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Abstract

When nematic liquid crystals are placed between parallel glass plates with differing align-
ment directions, the bulk will twist in order to match the boundary conditions. This
phenomenon of a twisted cell has been used extensively for the development of everyday
liquid-crystal displays. However, there has been limited study of the twisted cell beyond
the 90◦ twist case. In this thesis, I explore the behaviour of inhomogeneous liquid-crystal
devices where the front and back alignment layers are uniquely and spatially patterned.
This creates a non-symmetric device which can act on light differently depending on the
orientation of the device and an externally applied voltage. The effect on the polarization
of light is theoretically modelled using Jones matrices, and elastic continuum theory is
employed to fully understand how the twist and tilt distributions of the liquid crystals
change with field strength. Different pattern configurations were fabricated, tested, and
characterized, revealing the complex behaviour that occurs with an applied electric field.
Liquid-crystal devices provide a bespoke way of tailoring the spatial distribution of light
and photons. A set of quantum key distribution experiments through underwater channels,
leveraging these devices to encode information on structured photons, is also presented.
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Chapter 1

Introduction

1.1 Overview

When nematic liquid crystals are placed between parallel glass plates with differing align-
ment directions, the bulk will twist in order to match the boundary conditions [4]. This phe-
nomenon of a twisted nematic liquid crystal (TNLC) cell—in particular with 90◦ twists—
has been used extensively for the development of everyday liquid-crystal displays [5–7].
With properly chosen birefringent liquid crystals and fabrication techniques, incident lin-
early polarized light will rotate through the cell, following the twist structure. When a
sufficiently strong voltage is applied across the cell, the twist structure disappears as the
liquid crystals are aligned in the field direction, negating any polarization rotation. How-
ever, there has been limited study of the twisted cell beyond the 90◦-twist case for general
polarization manipulation [8, 9].

On the other hand, in the context of experimental optics, spatially patterned liquid-
crystal-based devices are an efficient and compact method for structuring the polariza-
tion and spatial degrees of freedom of light, but studies have been limited to symmetric
elements, i.e., the front and back patterns on the alignment layers are identical. For ex-
ample, q-plates—part of the general class of Pancharatnam–Berry phase optical elements
(PBOE)—are such that the liquid-crystal layer is aligned to have a semi-integer topo-
logical charge of q. This allows for the coupling of spin to orbital angular momentum.
q-plates have found applications in both classical and quantum optics [10], in particular
STED microscopy [11], metrology [12], high-dimensional classical [13] and quantum com-
munication [14], and quantum simulations [15]. For the case of non-symmetric spatially
patterned devices, there have been only a few implementations, including polarization con-
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1.2. TRANSVERSE SPATIAL MODES 2

verters which convert linear polarization into vector vortex modes [16]—a functionality still
achievable via standard q-plates [17]. However, these spatially twisted elements operate
with no externally applied field. Recently, there has been a work that observes the voltage-
dependent behavior of non-symmetric devices patterned with different gratings [18].

This thesis aims to bridge the above gaps by investigating the behaviour of liquid crys-
tals with the full range of possible twist angles from −90◦ to 90◦, under the influence of
various externally applied electric fields. By creating non-symmetric devices, one can se-
lectively manipulate light based on the device orientation and external voltage application.
Dual-plates (DP), as I will call them, thus promise a switch-like capability between phase
distributions. The polarization of light is theoretically modeled using Jones matrices, while
elastic continuum theory provides insights into the changes in the twist and tilt distribu-
tions of liquid crystals under varying field strengths. I present a numerical analysis for the
modified tilt and twist distributions, obtained via genetic algorithms. Through the fab-
rication, testing, and characterization of different pattern configurations, we uncover the
complex behaviors that emerge when an electric field is applied. This research not only
contributes to the fundamental understanding of liquid-crystal devices but also explores
their potential for tailoring the spatial distribution of light and photons.

The conventions and notations for the pertinent photonic degrees of freedom will be
defined for consistency in the rest of this chapter. In Chapter 2, the physics of liquid
crystals will be introduced, covering the basics of the different phases, optical properties,
as well as the debut of liquid-crystal-based optical elements for the purpose of structuring
light. Chapter 3 and Chapter 4 detail the theoretical and experimental exploration of
twisted liquid-crystal devices, with the former laying out the model in a field-free system,
while the latter extends this to the response due to an applied field with the help of genetic
algorithms. Quantum cryptography is one use of structured light, which can be generated
via liquid-crystal optics. A set of experiments exploring the feasibility of using structured
photons for quantum key distribution through an underwater channel will be discussed in
Chapter 5. Closing remarks and future questions to investigate will be given in Chapter 6.

1.2 Transverse spatial modes

1.2.1 Paraxial wave equation

It goes without saying that Maxwell’s equations are fundamental to uniquely describing
light as an electromagnetic (EM) field with field vectors E and B. The four rules that are



1.2. TRANSVERSE SPATIAL MODES 3

necessary and sufficient that all EM waves must obey are governed by the divergence and
curl of its respective electric and magnetic fields, given here in vacuum,

∇ · E =
ρ

ϵ0
, (1.1)

∇ ·B = 0, (1.2)

∇× E = −∂B
∂t
, (1.3)

∇×B = µ0J+ µ0ϵ0
∂E

∂t
, (1.4)

where ρ and J are the charge and current densities present, respectively, which are taken
to be zero in free-space; ϵ0 and µ0 are the permittivity and permeability of vacuum. As
we see, Maxwell’s equations in vacuum consist of a set of differential equations that couple
the electric to magnetic field. It is extremely useful to decouple these two fields in order
to gain insights into their physical nature and behaviour. For the electric field, this is
simply done by taking the curl of Eq. (1.3), and substituting in Eq. (1.1) and (1.4) with
ρ = 0, J = 0; the magnetic field can be similarly obtained by instead starting with the
curl of Eq. (1.4). Recall that we have the additional condition of transversality where E
and B lie in a plane orthogonal to the direction of propagation, dictated by ∇·E = 0 and
∇ ·B = 0. This results in Helmholtz’s wave equations,

(

∇2 − µ0ϵ0
∂2

∂t2

)

Ψ(r) = 0, (1.5)

where Ψ(r) is either the electric or magnetic field, and we can associate the speed with
which these waves travel at to be c = (µ0ϵ0)

−1/2, and ∇2 is the Laplacian operator.

Traditionally, the solutions of these wave equations are given as ansatz for different
symmetries, for example, Cartesian, cylindrical, elliptic-cylindrical, or spherical; we obtain,
respectively, plane waves, Bessel beams, Mathieu beams, and spherical waves. While these
forms mathematically represent solutions to the wave equation—corresponding to light
beams with amplitude and phase profiles—their intensity is non-normalizable, resulting
in beams that carry an infinite amount of energy. Obviously, such beams are not truly
physical and cannot be fully generated in the lab. This is mainly due to the fact that the
beam will undergo truncation due to any type of aperture, giving rise to diffraction and
various propagation effects which are not present in the aforementioned solutions.

The paraxial wave equation, derived from the Helmholtz’s wave equation, appropriately
describes physical light beams which can be readily produced in the lab with lasers. To
obtain this equation, we first make the assumption of separation of variables in spatial and
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temporal coordinates such that the field is formulated as ψ(r, t) = ψ̃(r)eikze−ikct. Since
the deviation of the wave vector away from the optical axis is very small as is the case for
collimated light beams, we can make use of the paraxial approximation, i.e., the slowly
varying amplitude approximation to arrive at the paraxial wave equation,

(

∇2
⊥ + 2ik

∂

∂z

)

ψ̃(r) = 0, (1.6)

∇2
⊥ is the transverse Laplacian operator.

Much like Helmholtz’s wave equation, the solutions to Eq. (1.6) can be determined in
different symmetries to give the transverse complex amplitude ψ̃(r). In Cartesian coordi-
nates (x, y, z), typically found in optical resonators, we get the Hermite–Guass modes [19],

HGn,m(x, y, z) =
Cn,m

w(z)
exp

(

−ik (x
2 + y2)

2R(z)

)

exp

(−(x2 + y2)

w(z)2

)

×

×Hn

(

x
√
2

w(z)

)

Hm

(

y
√
2

w(z)

)

exp (iΦnm(z)) .

(1.7)

Here, n is a positive integer for the x index, andm is a positive integer for the y index; Cn,m

is the normalization constant; w(z) = w0(1 + (z/zR)
2)1/2 is the beam radius with beam

waist w0 at z = 0, and Rayleigh range zR = πw2
0/λ = kω2

0/2. The second term describes
the expanding curvature of the mode with radius of curvature R(z) = z(1 + (zR/z)

2).
The third, fourth, and fifth terms together give the Hermite polynomials Hn(·), Hm(·)
modulated by a Gaussian that scales with distance. Finally, the sixth term is the effect of
the mode-dependent Gouy phase Φ(z) = (n+m+ 1)arctan(z/zR).

More pertinent to this thesis is the solution set in cylindrical coordinates (r, ϕ, z), which
consist of the Laguerre–Gauss (LG) modes [20],

LGℓ,p(r, φ, z) =
Cℓ,p

w(z)

(

r
√
2

w(z)

)|ℓ|

exp

(

−ik r2

2R(z)

)

exp

(

− r2

w(z)2

)

×

× L|ℓ|
p

(

2r2

w(z)2

)

exp (iΦℓp(z)) exp (iℓφ) .

(1.8)

Here, Cℓ,p = (2p!/(π(p + |ℓ|)!))1/2. The second term is associated with a scaling that
expands upon propagation. The third and fourth terms together give the generalized
Laguerre polynomials L

|ℓ|
p (·) modulated by a Gaussian that scales with distance. The sixth

term is the effect of the mode-dependent Gouy phase Φ(z) = (2p + |ℓ| + 1)arctan(z/zR).
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Figure 1.1: Laguerre–Gauss modes. Phase profiles modulated by the intensity profiles
of LG modes with ℓ = −2,−1, 0, 1, 2 and p = 0, 1, 2.

And finally, the seventh and most useful term is eiℓϕ, which is an azimuthally varying phase
factor attributed to ℓℏ units of orbital angular momentum (OAM).

OAM is associated with the wavefront of light, whereas spin angular momentum (SAM)
is associated with its vectorial nature—i.e., polarization, which will be described in the
next section. For LG modes, the eiℓϕ factor manifests as |ℓ| intertwined helical contours of
constant phase in the wavefront. The handedness of these helices is given by the sign of
ℓ. In the intensity profile, this structure is exhibited as a doughnut-like form, with a null
along the propagation axis due to the presence of a phase singularity. The radial index
p, on the other hand, adds p extra rings, π out of phase with each other, see Fig. 1.1 for
examples. Generally, we are not concerned with modes with p ̸= 0, and refer to modes
with p = 0 as pure OAM states. In Dirac notation, a quantum state carrying ℓℏ units of
OAM will be written as |ℓ⟩.

Laguerre–Gauss modes were first experimentally demonstrated to carry a well-defined
orbital angular momentum by Allen et al. in 1992 [20]. Since then, OAM has found numer-
ous application in a variety of fields, including high-dimensional quantum communication
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to improve the security and quantum bit error rate [21], stimulated emission depletion
(STED) microscopy to improve imaging resolution [22], and coronography for detecting
exoplanets [23] to name a few. Of course, LG modes are not the only modes of light to
possess OAM; for example, Bessel–Gauss, which are non-diffracting, and Hypergeometric–
Gauss modes also may possess OAM.

1.2.2 Generation techniques

Generating light with a particular OAM value boils down to how the eiℓϕ phase factor can
be imprinted. The most straightforward method is to use a spiral phase plate [24], which as
the name implies, is a transparent medium with a base thickness of d0 and an azimuthally
dependent thickness profile above it,

d(ϕ) =
ℓλ

2π(n− n0)
ϕ =

dstep
2π

ϕ, (1.9)

where n and n0 are the refractive indices of the spiral phase plate and surrounding medium,
respectively, and dstep is the step height above the base at ϕ = 0. This will consequently
imprint an azimuthal phase δ = 2π

λ
(n− n0)d(ϕ) = ℓϕ, based on the optical path difference

by construction.

The next method to generate OAM modes is to use what is called a mode converter
based on cylindrical lenses [25]. This method relies on the fact that Hermite–Gauss modes
can be decomposed into Laguerre–Gauss modes, and vice versa. This is particularly useful
since the output of most lasers is in a Hermite–Gauss mode due to the nature of the cavity
geometry. The construction of the mode converter is a pair of identical cylindrical lenses
with focal length f separated by a distance of

√
2f for a π/2-converter. A π/2-converter

will transform HG to LG modes of the same order, where their mode order is N = n+m
and N = 2p+ |ℓ|, respectively.

Arguably the most useful and versatile method for generating OAM modes, or any
transverse spatial mode in general, is with a spatial light modulator (SLM) using holog-
raphy. A phase-only SLM consists of an array of liquid-crystal cells, with the ability to
apply a different voltage to each cell. The theory and physics of liquid crystals will be
explained in detail later in this thesis. For the time being, these liquid crystal cells act
as pixels, wherein the grayscale displayed (changing the applied voltage) corresponds to a
different phase that is imparted on incident light. Typically, a phase is only imprinted on
horizontally polarized light. Some SLMs are transmissible, though most operate in reflec-
tion. Not all types of SLMs can impart a phase from 0 to 2π or more by strictly displaying
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the desired phase in grayscale, which could greatly hinder the generation of certain modes.
Additionally, we can only structure the phase profile and not the amplitude profile in this
way.

This is where holography comes in, which gives the ability to simultaneously tailor
both the phase and intensity of incident light [26]. The principle behind holography is
that when two beams of light with identical polarizations but different wave vectors are
superimposed, they will form a interference pattern at the plane of intersection; for this
example, consider the reference beam as a Gaussian, the other as a desired spatial mode.
However, this interaction can be done in reverse. If a hologram is created according to
this interference pattern, either in amplitude or phase, an incident Gaussian beam will be
diffracted into different orders; the zeroth and first are in the Gaussian and spatial mode
used originally for interference. Thus the phase of the desired spatial mode is imprinted
on the incident beam. An amplitude hologram modifies the intensity, so a phase hologram
is more desirable as it is less lossy. However, we don’t have the correct control over the
amplitude profile using only the direct interference pattern as a hologram; for this, we
should include intensity masking.

Consider the desired output field of E(x, y) = A(x, y)eiΦ(x,y), where A(x, y) = |E(x, y)|
and Φ(x, y) = Arg(E(x, y)) are the amplitude and phase, respectively, at the z = 0 plane.
Then the hologram to imprint only phase is given by,

Ψ(i, j) = Mod[Φ(i, j) + 2π sin (θx)i/Λ + 2π sin (θy)j/Λ, 2π], (1.10)

where i, j are the pixel coordinates in the x and y directions, and θx and θy are the
diffraction angles of the first order in the x and y directions. The shape of the fringes given
by this formulation is a blazed grating with period Λ, which has been shown to optimize
the efficiency of diffraction into the first order where the desired output field resides. For
a phase-only hologram that also modulates the intensity, the form is modified to,

Ψ(i, j) = M(i, j)Mod[F(i, j) + 2π sin (θx)i/Λ + 2π sin (θy)j/Λ, 2π], (1.11)

M(i, j) = 1 +
1

π
sinc−1(A(i, j)), (1.12)

F(i, j) = Φ(i, j)− πM(i, j). (1.13)

Note the presence of sinc−1(·) which is the inverse function of sinc(x) = sin x/x in the
interval of [−π, 0]. This can be a computationally heavy function to calculate, so programs
typically use a lookup table for faster operation. Since 0 ≤ M ≤ 1, then 0 ≤ Ψ ≤ 2π.
Indeed, the displayed hologram only relies on the relative values of grayscale that each
pixel displays as opposed to the phase that a specific gray value would impart. Therefore,
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using holograms to generate spatial modes is suitable for any phase-only SLM. I wrote a
custom interface in Python that connects to a SLM and allows the user to display and
manipulate the holograms for various spatial modes—available upon request.

Other types of liquid-crystal optical elements, such as q-plates [10, 27], can be used to
generate spatial modes; however, these will be discussed in Sec. 2.4.

1.3 Polarization

1.3.1 Jones calculus

In free-space and under the paraxial regime discussed above, light is an electromagnetic
wave with an electric and magnetic field oscillating in the plane transverse to its propaga-
tion direction. Here, the direction of propagation will be along the z-axis in the positive
direction, and the transverse plane will be in the x-y plane. The polarization of light is
given by the manner in which the electric field oscillates, describing its vectorial nature.
The electric field for a monochromatic plane wave of wavelength λ will thus be defined
as [28],

E(z, t) = Re
{

Aei(ωt−kz)
}

, (1.14)

with ω the angular frequency of the light, and k = 2π/λ the wavenumber. The normalized
complex Jones vector representing polarization is given as A = Axx̂+Ayŷ, or equivalently,

A(∆, δ) = axe
iδxx̂+ aye

iδy ŷ = eiδx(axx̂+ aye
iδŷ) = cos∆x̂+ sin∆eiδŷ, (1.15)

where δ = (δy− δx) ∈ [−π/2, π/2] is the relative phase between the horizontal and vertical
components, and a2x + a2y = 1, with it being convenient to take ax = cos∆ and ay = sin∆,
∆ ∈ [0, π]. The global phase of eiδx can be safely ignored. The six cardinal polarization—
horizontal (H), vertical (V), diagonal (D), anti-diagonal (A), right-hand circular (R), and
left-hand circular (L)—are then, respectively,

AH = x̂ =

[

1
0

]

,AV = ŷ =

[

0
1

]

, (1.16)

AD =
1√
2

[

1
1

]

,AA =
1√
2

[

1
−1

]

, (1.17)

AR =
1√
2

[

1
i

]

,AL =
1√
2

[

1
−i

]

. (1.18)
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light. The relevant matrices for here are the rotation matrix,

R(·) =
[

cos(·) sin(·)
− sin(·) cos(·)

]

, (1.19)

as well as the Jones matrix for a waveplate of phase retardation Γ with its fast axis along
the x-axis,

W0(Γ) =

[

e−i
Γ
2 0

0 ei
Γ
2

]

. (1.20)

An arbitrarily rotated waveplate, or optical element in general, can be obtained through
the transformation Wξ(Γ) = R(−ξ)W0(Γ)R(ξ),

Wξ(Γ) = e−
iΓ
2

[

cos2 ξ + eiΓ sin2 ξ (1− eiΓ) cos ξ sin ξ
(1− eiΓ) cos ξ sin ξ sin2 ξ + eiΓ cos2 ξ

]

. (1.21)

Note that matrix multiplication is performed right to left, with the rightmost matrix being
the first operation or optical element in a set, and the leftmost the last.

The phase retardation is defined as Γ = 2π(ne − no)d/λ, where d is the thickness of
the waveplate, λ is the wavelength of the incident light, and ne and no are the refractive
indices along the extraordinary and ordinary axes of the constituent birefringent uniaxial
material. The materials considered here are assumed to have positive birefringence, i.e.,
∆n = ne − no > 0. The extraordinary and ordinary axes are equivalently termed the
slow and fast axes of the material, respectively, as the electric field traveling along the
higher effective refractive index (in this case, ne) will have a slower phase velocity. Then Γ
denotes the phase by which the electric field along the slow axis is delayed in comparison
to the field along the fast axis. For example, half-wave plates (HWP) have Γ = π, while
quarter-wave plates (QWP) have Γ = π/2. With just these two types of waveplates, it is
possible to arbitrarily and generally transform a polarization state [29].

1.3.2 Poincaré sphere

As a complex 2D spinor, completely polarized states can also be represented as a point
on the surface of a unit sphere. This Poincaré sphere (PS) is the polarization equivalent
of the Bloch sphere for spin-1/2 or other two-level systems. Note for partially polarized
light, the state will lie within the unit sphere, on a sphere with a radius equal to the
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degree of polarization. A polarization state’s position on the PS is determined through the
corresponding (normalized) Stokes parameters from its Jones vector as follows [30],

S0 = |AH |2 + |AV |2 = AxA
∗
x + AyA

∗
y = a2x + a2y = 1, (1.22)

S1 = |AH |2 − |AV |2 = AxA
∗
x − AyA

∗
y = a2x − a2y = cosϕ cos θ, (1.23)

S2 = |AD|2 − |AA|2 = AxA
∗
y + AyA

∗
x = 2a2xa

2
y cos δ = sinϕ cos θ, (1.24)

S3 = |AR|2 − |AL|2 = i(AxA
∗
y − AyA

∗
x) = 2a2xa

2
y sin δ = sin θ, (1.25)

such that its Stokes vector is S = S1ŝ1 + S2ŝ2 + S3ŝ3 = [S1, S2, S3] , and ϕ ∈ [0, 2π) and
θ ∈ [−π/2, π/2] are the azimuthal and polar angles of the PS, respectively. The Stokes
vector can alternatively be expressed in terms of the spherical coordinates as S(ϕ, θ), with
the angles defined as,

ϕ = arctan

(

S2

S1

)

, (1.26)

θ = arctan

(

S3
√

S2
1 + S2

2

)

. (1.27)

In particular, we have that ϕ = 2∆ for δ = π/2, and θ = δ for ϕ = π/2 in relation to
Eq. (1.15). Figure 1.2b shows an example of a general polarization state on the PS. The
three axes correspond to the three pairs of cardinal polarizations: horizontal and vertical
are at the positive and negative ends of the ŝ1 axis, respectively; diagonal and anti-diagonal
for ŝ2; and right-handed and left-handed circular for ŝ3. As such, all linear states are along
the equator of the PS, and orthogonal states are positioned at antipodal points.

1.4 Structured light

The beauty of light is its potential to be shaped and structured to the whims of the user.
Light need not be strictly ascribed to one spatial mode or one polarization—it may be
put into a coherent superposition of different spatial modes, different polarizations, and
even different frequencies. This results in complex distributions for the polarization in
the spatial and temporal domain. The concept of structuring light is equally valid for its
constituent photons, adding the potential to play with different photon numbers. For our
purposes here, we only concern ourselves with a single frequency component, as well as
single-photon states when in the quantum regime.
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Figure 1.3: Vector vortex beams. a. Radially polarized light. b. Azimuthally polarized
light. c. Vector vortex mode with |ℓ| = 2. d. Vector vortex mode with |ℓ| = 3.

A very general structured light mode may be represented as,

U(r) =
∑

π,ℓ,p

cπℓ,pLGℓ,p(r)Aπ, (1.28)

where π is polarization, and cπℓ,p are the coefficients. Here, the Laguerre–Gauss modes were
chosen as the spatial modes, but Hermite–Gauss or any other complete set could have
been chosen. The most trivial structured modes are those with a single spatial mode and
single polarization; for example, LG0,0AH is a horizontally polarized Gaussian beam. The
dependency on r has been dropped for ease of notation. A slightly more interesting class
of structured modes are vector vortex beams of the form (LGℓ,0AR +LG−ℓ,0AL)/

√
2. The

polarization distribution of vector vortex beams consists of only linear polarizations; for
example, (LG1,0AR + LG−1,0AL)/

√
2 is a radially polarized beam, whereas (LG1,0AR −

LG−1,0AL)/
√
2 is azimuthally polarized. Some examples are given in Fig. 1.3. An even

more interesting type of structured light is polarization knots, where upon propagation,
knotted lines of circular polarization occur within a certain volume [31].



Chapter 2

Liquid Crystals

2.1 A brief history

For a long time, there were thought to be three states of matter: solid, liquid, gas. Of
course, we now know there to be a few more, including plasma, Bose–Einstein condensates,
and the matter at hand here, liquid crystals. This latter state has the fluidity of liquids,
but also the ordered arrangement of solid crystals. The history behind the state of matter
known as liquid crystals is quite a fascinating one, spanning all the way back to the end of
the 19th century. In the space I have here, I would not be able to do justice in recounting its
story. However, there is a wonderful compendium, Crystals that Flow [32], which I highly
recommend the interested reader to peruse as the authors have included commentary and
translations for the original classic papers in chronological order. I thus present here only
a small glimpse into the history of liquid crystals.

The first observations of this strange phenomenon were made by Austrian botanist
Friedrich Reinitzer in 1888, who discovered that cholesteryl benzoate—which he had ex-
tracted from carrots—showed two melting points, suggesting the existence of a new state of
matter [33]. The solid melted into a cloudy liquid at 145.5◦C, then suddenly became a clear
liquid at 178.5◦C, with strong colour shifts around each transition; it was also a reversible
process. This second melting point was later termed the ‘clearing point’. Reinitzer shared
his findings with German crystallographer Otto Lehmann, hoping his experience in polar-
ization microscopy would shed some light on the situation. Lehmann did indeed observe
crystallites in the intermediate cloudy liquid, and it displayed birefringent properties. He
continued to investigate the coexistence of liquiduity and crystallinity for several decades.

13
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In 1904, Lehmann coined the term “liquid crystal” to describe the state of matter he had
observed, publishing his extensive findings in his similarly named book [34].

From this point, chemists were able to synthesize various types of liquid crystals; how-
ever, an adequate theoretical model to describe their behaviour was severely lacking. Emil
Bose attempted to develop a model using van der Waals’ theory of fluids, introducing
the idea of molecular swarms (Molekülschwärmen) wherein swarms of molecules pointed
roughly in the same direction [35]. While it did not correctly provide a good molecular
theory for liquid crystals, it was the overarching accepted idea even as late as 1957 [36]. For
many years, the study of liquid crystals was confined to the realm of curiosity. However,
it wasn’t until the 1960s that liquid crystals began to be used in practical applications,
such as in digital displays. Richard Williams, then working at RCA Laboratories, New
Jersey, discovered that applying an electric field across a thin layer of nematic liquid crys-
tals caused stripe patterns to form [37]. This phenomenon was termed Williams’ domains,
which led his colleague George Heilmeier in 1968 to develop the first practical flat liquid-
crystal-based display (LCD) [38]. Since then, liquid crystals have become an integral part
of many electronic devices, including televisions, computer monitors, calculators, and mo-
bile phones. They have also found applications in a wide range of other fields, such as
medicine, cosmetics, and materials science, forming the multi-billion dollar industry we
have today.

As for the molecular theory of liquid crystals, in particular their transitions between
different phases, this mystery was finally put to rest by French physicist Pierre-Gilles de
Gennes between 1968 and 1972 [4, 39]. de Gennes introduced the concept of the order
parameter—a tensor quantity— which describes the degree of alignment of the molecules
in a liquid crystal. From this, he constructed the Landau-type free-energy expansion
in terms of invariant powers of the order parameter and of its gradients, establishing a
link between liquid crystals and other ordered systems where the Landau theory of phase
transitions is applicable. He also developed a theory to describe the behavior of nematic
liquid crystals, which are liquid crystals in which the molecules are oriented in a particular
direction but are not fixed in place. In 1991, de Gennes was awarded the Nobel Prize in
Physics “for discovering that methods developed for studying order phenomena in simple
systems can be generalized to more complex forms of matter, in particular to liquid crystals
and polymers.”
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i.e., the loss of correlation is different in two orthogonal directions—orientation is what
matters. Smectics, which have one-dimensional order, appear as distinctly spaced stacks
of two-dimensional liquid layers. On the other hand, columnar phases, as per their name,
manifest as a two-dimensional array of liquid tubes. Figure 2.1 demonstrates these three
mesophases.

Which mesophase occurs is highly dependent on the shape of the organic molecular
components; they are usually either rod- or disc-shaped. Nematics and smectics tend to
be elongated and rod-shaped, on the order of tens of angstrom long; meanwhile, most
columnar phases and some nematics are disc-shaped. As this is not a thesis in chemistry,
exact chemical formulae will be omitted; though, the reader is welcome to consult [4] for
various examples of the different mesophases. Overall, the order plays a crucial role in
explaining the transitions between different liquid crystal phases. The three main mecha-
nisms that drive these transitions is temperature (thermotropic), molecular concentration
(lyotropic), and the presence of inorganic molecules (metallotropic). For example, nematics
are thermotropic.

Let us take a closer look at the nematic phase, which is the primary subject of this
thesis. As there is only short-range positional order, its behavioural characteristics are
derived from the long-range order in the orientation of the molecules. The uniaxial, rod-
shaped molecules prefer to align with some common axis, called the director, defined as a
unit vector n̂. The direction of the director is arbitrary, though it can be influenced by
external means such as containment walls or electric and magnetic fields. Additionally,
the ‘head’ (n̂) and ‘tail’ (−n̂) of the nematic molecules are indistinguishable, even if they
themselves are polar. At high temperatures, the order is small, and the material behaves
as an isotropic liquid, where the orientation of the molecules is completely random. As the
temperature is lowered, the order increases, and the molecules become more aligned.

How ordered a nematic mesophase is can be quantified through an order parameter [4].
The complete description of the order parameter—in particular the general tensor order
parameter—is beyond the scope of this thesis. However, a small understanding can be
grasped from considering the alignment of nematic rigid rods. Each rod has cylindrical
symmetry about its long axis n̂′ and makes an angle θ with the director axis n̂ of the
whole nematic substance. There will be some distribution function f(θ) that describes
the alignment of the rods, with a maximum around parallel alignment (θ = 0 or π), and
a minimum around perpendicular alignment (θ = π/2). The full form of f(θ) may be
complicated and different for different nematic systems, so it is more informative to find a
single numerical parameter that describes the state of alignment. One could consider the
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average alignment as a possible candidate,

⟨n̂′ · n̂⟩ = ⟨cos θ⟩ =
∫

f(θ) cos θdΩ, (2.1)

where dΩ is the solid angle differential. Unfortunately, this quantity is identically zero by
the fact that f(θ) = f(θ− π), i.e., there is no average dipole. However, one could consider
a multipole expansion using Pℓ(cos θ), where Pℓ(·) are the Legendre polynomials. The next
higher multipole P2(cos θ) gives better incite, with the quadrupole being,

S =
1

2
⟨3 cos2 θ − 1⟩ = 1

2

∫

f(θ)(3 cos2 θ − 1)dΩ. (2.2)

We see that if there is strong parallel alignment with θ = 0 or π, then cos θ = ±1 and S = 1.
If there is strong perpendicular alignment with θ = π/2, S = −1/2. And importantly, if
f(θ) is uniform and independent of θ, this gives random isotropic orientation like in a
liquid, and consequently, S = 0. S is, therefore, an appropriate order parameter. This
order parameter can be measured using nuclear magnetic resonance [40], fluorescence [41],
Raman scattering [42], and infrared spectroscopy [43], though these will not be described
here. From here on out, when I refer to liquid crystals, I am referring to the nematic
mesophase.

2.3 Physical and Optical properties

2.3.1 Bulk and boundary effects

In order to practically make use of liquid crystals, they should be contained in some form.
A suitable cell to imprison them is in between two glass plates, and the edges have been
appropriately sealed. The fabrication process of such a liquid crystal cell will be detailed in
Sec. 3.3. However, we can begin to look at the boundary and bulk behaviour of nematics
in a cell—so-called long-range distortions—qualitatively for the time being.

If the glass walls of the container possess a particular alignment direction—for example,
if the surfaces are rubbed in one direction, or coated with a polymer layer—then the liquid
crystals at the boundaries will preferentially line up parallel to that direction. This is
referred to as the easy direction of the director n̂ which minimizes the energy of the surface
region. It is also possible to align the liquid crystals perpendicular to the glass walls by
treating surfaces with certain detergents. The polar heads of the detergent molecules
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axial crystals (ne > no), the component of light polarized along the slow or extraordinary
axis of the crystal will travel with a slower phase velocity (vp = c/ne) than the component
polarized along the fast or ordinary axis (vp = c/no). Nematic liquid crystals are one such
example of a positive uniaxial crystal with ∆n = ne − no ∼ 0.1. Unlike a waveplate which
is typically placed normal to an incoming light beam, nematics may be arbitrarily oriented
depending on the bulk deformation and applied field. The phase retardation that is im-
parted from a birefringent crystal depends on the orientation of the crystal with respect
to the incoming light beam. An easy way to both visualize and determine the action of
an arbitrarily oriented birefringent crystal is to use what is known as the refractive index
ellipsoid.

Suppose we have a general birefringent crystal with electric permittivity tensor,
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which can be rearranged to,
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Equation 2.6 defines the refractive index ellipsoid, or optical indicatrix, with semi-axes
given by nx, ny, and nz along the principal axes x̄, ȳ, and z̄, respectively [44]. These axes
have been suggestively labelled as they have because they coincide with the Cartesian axes
(x, y, z); if light is propagating along the z-axis, the corresponding vector on the index
ellipsoid will also be along the z̄ axis. For a uniaxial liquid crystal with its fast axis along
x-axis, nx = nz = no, ny = ne, creating an ellipsoid that mimics the grain-like shape of
nematics. Figure 2.3a gives the configuration for light propagating with wavevector k in
the y-z plane at an angle θ from the z-axis.

The refractive index ellipsoid allows us to determine the linear eigenpolarizations in the
crystal for a tilted beam (or tilted crystal), as well as the refractive indices experienced by
them. For light propagating with wavevector k, the eigenpolarizations are the axes of the
plane that is spanned by D such that D · k = 0 and intersects with the index ellipsoid.
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Figure 2.3: Refractive index ellipsoid of uniaxial crystal. a. For light propagating
at an angle θ, the eigenpolarizations will be given by the blue vectors. b. The effective
refractive index nθ experienced by one of the eigenpolarizations.

The magnitude of these eigenvectors is the refractive index that each experiences. If the
director of the liquid crystal is tilted by an angle θ with respect to the incident light—
equivalently, the scenario shown in Fig. 2.3a—the effective refractive index nθ that one of
the eigenpolarizations experiences upon propagation is consequently modified to,

1

n2
θ

=
cos2 θ

n2
e

+
sin2 θ

n2
o

=⇒ nθ ≈ ∆n cos2 θ + no, (2.7)

where the approximation is made that ∆n≪ no. This is determined from the ellipse of the
cross-section shown in Fig. 2.3b. For a cell of liquid crystals, which may have an arbitrary
deformation with tilt distribution θ(z), the phase retardation experienced by the beam
throughout the cell is,

Γ(z) =
2π

λ

∫ z

0

[nθ(z
′)− no]dz

′

≈ 2π∆n

λ

∫ z

0

cos2 θ(z′)dz′. (2.8)

When the liquid crystal directors are all perpendicular to the optical axis (θ = 0), Γ(L) =
2π∆nL/λ is maximal. However, when the directors are all parallel with the optical axis
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(θ = π/2), the incident light sees a circle instead of an ellipse in index space, and there is
consequently no birefringence or phase retardation. It is possible to tilt liquid crystals by
applying an external electric field, allowing for a field-tunable phase retardation.

2.4 Pancharatnam–Berry optical elements

The general class of devices that can structure light by coupling polarization to spatial
modes is referred to as Pancharatnam–Berry optical elements (PBOEs), and may be based
on dielectrics [45], plasmonics [46], or liquid crystals [47, 48], which we describe here. We
consider for now the trivial configuration of LC cells where the front and back glass walls
have parallel alignment, but spatial patterning—no splay, twist, or bend deformations in-
troduced by the boundaries. PBOEs are the most compact and efficient way to structure
light as compared to the other methods described in Sec. 1.2.2, and operate on the prin-
ciple of geometric phase, which Pancharatnam and Berry are credited for formulating. A
geometric phase is a global phase which has been acquired through a cyclic adiabatic pro-
cess [49–51]. Here, if a polarization state undergoes a cyclic polarization transformation
along a closed path on the Poincaré sphere, then the geometric phase acquired is half the
solid angle enclosed by the path. For example, right-circularly polarized light AR will al-
ways be transformed to left-circularly polarized light AL by a half-wave plate no matter its
optical axis angle, and the state traces a path from the north to the south pole of the PS.
However, which path it follows in relation, determined by the HWP angle Φ, in relation to
HWP0 will affect what global phase is picked up. In the right-left circular basis {r̂, l̂}, we
can see precisely this varying global phase,

[

r̂

l̂

]

HWPΦ−−−−→
[

l̂e+i2Φ

r̂e−i2Φ

]

(2.9)

So the angle of the optical axis translates directly to a global phase acquired. In this way,
if we can construct a half-wave plate with a spatially varying optical axis Φ(r⊥), where r⊥
is the transverse spatial coordinates, then we can imprint the phase ±i2Φ(r⊥) on circularly
polarized light. For example, if Φ(r, ϕ) = ℓϕ/2 + Φ0, then we can generate modes with
OAM value ±ℓ; Φ0 is an offset angle at ϕ = 0. This is the concept of the PBOEs known
as q-plates, where q = ℓ/2 is the topological charge of the plate, see [52] for a history and
review of q-plates. While q-plates are primarily fabricated using nematic liquid crystals
for their ease of alignment and tunability, plasmonic and ultra-thin metasurfaces have also
been demonstrated [46, 53]. For liquid crystals with phase retardation of Γ(V ), and V is





Chapter 3

Non-Symmetric Inhomogeneous
Liquid-Crystal Devices

As per the name of this thesis, we are no longer dealing with the simple configuration of
symmetrically patterned PBOEs. In this chapter, we will consider the case where there is a
relative angle between the front and back walls, resulting in a twisted nematic liquid-crystal
(TNLC) cell. While the underlying mathematics of light propagating in twisted anisotropic
media is well known—see for example Chapter 5 in [44]—the implications for spatially
varying non-symmetric LC (NS-LC) devices has not been analyzed in detail. In particular
as I will show, if the overall phase retardation can be varied, then we gain the ability
to toggle between different spatial polarization transformations that are not accessible
with symmetrically patterned PBOEs. These dual-plates have promising applications, for
example, multi-q-plates and tunable lenses.

3.1 Twisted nematics

Let’s begin by deriving the Jones matrix for a TNLC cell of thickness d, total twist angle α,
and phase retardation Γ = 2π(ne−no)d/λ, with the extraordinary and ordinary refractive
indices given by ne and no, respectively. This formulation is expressed in the horizontal-
vertical polarization basis {x̂, ŷ}. Without loss of generality, we assume that the front layer
of the cell is aligned along the x-axis at 0◦, and the back layer is aligned counter-clockwise
at α; the intermediate twisting is slow and thus is assumed to be linearly dependent
on propagation distance. We will show in Sec. 4.2.1 that this indeed the case. This

23
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configuration, as shown in Fig. 3.1a, can be modeled as a stack of N thin waveplates, each
possessing a phase retardation of Γ/N ; the fast axis of the nth waveplate is oriented at an
angle of nα/N (n = 1, ..., N). The total Jones matrix, T(α,Γ), can then be obtained via
consecutive matrix multiplication as follows [44],

T(α,Γ) =
N
∏

n=1

R(−nα/N)W0(Γ/N)R(nα/N)

= R(−α){W0(Γ/N)R(α/N)}N , (3.1)

where n = 1 appears on the right most side of the matrix multiplication, and R(·) is the
rotation matrix,

R(·) =
[

cos(·) sin(·)
− sin(·) cos(·)

]

. (3.2)

Here, the Jones matrix for a single waveplate of phase retardation Γ/N with its fast axis
along the x-axis is given by,

W0(Γ/N) =

[

e−i
Γ
2N 0

0 ei
Γ
2N

]

. (3.3)

In the limit as N →∞, Eq. 3.1 has the following closed form,

T0(α,Γ) = R(−α)
[

cosX − iΓ
2X

sinX α
X
sinX

− α
X
sinX cosX + iΓ

2X
sinX

]

= R(−α)M0(α,Γ), (3.4)

with X =
√

α2 + (Γ/2)2. For the case where the fast axes of the front and back layers
are aligned at angles ϕf and ϕb, respectively, the general twisted matrix, after setting
α = ϕb − ϕf , becomes,

Tϕf
(α,Γ) = R(−ϕf ) [R(ϕf − ϕb)M0(α,Γ)]R(ϕf )

= R(−α)Mϕf
(α,Γ), (3.5)

where Mϕf
(α,Γ) = R(−ϕf )M0(α,Γ)R(ϕf ).

Figure 3.1b demonstrates the action of Eq. 3.4, shown on the Poincaré sphere (PS), on a
horizontally polarized input for twist angles between −π/2 and π/2 at a given birefringence
of Γ = π. Recall that the positive (negative) points of the three principal axes Ŝ1, Ŝ2, Ŝ3

on the PS correspond, respectively, to horizontal (vertical), diagonal (anti-diagonal), and
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2π. We thus observe that Eq. 3.6 simplifies further for two cases: Γ(mod2π) = 0 and
Γ(mod2π) = π. For Γ(mod2π) = 0, Wϕf

(0) reduces to the identity matrix, leaving,

Tϕf
(α, 0) =

[

cosα − sinα
sinα cosα

]

. (3.7)

Left-handed (L) and right-handed (R) circular polarizations are invariant under rota-
tions, save for a phase, so explicitly acting this on the circular basis yields {|L⟩ , |R⟩} →
{e−iα |L⟩ , eiα |R⟩}. We have adopted bra-ket notation to denote the complex polarization
spinor. For the case where Γ(mod2π) = π, Eq. 3.6 simplifies to,

Tϕf
(απ, π) =

[

cosαπ sinαπ

sinαπ − cosαπ

]

, (3.8)

with απ = ϕb + ϕf . This is precisely the Jones matrix for a half-wave plate oriented at
απ/2, yielding {|L⟩ , |R⟩} → {eiαπ |R⟩ , e−iαπ |L⟩}. Of course, we can also consider the case
for an arbitrary Γ. Eq. (3.6) can be rewritten out explicitly to be,

Tϕf
(α,Γ) =

1

2

(

(1 + eiΓ)Tϕf
(α, 0) + (1− eiΓ)Tϕf

(απ, π)
)

. (3.9)

We see that the general case is a superposition of the cases when Γ(mod2π) = 0 and
Γ(mod2π) = π, and the relative phases and amplitudes are determined by the birefringence.

Let’s now extend this analysis to the spatially varying case of TNLC plates by letting
the fast axis orientations of the front and back plates have spatial distributions Φf (r, φ)
and Φb(r, φ), respectively, in cylindrical coordinates. Then an incident circularly polarized
beam will pick up a spatially varying phase proportional to either α(r, φ) = Φb(r, φ) −
Φf (r, φ) or απ(r, φ) = Φb(r, φ) + Φf (r, φ), i.e. the difference or sum of the two fast axis
distributions, depending on if Γ(mod2π) = 0 or Γ(mod2π) = π. Therefore, we can use the
birefringence of such a dual-plate to toggle between two different behaviours. Of course, we
could also consider the inverse problem wherein we desire a particular twist distribution;
in this case, Φb = (απ + α)/2 and Φf = (απ − α)/2. Note that for a given dual-plate if
the front and back layers are reversed—i.e. the orientation of the plate is flipped, or the
beam enters from the back—a distinct third phase pattern could potentially be acquired
at Γ(mod2π) = 0, defined by α−1 = Φf − Φb = −α.

One potential challenge that arises when dealing with non-symmetric liquid-crystal (NS-
LC) devices is that nematic liquid-crystals are assumed to only favourably twist between
−π/2 and π/2. For example, if ϕf = π/8 and ϕb = 7π/8, then α = −π/4, and not 3π/4,
in order to achieve the lowest possible twist. At locations where ϕf and ϕb are orthogonal,
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Figure 3.2: Example of multi-q-plate. a. Disclination patterns for the front (Φf (φ) = φ)
and back (Φb(φ) = 3φ) alignment layers. b. The resulting twist distribution α(φ) =
2φ. c. The induced global phase distribution with phase jumps located where the twist
distribution could be either ±π/2.

there is an ambiguity as to whether α = +π/2 or −π/2. This leads to discontinuities in
the twist distribution, which results in π phase jumps appearing in these locations. Con-
sequently, a spatially varying phase distribution, Φα(r, φ), will be imparted to any input
beam, regardless of the birefringence setting, such that Eout = eiGeiΦα(r,φ)Tϕf

(α,Γ)Ein. Un-
like uniform global phases eiG which can be safely ignored when manipulating light—except
for interferometry—this kind of spatially varying phase distribution cannot be ignored as
it can lead to unstable propagation unless dealt with appropriately. A phase plate, for ex-
ample, with the inverse phase distribution can be placed after the NS-LC plate to remove
the global phase, and since the global phase distribution is independent of Γ, the phase
plate is a static addition to an experimental setup.

3.2 Dual-plates

The key behaviour of a properly constructed NS-LC plate is its dual functionality depending
on either the orientation of the plate, or the effective phase retardation. Here are a couple
of possible applications of what I will class as dual-plates.

Multi-q-plate: Recall that the functionality of a q-plate is equivalent to that of a
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half-wave plate with a fast axis distribution of ΦQP(φ) = qφ+φ0, where q, the topological
charge of the plate, is either a full or half-integer, and φ0 is the offset angle. Its Jones matrix
is identical to Eq. (3.8) with απ = 2Φ, and a circularly polarized input will experience spin-
to-orbital angular momentum coupling. For example, an input beam with a spin of +(−)ℏ
along the axis of propagation will gain +(−)2qℏ units of orbital angular momentum (OAM),
where ℏ is the reduced Planck constant, at the expense of switching the spin to be −(+)ℏ.
We have adopted the convention that a spin of +(−)ℏ corresponds to left(right) circularly
polarized light. This provides a q-plate with the capability to generate a bi-dimensional
Hilbert space spanning {|R, 2q⟩ , |L,−2q⟩}, where we have used Dirac notation with the
labels corresponding to a photon’s polarization and OAM, respectively.

However, in order to have access to states created from a −q-plate—thus having access
to a four-dimensional Hilbert space—it is necessary to place a half-wave plate, or equivalent
device imparting a λ/2 retardation, after the original q-plate. While this has been shown
to be feasible in a practical experiment [14], it can introduce unnecessary issues such as
alignment (for half-wave plate) or electronic (or Pockel cell). Additionally, it is impossible
to create a q′-plate (q′ ̸= ±q) from a single q-plate. E.g., a q=1/2-plate cannot re-create the
action of a q=1-plate. An appropriately patterned dual-plate is capable of addressing both
of these issues. For example, define the front and back distributions to be Φf (φ) = qfφ
and Φb(φ) = qbφ, respectively; we have the dropped offset angles without loss of generality.
If qf = qb, we straightforwardly recover the behaviour of a regular q = qb-plate, so we will
assume qf ̸= qb and we get the following cases.

(1) If qf = 0, then α = απ = qbφ, and we lose the dual behaviour of the dual-plate; recall
that a topology of zero corresponds to a uniformly linearly aligned fast axis distribution.
(2) However, if qb = 0, then α = −qfφ and απ = qfφ; we can thus use the birefringence
of the dual-plate to toggle between the behaviour of oppositely charged qf -plates. Of
course, we note that cases (1) and (2) are the same dual-plate; however, the orientation of
the device—or equivalently, the beam propagation—is reversed. So, while we obtain two
distinct behaviours through α and απ, we do not gain a third behaviour since α−1 = α
in case (2). (3) In general, if |qf |, |qb| > 0, then α ̸= απ and α−1 ̸= α, thus creating a
multi-q-plate with three possible behaviours. Figure 3.2 is an example of a multi-q-plate
with qf = 1 and qb = 3, with the respective alignment distributions given in Fig. 3.2a. The
resulting twist distribution α(φ) and the global phase distribution are shown in Fig. 3.2b
and c, respectively.

Lenses: We are of course not limited to fast axis distributions that are purely dependent
on the azimuthal angle. Consider, for instance, the phase imparted by a lens, Φlens(r) =
−πr2/f , where f is the focal length; if f is positive (negative), light will converge (diverge).
We can again consider several different cases, and we’ll assume f > 0 unless otherwise
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specified.

(1) Consider the case when Φf = Φb = Φlens; then α = 0 and απ = 2Φlens. Equivalently,
we could consider Φf = −Φb = −Φlens to give α = 2Φlens and απ = 0. This allows for the
ability to toggle between a lensing effect and no lensing effect by changing the effective
phase retardation Γ.

(2) If Φf = 0 and Φb = Φlens, then α = απ = Φlens. Note that, while it might appear
that we do not have a true dual-plate, we must consider that the sign of the imparted
phase is polarization-dependent according to the behaviours of Eq. (3.7) and (3.8). For
Γ = 0, an input polarization state of |L⟩ picks up a phase of e−iα, so the output beam
will diverge; however, an input of |R⟩ will converge. The opposite scenario occurs when
Γ = π, though the handedness of the inputs will be flipped. The dual setting in this case
is the ability to switch the sign of a polarization-dependent lens. If the reverse device is
considered, i.e. Φf = Φlens and Φb = 0, the same essential functionality occurs.

(3) For the general case, suppose Φf (r) = −πr2/ff and Φb(r) = −πr2/fb, where
ff ̸= ±fb ̸= 0 could be either negative or positive. Then we straightforwardly get that α
and απ will impart lensing phases with focal lengths of fffb/(ff − fb) and fffb/(ff + fb),
respectively. Depending on the signs and magnitudes of ff and fb, the overall lens for the
two functionalities might be either converging or diverging. From a design perspective, it
is more practical to consider the inverse problem such that α(r) = −πr2/f0 and απ(r) =
−πr2/fπ, where f0 and fπ are the desired effective polarization-dependent focal lengths
obtained at Γ = 0 and Γ = π, respectively. This in turn gives that the lens phases of
the front and back distributions have focal lengths of f0fπ/2(f0− fπ) and f0fπ/2(f0 + fπ),
respectively. It may be possible to create a thin LC optical element with a variable focal
length by changing the phase retardation, i.e., programmable lenses.

Arbitrary phases: The same game can be played for any phase distribution. Indeed,
we are not even limited to Φf and Φb being of the same class of phases—we could mix and
match to create a dual-functionality, dual-setting device. This is the beauty of dual-plates.

3.3 Fabrication and characterization

Let us now describe the fabrication of dual plates; indeed, the process is similar to that for
symmetric PBOEs [27]. First, we start with two glass substrates, each with a conductive
layer of indium tin oxide (ITO). A drop of an azobenzene-based dye (PAAD-22, provided
by BEAM Co) is deposited on top of the ITO; the sample is then spin coated for 30 s at
4000 rpm, and baked at 120◦ for 5 minutes. When exposed to light of a wavelength around
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Figure 3.3: Experimental setups a. Setup to pattern the glass plates for fabricating
liquid-crystal devices. The inset shows the cross-section of the constructed LC cell b.
Setup to characterize the fabricated samples. DMD = digital micromirror device, PBS =
polarizing beamsplitter, FG = function generator.

the peak of the azodye’s absorption spectrum, the molecules will photoalign themselves
according to the light’s linear polarization. Here, we use a 430-nm laser, Fig. 3.3a shows
the setup to pattern the sample. In particular, a digital micro-mirror device (DLP3000
DLP® 0.3 WVGA Series 220 DMD) is programmed to reflect a tailored intensity pattern.
The resolution of the DMD is 608x684 with a micromirror pitch of 7.6 µm. A HWP can
then be rotated to adjust the polarization to the required orientation.

When fabricating symmetric PBOEs, the two glass substrates are first glued together—
with spacers between them to create a uniform cavity for the liquid crystals—and then the
sample is exposed with the desired pattern. For non-symmetric PBOEs, each substrate
is separately exposed with the front and back plate patterns, respectively; then they are
glued together, taking care to overlap the two patterns as best as possible by hand. For
the samples presented here, silica microspheres with diameters between 32 µm and 38 µm
are used as the spacers. Note, the two substrates are glued with a lateral offset such
that wires can be soldered to the conductive ITO layer; this will allow for a voltage to be
applied across the sample. Finally, the nematic liquid crystals (here, 6CHBT) are injected
into the cavity and the remaining sides are sealed off with glue. The completed sample is
heated to ∼ 100◦C on a hot plate and cooled to room temperature once more to cement
the alignment of the liquid crystals with the written patterns.

Of course, there is the challenge of how to align the two plates when they each possess
a non-zero topology, e.g. q=1 and q=2, and the alignment of their singularities is critical.
The first issue is that, without any sort of markers, the exact position of the singularities
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cannot be ascertained by visual inspection of the ITO glasses alone. They are only visible
once liquid crystals are inserted between them, and the sample is placed between polarizers.
This issue is rectified by placing a small droplet of liquid crystals on the patterned side
of one plate, and rigging the unassembled sample between crossed polarizers. The second
issue is then the physical alignment and subsequent gluing of the two plates. The simplest
and most brute-force method—albeit with the least control of precision—is to align the
plates by hand and by eye.

This was achieved by taping a linear polarizer on a light box—identical to those used
for drawing and crafts—then one plate (pattern side up) was mounted above the first
polarizer. Next, the spacers and a small amount of LCs are placed on the plate, followed
by the second ITO plate (pattern side down). The researcher may then wear 3D glasses—
wherein the plastic in each eyepiece has been reversed so that the linear polarizer is first,
assuming the glasses are of the modern variety—or if these are unavailable, they may tape
a linear polarizer over one eye or on their prescription lenses. This allows the researcher
viewing ease and movement flexibility while carefully positioning the top plate on the
bottom. Due to the spherical nature of the spacers, they tend to act like ball bearings, in
such a way that the top plate rolls over the bottom far too easily, making it difficult to
retain in one place for proper alignment. One remedy is to apply the super glue to the edge
where the lateral offset will be and align while it dries, as it becomes tacky, easier to hold
the plates in place, and make small adjustments. Time is of the essence in this scenario,
with a complete drying time around 10–15 min for the fast-setting variety of Gorilla glue
multi-purpose epoxy adhesive.

The setup to characterize the fabricated sample is shown in Fig. 3.3b. A red 635-nm
diode laser is used to illuminate the sample; it is expanded using a telescoping lens system to
completely cover the patterned area. A polarizing beamsplitter (PBS), HWP, and QWP are
used to prepare the input polarization state. A second set of QWP, HWP, and PBS is used
to project the output polarization state from the sample onto a different polarization state.
Another telescoping lens system (not shown) is used to image the sample plane and shrink
the beam down to fit onto a CCD camera in order to record the intensity measurement.
Polarization state tomography is thus performed for the six cardinal polarizations as inputs
on the sample. This consists of projecting the output polarization state onto the six cardinal
states and recording the intensity or the result using the CCD camera; i.e., there are 6
measurements for each input state, for 36 measurements (images) total per configuration
of the sample. The waveplate angles for the six measurement set are tabulated Table 3.1.

As we see from Eq. (1.23)–(1.25), the intensity difference of each polarization pair gives
precisely the corresponding Stokes parameter on the Poincaré sphere. The polarization
ellipse can then be reconstructed using Eq. 1.26 and 1.27.
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Table 3.1: Waveplate settings for polarization tomography

Waveplate AH AV AD AA AR AL

QWP 0◦ 0◦ 45◦ 45◦ 45◦ 45◦

HWP 0◦ 45◦ 22.5◦ −22.5◦ 0◦ 45◦

Figure 3.4: Fabricated samples. False colour images of a. discretized DP(0,1/2), and b.
DP(1,2) between crossed polarizers under a microscope illuminated with white light. The
topological patterns on each glass plate is also shown. Note that the q = 1/2 pattern is
discretized into 16 slices for the patterning process.

3.4 Experimental results and discussion

To explore the validity of the TNLC model, several dual-plates (DP) were fabricated. The
first DP fabricated was a discretized DP(0,1/2) with ∼35 µm spacers, where the labels
are the topologies of the front and back plate. Of course, DP(1/2,0) is physically the
same sample but the side that light is incident on is reversed. Fig. 3.4a is an image of the
fabricated sample through crossed polarizers. The q = 1/2 topology was discretized into 16
slices such that a range of twist angles from [−90◦, 90◦] can be characterized with enough
room in each slice to average imperfections from the assemblage. Since the pattern on
one plate is uniform, the tedious process of aligning singularities did not have to be done.
The second sample type fabricated and tested was a DP(1,2), shown in Fig. 3.4b. The
fabrication process for this sample required the careful alignment of the q = 1 and q = 2
singularities, as described in the previous section. We can see that the two singularities
are not quite overlapped, but this is to be expected for eyeballing the alignment.

Let’s begin with the experimental results of the discretized DP(0,1/2) sample, which
were taken using a 635 nm diode laser. The reconstructed polarization distributions for the
orientations DP(0,1/2) and DP(1/2,0) are presented in Fig. 3.5 and Fig. 3.7, respectively.
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Figure 3.5: Polarization tomography of discretized DP(0,1/2). a. Alignment pat-
terns on the front and back glass plates. b. Example of recorded intensity distribution for
an input of AH projected on AV . The white lines denote the border between each slice,
and the small blue square is an example area over which the output polarization is aver-
aged. c. Reconstructed output polarization ellipse distributions for the six cardinal input
polarizations. Green = right-hand elliptical (S3 > 0); red = left-hand elliptical (S3 < 0);
black = linear (S0 = 0).

The corresponding Poincaré sphere visualizations of this data, along with theoretical fits
are given respectively in Fig. 3.6 and Fig. 3.8. The experimental Stokes vectors plotted
are the average values in each slice of the discretized sample; the 101×101 pixels which are
averaged over are chosen to avoid any major defects present in the sample. Defects and
imperfections are to be expected from the inherent ‘hand-made’ nature of the fabrication
process. One defect that is inevitably present is the discontinuity line that appears in the
slice that has twist angle |α| = 90◦, caused by the ambiguity of whether the liquid crystals
twist +90◦ or −90◦. As can be seen in the intensity images of Fig. 3.5b and Fig. 3.7b,
this ‘line’ wanders within the top slice, presumably perturbed into this squiggle by surface
defects and spacers in the bulk. During the fabrication process, this line can be observed
to evolve and settle into place during the final heating and cooling step if the sample is
placed between crossed polarizers.

The diameters of the spacers used range from 32–38 µm, with an average of 35 µm. This
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gives our sample an average phase retardation of Γavg = 51.7 for 6CHBT liquid crystals
with ∆n = 0.151. This Γavg was used when plotting the theoretical fits using the TNLC
Jones matrix Tϕf

(α,Γ) of Eq. 3.5 in Fig. 3.6b and Fig. 3.8b. As a measure of good fit, the
average state overlap across all twist angles for a given input polarization is used, where
the overlap of each state is calculated as |Sexp ·STNLC|2. The uncertainties on each average
Stokes vector are the standard deviations from the 101×101 ensembles used for averaging,
see Appendix A for the exact values. The theoretical fits using Γavg = 51.7 imitates the
experimental data for all input polarizations and the two orientation cases very well, with
total average fits of 89% and 87% for DP(0,1/2) and DP(1/2,0), respectively.

The important behaviour to note here is that we are almost in the adiabatic following
regime when Γ ≫ α. If we are in the adiabatic following regime, we would see that a
horizontal/vertical input on DP(0,1/2) would be rotated into another linear polarization
state dictated by the twist angle. As we can see from the average Stokes vectors plotted for
H and V inputs shown in Fig. 3.6b, there is a slight deviation from linear outputs, which the
uncertainties given in Appendix A do not make up for. Without access to a different type
of nematic liquid crystals, slightly larger spacers could be used in the fabrication process to
reach the adiabatic following regime. A sample using 300 µm spacers was attempted, but
this appeared to be too thick as the liquid crystals in the bulk were fluid and not anchored
by the boundary conditions.

The experimentally reconstructed and theoretically expected polarization distributions
for DP(1,2) and DP(2,1) are presented in Fig. 3.9 and Fig. 3.10, respectively. A phase
retardation of Γfit = 52.4 was used for the theoretical distributions to give the best visual
fits. An offset angle of ∼ 15◦ between the front and back patterns was also introduced to
account for the glass plates being glued slightly rotated with respect to one another—one of
the difficulties encountered while aligning the pattern singularities in the fast drying time
of the glue. The effect of this offset angle is that the total polarization patterns are slightly
rotated, but this is reproduced well with the theoretical model. Misalignment between
the two pattern singularities was not included in the theoretical fits; however, it appears
that the physical misalignment was small enough to not affect the overall polarization
distributions. Note that the messy distributions along the top and bottom edges of the
experimental data is due to permanent ink in those regions which were used to denote the
pattern border during fabrication. These ink borders are not visible in Fig. 3.4b as the
image is a zoomed-in version to show the misaligned singularities.

All of the experimental data shown so far was taken with no externally applied electric
field, i.e., voltage. As mentioned in Sec. 3.3, wires were soldered onto the exposed ITO layer
of each glass plate, which can be connected to a function generator. A typical waveform that
is generated is a sine wave with 4 kHz frequency and peak-to-peak voltages between Vpp =
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Figure 3.6: Stokes vectors of discretized DP(0,1/2). a. Alignment patterns on the
front and back glass plates. b. Reconstructed average Stokes vectors in each of the 16 slices
(coloured points) for the cardinal input states (black points), and theoretical fit (line) using
the TNLC Jones matrix with Γfit = 51.7. Percentages are the average state overlap with
all 16 average Stokes vectors.

0 V and 20 V. Polarization tomography data was also collected for a horizontally polarized
635-nm input beam incident on the discretized DP(0,1/2), and continuous DP(1,2) samples
in both orientations. However, a major issue was encountered when trying to reproduce the
reconstructed polarization distributions using Eq. 3.5 by only varying Γ: it is impossible.
For symmetric PBOEs where the front and back patterns are identical, the assumption
that is usually adopted without consequence is that varying the voltage applied to the
sample will simply vary the effective phase retardation as the liquid crystals tilt with the
applied field, allowing the user to tune and detune the overall effect. Unfortunately, it
appears for twisted samples that this assumption cannot be näıvely made. In particular,
we may no longer be able to assume a linear twist model when formulating our TNLC
Jones matrix, on top of the fact that the liquid crystals now tilt with the field.

In order to determine the true tilt and twist distributions within a non-symmetric
PBOE, along with their effect on polarized light, it is necessary to do a deep dive into the
elastic continuum theory first developed by de Gennes. Down the rabbit hole, we go.
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Figure 3.7: Polarization tomography of discretized DP(1/2,0). a. Alignment pat-
terns on the front and back glass plates. b. Example of recorded intensity distribution for
an input of AH projected on AV . The white lines denote the border between each slice,
and the small blue square is an example area over which the output polarization is aver-
aged. c. Reconstructed output polarization ellipse distributions for the six cardinal input
polarizations. Green = right-hand elliptical (S3 > 0); red = left-hand elliptical (S3 < 0);
black = linear (S0 = 0).
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Figure 3.8: Stokes vectors of discretized DP(1/2,0). a. Alignment patterns on the
front and back glass plates. b. Reconstructed average Stokes vectors in each of the 16 slices
(coloured points) for the cardinal input states (black points), and theoretical fit (line) using
the TNLC Jones matrix with Γfit = 51.7. Percentages are the average state overlap with
all 16 average Stokes vectors.
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Figure 3.9: Polarization tomography of DP(1,2). a. Reconstructed output polariza-
tion ellipse distributions for the six cardinal input polarizations. b. Theoretically predicted
polarization distributions with Γfit = 52.4. Green = right-hand elliptical (S3 > 0); red =
left-hand elliptical (S3 < 0); black = linear (S0 = 0).
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Figure 3.10: Polarization tomography of DP(2,1). a. Reconstructed output polariza-
tion ellipse distributions for the six cardinal input polarizations. b. Theoretically predicted
polarization distributions with Γfit = 52.4. Green = right-hand elliptical (S3 > 0); red =
left-hand elliptical (S3 < 0); black = linear (S0 = 0).



Chapter 4

Electric field-induced effects

In this chapter, we extend our TNLC theory of the previous chapter to rigorously include
the changes in the tilt and twist distributions of the liquid crystals when an electric field
is externally applied. There is unfortunately no convenient analytical solution, so we im-
plement a series of genetic algorithms to numerically calculate the distributions at a range
of field strengths. These numerical distributions can then be turned into an approximate
Jones matrix of the system in order to compare the experimentally observed effects with
the extended model. This is the first time that such an analysis has been carried out
in regards to the polarization transformations of an arbitrarily twisted LC cell under the
effect of an externally applied field.

4.1 Elastic continuum theory

While many transitional and order behaviours of liquid crystals may be described using
molecular theories, there are many other phenomena due to the bulk of the liquid crystals
responding to external disturbances. These phenomena are characterized by two properties.
Firstly, the energy involved per molecule in producing these effects is small in comparison to
the strength of the intermolecular reactions. Secondly, the characteristic distances involved
are large in comparison to the molecular dimensions. In this way, liquid crystals may be
regarded as a continuous medium with a set of elastic constants. This is referred to as
the phenomenological continuum theory for liquid crystals, which has been an excellent
way for describing magnetic or electric field-induced effects. This section follows closely
the analysis of [4, 57] for the simplified cases of a twisted nematic system under the effect

40
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of an external field, and [58, 59] for the comprehensive case of distorted twist and tilt
distributions.

4.1.1 Fundamental equation

As we saw in Sec. 2.2, nematic liquid crystals possess uniaxial symmetry for their orienta-
tional order. The axis of uniaxial symmetry is parallel to a unit vector n̂, which we will call
the director. Since we are not regarding the liquid crystal bulk on a molecule-by-molecule
basis, it is instead useful to partition our macroscopic sample into very small regions. Each
region contains a sufficiently large number of molecules such that the long-range orienta-
tional order is well defined, and we may characterize it by its director, pointing along the
local axis of uniaxial orientational symmetry. The macroscopic sample can then be char-
acteized itself by n̂(r), the local director at every spatial ‘point’. The equilibrium state,
i.e., the state of minimum free energy, for a sample free of disturbances is one where there
is parallel alignment of all the local directors. Of course, when we perturb the system
by pinning the surface directors to the walls of a container, apply an external field, or
introduce thermal fluctuations, then the local directors will no longer remain uniformly
aligned, i.e., spatially invariant. Let us define a set of distortion parameters describing the
magnitude and nature of the distortions by the first derivative of the local directors with
respect to each spatial direction ∂inj. The subscripts i, j = x, y, z correspond to the three
orthogonal components in the Cartesian coordinate system. For the equilibrium state,
clearly, ∂inj = 0.

By perturbing the system, the now distorted state will have a higher free energy, with
its free-energy density of the form:

fD = f0 +∆f, (4.1)

where f0 is the free-energy density of the equilibrium state, and ∆f is a function of poten-
tially nj and ∂inj, which must vanish when all ∂inj = 0. Since ∂inj ≪ (molecular dimension)−1,
we may expand ∆f as a power series in nj and ∂inj around ∂inj = 0 (the free-energy min-
imum), keeping only the lowest-order non-vanishing terms. Let this expansion be FD,
which must have the following properties:

1. Since we are expanding around ∂inj = 0, the lowest-order non-vanishing terms are
quadratic.

2. The ‘head’ and ‘tail’ of the nematic director represent the same physical state; there-
fore, FD should be even in nj.
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∆ϵ ∆n K1 [pN] K2 [pN] K3 [pN]
8.0 0.151 6.7 3.4 10.6

Table 4.1: Material properties of 6CHBT nematic liquid crystals [60].

3. FD should be a scalar quantity by nature of it being energy.

4. We may discard any ∇ · u(r), where u(r) is an arbitrary vector field, since they are
surface contributions to fD. These are assumed small by Gauss’ Theorem.

There are then only three linearly independent terms which satisfy these conditions (see
Appendix B.1 for details): [∇·n̂(r)]2, [n̂(r)·∇×n̂(r)]2, and [n̂(r)×∇×n̂(r)]2. Physically,
these three terms correspond to splay, twist, and bend behaviour of the bulk liquid crystals,
as was shown in Fig. 2.2. The total distortion-free free-energy contribution of FD is then,

FD =
1

2

{

K1[∇ · n̂(r)]2 +K2[n̂(r) ·∇× n̂(r)]2 +K3[n̂(r)×∇× n̂(r)]2
}

, (4.2)

where the Ki are the Frank elastic constants. Since it is possible to create deformations
that are purely splay, twist, or bend, we must have that Ki > 0; otherwise, the undistorted,
uniformly aligned case would not correspond to a free energy minimum. It is a non-trivial
task of calculating the Ki as they serve as the link between the continuum and microscopic
theories for a particular composition of liquid crystal. However, an order-of-magnitude
estimate can be obtained from dimensional analysis. As it happens, the Ki have units of
energy per length. The characteristic energy of our system is the intermolecular energy,
which is ∼ 0.01 eV; meanwhile, the characteristic length is the separation between two
molecules, ∼ 10Å. This gives an order-of-magnitude estimate to be K ≃ 10−12 N; mea-
sured values have been found to be between 10−11–10−12 N. For the samples fabricated in
this thesis, 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) nematic liquid
crystals were used with material properties tabulated in Table 4.1.

Let’s now look at the free-energy contributions from an externally applied electric (E) or
magnetic field (H). Since liquid crystal molecules are, in general, electrically polarizable,
diamagnetic, and anisotropic in their electric/magnetic properties, an applied field will
cause the molecules to align, and contribute a free-energy density opposite in sign to fD.
The free-energy density contribution of an applied electric or magnetic field is [4, 61],

FE = −1

2
D · E, FM = −1

2
B ·H, (4.3)

Di = ϵ0(ϵ⊥Ei +∆ϵninjE
j), (4.4)

Bi = µ0(χ⊥Hi +∆χninjH
j), (4.5)
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where ϵ0 and µ0 are the permittivity and permeability of free-space, respectively, and
summation is performed on repeated indices. Here, ϵ∥ (ϵ⊥) denote the dielectric constant
per unit volume that is parallel (perpendicular) to the local director, such that ∆ϵ ≡
ϵ∥ − ϵ⊥; χ∥ (χ⊥) denote the diamagnetic susceptibility per unit volume that is parallel
(perpendicular) to the local director, such that ∆χ ≡ χ∥ − χ⊥. The complete formulation
for the fundamental equation of the elastic continuum theory is thus,

F = FD + FE + FM (4.6)

=
1

2
{K1[∇ · n̂(r)]2 +K2[n̂(r) ·∇× n̂(r)]2 +K3[n̂(r)×∇× n̂(r)]2 −D · E−B ·H}.

And the total free energy of our sample is then simply the integral of F over its volume,

F =

∫

V

F d3r. (4.7)

For any given configuration of distortions and applied fields, the name of the game is to
determine the local direction distribution n̂(r) that minimizes the total free energy F . This
can be found through the Euler–Lagrange equation. If we want to minimize the following
integral by varying the form of a function y(x),

I =

∫ b

a

G (y, y′, x) dx, (4.8)

where y′ is the first full derivative of y with respect to x, then y(x) must satisfy the
Euler–Lagrange equation,

0 =
∂G

∂y
− d

dx

∂G

∂y′
. (4.9)

Even with this method, it can become prohibitively difficult to minimize F analytically,
depending on the configuration. It is very useful to make what is known as the one-constant
approximation, wherein K1 = K2 = K3 = K, which greatly simplifies Eq. (4.6) to:

F =
K

2

{

[∇ · n̂(r)]2 + [∇× n̂(r)]2 − D · E
K
− B ·H

K

}

. (4.10)

The qualitative behaviour of the solution is still preserved.

4.1.2 Fréedericksz transition

First experimentally observed and studied by Fréedericksz and Repiewa in 1927 [62],
this transition describes the threshold for when the bulk liquid crystals held in a cell
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sin2 θ(z)[dθ(z)/dz]2. For an applied electric field of E = Eẑ, the free-energy contribution
is,

FE = −D · E/2 = −ϵ0E2(ϵ⊥ +∆ϵ sin2 θ(z))/2 = −(ϵ0∆ϵE2/2) sin2 θ(z). (4.12)

Note that the first term can be neglected as it is a constant and thus spatially independent.
Our total free-energy per unit area A becomes,

F

A
=
K

2

∫ L

0

dz

{

(

dθ(z)

dz

)2

− ϵ0∆ϵE
2

K
sin2 θ(z)

}

. (4.13)

This gives the following Euler–Lagrange equation to solve,

0 = ξ2E
d2θ

dz2
+ sin θ cos θ, (4.14)

where the characteristic electric length ξE is defined as,

ξE =
1

E

√

K

ϵ0∆ϵ
. (4.15)

The math can be worked out [57] to give the solution for the tilt distribution θ(z),

π

2

E

ET

(

1 +
2z

d

)

sin θm =

∫ θ(z)

0

dθ′
√

1− (sin θ′/ sin θm)2
. (4.16)

Here, ET = EξEπ/d = π
d

√

K
ϵ0∆ϵ

is the threshold field strength of the Fréedericksz transition.

This, of course, can be turned into a threshold voltage, which is independent of the thickness

d of the cell, VT = π
√

K
ϵ0∆ϵ

. The remaining variable, θm, defines the maximum tilt angle

for a given field strength, located precisely in the middle of the cell. If E ≤ ET , then
θm = 0◦, as the field is not strong enough to re-orient the liquid crystals. However, the
maximum achievable tilt is θm = 90◦ when the liquid crystals fully align in the direction

of the field. Qualitatively, the functional form of θm(E) is akin to arctan
(

√

E/ET − 1
)

.

Figure 4.1b plots the numerically calculated θm for a range of field strengths; this was fit
using the ansatz,

θm(E) = arctan

[(

c1

(

E

ET

)

+ c2

(

E

ET

)2

+ c3

(

E

ET

)3

+ c4

(

E

ET

)4
)
√

(

E

ET

− 1

)

]

(4.17)
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with c1 = 2.34455, c2 = −0.385935, c3 = −0.253328, and c4 = 0.281609 giving a coefficient
of determination ofR2 = 0.999994. With this, the tilt distribution θ(z) can be computed for
different field strengths; Fig. 4.1c demonstrates the behaviour tilt distribution for different
applied voltages V/VT = Vr.

A conventional assumption for calculations involving liquid-crystal devices is that the
tilt angle changes with the applied field but is constant throughout the cell. This would
result in a total phase retardation of ΓT = (2π∆nd/λ) cos2 θc. As this uniform tilt an-
gle θc ∈ [0, π/2] steadily increases to align with the applied field, the total birefringence
monotonically decreases from (2π∆nd/λ) to zero. Of course, we now know that the tilt
distribution does not stay uniform as the applied field strength increases, and Eq. (2.8)
must be used.

For completeness, without approximation, the total free energy that should be mini-
mized according to Eq. (4.6) with the director distribution of Eq. (4.11) is,

F =
1

2

∫ L

0

{

(K1 cos
2 θ(z) +K3 sin

2 θ(z))

(

dθ(z)

dz

)2

−D · E
}

dz (4.18)

While this should be solved numerically [63], the tilt distributions follow the qualitative
behaviour found in the one-constant approximation. More importantly, the threshold

voltage is VT = π
√

K1

ϵ0∆ϵ
, which only depends on the splay coefficient.

4.2 Twisted nematic cell

4.2.1 Field-free case

In Sec. 3.1, we assumed that the twist distribution of twisted nematic liquid-crystal cell
was linear with propagation. We can now concretely show that it is indeed linear. Let’s
begin with the twisted configuration of Fig. 3.1a, assuming strong anchoring; we wish to
determine if the twist distribution within the bulk is uniform or non-uniform. The form of
the local directors are,

nx = cosϕ(z),

ny = sinϕ(z), (4.19)

nz = 0,
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with the boundary conditions ϕ(0) = 0 and ϕ(L) = α. Clearly, ∇·n̂(r) = 0, and∇×n̂(r) =
dϕ(z)
dz

(− cosϕ(z)x̂+sinϕ(z)ŷ). Inserting this into Eq. (4.10), with E = H = 0, we get from
Eq. 4.7,

F =
K

2

∫

d3r [∇× n̂(r)]2 =
K

2
A

∫ L

0

dz

[

dϕ(z)

dz

]2

, (4.20)

where A is the area of the glass plates. Letting y = ϕ(z), y′ = dϕ(z)/dz, then G = (y′)2,
the Euler–Lagrange equation (Eq. 4.9) gives upon integration with appropriate boundary
conditions that ϕ(z) = αz/L, which is precisely the linear form assumed before. Note, for

α = π/2, dϕ(z)
dz

could be either positive or negative as a 90◦ twist could be either left- or
right-handed.

4.2.2 Field-induced effects

Here is where things get complicated. As we’ve discussed with the Fréedericksz transition,
when a field is applied—electric or magnetic—the directors of the liquid crystals tilt towards
the application direction, pinned at the boundaries by the walls of the cell. The overall
effect of this is modifying the total phase retardation that light propagating through the cell
experiences. A näıve assumption for the twisted case—much like for symmetric PBOEs—
would be that again only the phase retardation Γ changes by applying a voltage across
the cell and Eq. (3.5) is still applicable. Unfortunately, this is not the case, as the twist
distribution is no longer linear. Indeed, it depends on the tilt distribution in a very non-
trivial manner. I will set the problem up following [58].

Let the local director distribution be now very general,

nx = cosϕ(z) cos θ(z),

ny = sinϕ(z) cos θ(z), (4.21)

nz = sin θ(z),

The total free energy to minimize is now,

F =
1

2

∫ L

0

{

(K1 cos
2 θ +K3 sin

2 θ)

(

dθ

dz

)2

+ (K2 cos
2 θ +K3 sin

2 θ) cos2 θ

(

dϕ

dz

)2
}

dz

− 1

2

∫ L

0

D · E dz

(4.22)
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The dependence on z has been dropped without loss of generality. Recall that E = Eẑ;
additionally, ∇×E = 0 and ∇·D = 0 as there are no space-charges. Since the symmetry
of our problem requires that there is only z-dependence in all quantities, ∇·D implies that
D = Dzẑ. As a result, the second integral in Eq. (4.22) evaluates simply to ELDz/2 =
V Dz/2, where V is the voltage applied. We know from Eq. (4.4) that Dz = ϵ0Ez(ϵ⊥ sin2 θ+
ϵ∥ cos

2 θ), so we need to massage it a bit to be a constant,

V =

∫ L

0

Ezdz =
Dz

ϵ0

∫ L

0

(ϵ⊥ sin2 θ + ϵ∥ cos
2 θ)−1dz. (4.23)

This gives Dz as a functional of θ(z),

Dz = ϵ0V

/
∫ L

0

(ϵ⊥ sin2 θ + ϵ∥ cos
2 θ)−1dz. (4.24)

To simplify going forward, define new constants κ = (K3 − K1)/K1, γ = (ϵ∥ − ϵ⊥)/ϵ⊥,
and τ = (K3 −K2)/K2. Then we get the Euler-Lagrange equations from Eq. 4.22 for two
canonical variables ϕ, θ, respectively,

d

dz

{

dϕ

dz
(1 + τ sin2 θ) cos2 θ)

}

= 0, (4.25)

d

dz

{

dθ

dz
(1 + τ sin2 θ)

}

=κ sin θ cos θ

(

dθ

dz

)2

+

+
1 + κ

1 + τ

(

dϕ

dz

)2
{

τ sin θ cos2 θ − (1 + τ sin2 θ) sin θ cos θ
}

−

− D2
z

K1ϵ0ϵ⊥/γ

sin θ cos θ

(1 + γ sin2 θ)2
.

(4.26)

The details for manipulating the above two equations further can be found in [58]. We end
up with a series of equations for minimizing the free energy and determining the twist and
tilt distributions that we seek. The twist distribution ϕ(z) is given by,

ϕ(z) = β

∫ θ(z)

0

√
1 + κ sin2 θ

g(θ) cos2 θ(1 + τ sin2 θ)
dθ. (4.27)

Note, that β is an unknown constant of integration that should be determined from bound-
ary conditions. The tilt distribution θ(z) is determined implicitly through,

z

L
=

1

2

∫ θ(z)

0

√
1 + κ sin2 θ

g(θ)
dθ

/
∫ θm

0

√
1 + κ sin2 θ

g(θ)
dθ. (4.28)
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As we saw in Sec. 4.1.2, the maximum tilt angle θm occurs in the middle of the cell at L/2
and is itself a function of applied field. This g(θ) function depends on β and θm, with the
ugly form,

g(θ) =

{

sin2 θm − sin2 θ

(1 + γ sin2 θ)(1 + γ sin2 θm)
+

+ β21 + κ

1 + τ

(

1

(1 + τ sin2 θm) cos2 θm
− 1

(1 + τ sin2 θ) cos2 θ

)}1/2

.

(4.29)

To even begin thinking about solving g(θ), we require θm and β for a given applied voltage
V and maximum twist ϕm. The maximum tilt angle is found through,

V

VT0

=
2

π

∫ θm

0

√
1 + κ sin2 θ

(1 + γ sin2 θ)g(θ)
dθ, (4.30)

where VT0 = π
√

K1

ϵ0∆ϵ
is the threshold voltage for ϕ(z) = 0, the zero-twist configuration.

And from Eq. (4.27), we have,

ϕ(L/2) =
ϕm

2
= β

∫ θm

0

√
1 + κ sin2 θ

g(θ) cos2 θ(1 + τ sin2 θ)
dθ. (4.31)

This is a coupled set of integrals and should be solved simultaneously. The numerical
integration of this equation system is not trivial due to the strongly singular behaviour
of the integrand functions. A better way to solve Eqs. (4.30)–(4.31) is to do it iteratively
by first setting β = 0 in Eq. (4.30), giving a first estimate for θm0 = θm(β = 0). This
can then be used to determine β0 = β(θm0) and so on, until the desired convergence
is achieved. We’ve opted for a numerical minimization approach based on evolutionary
methods, specifically a genetic algorithm, described in Sec. 4.3.

One useful set of analytical results from [58] is the threshold voltage VT for a given
total twist angle ϕm,

VT (ϕm) = VT0

[

1 +

(

ϕm

π

)2(
K3

K1

− 2
K2

K1

)

]1/2

, (4.32)

and the value of the integration constant at the threshold voltage βT for a given ϕm,

βT (ϕm) =

[

(

π

ϕm

)2

+
K3

K1

− 2
K2

K1

]−1/2

. (4.33)
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recombination and the mutation of individuals in a natural environment. In the end,
the offspring replace the initial population of the algorithm and a new iteration, denoted
as a generation, can start. The algorithm ends when a certain termination criterion is
reached [67].

To approximately solve Eqs. (4.30)–(4.31), we implement two genetic algorithms which
evolve real-valued individuals θmi and βi. As prescribed by the iterative method mentioned
above, the first algorithm is first run to determine θm0, corresponding to the initial guess
for β = 0. The second algorithm is then first run to determine β0 assuming θm = θm0, and
so on. Each individual is a candidate to provide an optimal approximation to the actual
solutions θm and β. By means of operators mimicking the natural selection mechanism,
the GA selects for reproduction those individuals which better minimize the following cost
functions,

Lθm =

∣

∣

∣

∣

∣

V

V0
− 2

π

∫ θm

0

√
1 + κ sin2 θ

(1 + γ sin2 θ)g(θ)
dθ

∣

∣

∣

∣

∣

2

, (4.34)

Lβ =

∣

∣

∣

∣

∣

ϕm − 2β

∫ θm

0

√
1 + κ sin2 θ

g(θ) cos2 θ(1 + τ sin2 θ)
dθ

∣

∣

∣

∣

∣

2

, (4.35)

within the current generation to solve Eq. (4.30) and Eq. (4.31), respectively. The nu-
merical integrations required for these cost functions are successfully performed using the
IMT-rule—named after Iri, Moriguti, and Takasawa who first proposed the method in
1969 [68]—to handle singularities in finite integration regions [69].

The detailed sequence of operators used in our algorithm will now be described. First,
the well-known tournament selection mechanism [70] is used as a selection operator. This
consists of repeating the following steps N times, where N is the population size:

1. Randomly select a subset of k individuals.

2. Choose the fittest individual among them to be inserted in the mating pool.

For our purposes, the ‘fittest’ are those individuals for which the cost function is minimum.
The blend crossover [71] is used to mate individuals in the mating pool. This means that
when two individuals θA and θB reproduce, two newborn individuals θ1 and θ2 originate
as random numbers belonging to the interval [θA − ci(θB − θA), θB + ci(θB − θA)], where
ci tunes the crossover with i = {1, 2}, and we assume θB ≥ θA. A similar reproduction
occurs for two individuals βA and βB. To explore a wider region of the parameter landscape,
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genetic mutations are included in our workflow in the form of Gaussian noise with mean
µ and standard deviation σ which potentially affects single individuals [72]. Our GAs also
include an elitism mechanism: the best individual from the old population is carried over
to the next one, replacing the worst individual of the offspring. This mechanism pushes
the algorithms to a faster convergence toward the best solutions. To preserve the physical
validity of the final prediction for the maximum tilt angle θm, a modulo-π/2 is performed
after each operation on a θ-individual. The maximum number of generations Ngen is used
as the termination criterion.

Algorithm 4.1 presents the pseudo-code of the implemented GA. The parameters that
determine the evolutionary sequence are termed hyper-parameters, the optimal choice of
which will give a fast and adequate convergence. With the GA hyper-parameters reported
in Table 4.2, the desired convergence for θm and β is achieved within ∼ 10 iterations. Ad-
equate convergence is chosen to be when the cost functions are minimized with differences
less than 10−15.

Algorithm 4.1 Pseudo-code of the implemented genetic algorithm

Input: size of the population pop size, tournament size k, crossover probability pc, c for
blend crossover, mutation probability pm, µ and σ for Gaussian mutation, termination
criterion t

Output: the best solution best
gen← 0
pop← generateRandomPopulation(pop size)
checkPhysicalConstraints(pop)
evaluateFitness(pop)
best← getBestIndividual(pop)
while gen < t do

offspring ← executeTournament(pop, k)
checkPhysicalConstraints(offspring)
executeGaussianMutation(offspring, pm, µ, σ)
evaluateFitness(offspring)
pop← offspring
pop← elitism(pop, best)
best← getBestIndividual(pop)
gen← gen+ 1

end while
return best

Once the best estimates for θm and β have been determined. The same evolutionary
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Table 4.2: Genetic algorithm hyper-parameters.

Size Selection parameters Crossover parameters Mutation parameters

N = 40 k = 3 pc = 0.9 pm = 0.1
Ngen = 20 c1 = c2 = 0.5 µ = 0, σ = 0.2

strategy is devised for retrieving the modulations of the twist ϕ(z) and tilt θ(z) distribu-
tions. By symmetry, we know that the distributions in the second half of the cell will be
directly related to those in the first half; therefore, we need only compute the distribu-
tions from 0 < z < L/2. Half the cell thickness L/2 is divided into small intervals—here,
50 intervals was used—and the GA is executed within each slice. The set of solutions
{θ(0), θ(z1), θ(2), ..., θ(L/2)} of Eq. (4.28) is first determined by minimizing the following
cost function within each interval,

Lθ =
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∣

∣
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2
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At each propagation distance zi, the corresponding solution θ(zi) is then used to determine
ϕ(zi) via a subsequent algorithm by minimizing the cost function,

Lϕ =
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∣

∣

∣

∣

ϕ(z)− β
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1 + κ sin2 θ
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2

. (4.37)

In both cases, a modulo-π/2 is performed after each operation carried out on an individual.
Since the tilt and twist distributions are not expected to feature singular behaviours, the
solution found at a given position zi should not be too different from the solution associated
with zi−1 and zi+1. Therefore, the initial population of the GA performed at each position
other than z = 0—which is known from boundary conditions—can be initialized using the
solution found at the previous position, perturbed with a uniform noise ∆. Here, we chose
∆ between 0.05 and 0.1, depending on whether we were close to VT or not. This allows us
to initialize the current GA very close to the actual solution. Accordingly, few generations
are needed to obtain an adequate convergence, greatly reducing the computation time.
These genetic algorithms were performed using Mathematica 10.1 on a laptop with an
Intel® CoreTM i7-8565U CPU @ 1.80 GHz, 1992 MHz, 4 cores, and 8 logical processors.
The total calculation run time for a given set of initial conditions was about 15–20 minutes.
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4.3.2 Jones matrix method

With the numerical tilt and twist distributions in hand, we now seek the total Jones matrix
of the corresponding LC cell to explore its effect on polarized light. As we saw in Sec. 3.1 for
the field-free case, the total matrix was derived by multiplying N thin, gradually rotated
waveplates of phase retardation Γ/N , with the analytic solution in the limit of N →∞,

Tϕf
(ϕm,Γ) = R(−ϕb)

[

cosX − iΓ
2X

sinX ϕm

X
sinX

−ϕm

X
sinX cosX + iΓ

2X
sinX

]

R(ϕf )

= R(−ϕb)M0(ϕm,Γ)R(ϕf ), (4.38)

where X =
√

ϕ2
m + (Γ/2)2. For the field-induced case, we do not have the luxury of an

analytical solution, so we must make do with an approximation to the total Jones matrix.
Here, we will instead multiply together N twisted cells of thickness d = L/N using the
form Eq. (4.38) with appropriate local twist and phase retardation calculated from ϕ(z)
and θ(z),

Jϕf
(ϕm, V ) =

N
∏

j=0

Tϕ(zj)

(

ϕ(zj+1)− ϕ(zj),
π∆nd

λ
(cos2 θ(zj+1) + cos2 θ(zj))

)

(4.39)

= R(−ϕb)

[

N
∏

j=0

M0(ϕ
′
m(zj),Γ

′(zj))

]

R(ϕf ), (4.40)

where zj = jd, ϕ′
m(zj) = ϕ(zj+1)− ϕ(zj), ϕf = ϕ(0), and ϕb = ϕ(L) are the front and back

alignment angles, respectively, and ϕm = ϕ(L) − ϕ(0) is the total twist angle. In order
to better estimate the phase retardation of each thin twisted cell, the trapezoidal rule is
applied when calculating Eq. (2.8) in favour of left or right Riemann sums. That is, when
integrating a function f(z) from z = a to z = b, the integral may be approximated by a
trapezoid of area (b− a)(f(b) + f(a))/2. In this case,

Γ′(zj+1) =
π∆nd

λ
[cos2 θ(zj+1) + cos2 θ(zj)]. (4.41)

4.4 Results and discussion

4.4.1 β–θm

Let’s now take a closer look at the results produced by our GA minimization method. A
good place to start is analyzing the behaviour of the integration constant β and maximum
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Figure 4.3: Integration constant β(ϕm, V ). The dots correspond to the numerically
calculated values for maximum twist angles ϕm = 90◦, 67.5◦, 45◦, 22.5◦, 0◦. The vertical
gradient line is the analytical βT (ϕm) values from Eq. 4.33, whereas the cascading solid-
coloured lines are the lines of best using Eq. 4.42.

tilt angle θm as a function of applied voltage V . These three parameters along with a given
maximum twist angle ϕm completely determine the twist ϕ(z) and tilt θ(z) distributions.
Figure 4.3 and Fig. 4.4 summarize the numerically computed results. The GA was run
for maximum twist angles of ϕm = 90◦, 67.5◦, 45◦, 22.5◦, and 0◦ at a range of voltages
from 0.96 V to 7 V, with resulting cost function Lβ values of less than 10−32, and Lθm

between 10−17 and 10−26. The behaviours for negative twist angles will be either identical
or related, so they are not considered.

For β(ϕm, V ), the first measure of whether the GA is working as intended is whether it
can match the threshold βT (ϕm) values according to Eq. 4.33. As can be seen in Fig. 4.3,
the GA does indeed replicate the correct βT (ϕm) at each maximum twist angle’s respective
threshold voltage. The data points for each ϕm follow a smooth decreasing trend, asymp-
totically approaching zero for large voltages. Since it would take a prohibitive amount of
time to compute every possible β, a massive time-saving tool to have would be an ana-
lytical formula, or a good approximation of the true values. I thus postulate an ansatz
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Figure 4.4: Maximum tilt angle θm(ϕm, V ). The dots are the numerically calculated
values for maximum twist angles ϕm = 90◦, 67.5◦, 45◦, 22.5◦, 0◦. In the bottom inset, the
gradient line is the theoretical VT (ϕm) from Eq. 4.32. The dashed lines in both insets
merely connect the dots for visual ease.

of,

β(ϕm, V ) = βT (ϕm)

(

1− 2

π

)

arctan
[

(c1V + c2V
2 + c3V

3 + c4V
4)
√

V − VT (ϕm)
]

,

(4.42)
where ci are a common set of fitting parameters for all ϕm. Equation 4.42 exhibits the
expected behaviour: 1. β(ϕm, V ) does not exist for V < VT (ϕm); 2. when V = VT (ϕm),
β(ϕm, V ) = βT (ϕm); and 3. β(ϕm, V ) → 0 as V → ∞. I used the computed data set
for β(45◦, V ) to determine the ci. The fitting parameters obtained are c1 = −7.95043,
c2 = 16.5784, c3 = −10.5245, and c4 = 2.35869, giving a coefficient of determination of
R2

45 = 99.99%. With these ci, the coefficients of determination for the other computed
data sets are R2

90 = 99.98%, R2
67.5 = 99.97%, R2

22.5 = 99.98%, and R2
0 = 100%. Indeed,

when the other computed data sets are used for fitting, the ci come out to be almost the
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Figure 4.5: Fits for θm(ϕm, V ). Using the ansatz in Eq. (4.43), fits are produced using
the ϕm = 0◦, 45◦, 90◦ data sets. Each fit is then used to produce the θm(ϕm, V ) curves for
other ϕm values, as shown in each subplot.

same with equally high R2 values. Presumably, the fitting polynomial in the argument
of arctan(·) in Eq. 4.42 is actually some function of the elastic coefficients and material
parameters, independent of ϕm; however, no such function, let alone this form of ansatz, is
mentioned in the literature to my knowledge. Higher-order terms could be included, but
four was found to be sufficient.

Next up is the maximum tilt angle θm(V ). Much like the non-twisted case in Fig. 4.1b,
we have the behaviour that θm = 0 when V < VT for each ϕm. The bottom inset of Fig. 4.4
shows that the GA reproduces the threshold voltage values of Eq. (4.32). The top inset
is a zoom-in to show what appears to be a common crossing point around 1.2 V with
θm ∼ 30.9◦. We can also try to fit these curves with one form, using a similar ansatz to
Eq. (4.17),

θm(ϕm, V ) = arctan
[

(

b1V + b2V
2 + b3V

3 + b4V
4
)
√

V − VT (ϕm)
]

, (4.43)

where bi are new common fitting parameters. As before, this ansatz obeys the expected
behaviours: 1. when V = VT (ϕm), θm = 0 for each ϕm, and 2. as V → ∞, θm → 90◦.
However, when this form is plotted out for the different ϕm, it fails to reproduce the
crossing point around 1.2 V. We can see this in Fig. 4.5 where different data sets were used
for fitting, each with respective R2 values of 99.99% for the fitted data set. This suggests
that there is an extra ϕm dependence that Eq. (4.43) does not include. While there is the
possibility that the GA is not converging to the necessary values, I do not believe this to
be the case given the extremely small cost function values and the smooth behaviours of
the computed data sets.

There is a hint about this dependence in the literature. [59] studies the tilt and twist
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Figure 4.6: GA results for ϕm = 45◦. a. Twist and b. tilt distributions for Vpp = 4, 6,
8, 12 V. c. Phase retardation distribution Γ(z) computed using L = 35 µm.

distributions in the high-voltage limit, and provide an approximation for θm when V ≫ VT0,

tan2(θm) ≈
(

1 + tan2(ϕm/2)
)

tan2(θm0), (4.44)

where θm0 is the maximum tilt angle for the non-twisted case at the same voltage. A
ϕm dependence for low voltages or voltages near threshold where the critical behaviour
happens was not found in the literature. At the time of writing this, it is not obvious what
the correct ansatz is, as simply adding this factor or another fitting polynomial does not
produce satisfactory fits. If a semi-analytical form can be found that reproduces the GA
θm data sets, then along with Eq. (4.42) for β(ϕm, V ), one would no longer need to run the
GA for every desired (ϕm, V ), greatly reducing computation time.

4.4.2 Tilt and twist distributions

With numerical values for β(ϕm, V ) and θm(ϕm, V ) in hand, we can now use the GA to
compute the sought-after tilt and twist distributions. Figure 4.6 displays the results of
ϕm = 45◦ for different voltages Vpp = 4, 6, 8, 12 V. A note should be made that the applied
voltage V that we have been using corresponds to a DC voltage as it assumes a static
externally applied electric field. As briefly mentioned in Sec. 3.4, a sinusoidal, i.e., AC,
voltage is generated using the function generator with peak-to-peak voltage Vpp. Therefore,
V is in fact the root-mean-square voltage with conversion of V = Vrms = Vpp/(2

√
2).
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Figure 4.7: GA results for 1.2 V. a. Twist, b. tilt, and c phase retardation distributions
for ϕm = 0◦, 22.5◦, 45◦, 67.5◦, 90◦ with L = 35 µm.

We immediately see that the twist distribution is no longer linear as we increase the
applied field strength, confirming our suspicions that the Jones matrix of Eq. (3.5) is no
longer valid. However, there appears to be a voltage up to which ϕ(z) is still linear above
the threshold voltage. Here, VT (45

◦) = 0.983188 V or Vpp = 2.78088 V. As the field strength
increases further, the distributions takes on an S-like shape, becoming sharper and more
step-like. As for the tilt distributions, we see similar behaviour as with the zero-twist case in
Fig. 4.1c. Above the threshold, the maximum tilt angle steadily approaches θm = 90◦ with
increasing voltage. As the field strength increases even further, the distribution flattens
out further in the middle. The phase retardation distribution Γ(z) is calculated based on
θ(z) using L = 35 µm in Eq. (4.41).

Figure 4.7 and Fig. 4.8 are the GA results of V = 1.061, 1.2, 2.0, and 4.0 V for various
maximum twist angles. We see that there is a similar evolution of the twist distributions
from linear to S-like, and the tilt distributions plateauing up to θm = 90◦. Notably at
1.2 V, the tilt distributions in Fig. 4.7b are practically the same, corresponding to the
observed crossing point in Fig. 4.4 with θm ∼ 30.9◦. As it so happens, the twist dis-
tributions begin to deviate from linear above this point for all ϕm. It is unclear as to
whether this is a coincidence or the physical significance of this crossing point, let alone
the mathematical explanation. Unfortunately, there is no analytical formula for the tilt
distribution θ(ϕm, V, z). There does exist analytical approximations for the twist distribu-
tion ϕ(ϕm, V, z) in the high-voltage limit (V ≫ VT0) [59]; however, it does not capture the
critical behaviours at low voltages such as the transition from linear to non-linear twists.
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Figure 4.8: GA results for different maximum twist angles. a. V = 1.061 V, b.
V = 2.0 V, c. V = 4.0 V.
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Figure 4.10: Externally applied voltage on DP(0,1/2). a. Reconstructed polarization
distributions from a horizontally polarized input for voltages of Vpp = 3.00, 6.00, 8.00,
and 12.00 V. b. The experimental data (dots) are the output Stokes vectors. Numerical
approximations (gradiated solid line) were obtained by scaling the twist distribution for
ϕm = 45◦.

uniform, and the Stokes vectors are clustered around s1 = [1, 0, 0], i.e., the horizontal input
becomes almost a horizontal output for all ϕm. This is similar to the detuned setting for
q-plates. For Vpp = 3.00 V, the Stokes vectors wrap around the equator once, which gives
rise to a lemon-like polarization distribution, possessing a topological charge of q ∼ 1/2.
Since Vpp = 3.00 V which is equivalent to V = 1.061 V is below the ‘crossing-point’
at V ∼ 1.2 V, the twist distribution is still linear. Indeed, the plotted Stokes vectors are
qualitatively similar to those of DP(0,1/2) for the field-free case in Fig. 3.5b. As the voltage
is increased, the Stokes vectors as a function of ϕm begin to wrap around the equator more
than once. This is the key point that signals the departure from the linear-twist regime as
this is not achievable by simply varying Γ in T0(ϕm,Γ). When the line wraps around the
equator twice, then the topological charge is q ∼ 1, producing an azimuthal-like polarized
distribution, as seen at Vpp = 12.00 V. While detuning is observed with standard q-plates,
this apparent charge-doubling is never observed nor achievable. Further investigations and
calculations are required to determine if we do indeed reach true changes in the topological
charge. This would open up another avenue to create a multi-q-plate.

Figure 4.11a, b compares the experimental data of DP(1/2,0) and the GA results for
voltages of Vpp = 3, 6, 8, 12 V. We see that there is quite a discrepancy between the
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Figure 4.11: Externally applied voltage on DP(1/2,0). a. Reconstructed polarization
distributions from a horizontally polarized input for voltages of Vpp = 3, 6, 8, and 12 V.
b. The experimental data (dots); numerical approximations (gradiated solid line) were
obtained by scaling the twist distribution for ϕm = 45◦. c. Numerical (experimental)
results at Vpp = 3 V (3.5 V), 5.5 V (6 V), 7.5 V (8 V), and 11.5 V (12 V).

two. However, this seems to be a problem of voltage scaling between what is set on
the function generator and what the LC device feels, as we see in Fig. 4.11c where the
comparison is with numerical results at about half a volt less, giving qualitatively good
fits. This would suggest that the contact points where the electrical wires were soldered
came loose between the experimental data collections of DP(0,1/2) and DP(1/2,0), which
is not surprising given the delicate nature of the glass-metal bond. For future fabricated
samples, the applied voltage should be properly measured across the sample; this would
rule out soldering problems when trying to compare to the theory.

Overall, the take-away message from this chapter is that the inclusion of elastic con-
tinuum theory can explain the non-trivial behaviour displayed from non-symmetrically
patterned LC devices fabricated in Chap. 3, which is reassuring. This was greatly aided
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by the use of genetic algorithms to numerically calculate the non-linear tilt and twist dis-
tributions. There is certainly still more work to be done in regards to creating a complete
semi-analytical solution to decrease computation time; however, the work presented here
lays the foundation to properly calculate the field-induced effects on polarized light.

I think it’s time for a reprieve from liquid crystals, don’t you? Let’s take a dip into...
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5.1 Quantum key distribution

The goal of secure communication is a tale as old as time. Throughout history, various
methods and techniques have been used to protect sensitive information from unautho-
rized access and interception: from ciphers machines and codebooks to one-time pad and

65
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encryption schemes. Today, more sophisticated algorithms like the Advanced Encryp-
tion Standard (AES) [73] and RSA (Rivest-Shamir-Adleman) [74] are widely used, relying
on computational complexity for security. With the advent of quantum computing and
the potential threat it poses to conventional cryptographic methods, the need for secure
communication protocols that are resistant to quantum attacks has become increasingly
important.

The next iteration of secure communication is thus quantum communication and quan-
tum cryptography, which explores the use of quantum phenomena to enable secure and
efficient transmission of information [75, 76]. It leverages the principles of quantum me-
chanics, such as the superposition principle, uncertainty, entanglement, and the no-cloning
theorem, to achieve novel communication protocols that offer unprecedented levels of secu-
rity and information capacity. One of the most studied aspects of quantum communication
is quantum key distribution (QKD), where the main objective is to securely share a secret
key between two parties. QKD protocols exploit the principles of quantum mechanics to
establish a shared secret key, which can be used for secure encryption and decryption of
messages. The security of QKD lies in the fundamental laws of quantum physics, which
make it impossible for an eavesdropper to intercept the key without being detected.

Charles Bennett and Gilles Brassard developed the first quantum key establishment
protocol in 1984, known as BB84 [77]. They showed that the security relied on, first, the
fact that quantum states cannot be copied (no-cloning theorem), and second, randomly
encoding bits of information in mutually unbiased basis states. Since the inception of
this field, there has been significant progress in the development of security proofs and
methods for establishing secure key distribution rates. In addition, many other protocols
have been developed and examined in pursuit of practical implementations of quantum key
distributions. The original BB84 protocol will be described here using polarization as the
encoding basis.

Suppose Alice has a message she wants to securely send to Bob, who is perhaps in a
distant location. To encrypt the message, Alice and Bob will establish a random secret
key generated via BB84. To begin, Alice and Bob agree upon a pair of mutually unbiased
bases (MUB) with which to encode the key information. The standard pair of MUB using
polarization states is M0 = {|H⟩ , |V ⟩} and M1 = {|D⟩ , |A⟩}. We use Dirac bra-ket
notation as we are now dealing with single photon states. For two bases to be mutually
unbiased, the projection of any state from one bases onto any state from the other should
yield equal probabilities, i.e., no information. For a general set of j states |ui⟩j in basis
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Mi, this can we written as,

|j⟨ui|ui′⟩j′ |2 =
{

δjj′ , ∀i = i′

1/d, ∀i ̸= i′
, (5.1)

where d is the dimension of the encoding Hilbert space; d = 2 for polarization.

From the MUB, Alice and Bob establish their encoding alphabet for each state. One
choice would be that |H⟩ and |D⟩ correspond to classical bit ‘0’, while |V ⟩ and |A⟩ are
classical bit ‘1’. Alice now begins the key exchange by i. randomly choosing a classical bit,
and ii. randomly choosing a MUB to prepare a polarized photon accordingly. She sends
the prepared photon over an untrusted quantum channel to Bob. This quantum channel
could be optical fibres, free-space, or as will be discussed in this chapter, underwater. The
channel is said to be untrusted since an eavesdropper could be ‘listening in’ on the key
exchange process.

Upon receiving Alice’s photon through the channel, Bob will i. randomly choose a
MUB to measure the state in, and ii. record either ‘0’ or ‘1’ depending on the result. This
preparing and measuring of photons by Alice and Bob is repeated N times, after which
the quantum part of this key distribution protocol is finished. Now Alice and Bob must
distill their shared key from their respective strings of random 0’s and 1’s. This does not
necessitate a secure channel nor a quantum one, but should at least be authenticated; for
example, Alice and Bob call each other on the phone. We say that they will sift out the
incorrect bits by comparing only the bases they respectively prepared and measured in.
The incorrect bits are the instances when Alice and Bob prepared and measured in the
wrong basis. Thus, for an infinitely long key, 1/2 of the photons are sifted out, and the
remaining classical bit string is the shared secret key.

In an ideal world at this stage, Alice and Bob would have identical keys; however, due
to interference during the key distribution step—malicious or otherwise—there might be
errors in the keys. While more often than not the quantum channel is simply noisy, any
errors must be attributed to a possible attack from an eavesdropper to gain information.
Alice and Bob thus must sacrifice a small portion of their key and directly compare each bit
to estimate the errors in the whole key. These errors make up the quantum bit error rate
(QBER) of the channel. The beauty of QKD protocols is that they have a error threshold;
if the QBER is lower than this threshold, then Alice and Bob are 100% certain that their
key is secure. In 2-dimensional BB84, such as with polarization, the error threshold is
Q

(2)
threshold = 11%, at which point no positive secret key rate K is possible.

For a d-dimensional BB84 protocol that uses qudits as opposed to qubits—for example,
encoding using OAM states—the secret key rate after privacy amplification as a function
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sorption coefficient of aabs(480 nm) = 0.0186 m−1. This minimum may shift depending
on the type and purity of the water. It is evident here that the visible wavelengths, par-
ticularly around the blue-green range, provide the best opportunity to transmit optical
signals for long distances, limited as that is to a few hundred meters. Water also contains
suspended particles, such as sediment and organic plant matter, which can also absorb and
scatter light. In particular, we can get both Rayleigh scattering (d < λ) and Mie scatter-
ing (d ≫ λ), defined by the size d of the scattering particle with respect to the radiation
wavelength λ. The details of absorption and scattering from water particulates is beyond
the scope of this thesis.

5.2.2 Turbulence

As once stated by Richard Feynman [79], “Turbulence is the most important unsolved
problem in classical physics.” Indeed, while on his deathbed, Werner Heisenberg was
asked what he would ask God, to which he replied [80], “When I meet God, I am going to
ask him two questions: Why relativity? And why turbulence? I really believe he will have
an answer for the first.” A similar quote has also been attributed to Sir Horace Lamb [79].
With what started as the carefully drawn depictions of vortices on the surface of moving
water by Leonardo da Vinci, the ability to predict turbulent behaviour still challenges
physicists and mathematicians alike today. However, this is not to say that we do not have
a working framework for the mechanisms underlying turbulence.

The discussions in this section are applicable to any fluid, not just water or air. To
start, the behaviour of a flowing fluid can be described as either laminar or turbulent,
depending on the relation between the fluid’s viscosity and the flow’s inertia. Laminar flow
is the regime in which the motion of the particles in the fluid all move in one direction in an
orderly fashion—there is no motion perpendicular to the flow direction—hence the name
laminar, as the fluid flows in smooth layers or laminations. Laminar flow is observed,
for example, in water from a slightly open faucet, or air flow over an airplane’s wing.
Turbulent flow, on the other hand, is the regime in which eddies and vortices form, giving
rise to chaotic and unpredictable motion. Principally, turbulent flow can appear when there
are differences at an interface; this interface could be formed from contrasting velocities,
densities, temperature or contamination, to name a few. Of course, there is a third regime
for the transitional behaviours in between laminar and turbulent flow. The flow regime
can be determined by calculating the Reynolds number, which is the ratio of inertia to
viscous forces,

R =
ρvL

µ
, (5.4)
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where ρ is the density of the fluid, v is the flow speed, L is the characteristic linear
dimension of the system containing the fluid (e.g. diameter of a pipe), and µ is the fluid
viscosity. While the exact numbers depend on the particular system, typically, a small
Reynolds number corresponds to laminar flow and a large Reynolds number corresponds
to turbulent flow. In a pipe, for example, the flow is laminar for R < 2000 and turbulent
for R > 4000 [81]. For low viscous fluids, such as water and air, it is much easier to reach
the turbulent regime as compared to very viscous fluids, such as honey or molasses.

While Reynolds’ number classifies when a fluid flow is turbulent, it does not answer
what and how it happens. For this, there is the underlying mechanism of how energy dissi-
pates at different length scales. Indeed, Lewis F. Richardson—a mathematician, physicist
and meteorologist—succinctly surmised his ideas on the energy cascade theory behind tur-
bulent behaviour in his following poem [82]: Big whirls have lesser whirls that feed on their
velocity, and little whirls have lesser whirls and so on to viscosity. This encapsulates the
theory that kinetic energy is cascaded from large-scale, unstable structures (eddies, vor-
tices, whirls) of size L0 that break into smaller-scale structures of size l0 until the energy
is dissipated as heat at the smallest length scale of turbulence, where viscosity domi-
nates. This smallest, characteristic size η is also termed the Kolmogorov length scale, after
mathematician Andrey Kolmogorov who concretely formulated the statistical framework
to describe the apparent randomness and chaos in turbulence.

Kolmogorov postulated that, at the small-scale, the energetics or energy spectrum of
the eddies is universal, regardless of observed dynamics, depending only on the kinematic
viscosity (µ/ρ) [83]. This means that, on the small-scale, the statistics are isotropic and
homogeneous, unlike the large-scale structures. Recently, it was shown that this univer-
sality holds true even for transitional flows [84]. The reader is referred to [85, 86] for
comprehensive reviews of Kolmogorov theory and other turbulence theories. Here, we will
concentrate on the implications that turbulence has on a propagating beam of light. As
noted above, turbulent flows are caused by the presence of small differences—density, tem-
perature, impurities, etc—which translate to small fluctuations in the local refractive index
of the medium. When light propagates through these fluctuations, different parts of the
beam will be slightly deflected in different directions. This results in the displacement and
distortion of the beam for weak turbulence, and speckle patterns for strong turbulence. Un-
der the assumption that the fluctuations in refractive index are statistically homogeneous
and isotropic, a spatial power spectrum Φn(κ) can be used to describe the distribution
of spatial frequencies/wavenumbers κ for a given turbulent medium. Depending on the
medium, Φn(κ) can depend on different parameters. For the case of atmosphere, these are
parameters such as wavelength, channel length, and the atmospheric structure constant C2

n

which describes the strength of the turbulence across a horizontal link. The atmospheric
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spatial power spectrum, also known as the Kolmogorov power-law spectrum, is [87],

Φair
n (κ) = 0.033C2

nκ
−11/3, 1/L0 ≪ κ≪ 1/l0. (5.5)

For a horizontal optical free-space link, C2
n (units of m−2/3) can be calculated as,

r0 =

[

0.423

(

2π

λ

)2

C2
nL

]−3/5

, (5.6)

where r0 (units of m) is the coherence length or Fried parameter, describing the average
size of an air cell through which a wavefront remains plane. Together, C2

n and r0 (which
can be experimentally measured) are two quantities that are useful for quantifying the
turbulence in a given link.

For water—ocean water, specifically—there are several more parameters affecting the
refractive index fluctuations: the Kolmogorov length scale η; the rate of dissipation of tur-
bulent kinetic energy per unit mass of fluid ϵ (ranging from 10−2 m2/s3 to 10−8 m2/s3); the
rate of dissipation of mean-square temperature χT (ranging from 10−4 K2/s to 10−10 K2/s);
and the ratio of temperature to salinity contributions to the refractive index spectrum w
(ranging from -5 for dominating temperature-induced to 0 for dominating salinity-induced
optical turbulence). The spatial power spectrum for ocean water is then [88],

Φocean
n (κ) =0.388× 10−8ϵ−1/3κ−11/3

[

1 + 2.35(κη)2/3
]

× χT

w2

(

w2e−AT δ + e−ASδ − 2we−ATSδ
)

,
(5.7)

where AT = 1.863× 10−2, AS = 1.9× 10−4, ATS = 9.41× 10−3, and δ = 8.284(κη)4/3.

From this rather unwieldy equation, it is not immediately obvious what the equivalent
quantities for C2

n and r0 are. For the Fried parameter, since Φair
n (κ) and Φocean

n (κ) follow the
same power-law—that is, the exponents on κ are both −11/3—then the same formulations
for r0 in air can be used for water [89]. r0 can be experimentally measured from the average
deflection angle of the beam from the axis of propagation. C2

n, on the other hand, requires
a bit more mathematical gymnastics to obtain an oceanic equivalent. As proposed in [90],
it is possible to formulate an equivalent oceanic structure constant by recognizing that
the scintillation index, m2, of a spherical wave will be the same regardless of medium.
The scintillation index is a fourth-order statistical quantity characterizing the normalized
variance of the fluctuating intensity for a beam of light, commonly observed as the twinkling
of stars. In particular, m2 is dependent on Φocean

n (κ) in the oceanic case, and C2
n for the
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Figure 5.3: Phase profiles of Zernike polynomials.

atmospheric case; thus, an equivalence can be found by equating each scintillation index.
The oceanic structure constant is then,

C2
n = 16π2k−7/6L−11/6Re

{
∫ L

0

dζ

∫ ∞

0

κdκ

[

E(ζ, κ)

× E(ζ,−κ) + |E(ζ, κ)|2Φocean
n (κ)

]}

,

(5.8)

where,

E(ζ, κ) = ik exp

[

− iζ(L− ζ)κ
2

2kL

]

, (5.9)

is the field of the spherical wavefront propagating along the horizontal direction ζ. Typical
values of C2

n range from ≈10−13 m−2/3 corresponding to strong turbulence to ≈10−17 m−2/3

corresponding to weak turbulence.

In terms of quantum communication schemes, turbulence may have a detrimental effect
on the transmitted information depending on the strength. It is particularly degrading
for spatial modes, where we require that the phase and amplitude profiles remain intact
across the channel. Beyond deflections and distortions, strong turbulence can even cause
singularity splitting for modes carrying OAM [91,92]. While metrics such as C2

n and r0 are
useful for knowing the strength of turbulence in a channel, characterizing the turbulence
in terms of its different effects is more useful when one wishes to eventually compensate for
it with adaptive optics methods. The Zernike polynomials provide a quantitative measure



for these distortions and aberrations. These polynomials Zj(r, ϕ) form a set of orthonormal
polynomials on the unit disk [93],

Zj(r, ϕ) =











√
n+ 1Rm

n (r)
√
2 cos(mϕ), m ̸= 0√

n+ 1Rm
n (r)
√
2 sin(mϕ), m ̸= 0,√

n+ 1R0
n(r), m = 0

(5.10)

where j = 1 + (n(n+ 2) +m)/2 is the Noll index with radial and azimuthal degree n and
m, respectively. Rm

n (r) are the radial polynomials,

Rm
n (r) =

{

∑(n−m)/2
b=0

(−1)b(n−b)!

b!(n+m
2

−b)!(n−m
2

−b)!
rn−2b, (n−m) even,

0, (n−m) odd.
(5.11)

Figure 5.3 shows the phase profiles of the first few aberration orders. The first order
aberrations (n=1) correspond to tip-tilt effects, while the second order aberrations (n=2)
correspond to defocusing and astigmatism. It is possible to experimentally measure the
Zernike coefficients for a distorted wavefront using, for example, a Shack–Hartmann wave-
front sensor, which is a lenslet array that measures the local deflection of the wavefront.

What follows from here are the published works [1, 2] which explore the feasibility
of quantum key distribution in an uncontrolled outdoor underwater channel, as well as
through a more controlled flume tank. Of note, due to all the particulate matter in the
Ottawa River, only a channel length of only 5 m was achievable. Liquid-crystal q-plates
are employed to encode information and also to probe the effect of turbulence on vector
vortex beams.
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signal. In optical communication, security—affected by factors such as errors in the channel—is

an important feature for successful information transfer. Typically, a line-of-sight approach is

implemented, making eavesdropping much more difficult, as opposed to the broadcasting method

for acoustic and RF communication where the signal is sent in all directions. By considering

quantum cryptographic schemes, the security can be further enhanced [11]; for instance, quantum

key distribution (QKD) allows authorized partners to communicate with unconditional security

[12–14].

There are several different optical degrees of freedom which can be used to encode information

in these QKD protocols. A popular option for direct line-of-sight channels is the polarization of

photons, with successful experiments in free-space [15,16]. One limitation with polarization,

however, is its inherently limited 2-dimensional Hilbert space, allowing for the maximum

transmission of one bit per photon. The orbital angular momentum (OAM) degree of freedom of

light, on the other hand, provides the potential of an unbounded state space, and thus unbounded

encryption alphabet. Light beams carrying OAM possess a helical wavefront with ` intertwined

helices, i.e. exp (i`φ) where ` is an integer number and φ is the transverse azimuthal angle in polar

coordinates [17]. These beams possess a doughnut-shaped intensity profile due to the presence

of a phase singularity at their centre (φ is undefined at the origin in cylindrical polar coordinates).

The unbounded state space of these spatial modes allow us to implement high-dimensional

quantum communication channels [18–21], but they do come with unique challenges. One

key challenge that has been observed with free-space communication is that turbulence in the

channel can introduce errors in the transmitted information [22]. The measurement of OAM

states is heavily dependent on the position of the incoming beam and thus these states are much

more prone to errors from turbulence than polarization states which must just maintain their

orientation.

Underwater quantum communications have been numerically investigated [23] and experimen-

tally demonstrated in laboratory conditions using polarization [24,25], in outdoor conditions using

the OAM degree of freedom [26], and over a 55 m water channel using polarization [27] and spatial

modes [28]. These experimental investigations have lead to several numerical investigations of

QKD in underwater channels [29–31]. In this Letter, we investigate the propagation of light

through the Ottawa River in Canada’s capital. In particular, we analyze the underwater turbulence

by looking at the distorted wavefront and associated Zernike coefficients both obtained from a

Shack-Hartmann wavefront sensor. Furthermore, we explore the transmission of polarization

states of light and spatial modes of light through the underwater channel for quantum cryptography

applications.

2. Experiment

The experiments presented here were conducted through the Ottawa River (latitude = 45.541048,

longitude = -76.565719) during late August 2018. The water temperature was on average 20◦ C

for the duration of the experiment. However, the ambient temperature varied significantly from

the middle of the day to the middle of the night. This contributed to turbulent conditions with

water at the surface being heated or cooled more than the water below. Of course since it is a

river, there were already naturally varying currents, which moved the water through the beams

propagation path resulting in a changing index of refraction.

The results discussed in this work were taken using a 532 nm laser diode. The sender and

receiver units were mounted on breadboards along the shoreline of the river. As shown in Fig. 1,

the sender consisted of the laser, Spatial Light Modulator (SLM), and a half-wave plate. The

wave-plates were used to prepare four linear polarization states, i.e. horizontal (H), vertical (V),

anti-diagonal (A), and diagonal (D). The SLM is used for preparing the OAM states. This is

done by displaying a phase hologram on the SLM and selecting the first diffracted mode from the

hologram. The laser beam is then sent from Alice’s breadboard on shore to the first periscope
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Fig. 1. Experimental setup. Two breadboards positioned on the beach are used for the

sender and receiver, Alice and Bob respectively. A CW laser at λ = 532 nm is sent to an

SLM, polarizing beamsplitter (PBS), and half-wave plate (HWP) for state preparation at

Alice’s side of the link. This is then sent to a first periscope (composed of two mirrors)

which brings the beam underwater, where it propagates to the second periscope 5.5 m away.

The receiver has a PBS and HWP for polarization measurements, and a beam splitter allows

a CCD camera and Shack-Hartmann wavefront sensor (WFS) to take images.

system that brings the beam underwater. The beam then propagates underwater, parallel to the

beach, to the second periscope system where it is brought out of the water and sent to the receiver

unit, see Fig. 1. In order to eliminate air-water perturbations resulting from surface waves as the

beam enters the water, a glass tube, closed at one end, is inserted within the periscope system to

create an air-glass-water interface. At the receiver side, we captured the intensity of the beam for

the polarization states of H, V, A, and D using a CCD camera. The camera only allows us to gain

intensity information about the beam but not the phase. However in order to measure the phase

of the beam, we place a Shack-Hartmann wavefront sensor (WFS) at the reciever. This device

is made up of a micro-lens array placed in front of a CCD camera. The resulting effect is that

the phase at each lens can be determined by the focus point of that lens on the CCD array. This

allows one to determine the incidence angle of the given region of the beam and thus the phase

relative to the rest of the beam. The accuracy of the wavefront sensor is limited by the number of

micro-lenses in the array; the WFS that we use is the Thorlabs WFS20-7AR and has a 23 × 23

lenslet array with lenslet pitch of 150 µm and focal length of 5.2 mm.

Losses in the link due to scattering played a much larger roll in establishing a quantum channel

than was expected. There has been analysis performed looking at the feasibility of quantum

communication taking into account many factors including scattering [23]. These studies,

however, consider at worst the Jerlov Type III ocean water with scattering loss of 1.3 dB/m. In

our river channel, the total attenuation was significantly larger than these previously studied

values. The channel losses from scattering varied over the course of many hours due to different

magnitudes of waves in the river which brought sediment from the river bed into the beam

path. During the polarization experiment, the total absorption was measured to be 5.4 dB/m,

77



Research Article Vol. 27, No. 19 / 16 September 2019 / Optics Express 26349

significantly higher than even the worst water type considered in the previous calculations. This

makes the absorption loss of 0.13 dB/m for pure water negligible for practical considerations of

achievable distance [32]. Due to the large amount of scattering in the river, our experimental

tests were limited to ∼5 m. This high level of scattering was primarily due to large particles in

the water (d � λ). The Mie scattering model is used when the particles’ diameter is on the same

order as the wavelength of the light. This is typically for particles such as pollen, dust, and water

droplets which are approximately the same size as the wavelength of the light. In our channel,

since we were near the shore of the river, there was even larger visible plant matter and dirt

floating in the water. This resulted in a large amount of light being absorbed or back reflected as

opposed to being primarily forward scattered as in the regular Mie scattering regime.

Fig. 2. Polarization probability-of-detection matrix. The sender generates the linear

polarization states of {|H〉 , |V〉} or {|A〉 , |D〉}, chosen at random. The receiver randomly

picks up one of the bases {|H〉 , |V〉} or {|A〉 , |D〉}, and records the projection probability,

whose numerical values are shown.

3. Results and discussion

The first goal of this project was to establish that polarization QKD could be achieved in this

highly turbulent and highly scattering channel. For the original BB84 protocol [12], polarization

states are chosen from a set of mutually unbiased bases (MUBs). We chose the bases to be

|ψi〉 = {|H〉 , |V〉} and |φi〉 = {|A〉 , |D〉}.
The defining property of MUBs is that a measurement in the correct basis reveals with certainty

the state that the photon was in, while measurement in the wrong basis gives no information about

the state of the photon, i.e. | 〈ψi |φk〉 |2 = 1/2. Herein lies the security of QKD: an eavesdropper

making a measurement in the wrong basis will be successful only 50% of the time and will

introduce errors when they are unsuccessful. The experimental probability-of-detection matrix

for the polarization states is shown in Fig. 2. The discrepancy between the error rates of the |H〉
and |V〉 polarization are primarily due to imperfect polarization optics. This is not expected to

be a property of the underwater channel. The resultant error rate is 4.01 %, which is below the

threshold of 11.0 % necessary to perform QKD with a 2-dimensional BB84 protocol. The results

here are obtained using classical light from a CW laser. However, on the assumption that the

78



Research Article Vol. 27, No. 19 / 16 September 2019 / Optics Express 26350

background noise is small compared with the signal and thus the errors are introduced only by

the channel, single photons will give the same error rate and we can calculate a bit rate of 0.52

bits per sifted photon.

Fig. 3. Wavefront measurements. A Gaussian beam is sent through the underwater

channel to measure the wavefront. Plot a shows the average value for the magnitude of the

Zernike coefficients taken from the wavefront sensor. The coefficients are separated by their

radial degree corresponding to the color bars. of The inset is a plot of the wavefront given by

these values. The plots in b are wavefronts measured at different times of a guassian beam

through the 5 m underwater link. The wavefront measurements are taken using an array of

150 µm diameter lenses.
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Fig. 4. Time dependence of tip-tilt aberrations. The intensity of a Gaussian beam was

measured at the receiver using a CCD camera. The tip-tilt variations were then calculated by

measuring the positional shift (x,y) of the Gaussian beam from the center. The x and y center

of mass, relative to the their respective beam waists σx and σy, are plotted as a function of

time in a and b, respectively.

Although we achieved an error rate below the threshold, there are some residual errors in the

system. In free space experiments, the errors are often attributed to optical turbulence, which

comes from differences in the index of refraction along the path of propagation as described by

the Kolmogorov theory of turbulence [33]. Tip-tilt effects can result in beam wandering, while

higher order effects can be present in high turbulence situations, resulting in distortion of the

beam’s profile [26,34]. The aberrations in the beam are often visible in the intensity of the beam;

however, more precise information lies in the phase of the received beam. In this experiment,

we prepared a Gaussian beam at the sender, and measure the wavefront at the receiver. The

Gaussian beam is the simplest for measuring the turbulence introduced by the channel, though

OAM modes or any modes whose phase profile is known can be used. The Gaussian beam

should have a spherical phase due to divergence; thus, any variations from this can be attributed

to turbulence introduced by the water. From the wavefront measurements, the turbulence can

be expanded in terms of the Zernike coefficients, i.e. Φ (r, φ) = ∑

j ajZj (r, φ). Here, r and

φ are the radial and azimuthal polar coordinates, respectively; aj are the Zernike expansion

coefficients; Zj(r, φ) = Zm
n (r, φ) are the Zernike polynomials depicted underneath the x-axis of

Fig. 3a; j = 1 + (n(n + 2) + m)/2 is the Noll index; and n and m are the radial and azimuthal
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Fig. 5. Observed turbulence effects on spatial modes. The images in the first, second,

third and fourth rows correspond to LG0,0,
(

LG4,0 + LG−4,0

)

/
√

2, LG4,0, and LG9,0,

respectively. The original beam profile is shown in a, and the images after propagation

through the underwater channel are shown in b. The images are taken over a 6 second

interval. The exposure time for the last three rows are set to 108 ms, while it is set to 20 ms

for the Gaussian beam. The inhomogeneity in the beams’ intensity profiles are due primarily

to Mie scattering from floating objects in the underwater channel. Lower and higher-order

aberrations are manifested in the beam wandering (LG0,0) and singularity splitting.

indices, respectively. The values for the first 15 Zernike coefficients averaged from 30 wavefront

measurements āj are shown in Fig. 3-a along with the reconstructed wavefront Φ from these

values. The wavefront measurements are taken with an average exposure time of 60 milliseconds

and are separated by 10 seconds. The time separation of the wavefront measurements is large

with respect to the fluctuation of the Zernike coefficients. Thus, each wavefront is essentially an

independent measurement of the turbulence in the channel. In Fig. 3-b, a sample of four of these

individual wavefront measurements is shown. These wavefront measurements show that the

beam experienced significant variation upon propagation through the turbulent channel. It is also

interesting to consider the time dependence of the turbulence in the channel. This is necessary

if one plans to implement an adaptive optics system to correct for wavefront aberrations in the

optical channel. The intensity profile of a Gaussian beam was recorded to analyze the tip tilt

fluctuations as a function of time. This is shown in Fig. 4. The frequency of the fluctuations in

the underwater channel is lower than one typically observes in free space channels. This could

make underwater channels an interesting test bed for adaptive optics systems.

As stated before, the turbulence is also visible in the intensity profile of the beam at the receiver.

It is easy to see tip-tilt aberrations from a Gaussian beam as it visibly drifts across the x and

y axis of a camera. The higher order aberrations are often less visible. These aberrations do,

however, show themselves very clearly in their effect on higher-order spatial modes. Specifically,

the oblique and vertical astigmatism (Z±2
2
(r, φ)) stretch OAM modes, giving them an elliptical

shape, as well as splitting the singularity into lower topological charges. Intensity profiles of

OAM and superposition modes are shown in Fig. 5 with consecutive images taken over a time

of 6 seconds. The turbulence from the channel is very apparent in the wandering of the LG0,0

mode, and the higher-order aberrations are shown most clearly in the stretching of the LG0,4

mode. In addition to turbulence, all of the modes experience significant intensity fluctuations

from changing levels of scattering as well as from objects floating into the beam’s path. The

latter is displayed clearly in the images of the petal beam, i.e. (LG0,4 + LG0,−4)/
√

2. As the
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correct measurement of spatial modes requires that the position and phase of the beam remain

intact, it is clear that, even over a short propagation through water, active wavefront correction or

the implementation of adaptive optics would be required to compensate for the aberrations.

4. Conclusion

We have shown that significant challenges present themselves in underwater communication.

Despite low absorption from the water at blue-green wavelengths, the scattering from floating

particles in the water can severely limit the achievable communication distance. Though scattering

will impact the distance, we see that polarization states do maintain their integrity even after

propagation through a very highly scattering channel. The second key challenge in an underwater

optical channel is turbulence. This has the largest impact on communications using spatial modes.

Through the 5.5 m channel, the OAM modes experience aberrations which will result in errors in

a communication protocol. The magnitude of these errors will need to be investigated in future

work. Adaptive optics techniques will also need to be investigated to compensate for these errors

and allow for communication using spatial modes.
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Abstract

Underwater quantum communication has recently been explored using polarization and orbital
angular momentum (OAM). Here, we show that spatially structured modes, e.g., a coherent
superposition of beams carrying both polarization and OAM, can also be used for underwater
quantum cryptography. We also use the polarization degree of freedom to investigate the impact of
the channel length on key rates for quantum communication applications. The underwater
channel proves to be a difficult environment for establishing quantum communication as
underwater optical turbulence results in significant beam wandering and distortions. However, the
errors associated to the turbulence do not result in error rates above the threshold for establishing
a positive key in a quantum communication link with both the polarization and spatially
structured photons. The impact of the underwater channel on the spatially structured modes is
also investigated at different distances using polarization tomography.

1. Introduction

The development of quantum computers and their ability to factor large prime numbers through Shor’s

algorithm, poses a threat to modern communication security [1]. Since the realization of the first protocol

by Bennett and Brassard in 1984 (BB84), quantum key distribution (QKD) has become the most actively

researched solution for secure communication in a post-quantum world [2]. At present, quantum

communication is a research field reaching maturity with commercial devices available for optical fibre

QKD, experimental demonstrations of satellite-to-ground channels [3, 4], and new protocols being

developed to improve key rates and security [5]. There are two primary quantum communication instances

currently investigated: quantum communication channels and quantum communication protocols [6–8].

Channels must be experimentally investigated to demonstrate the transmission fidelity of quantum states,

while new protocols bring advantages in terms of security, error tolerance, and key rates.

Many different protocols have been developed, some of which take advantage of high-dimensional

quantum states [9]. Although quantum information is typically encoded using one of the different photonic

degrees of freedom (such as polarization, time-bin, position and transverse momentum), multiple degrees

of freedom can be used, forming structured states of light. The coherent combination of polarization and

orbital angular momentum (OAM) is one example of structured light, with numerous applications in

microscopy, optical tweezers, classical communication, and quantum information [10]. QKD protocols

performed across free-space channels have been implemented, for example, with polarization [11], time-bin

[12], OAM [13], and structured photons [14, 15]. Likewise, there have been similar demonstrations in fibre

channels [16–19]. Though two-dimensional qubit protocols are the most commonly implemented, there

are advantages to high-dimensional communication in both noise tolerance [20] and bit-rate [21] which

motivates the study of structured states [22].
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Recently, there have been several studies demonstrating quantum communication tasks in underwater

environments [23–27], motivated by the goal of secure communication between submersibles, research

vessels, and surface vehicles. The absorption of water at radio frequencies has resulted in acoustic

technology being the dominant form of communication for the last 100 years. There exists a transparency

window in the blue-green wavelengths with the minimum absorption around 480 nm, giving the possibility

of optical and quantum communication at these wavelengths. Theoretical works predict a maximum

practical quantum channel length of 300 m at 418 nm in clear conditions [28, 29]. This theoretical work

investigates the clearest ocean waters for scattering losses, and takes into account errors introduced from

scattering and background light from the sky. Another in depth work considers different types of vertical

and horizontal channels taking into account many factors including scattering, background light for

different daytime and nighttime conditions, and the receiver’s acceptance angle [30]. Daytime

communication can be established; however the achievable distances are significantly reduced. Though this

is a short distance as compared to the current fibre and free-space links, it is enough for communication

between submersibles and surface vehicles. Thus far, the feasibility tests of QKD with polarization encoding

has been performed through a 3 m tube of water [24], and through an indoor testing channel of 55 m [26].

However much like in air, uncontrolled underwater channels are prone to the effects of turbulence—caused

by local changes in the refractive index of water from temperature variations—which displaces and distorts

a transmitted beam of light. Recent studies have explored the effects of underwater turbulence on QKD

protocols and spatial modes of light in uncontrolled [23] and natural [25] water channels. However, the

security analysis of different protocols is not considered in these previous studies. The high loss nature of

underwater channels makes the optimization of the protocol necessary to achieve maximum distances and

key rates. Here, we investigate an underwater channel at various lengths up to 30 m. The turbulence impact

on the channel is observed through polarization tomography of the spatial modes, showing mode

degradation upon propagation through the water. The BB84 protocol is tested using both polarization states

and two-dimensional spatially structured modes. Key rate analysis is performed showing how optimization

of the protocol’s parameters is important in the high loss scenarios observed in underwater channels.

Moreover the variable channel length gives us a real-world look into the scaling of such quantum protocols,

and the impact on the key rates.

2. Experiment

The experimental setup consists of a sender (Alice) and receiver (Bob), as well as the flume tank which

provides our underwater channel, see figure 1. The flume is 1 meter wide and 1 meter tall; its full length was

50 m. On the top of the flume was a track with a mounted trolley which can travel the length of the

channel. Alice’s setup was placed on the trolley such that the channel length could be adjusted from 1 m to

the full 50 m. A periscope was hung from Alice’s setup so that, with proper beam alignment, the trolley

could be moved up and down the length of the flume while maintaining some beam coupling to a single

mode optical fibre at the receiver. This allowed for the beam pointing from Alice’s setup to remain fixed,

while the coupling was optimized at Bob’s setup after each change in the channel distance. The setup was

left for 5 minutes after moving the trolley to allow the periscope vibrations and disturbances in the water to

settle. The sender consisted of two configurations for changing between sending polarization states and

sending the spatially structured modes, e.g., vector vortex modes [31]. For sending polarization states, a 532

nm , 4.5 mW collimated diode-pumped laser was sent to a PBS, followed by a half-wave plate (λ/2) and a

quarter-wave plate (λ/4) to allow any polarization state to be generated. An intensity modulator was not

used to separate the signal into discreet pulses. Before being transmitted across the channel, the appropriate

neutral density filters attenuated the beam to achieve a mean photon number of 0.1 photons per

nanosecond. The vector vortex modes were generated by adding a q-plate with a topological charge of

q = 1/2 after the polarization optics. At the receiver, the beam is initially collected by a three-inch lens so

that the whole beam is gathered even with slight beam wandering due to the underwater turbulence. The

beam then passes through a λ/2 and λ/4 waveplate and then a PBS to project on a particular polarization

state. The beam is then coupled to a single mode fibre connected to a SPAD detector. The SPAD detectors

have a 32 ns dead time and peak quantum efficiency of 65% (around 50% at 532 nm). To detect the vector

vortex states, a q-plate with charge q = 1/2 is placed at the receiver before the polarization optics. In this

way, the detection system mirrors the generation system. The setup is initially optimized with the trolley

placed at 1 m from the receiver.

Linear polarization states are used to establish the polarization quantum communication channel. The

two mutually unbiased bases (MUB) for encryption are |ψi〉 ∈ {|H〉 , |V〉} and
∣

∣φj

〉

∈ {|A〉 = 1√
2
(|H〉+ |V〉), |D〉 = 1√

2
(|H〉 − |V〉)}, respectively. MUB possess the property that a

projection made on the incorrect basis results in no information gained about the state of the photon, i.e. a
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Figure 1. Experimental setup. The underwater channel was created using a flume 1 m deep and wide, and 50 m long. The sender
setup, Alice, was placed on a trolley which was able to run the length of the flume. Alice’s setup consisted of a 532 nm diode laser
as the source, and a λ/2 and λ/4 waveplate, as well as a q = 1/2-plate for the case of the vector vortex modes experiment. The
beam was sent from the sender, through a glass tube which entered the water thus avoiding the wavy air-water interface. The
beam was directed, from a mirror placed in the tank, through a window on the side of the flume to Bob’s setup. Bob’s setup,
which mirrors Alice’s setup, consisted of a q = 1/2-plate followed by a λ/2 and λ/4 waveplate and a polarizing beam splitter
(PBS). Photons are then coupled to a single-mode optical fibre and detected by a single photon avalanche diode (SPAD). In order
to perform polarization tomography, the reduced Stokes parameters were measured by means of a λ/2 and λ/4 waveplate, PBS
followed by a CCD camera.

Table 1. QBER and key rates for polarization BB84. QBER and key rates per

sifted photon for the polarization BB84 protocol are measured at different

propagation distances. Note that in principle, the polarisation states can be

modulated and detected at 100 MHz, and thus the actual key rate is key rate

per sifted photons × modulation rate × sifting efficiency.

Distance 0.5 m 10.5 m 20.5 m 30.5 m

QBER (%) 0.27 0.74 3.7 0.96

Key rate 0.94 0.87 0.54 0.84

Signal (Hz) 3.1×106 6.7 ×105 6.2 ×104 2.8 ×104

probability of 1/2 for each state
∣

∣

〈

ψi |φj

〉∣

∣

2
= 1/2. A full probability-of-detection matrix is determined by

sending each of the four polarization states and subsequently performing projective measurements of the

four states at the receiver setup. This probability-of-detection matrix gives us the quantum bit error rate

(QBER) which is used to calculate the key rate that can be achieved with the underwater channel. The

uniformly polarized photons, i.e. |ψi〉 and
∣

∣φj

〉

, should remain largely unaffected by the turbulence because

water is not a birefringent medium. Thus, the introduced errors will be negligible for short distances. The

length of the channel and level of turbulence will, however, introduce more losses as the photons

are not able to be gathered at the receiver. This will have some effect on the measured error rate since

the losses in the signal will give more weight to the dark counts and background noise as the distance

increases.

The QBER and key rates for the different distances are given in table 1. The results show the QBER

increasing slightly as the channel length is increased. The primary source of these increased errors is the

losses that result from the turbulence at the longer distances. The type of experiment we performed involves

projecting on one of the polarization states and recording the number of counts during a set time period.

The unpredictable nature of the turbulence in the channel results in some periods of time having larger

losses due to beam wandering and spatial distortions. The beam wandering and spatial distortions, of

course, increase with distance, but are effectively random and difficult to predict in our uncontrolled

environment. This effect, which is random, results in the high error rate observed for the 20.5 m channel in

comparison with the other channel lengths.

The structured photon states, here, vector vortex modes, are generated at the sender, and detected at the

receiver by adding q-plates to the setup—details are given in the caption of figure 1. q-plates are patterned

liquid crystal devices which introduce a polarization dependent geometric phase across the plate when it is

illuminated with circularly polarized beams [32, 33]. The transformation of a perfectly tuned q = 1/2-plate

in the circular polarization basis, left-circular eL and right-circular eR states, can be described as,

(

eL

eR

)

→
(

eR eiφ

eL e−iφ

)

. (1)

where φ is the azimuthal coordinate. As we can see from the above equation, the q = 1/2-plate will act on

circular polarization states by converting left circularly polarized photons to right circularly polarized
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Table 2. QBER and key rates for a two-dimensional BB84 using vector vortex

beam. QBER and key rates per sifted photon for the vector vortex modes

protocol are measured at different propagation distances. Note that in principle

the mode generation and detection can be achieved by polarisation modulators

at 100 MHz before (after) q-plates, and thus the actual key rate is key rate per

sifted photons × modulation rate × sifting efficiency.

Distance 1.5 m 5.5 m 10.5 m

QBER (%) 1.44 3.4 1.0

Key rate 0.79 0.57 0.84

Signal (Hz) 2.6×106 1.9 ×106 9.4 ×105

photons with OAM of � = +1. Similarly, incident photons with right circular polarization will be converted

to left circular with OAM of the opposite sign, i.e. � = −1. The states used for our structured QKD protocol

are created by sending linear polarization states, {{|H〉 , |V〉} , {|A〉 , |D〉}}, onto the q = 1/2-plate. This

results in a state that has a spatially dependent polarization in the form of radial, azimuthal, clockwise and

counterclockwise sink topology, all possessing polarization topological charge of +1 [31]. This is opposed

to the case when a circular polarization state is sent to the q-plate resulting in uniform conversion to the

opposite circular polarization and the addition of an OAM of � = ±1. The protocol we implemented uses

the structured modes as a two-dimensional Hilbert space. The first MUB contained the radial and

azimuthal states, i.e.,

|Ψi〉 ∈
{

(|L,−1〉+ |R,+1〉)√
2

,
(|L,−1〉 − |R,+1〉)√

2

}

, (2)

where |π, �〉 indicates the photons with polarization and OAM states of |π〉 and |�〉, respectively. The states

for the second MUB were the polarization patterns in the form of clockwise and counterclockwise sinks

(vortex) which were generated by sending the |A〉 and |D〉 polarization states onto the q = 1/2-plate, i.e.,

|Φi〉 ∈
{

(|L,−1〉+ i |R,+1〉)√
2

,
(|L,−1〉 − i |R,+1〉)√

2

}

. (3)

The combination of polarization, e.g., {|H〉 , |V〉} and OAM, e.g., {−1,+1} can be used as a

four-dimensional Hilbert space for high-dimensional QKD [15]. To avoid errors assigned to

high-dimensional generation and detection schemes [9, 34], we compare the two-dimensional spatial

modes with the polarization states. The vector vortex modes in equations (2) and (3) were used to establish

a quantum channel at 1, 5, and 10 meter distances. The difficulty with alignment of these spatial modes

restricted us from coupling to single mode fibre for distances longer than 10 meters. The QBER and

consequent key rates for these channels are given in table 2.

We also study the effect of underwater turbulence on the spatial profile of vector vortex modes

propagating through different channel lengths. We perform polarization tomography by measuring the

intensity of the structured beam, using a CCD camera, after passing a polarizer for {H, V , A, D, R, L}. From

these measurements, the polarization is reconstructed pixel-by-pixel. The state sent across the channel is the

radial polarization state. This is created by sending a vertical linearly polarized Gaussian beam onto the

q = 1/2 plate. The resultant spin–orbit state is (|L,−1〉+ |R,+1〉)/
√

2. The theoretical polarization profile

as well as the measured profiles for 1, 5, and 10 meters is shown in figure 2. The spatial profile can be seen

to degrade as the channel length increases. This is associated to turbulence in the water channel that

increases by the length [23, 25]. The phase distortion associated to the turbulence includes not only tip-tilt

aberrations, but also higher-order effects such as astigmatism to the spatial profile of the beam. The

aberrations in the underwater scenario are slower than those observed in air free-space, and thus the

astigmatism aberrations are more easily seen as opposed to the scintillation often observed in high

turbulence cases in the air.

3. Key rate analysis

The initial BB84 proposal is an ideal protocol in which real single photons guarantee that there are not

multiple photons in any given state which could open a door for an eavesdropping attack, i.e., photon

number splitting attack [35]. For the BB84 protocol the number of bits that can be gained from each signal

is,

G =
1

2
Q(1 − 2H(e)), (4)

where Q is the gain and H(e) = −elog2(e) − (1 − e)log2(1 − e) is the Shannon entropy for the error rate e.

This ideal BB84 key rate requires some assumptions that are often not valid in practical QKD situations.
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Figure 2. Polarization tomography of a radially polarized beam for different channel lengths. The reconstructed spatial
polarization profile of the radial polarization mode is shown (top) for the theoretical as well as experimentally reconstructed
beams propagating through the channel length of 1 m, 5 m, and 10 m. The intensity profile is shown in green, while the
orientation of the polarization is shown in the red ellipses. The reconstructed spatial polarization profile was found using
polarization tomography. The reduced stokes parameters were calculated for each pixel using the polarization measurements, {H,
V , D, A, L, R}, shown in the lower insets.

The first of these assumption is the use of real single photons, i.e., heralded pairs, as opposed to an

attenuated laser source. An attenuated laser source is a much more practical implementation, as photon

pairs generated through spontaneous parametric down conversion SPDC are not deterministic. When using

an attenuated source, the main point of weakness to consider is the possibility of more than one photon in a

pulse. Other practical factors to consider are the effect of imperfect detectors and channel losses. These are

brought into consideration in modern security proofs done for practical QKD protocols. We implement the

decoy state protocol in our key rate analysis [36]. In any protocol using an attenuated laser source, one must

choose the pulse mean photon number (µ). This µ is taken below 1 such that the Poisson distribution gives

a low probability of a two-photon state. The density matrix of this signal state is given as,

ρ =

∞
∑

i=0

µi

i!
e−µ |i〉 〈i| . (5)

Here |i〉 is the Fock state, denoting i number of photons. In the decoy state protocol, we include another

state, the decoy state, which has a different mean photon number (ν). The key rate for the decoy state

protocol is given by,

K =
1

2
{−Qµf (Eµ)H(Eµ) + Q1(1 − H(e1))}, (6)

where Qµ is the gain of the total signal state sent by Alice, Eµ is the signal state QBER, Q1 is the gain of the

single photon state, e1 is the error rate of the single photon state, and f is the error correction efficiency. Q1

and e1 are respectively lower and upper bounded by,

Q1 �
µ2 e−µ

µν − ν2

(

Qν eν − Qµ eµ
ν2

µ2
− µ2 − ν2

µ2
Y0

)

, (7)

e1 �
EνQν eν − Y0/2

Q1ν/ (µ e−µ)
. (8)

Here, Y0 is the background rate per pulse, Qν is decoy state gain and Eν is the decoy state QBER. We can

optimize the values of µ and ν for different values of loss (channel distance), given the parameters

associated to our channel. The values for the detector efficiency, darkcounts, channel loss, and Bob’s

detection efficiency measured for our underwater polarization channels are given in table 3. These

parameters can be used to calculate the values of µ and ν, which will yield the optimal key rate for different

distances. The optimal values of µ and ν for the optimal zero-error case are 1.0 and 0.001 respectively. The

optimal value of µ decreases with higher error rates, while ν increases. This optimal key rate is plotted in

figure 3 as the channel length, i.e., attenuation, is increased. The optimal key rate is shown in black

accounting for errors resulting from dark counts only. It should be noted that finite key effects have not

been included in this calculation. The experimental data points which add the measured QBER to the

background errors are shown in red for the channel lengths of 0.5, 10.5, 20.5, and 30.5 meters. The

achievable key rates of the experimental points fall below the theoretical line as expected. However, the key
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Table 3. Experimental parameters of the underwater polarization channel.

Parameter Dark counts Source rep rate Detector efficiency Bob’s detection lfficiency Channel Loss (α)

Flume result 300 Hz 109 Hz 0.6 0.188 0.57 dB m−1

Figure 3. Secret key rate for the underwater polarization channel. The optimal secret key rate for the underwater channel with
the measured attenuation is shown by the black curve. The experimental points (red) show the key rates which could be achieved
given the QBERs and losses observed for the 0.5 m, 10.5 m, 20.5 m, 30.5 m channels. The experimental points, though necessarily
lower than the zero-QBER theory, does follow the theoretical line closely, giving support to the prediction that 80 meters can be
achieved. The experimental points are also lower than the theoretical maximum because there are channel losses introduced by
beam wandering on top of the 0.57 dB m−1 resulting from the channel. The dashed line shows the expected optimal key rate for
channel lengths longer than 30 m. The optimization calculation is performed using the values stated in table 3.

rates do closely follow the trend depicted by the theory, suggesting that a channel length near 80 meters

could be successfully established with these channel parameters. The key rate analysis for the vector vortex

modes follows the exact method demonstrated for the polarization states. The only change is the

experimentally observed QBER, which have similar values to those of the polarization channels of the

similar length—on the order of 1% for 10 m—and thus results in similar key rates. For example, the key

rate for the ∼30 meter channel of vector vortex modes is expected to be ∼70 Kbps.

4. Conclusion and outlook

We have studied a turbulent underwater channel for quantum communication using polarization and

vector vortex modes, beams having spatially structured polarization states. Both the polarization and vector

vortex modes maintained their fidelity upon propagation through the channel, resulting in sufficiently low

error rates (QBER) to achieve a secure quantum channel. The turbulence—primarily beam

wandering—introduces significant challenges with alignment and coupling to single mode fibre. In our

channel, the beam path is near the surface of the water for the entire length which results in relatively high

turbulence due to the temperature gradient at the air-water surface. Thus channels operating at greater

depths may see less turbulence than observed here. Despite these challenges we have shown that both

polarization states and spatially structured polarization states can be used in an underwater free-space

setting, and for establishing a positive secret key rate for lengths up to 30 meters. The alignment problems

from turbulence as well as the difficulty presented by large attenuation present the greatest difficulties for

underwater quantum communication. The implementation of automated beam tracking equipment would

allow one to achieve longer channels approaching the lengths that have been theoretically proposed. In fact,

the slower turbulence observed in an underwater channel makes this task of beam correction much easier

than in a free-space air environment. The implementation of beam tracking and adaptive optics

technologies also allow for the possibility of performing communication through the air-water interface

where waves introduce significant fluctuations. We also performed key rate analysis taking into account the

parameters measured in our channel. Given these parameters the maximum distance for secure

communication would be 80 meters, though this is extremely dependent on the attenuation coefficient of

the channel, and Bob’s detection efficiency. Improvements in either of these areas would significantly extend

the maximum achievable distance.
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Chapter 6

Conclusion

In summary, I have explored the unique physics that arise when nematic liquid crystals are
twisted between two patterned glass plates. According to the theory for linearly twisted
liquid crystals, there is the capability to create devices that demonstrate dual functionality
depending on its orientation and effective phase retardation—which I have named dual-
plates. An additional layer of intrigue arises when an electric field is externally applied to
the twisted liquid crystals; in particular, the model which assumes a linear twist is no longer
applicable. A genetic algorithm method was thus developed and rigorously implemented to
numerically calculate the tilt and twist distributions of the liquid crystals within the cell.
These distributions for a variety of externally applied voltages were then translated into an
overall Jones matrix for the cell that could be used to probe its effects on polarized light.
I fabricated various twisted liquid-crystal devices and compared their behaviour with the
linear twist model and results of the genetic algorithm method. There is solid agreement
in both cases—though the latter is a welcome surprise given additional assumptions and
approximations that were made to reduce computation time. Liquid-crystal devices known
as q-plates were also utilized for quantum key distribution through underwater channels.

While the story of my thesis formally ends here, there are still some questions that
remain as studies for future works to whoever takes up the twisted-liquid-crystal mantle.
The foremost that I raise is whether it is possible to vary the effective phase retardation of
the twisted liquid crystal cell such that the twist distribution remains linear. One possible
way would be to either heat up or cool down the sample, as the refractive index of the liquid
crystals is also temperature dependent. This has already been demonstrated as a feasible
method to tune conventional liquid-crystal q-plates [94]. Though, there would be the issues
of how fast and how uniform this could be done, as well as what range of temperatures
would be required. However, this would allow for the creation of dual-plates as I had first
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intended, where their dual behaviour is toggled via a phase retardation of either Γ = 0 or
Γ = π. As mentioned in Ch. 3, this could be of great benefit to some high-dimensional
quantum key distribution protocols which encode using structured photons.

There are then a slew of (semi-)analytical and numerical questions to explore. For
example, what dictates the ‘crossing-point’ when the twist distributions are no longer
linear. Is this the same for all ϕm? Or is it ϕm-dependent much like the threshold voltage.
To that end, what would be a ‘correct’ semi-analytical formula to determine the maximum
tilt angle θm(ϕm, V )? An even greater ask is whether a direct semi-analytical form for the
tilt and twist distributions as a function of voltage is possible; there is some hint to this
in [59] and merits further analysis. The hope would then be to only have to run the genetic
algorithms for only one ϕm to generate its tilt and twist distributions, and thus extrapolate
to the rest. Furthermore, is it possible to reverse engineer and determine what tilt and
twist distributions are necessary to produce a particular output, i.e., what voltage? Even
after going through this whole liquid crystal exercise, I do not possess an intuition as to
why certain distributions give certain polarization transformations. In particular, what
is the condition for which ‘detuned’ status is achieved, if at all, or what is the condition
for which we have q-plate functionality and so-called topological charge ‘doubling’? What
other phenomena can be generated from a single device that a symmetrically patterned
device cannot recreate?

Thinking a bit more abstractly, this twisted nematic system provides a very exotic
way to transform polarization states. Given that we have three independent degrees of
freedom—total twist angle ϕm, the orientation and rotation of the physical sample, and
the applied voltage V—it may be possible to create single-element general polarization
transformations instead of the three- or four-element set of half- and quarter-wave plates.
The construction of such a device where the total twist angle can be varied is a puzzle
unto itself, but the theory may prove insightful. As to a spatially varying version along
the lines of [29], that does not appear as straightforward using our current liquid crystal
fabrication techniques.
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Appendix A

Experimental Data

Here, I list the calculated Stokes parameters and uncertainties for the experimental data
presented in Sec. 3.4. The Stokes parameters are taken as the average values over

101×101 pixels in each slice of the fabricated DP(0,1/2). The 16 slices represent twist
angles from α = (−90◦, 90◦). The uncertainties for each slice are calculated as the

standard deviations of the Stokes parameters, calculated as,

∆si =

√

∑N
j=1 (sij − s̄i)

2

N − 1
, (A.1)

where i = 1, 2, 3, N = 10201 is the sample size, sij is the i
th Stokes parameter of the jth

sample, and s̄i is the average value of the ith Stokes parameter.
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Table A.1: Average output Stokes parameters and uncertainties for H input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 -0.94 0.05 0.03 0.4 0.0 0.3

-78.75 -0.88 0.03 -0.38 0.09 -0.01 0.09
-67.5 -0.67 0.07 -0.7 0.1 0.0 0.1
-56.25 -0.38 0.09 -0.9 0.1 0.0 0.1
-45 -0.02 0.09 -1.0 0.2 -0.05 0.09

-33.75 0.37 0.09 -1.0 0.1 -0.1 0.1
-22.5 0.69 0.07 -0.8 0.1 -0.1 0.1
-11.25 0.89 0.04 -0.5 0.1 0.0 0.1

0 0.96 0.02 -0.1 0.1 -0.09 0.09
11.25 0.89 0.03 0.25 0.08 -0.08 0.07
22.5 0.72 0.04 0.56 0.08 -0.08 0.07
33.75 0.41 0.06 0.8 0.1 -0.07 0.07
45 0.06 0.07 0.9 0.1 -0.07 0.07

56.25 -0.31 0.09 0.9 0.1 -0.07 0.07
67.5 -0.60 0.05 0.7 0.1 -0.07 0.06
78.75 -0.82 0.04 0.5 0.1 -0.09 0.08
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Table A.2: Average output Stokes parameters and uncertainties for V input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 0.93 0.06 0.0 0.3 0.0 0.1

-78.75 0.82 0.04 0.36 0.09 0.0 0.1
-67.5 0.61 0.07 0.6 0.1 0.0 0.1
-56.25 0.3 0.1 0.8 0.1 0.0 0.1
-45 0.0 0.1 0.9 0.2 0.0 0.1

-33.75 -0.35 0.09 0.8 0.1 0.0 0.1
-22.5 -0.63 0.07 0.7 0.1 0.1 0.1
-11.25 -0.83 0.06 0.4 0.1 0.1 0.1

0 -0.94 0.03 0.1 0.1 0.1 0.1
11.25 -0.91 0.03 -0.26 0.08 0.11 0.08
22.5 -0.73 0.05 -0.57 0.08 0.15 0.09
33.75 -0.43 0.07 -0.81 0.09 0.17 0.08
45 -0.05 0.06 -0.94 0.09 0.19 0.07

56.25 0.33 0.09 -0.9 0.1 0.18 0.07
67.5 0.64 0.05 -0.73 0.09 0.16 0.07
78.75 0.84 0.04 -0.45 0.09 0.13 0.09
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Table A.3: Average output Stokes parameters and uncertainties for A input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 0.08 0.07 0.2 0.4 -1.0 0.4

-78.75 -0.03 0.08 0.15 0.08 -1.0 0.1
-67.5 -0.08 0.07 0.13 0.10 -0.9 0.1
-56.25 -0.15 0.07 0.10 0.07 -0.9 0.1
-45 -0.10 0.07 -0.06 0.08 -1.0 0.1

-33.75 -0.02 0.08 -0.12 0.07 -1.0 0.1
-22.5 0.06 0.08 -0.1 0.1 -1.0 0.1
-11.25 0.10 0.07 -0.10 0.09 -1.0 0.1

0 0.12 0.07 -0.09 0.09 -0.98 0.09
11.25 0.06 0.07 -0.05 0.06 -0.98 0.08
22.5 0.06 0.06 -0.07 0.06 -0.98 0.09
33.75 0.07 0.07 -0.03 0.08 -1.0 0.1
45 0.05 0.07 -0.03 0.08 -1.0 0.1

56.25 0.02 0.07 -0.02 0.09 -1.0 0.1
67.5 0.00 0.06 -0.07 0.08 -0.96 0.09
78.75 0.12 0.08 0.14 0.08 -0.9 0.1
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Table A.4: Average output Stokes parameters and uncertainties for D input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 0.0 0.1 -0.1 0.2 1.0 0.4

-78.75 0.00 0.08 -0.09 0.07 0.9 0.1
-67.5 0.06 0.07 -0.08 0.08 0.9 0.1
-56.25 0.13 0.06 -0.05 0.07 0.9 0.1
-45 0.07 0.08 -0.07 0.07 0.9 0.1

-33.75 0.06 0.08 -0.06 0.07 0.9 0.1
-22.5 0.04 0.09 -0.06 0.09 0.9 0.1
-11.25 0.09 0.07 -0.01 0.07 0.9 0.1

0 0.08 0.07 0.03 0.08 0.9 0.1
11.25 0.00 0.07 0.05 0.06 0.93 0.09
22.5 -0.06 0.07 0.07 0.06 0.92 0.09
33.75 -0.06 0.08 0.09 0.07 0.9 0.1
45 -0.06 0.07 0.07 0.06 0.9 0.1

56.25 -0.06 0.07 0.14 0.08 0.9 0.1
67.5 -0.05 0.07 0.15 0.07 0.9 0.1
78.75 -0.20 0.07 -0.02 0.07 0.9 0.1
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Table A.5: Average output Stokes parameters and uncertainties for R input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 0.0 0.2 0.9 0.6 0.2 0.2

-78.75 -0.33 0.08 0.8 0.1 0.15 0.09
-67.5 -0.60 0.07 0.6 0.2 0.21 0.09
-56.25 -0.81 0.06 0.4 0.1 0.3 0.1
-45 -0.93 0.02 0.0 0.1 0.2 0.1

-33.75 -0.89 0.04 -0.4 0.1 0.2 0.1
-22.5 -0.71 0.07 -0.6 0.1 0.1 0.1
-11.25 -0.4 0.1 -0.9 0.1 0.1 0.1

0 0.0 0.1 -1.0 0.1 0.1 0.1
11.25 0.29 0.08 -0.94 0.09 0.08 0.08
22.5 0.59 0.06 -0.76 0.09 0.12 0.08
33.75 0.84 0.03 -0.45 0.08 0.07 0.09
45 0.94 0.03 -0.10 0.07 0.05 0.08

56.25 0.87 0.04 0.3 0.1 0.03 0.08
67.5 0.70 0.05 0.58 0.09 -0.04 0.07
78.75 0.37 0.08 0.8 0.1 0.14 0.09
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Table A.6: Average output Stokes parameters and uncertainties for L input on DP(0,1/2).

α (◦) s1 ±∆s1 s2 ±∆s2 s3 ±∆s3
-90 0.0 0.1 -1.0 0.6 -0.2 0.2

-78.75 0.33 0.09 -1.0 0.1 -0.2 0.1
-67.5 0.63 0.08 -0.8 0.1 -0.3 0.1
-56.25 0.84 0.04 -0.5 0.1 -0.3 0.1
-45 0.93 0.02 -0.2 0.1 -0.3 0.1

-33.75 0.91 0.03 0.2 0.1 -0.2 0.1
-22.5 0.75 0.07 0.5 0.1 -0.2 0.1
-11.25 0.51 0.09 0.8 0.1 -0.2 0.1

0 0.2 0.1 0.9 0.1 -0.21 0.08
11.25 -0.20 0.08 0.9 0.1 -0.20 0.07
22.5 -0.52 0.06 0.8 0.1 -0.20 0.07
33.75 -0.79 0.04 0.5 0.1 -0.13 0.08
45 -0.93 0.03 0.20 0.08 -0.09 0.07

56.25 -0.92 0.03 -0.2 0.1 -0.08 0.07
67.5 -0.78 0.04 -0.53 0.08 -0.02 0.07
78.75 -0.51 0.07 -0.8 0.1 -0.2 0.1



Appendix B

Elastic continuum theory

B.1 Derivation of free-energy density distortion

terms

This derivation follows that which is presented in [4]. Let n(r) describe the nematic
director distribution, subject to the assumptions listed in Sec. 4.1.1, repeated here for

convenience:

1. Since we are expanding around ∂inj = 0, the lowest-order non-vanishing terms are
quadratic, i.e., of the form (∂inj) · (∂inj).

2. The “head” and “tail” of the nematic director represent the same physical state;
therefore, FD should be even in nj.

3. FD should be a scalar quantity by nature of it being energy.

4. We may discard any ∇ · u(r), where u(r) is an arbitrary vector field, since they are
surface contributions to fD. These are assumed small by Gauss’ Theorem.

Consider its spatial derivative ∂inj, which forms a rank two tensor. This tensor can be
separated into a symmetric part,

sij = (∂inj + ∂jni)/2, (B.1)

and an anti-symmetric part,

(∇× n(r))k = ϵijk∂inj, (B.2)
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where ϵijk is the Levi-Civita symbol. There are typically six independent components to
sij, but this is further restricted by recalled that n(r) is a unit vector. If we allow the
z-axis to be parallel to the local n(r) direction, then all gradients of nz will vanish since,

0 = ∇(n2
x + n2

y + n2
z) = 2nz∇nz + 0 = 2∇nz =⇒ ∂inz = 0. (B.3)

Thus, we have that,

szx = (∇× n(r))y/2,

szy = −(∇× n(r))x/2, (B.4)

szz = 0.

The divergence is then ∇ · n(r) = ∂ini = sii = sxx + syy. Since FD is quadratic in the
derivatives of n(r), it is convenient to separate it as FD = Fs +Fc +Fsc, where each term

in quadratic in sij, ∇× n(r), and the crossterms, respectively.

Nematic liquid crystals exhibit C∞ symmetry around the z-axis. Therefore, determining
the number of independent terms of Fs is allegedly equivalent to finding the number of
elastic constants for a medium of such a symmetry, here equivalent to C6 hexagonal

crystals [95]. This gives the general form of Fs to be,

Fs = λ1s
2
zz + λ2(sxx + syy)

2 + λ3sijsij + λ4szz(sxx + syy) + λ5(s
2
xz + s2yz), (B.5)

where λi are arbitrary constants, and summation is performed over like indices. By
Eq. (B.4) and the full formulation of sijsij, this reduces to,

Fs = λ2(∇·n)2+λ3[(∇·n)2+
�
�

�
�

��

∂i(nj∂jni)−
�
�
�

�
��

∂j(nj∂ini)+ (∇×n)2/2]+λ5(n×∇×n)2/4.
(B.6)

The third and fourth terms are dropped by assumption (4). Of course,
(∇× n)2 ≡ (n ·∇× n)2 + (n×∇× n)2. So overall, Fs is the sum of three

contributions: (∇ · n)2, (n ·∇× n)2, and (n×∇× n)2.

For Fc and Fsc, again according to the C∞ symmetry,

Fc = µ1(∇× n)2z + µ2[(∇× n)2x + (∇× n)2y] = µ1(n ·∇× n)2 + µ2(n×∇× n)2,

Fsc = ν(n×∇× n)2. (B.7)

Across all three terms Fs, Fc, Fsc, we only have the three contributions: (∇ · n)2,
(n ·∇× n)2, and (n×∇× n)2. We are then free to regroup everything and absorb the

various constants into the three elastic constants K1, K2, K3 to get our fundamental
distortion free-energy equation:

FD =
1

2

{

K1(∇ · n)2 +K2(n ·∇× n)2 +K3(n×∇× n)3
}

. (B.8)
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