

Using equation (B.12), it is straightforward to show that |R〉 = 1√
D ∑a da |a〉, where D =

∑a d2
a is the total quantum dimension of the theory. For Abelian anyons, the total quantum

dimension is equal to the number of labels.
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Finally, we highlight an important connection between the quantum dimension and the

dimensions of the fusion spaces Vaa...a. Putting together equation (B.8) with our discussion

of the quantum dimensions, we can make the following observation about the dimension

of the Hilbert space for a system of n anyons with label a

dim(Vaa...a) = ∑
b

dim(V b
aa...a) (B.13)

= ∑
b
〈b|(N̂a)

n−1|a〉 (B.14)

= ∑
b
〈b|(dn−1

a |R〉 〈R|)|a〉+ ... (B.15)

= ∑
b

dn−1
a 〈b|R〉 〈R|a〉+ ... (B.16)

= O(dn
a ) . (B.17)

This calculation shows that the quantum dimension da dictates the asymptotic rate of

growth of the Hilbert space of n anyons of type a.

B.3 Topological transformations of non-Abelian anyons
The Hilbert spaces corresponding to anyon systems that we have just discussed give

us an idea of where we can encode quantum information. We now turn our attention to

how we can manipulate that data in a reliable manner.

B.3.1 Twisting Non-Abelian Anyons

If we model the anyons as charge-flux composites, this operation has an effect equiva-

lent to winding a charge q once around a flux Φ. This process would then lead to an overall

Aharanov-Bohm phase of eiqΦ. It turns out that this intuition is correct when considering

Abelian anyons. In this case, the charges correspond to irreducible representations of

some Abelian group or algebra, and the flux corresponds to some element of that group or

algebra. The phase is then just the character of that representation evaluated on the group

element. Furthermore, all of the anyon fusion spaces are one-dimensional, due to the fact

that all da = 1 for Abelian anyons, so all that can happen is for the state to be modified by

an overall phase θa called the topological spin or twist of the anyonic charge a.

However for non-Abelian anyons the situation is more subtle due to the larger fusion

spaces. In this case the Aharanov-Bohm effect [111, 185] may result in the anyon’s charge

and flux changing their value. That is, starting with a composite with charge q and flux [g],
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after twisting we may end up with charge q′ 6= q and flux [g′] 6= [g]! Since by definition

such a local operation cannot alter the anyonic charge of the region, this tells us that the

topological spin should be thought of as a quantity that is independent of the values of

charge and flux [114].

The twist on a region with non-Abelian anyonic charge a is represented by a matrix

acting on the space of different charge-flux composites with the same anyonic charge [114].

When diagonalized, this matrix will have the form θa ida, where ida is the identity matrix

acting on the degenerate Hilbert space of the region with net anyonic charge a.

B.3.2 Braiding Non-Abelian Anyons

For non-Abelian anyons, the half-braiding operator maps the two-anyon Hilbert space,

Vij to Vji.

Since the braiding of two anyons is local with respect to any region containing both of

them, it must preserve their fusion channel label. Consequently the half-braiding matrix

has a block diagonal form, with each block mapping V k
ij → V k

ji. This leads to the formula:

R
[

∑
k∈I

ck
ij |ij; k〉

]
= ∑

k∈I
Rk

jic
k
ij |ji; k〉 . (B.18)

Just as in the Abelian case, the non-Abelian half-braiding matrix must also satisfy

the pentagon identity and balancing condition to be consistent, ultimately leading to the

structure of a modular tensor category [16, 194].



APPENDIX C

THE LEVIN-WEN MODEL WITH GENERIC

INPUT DATA

In this appendix, we highlight some of the elements of the Levin-Wen model [114,

145, 150] with generic input data that differ from the case presented in Chapter 4. The

motivation is to provide some sense of the considerations needed to generalize the string-

net surface code to other algebraic inputs, especially for the case of representations of a

quantum group [113, 127].

C.1 The generic Levin-Wen Hamiltonian
In this section, we introduce the modifications to the projectors appearing in the Hamil-

tonian. Firstly, the vertex constraint is now written as

Q̂v |ijk〉 := δijk |ijk〉 where δijk = min(1, Nk∗
ij ) . (C.1)

Since the input data are not necessarily Abelian, the labels in the set L may have a

quantum dimension, di, that is greater than 1. Let vi =
√

di, be an arbitrarily chosen root

that is fixed throughout all calculations. The constraints on the G-tensor now take the form

Gijm
kln = Gmij

nk∗ l∗ = Gklm∗
ijn∗ = αmαnGj∗i∗m∗

l∗k∗n (C.2a)

∑
n

dnGmlq
kp∗nGjip

mns∗G
js∗n
lkr∗ = Gjip

q∗kr∗G
riq∗

mls∗ (C.2b)

∑
n

dnGmlq
kp∗nGl∗m∗i∗

pk∗n =
δiq

di
δmlqδk∗ip , (C.2c)

where αi = sgn(di) is known as the Frobenius-Schur indicator, which will not be an

important part of this work, but it is mentioned for completeness.

In total, algebraic data needed as input to define the Levin-Wen model is (L, di, Nk
ij, Gijm

kln ),

which also specifies a mathematical object known as a unitary spherical fusion category [108].

One of the remarkable features of this model is that we do not need to assume any braiding
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structure for the input data, rather the dynamics of the model will generate excitations that

do possess a well-defined braiding structure that is consistent with the input data.

We now define a local operator, B̂s
P(ijk), that acts on a triangular plaquette (see Figure

C.1) as

B̂s
P(ijk) |lmn〉 ⊗ |ijk〉 = ∑

l′m′n′
vlvl′vmvm′vnvn′Gim′∗ l′

slm∗ Gjn′∗m′
smn∗ Gkl′∗n′

snl∗
∣∣l′m′n′〉⊗ |ijk〉 . (C.3)

It is assumed that all three vertices of the original labeling are stable, and that if any of them

are not, the operator is identically zero. The effect of this operator is to fuse a loop labeled

by s with the internal edges of the plaquette. This definition can be extended to a plaquette

with an arbitrary number of sides. An important detail to note is that the operator does

not change the values of any of the external legs of the plaquette, which will be helpful

when performing calculations.

The local plaquette projector is now defined to be B̂P = 1
D ∑s dsB̂s

P, where D = ∑i d2
i

is the total quantum dimension of the input fusion algebra. The Levin-Wen Hamiltonian is

again defined to be

ĤLW := ∑
v
(1− Q̂v) + ∑

P
(1− B̂P). (C.4)

The projectors Q̂v and B̂P possess the same commuting properties as in Chapter 4, so this

Hamiltonian is again gapped and exactly solvable.

We will not give a description of the excitations of this theory here, but instead refer

to [114]. However, we would like to point out that while fluxon excitations can be treated

in the string-net Hilbert space (where all vertices are stable), charge excitations require an

extension of the Hilbert space, with additional degrees of freedom (related to the proba-

bilistic nature of non-Abelian fusion).

j

i

k

l

m

n

Figure C.1: A triangular plaquette with labeling conventions for the definition of B̂s
P(ijk).
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C.2 Bulk topological symmetries
In this section, we will present the modifications to the bulk topological symmetry

operators. Recall the three Pachner moves in Figure C.2.

The three maps accompanying these graph mutations are

T̂1 |ijkl〉 ⊗ |m〉 := ∑
n

vmvnGijm
kln |ijkl〉 ⊗ |n〉 (C.5a)

T̂2 |ijk〉 := ∑
lmn

vlvmvn√
D

Gijk
lmn |ijk〉 ⊗ |lmn〉 (C.5b)

T̂3 |ijk〉 ⊗ |lmn〉 :=
vlvmvn√

D
Gj∗i∗k∗

m∗ ln∗ |ijk〉 . (C.5c)

C.3 The Levin-Wen model on a surface with boundary
C.3.1 Frobenius Algebras

To define a Frobenius algebra A in the spherical fusion category (L, Nk
ij, Gijm

kln ), we start

with a subset of labels LA ⊆ L equipped with a multiplication f defined by

i⊗A j = ⊕k fijkk ∀i, j, k ∈ LA . (C.6)

This multiplication should be associative and nondegenerate, which leads to the following

conditions:

∑
c

vcvg fabc∗ fcde∗Gabc∗
de∗g = fage∗ fbdg∗ (C.7a)

fbb∗0 6= 0, ∀ b ∈ LA . (C.7b)

j
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m

l

k
j

i

n

l

k

(a)

j

i

k j

i

k

l

m

n

(b)

j

i

kj

i

k

l

m

n

(c)

Figure C.2: The three Pachner moves acting on a directed trivalent graph.
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The symmetry conditions of the G tensors imply the following three properties that define

a Frobenius algebra:

fbb∗0 = fb0b∗ = f0bb∗ = 1 (C.8a)

fabc = fcab (C.8b)

∑
ab

fabc fc∗b∗a∗vavb = dAvc . (C.8c)

The multiplication coefficients can be normalized to satisfy fbb∗0 = 1 for all b ∈ LA, and

extended to all of L by setting fijk = 0 if any label is in L \ LA.

When designing the bulk terms for the theory, the guiding principles are the following:

(1) The Hamiltonian should be gapped and exactly soluble. Furthermore it can be writ-

ten as a sum of local commuting projectors.

(2) The (potentially degenerate) ground state should possess a topological symmetry,

that is an insensitivity to the local details of the graph.

This is what leads to the set of data, the unitary fusion category, required to define the bulk

theory. By following these same principles, as well as the additional constraint that the

boundary theory should be compatible with the bulk theory, one finds that the algebraic

data needed to define the boundary theory is a Frobenius algebra [115, 117, 119], which is

a special object in the unitary fusion category describing the bulk.

C.3.2 Boundary Hamiltonian

We define the boundary charge operator acting on just one boundary edge as

Qe |i〉 := ιLA(i) |i〉 , (C.9)

where ιLA is the indicator function for the set LA.

The operator acting on the “half-plaquettes” found at the boundary (see Figure C.3), is

now defined as

Bt
P̄ |ab〉 ⊗ |lm〉 = ∑

a′,b′,l′,m′∈LA

uaubua′ub′vlvmvl′vm′ fta′a∗ fb∗t∗b′Gila
tal∗G

jml
tj3m∗G

tm′m
kbb′∗

∣∣a′b′〉⊗ ∣∣l′m′〉 ,

(C.10)

where ua =
√

va. Then the operator 1
dA

∑t∈LA
Bt

P̄ is a projector that commutes with Qe.



130

ba

i l
j

m k

Figure C.3: Boundary plaquette with labeling conventions.

The boundary Hamiltonian is defined to be

Hbdry = ∑̄
P

(1− BP̄) + ∑
e∈∂Γ

(1−Qe). (C.11)

This Hamiltonian is exactly solvable and gapped.

C.3.3 Boundary Topological Symmetry

Recall the two graph mutations of the boundary as shown in Figure C.4. The corre-

sponding linear transformations are

T̂4 |a〉 :=
1√
dA

∑
b,c∈LA

ubuc

ua
fb∗c∗a |a〉 ⊗ |bc〉 (C.12a)

T̂5 |a〉 :=
1√
dA

∑
b,c∈LA

ubuc

ua
fbca∗ |a〉 . (C.12b)

a a

b c

(a)

a

b c

a

(b)

Figure C.4: The topology preserving mutations of the boundary
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