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Introduction

The Electromagnetic Radiation (photon) - so far the only witness of the
events taking place in deep universe. Delivering information about spacetime
fabric it passes throught. Without understanding how a particular spacetime
geometry influences the basic properties of radiation (frequency, polarisation,
flux) the information it caries cannot be succesfully decoded.

Albert Einstein, in 1916, published his great discovery - The General rela-
tivity. For almost hundred years it plays important role in the study of strong
gravitational phenomena in the universe. The Einstein’s field equations

Gµν =
8πκ

c4
Tµν + Λgµν (1)

tell us how matter distribution Tµν and energy of vacuum Λ warp the space-
time geometry encoded into Einstein’s gravitational tensor Gµν . Many so-
lutions have been found of those equations. Among the first of them the
Schwarzchild geometry describing spherically symmetric and static space-
time. It showed up that this solution describes static spherically symmetric
black-hole and soon the geometry of charged static black hole was found in-
depedently by Reissner and Nordström. Almost fifty years later the exact
solution of stationary axially symmetric spacetime was found by Roy Kerr.
This solution describes the geometry of rotating black hole. A few years
later Newman found the metric of charged rotating black hole. When Ein-
stein’s equations (1) are applied to The Universe as a whole one recovers
Friedman equations which tell us that the universe is expanding. The pho-
ton travelling through such spacetime suffers from cosmological redshift due
to the expansion. The universe is not perfectly homogenous and isotropic.
This feature is imprinted in temperature fluctuations of cosmic microwave
background radiation (CMBR). There are many effects that influence these
fluctuations such as Sunyaev-Zeldovich effect (scattering of CMB photons on
charged particles), Sachs-Wolfe effect (additional redshift(blueshift) due to
passage of CMB photon through local potentional well at the last scattering
surface), Rees-Sciama effect (additional frequency shift due to vakuola inho-
mogenity at redshifts z <

∼ 10). The last mentioned effect will be discussed in
details in Application section of this thesis.

General relativity is a very strong tool which is used to understand the
structure of the universe and the events in the vicinity of black hole hori-
zons, but this theory fails in the regimes of super strong gravity on Planck
scale lpl ∼ 10−35 m. There are now several attempts that seem to lead to
theory which works on scales of Planck lenght and which contain, as weak
field approximation, Einstein’s general relativity - The String Theories. It



is a multidimensional theory with one temporal dimension and nine spatial
dimensions (or ten dimensions in M-theory). Three of them are our famil-
iar width, height and depth and the remaining six (seven) are curled into
orbitfolds of size less than scale of nucleus. Recently, another approach of
dealing with additional dimensions was discovered - The Randall - Sundrum
braneworld scenario. In this model all matter fields are restricted on the
three dimensional space called brane while gravitation can propagate in ad-
ditional dimension which need not be curled into finite dimension but can
have infinite scale. On the brane, matter can collapse and form a black hole,
static or rotating. It was shown that the induced metric on the brane has, in
static spherically symmetric case, the form of Reissner - Nordström metric
or in the stationary axially symmetric case the form of the Kerr-Newman
geometry. In both cases the square of electric charge e2 is replaced by a
braneworld parameter called tidal charge delivering information about the
effect of bulk gravity on the brane.

The motion of the test particles and photons (or fluids) in 4D black-hole
spacetimes on the brane can thus be given in a simple form using the standard
black-hole solutions with an additional tidal charge parameter replacing the
squared charge parameter; however, negative values of the tidal charge are
possible and more realistic, leading to some new, unusual, phenomena. The
study of motion of photons in such spacetime is presented in the application
section of this thesis.

The presented thesis is devoted to some studies of the optical phenomena
in curved spacetimes and is concentrated in discussions of the influence of
the two most interesting new phenomena of recent cosmology, namely, the
tidal charge in the optical effects in strong gravitational field near black
hole horizon and the cosmological constant in the Rees-Sciama effect on the
CMBR. In all these studies, the optical effects are given by the geodesic
motion of photons.

The thesis is organised in the following way. In Part I - Preliminaries,
equations of the (geodetical) motion are given in the relevant spacetimes
(SdS, Friedman Universe, Einstein-Strauss-de Sitter vakuola model, and in
Kerr-Newman spacetimes that could be used to describe braneworld rotating
black holes) and then the basical optical effects are briefly summarized.

In Part II - Applications, we present in Chapter 2 a detailed discussion of
the braneworld Kerr black holes and the related optical phenomena, namely
escape cones structure, silhuette of the black hole, accretion disc images and
profilled lines of radiating rings. In Chapter 3 we present discussion of the
influence of the relict cosmological constant, indicated by a large variety of
cosmological tests, on the temperature fluctuations of the CMBR due to the
large galaxies (or their cluster) represented by the standard vakuola model.
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Chapter 1

Equations of motion and

optical effects

1.1 Geodesic equations

The equations of motion of test particles (photons) in Schwarzchild-de Sitter
spacetime and in Friedman expanding spacetime are discussed in the frame-
work of classical Einstein theory. The results are then used in discussion
of the influence of the positive cosmological constant Λ on the Rees-Sciama
effect in Chapter 3. Further we give the equations of motion of test particles
(photons) in the Kerr-Newman spacetime that can be used to describe the
spacetime of a rotating black hole formed on the 3-brane in the framework of
the braneworld scenario. The results are then used in Chapter 2 to discuss
the influence of tidal charge b which carries the information of bulk effects
on the brane.

The geodesic equation takes the form

Dkµ

dw
=

dkµ

dw
+ Γµ

αβk
αkβ = 0 (1.1)

with the normalization condition

gµνk
µkν = −m2 (1.2)

where kµ is 4-momentum of a particle (photon), w is affine parameter of
the geodesic, Γµ

αβ are componets of the affine connection, and m is the rest
energy of the particle. For photons m = 0.

The equations of motion in the particular spacetimes of interest are pre-
sented in the following subsections.
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8 CHAPTER 1. EQUATIONS OF MOTION AND OPTICAL EFFECTS

1.1.1 Schwarzchild - de Sitter geometry

The Schwarzchild - de Sitter geometry is static and spherically symmetric
solution of Einstein equations (1) with zero momentumm energy tenzor Tµν

and positive cosmological constant Λ. The line element in Schwarzchild co-
ordinates (t, r, θ, ϕ) has form

ds2 = −A2(r)dt2 + A−2(r)dr2 + r2(dθ2 + sin2 θdϕ2) (1.3)

where is

A2(r) = 1 − 2M

r
− Λ

3
r2. (1.4)

By introducing transformations r/M → r and ΛM2/3 = y we rewrite the
metric function (1.4) to form

A2(r) = 1 − 2

r
− yr2. (1.5)

The loci of horizons of Schwarzchild-de Sitter geometry are at radii which
satisfy equation A(r)2 = 0. For y < 1/27 there are two horizons, the black
hole horizon given by formula

rh =
2√
3y

cos
π + α

3
(1.6)

and cosmological horizon at

rc =
2√
3y

cos
π − α

3
(1.7)

where

α = cos−1(
√

27y). (1.8)

In case of y = 0 there is only one horizon at r = 3M and in case of y > 1/27
there are no horizons.

The geometry represented here by line element (1.3) does not depend on
time coordinate t and azimuthal coordinate ϕ. This imply that there exist
two killing vector fields; the timelike killing field ξµ = δµ

t and the spacelike
killing field ζµ = δµ

ϕ. Two constants of motion are tightly connected with
those killing fields. They are energy E of test particle relative to distant
observer given by expression

pµξ
µ = pt ≡ −E (1.9)
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and the azimuthal angular momentum Lz relative to distant observer given
by formula

pµζ
µ = pϕ ≡ Lz. (1.10)

From Lagrangian of freely falling particle

L =
1

2
gµν

dxµ

dw

dxν

dw
(1.11)

together with constants of motion (1.9) and (1.10) one arrives to equations
of motion of test particle, which read

pt =
dt

dw
= EA−2(r), (1.12)

pr =
dr

dw
= ±

(

E2 − V 2
eff

)1/2
, (1.13)

pθ =
dθ

dw
= ± 1

r2

(

L2 − Lz

sin2 θ

)1/2

, (1.14)

pϕ =
dϕ

dw
=

Lz

r2 sin2 θ
, (1.15)

where is

V 2
eff = A2(r)

(

m2 +
L2

r2

)

(1.16)

the effective potential and L is the third constant of motion the total angular
momentum. In case of null geodesics there is m = 0. There exist the third
importan radius in Schwarzchild-de Sitter spacetime, it is static radius rs. It
follows from the requirement that L = 0 and ∂V 2

eff = 0. Its value then reads

rs =
(

Λ

3M2

)−1/3

. (1.17)

At this radius the effect of cosmological repulsion, determined by positive
cosmological constant Λ, is balanced by gravity.

From the central symmetry of the geometry (1.3) it follows that the mo-
tion of test particles is restricted to central plane. Therefore the effective
potential (1.16) can be written as

V 2
eff = A2(r)

(

m2 +
L2

z

r2

)

. (1.18)
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The motion of test particles is now fully determined by the behaviour of
the effective potential (1.18) and equation (1.13) with this effective potential.

In case of photons we see from (1.13) that the affine parameter w can be
rescaled to affine parameter w′ = Ew. By introducing the impact parameter
b by relation

b =
Lz

E
, (1.19)

the equation (1.13) read

(pr)2 = 1 −A2(r)
b2

r2
. (1.20)

From the reality condition
(

dr
dw′

)2 ≥ 0 we see that the photon motion is
possible only in the regions where Veff ≤ 1. There is the critical value
of impact parameter b = bcrit which separates photon geodesics with one
turning point b < bcrit from those without a turning point b > bcrit. Its
value comes from conditions ∂V 2

eff/∂r = 0 and pr = 0 and reads

bcrit =

√

27

1 − 27y
. (1.21)

The test particle motion has been studied in series of papers [8, 10, 11, 12],
while the photon motion is discussed in [13, 76, 16, 78].

1.1.2 Friedman cosmological spacetimes

The homogenity and isotropy of spacetime at every point lead to Robertson
- Walker geometry which, in form of line element, reads

ds2 = −dT 2 +R2(T )
[

dχ2 + Σ2
k(χ)(dθ2 + sin2 θdϕ2)

]

. (1.22)

T is the time coordinate as measured on the clock of comoving observer,
R(T ) is the expansion parameter which is the function of time T only, and

Σk =











sinχ for k = +1
χ for k = 0

sinhχ for k = −1
(1.23)

Metric represented by line element (1.22) does not depend only on az-
imuthal coordinate ϕ, therefore there is only one motion constant, the az-
imuthal angular momentum Lz = pϕ. Equations of motion of a test particle
then read
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pT =
dT

dw
=

(

m2 +
p2

R2

)1/2

, (1.24)

pχ =
dχ

dw
= ± 1

R2

(

p2 +
L2

Σ2
k

)1/2

, (1.25)

pθ =
dθ

dw
± 1

R2Σ2
k

(

L2 − L2
z

sin2 θ

)1/2

, (1.26)

pϕ =
dϕ

dw
=

Lz

R2Σ2
k sin2 θ

. (1.27)

where three motion constants are given by relations

Lz = pϕ, (1.28)

L2 = p2
θ + p2

ϕ sin−2 θ, (1.29)

p2 = p2
χ + L2Σ−2

k (1.30)

where Lz(L) represent azimuthal(total) angular momentum.

1.1.3 Einstein–Strauss–de Sitter vakuola model

Figure 1.1: ESdS vakuola model. A schematic picture of a cluster repre-
sented as a sphericaly symmetric inhomogeneity immersed in the dust filled
Friedman universe. The observer O receives two photons coming through the
vakuola, and third one coming directly.

In the construction of the ESdS model with a Λ > 0, we remove a spher-
ical ball of dust of the mass M from the dust-filled universe and replace it
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by the Schwarzschild–de Sitter spacetime of the same mass M . Its expand-
ing boundary surface coincides at a fixed value of the comoving Robertson-
Walker (RW) coordinate χE = χb with expanding surface χ = χb = const
of the Friedman universe (see Fig.1.1). The Schwarzschild–de Sitter (SdS)
spacetime can be completely vacuum, i.e., a black-hole spacetime or it has
a spherical source represented by a part of an internal dusty Friedman uni-
verse with parameters different than those of the external Friedman universe
outside of the vacuum SdS spacetime, and characterized by χI < χE. For
simplicity, we shall not consider influence of the source of the internal part
of the ESdS vakuola model on the CMBR fluctuations.

In the standard Schwarzschild coordinates, the vacuum SdS spacetime of
mass M is described by the line element (1.3) and the Friedman universe is
described by the FRW geometry which in the comoving coordinates is given
by equation (1.22).

The RW metric describes the external Friedman universe at χ ≥ χE = χb,
while at χ < χb it is replaced by the expanding part of the SdS spacetime.
The particles with χ = χb follow radial geodesics of the SdS spacetime.

The evolution of the Friedman universe is given by the evolution of the
scale factor R and the energy density ρ in dependence on the cosmic time T .
The scale factor fulfils the Friedman equation

(

dR

dT

)2

=
8πρ

3R
+

Λ

3
R2 − k (1.31)

and the energy density ρ satisfies the energy conservation equation in the
form

8πρ

3
R3 = const = R0. (1.32)

In order to match the matching hypersurface on the Friedman side and
the Schwarzchild-de Sitter side it is necessary to synchronize the proper time
of a dust particle on the matching hypersurface (MH hereinafter) χ = χb as
measured from the both sides of the MH. Therefore, the proper time τ of a
test particle following the radial geodesic, as measured in the SdS spacetime,
must be equal to the cosmic time T , as measured in the FRW spacetime.
The junction conditions have the following form [8]

rb = R(T ) Σk(χb), R̃ = R0Σk(χb), R̃
√

R̃/2M = R0, (1.33)

where the parameter R̃ is related to the covariant energy Eb of the test
particles along the radial geodesic, representing the MH, by the relation

Eb =

√

1 − 2kM

R̃
. (1.34)
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The internal 3-geometry of the MH as measured from the FRW universe side
is given by the line element

ds2
+ = −dT 2 +R2(T ) Σ2

k(χb)
(

dθ2 + sin2 θ dφ2
)

. (1.35)

From the side of the SdS spacetime it is given by the line element

ds2
− = −dT 2 + r2

b(T )
(

dθ2 + sin2 θ dφ2
)

. (1.36)

Both geometries are identical due to the junction conditions. To show that
the construction of the Einstein–Strauss–de Sitter model is correct one has
to check whether the Einstein’s equations are satisfied at the matching hy-
persurface [9].

1.1.4 Kerr-Newman geometry

The geometry generated by rotating black hole (naked singularity) with elec-
tric charge e is the Kerr-Newman geometry. The line element of this geometry
in Boyer-Linquist coordinates read

ds2 = −
(

1 − 2Mr − e2

Σ

)

dt2 +
Σ

∆
dr2 + Σdθ2 +

A

Σ
dϕ2

−2
2Mr − e2

Σ
sin2 θdtdϕ, (1.37)

where

Σ = r2 + a2 cos2 θ, (1.38)

∆ = r2 − 2Mr + a2 + e2, (1.39)

A = (r2 + a2)2 − a2∆ sin2 θ. (1.40)

M is the mass parameter, a = J/M is the specific angular momentum and
e2 is the square if electric charge parameter.

In order to study the optical effects in Kerr-Newman spacetime, we have
to solve equations of motion of photons. In 1968 Brandon Carter derived,
using Hamilton-Jacobi formalism, differential equations of motion of test
particles in Kerr-Newman spacetime in terms of the first integrals.

The componets of metric tensor given by (1.37) do not depend on ϕ and
t coordinates and therefore the conjugate momenta
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kϕ = gϕνk
ν ≡ Φ, (1.41)

kt = gtνk
ν ≡ −E, (1.42)

are the integrals of motion. Brandon Carter found another integral of motion
K as a separation constant when solving Hamilton-Jacobi equation

gµν ∂S

∂xµ

∂S

∂xν
= 0, (1.43)

where he assumed the action S in separated form

S = −Et+ Φϕ+ Sr(r) + Sθ(θ). (1.44)

The equations of motion can be integrated and written separatelly in the
form

Σ
dr

dw
= ±

√

R(r), (1.45)

Σ
dθ

dw
= ±

√

W (θ), (1.46)

Σ
dϕ

dw
= − PW

sin2 θ
+
aPR

∆
, (1.47)

Σ
dt

dw
= −aPW +

(r2 + a2)PR

∆
, (1.48)

where

R(r) = P 2
R − ∆K, (1.49)

W (θ) = K −
(

Pw

sin θ

)2

, (1.50)

PR(r) = E(r2 + a2) − aΦ, (1.51)

PW (θ) = aE sin2 θ − Φ. (1.52)

It is usefull to introduce integral of motion Q by the formula

Q = K − (E − aφ)2. (1.53)

Its relevance comes from the fact that in the case of astrophysically most
important motion in the equatorial plane (Θ = π/2) there is Q = 0.
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1.2 Optical Effects

We breefly present definitions of four optical phenomena astrophysically im-
portant in the study of the influence of spacetime geometry on radiation
passing through it. They are frequency shift of the photon, focusing of the
photon beam and silhuette of the black hole.

1.2.1 Escape cones

The optical phenomena related to accretion processes in the field of rotating
black holes could be efficiently studied by using the notion of light escape
cones of local observers (sources) that determine which portion of radiation
emitted by a source could escape to infinity and, complementary, which por-
tion is trapped by the black hole [52].

1.2.2 Frequency shift of a photon

The frequency shift g can be expressed as the ratio of observed photon energy
Eo to emitted photon energy Ee that yields

g =
Eo

Ee

=
(ko)µu

µ
o

(ke)µu
µ
e
, (1.54)

where (ko)µ((ke)µ) are covariant components of photon 4-momentum taken at
the event of observation (emission) and uµ

o (uµ
e ) are contravariant components

of the 4-velocity of the observer (emitter). The particular form of frequency
shift g depends, of course, on the 4-velocity of observer (emitter) in spacetime
of interest.

1.2.3 Focusing of the photon beam

In particular there are two ways of dealing with focusing of the photon beams.
The first method is based on simultaneous solution of geodesic equation and
geodesic deviation equation. Two initially orthonormal 4-vectors Y µ

1 and
Y µ

2 are paralelly transported along geodesic from an observer at infinity to
the point of emission. The ratio of proper area of the light tube at infinity
to the area given by transported 4-vectors at point of emission give us the
focusing of the photon beam. This method is very important in situations
when photon beam passes through the material with nonzero opacity. In the
application presented in this thesis the second method based on calculation
of solid angle which the element of radiating surface subtends in the frame of
distant observer is used. Let an observer be located at the distance d0 from
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the source. The solid angle dΠ can be expressed in terms of observer’s plane
coordinates [ᾱ, β̄]

dΠ =
1

d2
o

dᾱdβ̄. (1.55)

In particular spacetime, the coordinates [ᾱ, β̄] are functions of impact pa-
rameters λ and q. The solid angle element then reads

dΠ =
1

d2
o

∣

∣

∣

∣

∣

∂(ᾱ, β̄)

∂(λ, q)

∣

∣

∣

∣

∣

dλdq.. (1.56)

This enables computing of light curves and profiled spectral lines.

1.2.4 Silhuette of a black hole on bright background

In principle, it is of astrophysical importance to consider a black hole in
front of a source of illumination whose angular size is large compared with
the angular size of the black hole [22]. A distant observer will see a silhuette
of the black hole, i.e., a black hole in the larger bright source. The rim of the
black hole silhuette corresponds to photon trajectories spiralling around the
black hole many times before they reach the observer. Of course, the shape of
the silhuette enables, in principle, determination of the black hole parameters.
But we have to be aware of the strong dependency of the silhuette shape on
the observer viewing angle; clearly, the shape will be circular for observers
on the black hole rotation axis, and its deformation grows with observer
approaching the equatorial plane.

The silhuette can be treated as the complement of the light escape cone
as shown later.
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Chapter 2

Braneworld Kerr black holes

String theory and M-theory describing gravity as a truly higher-dimensional
interaction becoming effectively 4D at low-enough energies inspired studies
of the braneworld models, where the observable universe is a 3-brane (do-
main wall) to which the standard model (non-gravitational) matter fields are
confined, while gravity field enters the extra spatial dimensions the size of
which may be much larger than the Planck length scale lP ∼ 10−33 cm [18].
Gravity can be localized near the brane at low energies even with a non-
compact, infinite size extra dimension with the warped spacetime satisfying
the 5D Einstein equations with negative cosmological constant [47].

Significant deviations from the Einstein gravity occur at very high ener-
gies in vicinity of compact objects (see e.g., [42, 34, 17]). The high-energy
effects produced by the gravitational collapse are disconnected from the out-
side space by the horizon, but they could have a signature on the brane, in-
fluencing properties of black holes [42]. There are high-energy effects of local
character influencing pressure in collapsing matter The non-local corrections
of ”back-reaction“ character arise from the influence of the Weyl curvature
of the bulk space on the brane - the matter on the brane induces Weyl curva-
ture in the bulk which makes influence on the structures on the brane due to
the bulk gravitation stresses [42, 28]. The combination of high-energy (local)
and bulk stress (non-local) effects alters significantly the matching problem
on the brane, as compared to the 4D Einstein gravity; for spherical objects,
matching no longer leads to a Schwarzchild exterior in general [28, 34]. The
Weyl stresses induced by bulk gravitons imply that the matching conditions
do not have unique solution on the brane; in fact, knowledge of the 5D Weyl
tensor is needed as a minimum condition for uniqueness [34]. However, re-
cently no exact 5D solution is known. Assuming spherically symmetric metric
induced on the 3-brane the effective gravitational fied equations of vacuum
type in both the brane and bulk can be solved, giving a Reissner-Nordström

19
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static black hole solutions endowed with a ”tidal” charge parameter b [28],
instead of the standard electric charge parameter e2 [45]. The tidal charge
reflects the effects of the Weyl curvature of the bulk space, i.e., from the
5D gravitation stresses [28, 42] with bulk gravitation tidal effects giving the
name of the charge. Note that the tidal charge can be both positive and neg-
ative, and there are some indications that the negative tidal charge should
properly represent the “back-reaction“ effects of the bulk space Weyl tensor
on the [42, 28, 66]

The stationary and axisymmetric solution of the constrained equations
describing rotating black holes localized in the Randall-Sundrum braneworld
were derived in [17]. The solutions are determined by metric tensor of the
Kerr-Newman form with a tidal charge describing the 5D correction term
generated by the 5D Weyl tensor stresses. The tidal charge has an “electric”
character and arises due to the 5D gravitational coupling between the brane
and the bulk, reflected on the brane through the “electric” part of the bulk
Weyl tensor [17], in analogy with the spherically symmetric black-hole case
[28]. When the electromagnetic field is introduced, the non-vacuum solutions
of the effective Einstein equations on the brane are much more complex in
comparison with the standard Kerr-Newman solutions [17].

Here we consider optical phenomena in the Kerr-Newman type of solu-
tions describing the brany rotating (Kerr) black holes with no electric charge,
since in astrophysically relevant situations the electric charge of the black
hole must be exactly zero, or very small [45]. Then the results obtained in
analysing the behaviour of test particles and photons or test fields around the
Kerr-Newman black holes could be used assuming both positive and negative
values of the brany tidal parameter b (used instead of the charge parameter
e2).

The information on the properties of strong gravitational fields in vicinity
of compact objects, namely of black holes, is encoded into optical phenomena
of different kind that enable us to make estimates of the black hole param-
eters, including its tidal charge, when predictions of the theoretical models
are confronted with the observed data. From this point of view, the spectral
profiles of accretion discs around the black holes in galactic binaries, e.g., in
microquasars, are most promising [44], along with profiled spectral lines in
the X-ray flux [21, 57, 41, 43, 67, 48, 33, 65, 68, 69]. Important information
could also be obtained from the quasiperiodic oscillations observed in the X-
ray flux of some low-mass black hole binaries of Galactic origin [70, 50], some
expected intermediate black hole sources [71], or those observed in Galactic
nuclei [19, 20]. The most promising orbital resonance model then enables rel-
ative exact measurement of the black hole parameters [63, 61, 62] that should
be confronted with the predictions of the optical modelling [44]. In the case
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of our Galaxy centre black hole Sgr A∗, we could be able to measure the
detailed optical phenomena, as compared with the other sources, since it is
the nearest supermassive black hole with mass estimated to be ∼ 4× 106M⊙
[72], enabling us to measure the ”silhuette“ of the black hole and other subtle
GR phenomena in both weak and strong field limits [26, 73, 52].

We present an introductory study on the role of the brany tidal charge pa-
rameter in the optical phenomena related to profiled spectral lines generated
by thin radiating tori in the brany Kerr black-hole backgrounds. Of course,
for b > 0, the results hold as well for standard Kerr-Newman spacetimes due
to the correspondence b→ e2 with e2 being the squared charge parameter of
the Kerr-Newman black hole. We use here the transfer function method [21]
which seems to be the most appropriate in our problem. The line profiles
are determined in dependence on the viewing angle θ0 and the ring radius
re, which is assumed to be located in the inner part of a thin accretion disc.
Specially, it is assumed near marginally stable orbit rms and in the orbit cor-
responding to the resonance radius r3:2 where the ratio of vertical and radial
epicyclic frequencies is ∼ 3/2, corresponding to the QPOs frequency ratios
commonly observed in microquasars [63, 62].

2.1 The effective gravitational equations

The 5D Einstein equations in the bulk spacetime have the form [53, 28]

(5)GAB = (5)RAB − 1

2
gAB

(5)R

= −Λ5gAB + κ2
5

(

(5)TAB +

√

h

g
τABδZ

)

, (2.1)

where κ2
5 = 8πG5 (G5 being the bulk gravitational constant), Λ5 is the

bulk cosmological constant (assuming anti-de Sitter geometry), (5)TAB is
the energy-momentum tensor in the bulk, τABis the energy-momentum ten-
sor on the brane, h and g being metric determinants of hαβ and gAB, and the
bulk spacetime is expressed in the form

gAB = nAnB + hαβe
α
Ae

β
B. (2.2)

Here, nA is the unit vector orthogonal to the brane and eα
A represents local

frame of four-vectors; the induced metric on the brane

hαβ = gABe
A
αe

B
β . (2.3)
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The effective Einstein gravitational equations (EGE) on the brane could
then be given by using the Israel junction method generalized to 5D situation.
The gravitational field equations on the brane take the form [53]

Gαβ = −Λhαβκ
2
4Tαβ + κ4

5Sαβ −Wαβ − 3κ2
5Uαβ. (2.4)

The traceless tensor

Wαβ = Aαβ − 1

4
hαβA (2.5)

is constructed from the ”electric” part of the bulk Riemann tensor

Aαβ = (5)RABCDn
AnCeB

α e
D
β , A = hαβA

αβ. (2.6)

The cosmological constant on the brane

Λ =
1

2

(

Λ5 +
1

6
κ4

5λ
2 − κ2

5P
)

, (2.7)

where

P = (5)TABn
AnB (2.8)

is the normal compressive pressure term in the 5D spacetime, and 4D gravi-
tational constant is related to the brane tension λ by the relation

κ2
4 =

1

6
κ4

5λ. (2.9)

The ”squared energy-momentum“ tensor is given by

Sαβ = −1

4

[(

T γ
αTγβ − 1

3
TTαβ

)

− 1

2
hαβ

(

TγδT
γδ − 1

3
T 2
)]

, (2.10)

while the traceless brany part of the bulk energy-momentum tensor is

Uαβ = −1

3

(

(5)Tαβ − 1

4
hαβh

γδ (5)Tγδ

)

. (2.11)

In the effective 4D EGE (2.4)-(2.11), Wαβ describes non-local gravita-
tional effects of the bulk space onto the brane and is sometimes called Weyl
fluid, while the local bulk effects on the brane are given by Sαβ, Uαβ and P .

It should be stressed that the self-consistent solutions of the effective
4D EGE (2.4)-(2.11) on the brane require the knowledge of the non-local
gravitational and energy-momentum terms coming from the bulk spacetime.
Therefore, the brany field equations are not closed in general and evolution
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equations into the bulk have to be solved for the projected bulk curvature and
energy-momentum tensors. However, in particular cases the brany-equations
system could be made closed assuming a special ansatz for the induced met-
ric. In this way, both spherically symmetric [28] and axially symmetric brany
black hole spacetimes [17] have been found. Assuming vacuum bulk and
brany spacetimes, the non-local gravitational effects of the bulk could be
simply represented by the so called tidal charge entering the standard metric
of the black hole spacetimes.

The rotating black holes localised on a 3-brane in the Randall-Sundrum
braneworld model were derived under the assumption of stationary and ax-
isymmetric Kerr-Schild metric on the brane and supposing empty bulk space
and no matter fields on the brane (Tαβ = 0) [17]. The specialized solution of
the constrained equations is thus assumed in the form

ds2 = ηµνdx
µdxν +H(lidx

i)2. (2.12)

The effective 4D Einstein equations then reduce to the form

Rαβ = −Eαβ, (2.13)

where

Eαβ = (5)CABCDn
AnBeC

α e
D
β (2.14)

is the electric part of the 5D Weyl tensor, used besides the Wαβ tensor to
describe the non-local gravitational effects of the bulk space onto the brane.
Further, the relations

Λ5 = − 6

l2
, G4 =

G5

l
(2.15)

can be deduced from Eqs (2.7) and (2.9), assuming zero cosmological constant
on the brane (Λ4 = 0). Here,

l =
6

λκ2
5

(2.16)

is the curvature radius of the anti-de Sitter spacetime. (Henceforth we set
G4 = 1.)
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2.2 Photon motion in the braneworld Kerr

spacetimes

The metric of rotating blackhole formed on the brane has analogical form
as the Kerr-Newman metric (1.37), where the squared electric charge e2 is
replaced by tidal charge b [45].

The stress tensor on the brane Eµν takes the form

E t
t = −E ϕ

ϕ = − b

Σ3
[Σ − 2(r2 + a2)] (2.17)

E r
r = −E θ

θ = − b

Σ2
(2.18)

E t
ϕ = −(r2 + a2) sin2 θE ϕ

t = −2ba

Σ3
(r2 + a2) sin2 θ (2.19)

that is fully analogical (b→ e2) to the components of electromagnetic energy-
momentum tensor for the Kerr-Newman spacetimes in Einstein’s general rel-
ativity [17]. For simplicity, we put M = 1 in the following, using thus dimen-
sionless coordinates and parameters. The tidal charge can be both positive
and negative; however, there are some indications favorizing negative values
of b [28, 42]. Note that in the case of b < 0, some brany black holes have
the ring singularity of spacelike character [28]. The geodetical motion in the
braneworld Kerr spacetimes is given by the standard Carter equations (1.45)
– (1.48).

Having particular geometry, which does not depend on azimuthal ϕ nor
temporal t coordinates, the radial and latitudinal motion has to be discussed.

The photon motion (with fixed constants of motion E, Φ, Q) is allowed
in regions where R(r;E,Φ, Q) ≥ 0 and W (θ;E,Φ, Q) ≥ 0. The conditions
R(r;E,Φ, Q) = 0 and W (θ;E,Φ, Q) = 0 determine turning points of the
radial and latitudinal motion, respectively, giving boundaries of the region
allowed for the motion. Detailed analysis of the θ-motion can be found in
[24, 29], while the radial motion was analysed (with restrictions implied by
the θ-motion) in [56] and [55]. Here we extend this analysis to the case of
b < 0.

The radial and latitudinal Carter equations read

Σ2

(

dr

dw′

)2

= [r2 + a2 − aλ]2 − ∆[L − 2aλ+ a2], (2.20)

Σ2

(

dθ

dw′

)2

= L + a2 cos2 θ − λ2

sin2 θ
(2.21)
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where we have introduced impact parameters

λ =
Φ

E
, (2.22)

L =
L

E2
=
Q+ Φ2

E2
= q + λ2, (2.23)

and rescaled the affine parameter by w′ = Ew. We assume a > 0.
The reality conditions (dr/dw′)2 ≥ 0 and (dθ/dw′)2 ≥ 0 lead to the

restrictions on the impact parameter L

Lmin ≤ L ≤ Lmax, (2.24)

where

Lmax ≡ (aλ− 2r + b)2

∆
+ r2 + 2r − b, (2.25)

and

Lmin ≡
{

λ2 for |λ| ≥ a,
2a|λ| − a2 for |λ| ≤ a.

(2.26)

The upper(lower) constraint, Lmax(Lmin), comes from the radial-motion (latitudinal-
motion) reality condition. The properties of the photon motion are deter-
mined by the behaviour of the surface Lmax(r;λ, a, b), as given by (2.25). The
extrema of the surface Lmax (giving spherical photon orbits) are determined
by

λ = λ+ ≡ r2 + a2

a
, (2.27)

λ = λ− ≡ r2 − br − a2 − r∆

a(r − 1)
. (2.28)

The values of Lmax at these extreme points are given by

Lmax(λ+) ≡ L+ = 2r2 + a2, (2.29)

Lmax(λ−) ≡ L− =
2r(r3 − 3r + 4b) + a2(r + 1)2

(r − 1)2
. (2.30)

The character of the extrema follows from the sign of ∂2Lmax/∂r
2. One finds

that
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∂2Lmax

∂r2
=

8r2

∆
, for λ = λ+, (2.31)

∂2Lmax

∂r2
=

8r2

∆
− 8r

(r − 1)2
, for λ = λ−. (2.32)

Clearly, there are only minima of Lmax along for λ = λ+, corresponding to
unstable spherical orbits.

Figure 2.1: Left: classification of Kerr spacetime in braneworld universe
according to the values of a2 + b, b and next (the number of local extrema
of the curves λ̃±, which is also the number of circular photon orbits in the
equatorial plane). The classification regions are: I) for a2 + b ≤ 1 and
next = 2, II) for a2 + b ≤ 1 and next = 4, III) a2 + b > 1 and b < 1 and
next = 2, IV) for a2 + b > 1 and b > 1 and next = 2, V) for a2 + b > 1 and
next = 0, VI) for a2 + b > 1 and b < 1 and next = 4, VII) for a2 + b > 1 and
b > 1 and next = 4. Right: zoom of the area in the dashed rectangle of the
left plot, to cover regions VI and VII.

Further, we have to determine where the restrictions given by the latitu-
dinal motion Lmin meet the restrictions on the radial motion Lmax. We find
that Lmax = λ2 (for |λ| ≥ a) is fullfilled where

λ = λ̃± ≡ a(b− 2r ± r2
√

∆)

r2 − 2r + b
, (2.33)

while Lmax = 2a|λ| − a2 (for |λ| < a) is fullfilled where

λ = λ̄ ≡ 1

∆
[4r − r2 − 2b− a2 + 2

√

∆(b− 2r)]. (2.34)
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The extreme points of curves λ̃±, which are also the intersection points
of these curves with λ−, are determined by the equation

f(r; a, b) ≡ r4 − 6r3 + (9 + 4b)r2 − 4(3b+ a2)r + 4b(b+ a2) = 0. (2.35)

The equation f(r; a, b) = 0 determines loci of the photon equatorial circular
orbits; in an implicit form the radii are given by the condition

a2 = a2
ph±(r; b) =

r2(r − 3)2 + 4b(r2 − 3r + b)

4(r − b)
. (2.36)

The maxima of the curve λ̄, which also determine the intersections of curves
λ̄ and λ− are located on r satisfying the equation

2r3 − (3 + b)r2 + 2br + a2 = 0. (2.37)

The braneworld Kerr spacetimes can be classified due to the properties
of the photon motion as determined by the behaviour of the functions λ±,
λ̃±, λ̄. The classification is governed by their divergences (i.e., by existence
of the horizons) and the number of local extrema determining equatorial
photon circular orbits nex. There exist seven classes of the braneworld Kerr
spacetimes, with the criteria of separation being a2+b <

>1, b <
>1 and nex . The

classification is represented in Figure 2.1. There are two different classes of
the black-hole spacetimes, differing by the presence of the photon circular
orbits under the inner horizon. However, in the astrophysically relevant
region outside the outer horizon, both the classes are of the same character,
having two unstable equatorial photon circular orbits, one corotating (at rph1)
and the other counter-rotating (at rph2 > rph1). The tidal charge b introduces
no qualitatively new feature into the behaviour of photon motion in the Kerr
spacetimes, but the quantitative impact of b < 0 with high magnitude are
quite relevant, as shown in next sections. All the braneworld Kerr black
holes with tidal charge b < 0 belong to the class II discussed in the case
of standard Kerr-Newman spacetimes [55]. We illustrate in Figures 2.2-2.4
functions λ±, λ̃± and λ̄ for such a black hole spacetime with parameters
a = 0.9 and b = −1.0. In this case typical for braneworld Kerr black hole
with b < 0 there exist ten significiant values of λ as given in Figures 2.2 -
2.4.

For each interval of λ as determined by the sequence of λA - λJ introduced
in Figure 2.2, there exists a characteristic type of behaviour of the restrict-
ing ”radial” function Lmax and its relation to the ”latitudinal” restricting
function Lmin. They can be found in [55] and will not be repeated here.
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Figure 2.2: The graphs of the λ±, λ̃± and λ̄ functions are plotted for repre-
sentative values of the parameters a = 0.9 and b = −1.0. The two dashed
rectangle areas labeled with numbers 1 and 2 are zoomed in the following fig-
ures. The horizontal gray dashed lines represent special values of the impact
parameter λ, denoted according to the text as λA...λJ .

The allowed values of the impact parameter L lie between the limiting
functions Lmin and Lmax. If the minimum Lmin

max ≡ Lmax(rmin, λ0) of the
limiting function Lmax is less than the value of the limiting function Lmin,
an incoming photon (kr < 0) travelling from infinity will return back for all
values of L0 ∈ [Lmin;Lmax]. If Lmin

max > Lmin, the incoming photon (kr <
0) travelling from infinity returns back if its impact parameter L0 satisfies
the condition L0 ≥ Lmin

max and is captured by the black hole if L0 < Lmin
max.

The minimum Lmin
max determines (with the particular value of λ) a photon

spherical orbit, i.e., a sphere where photons move with r = const but with
varying latitude θ (and, of course, varying ϕ). When the condition L0 = Lmin

is satisfied simultaneously, the spherical photon orbit is transformed to an
equatorial photon circular orbit. Photons with L0 = Lmin

max coming from
distant regions or regions close to the black hole horizon will wind up around
the photon sphere.
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Figure 2.3: Left figure is the zoom of dashed area labelled 1 in previous
figure. Right figure is the zoom of dashed area labelled 2 in previous figure.
The dashed rectangle area here is zoomed in the next figure.
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Figure 2.4: The zoom of the dashed rectangle area in previous figure.

2.3 Photon escape cones

From the knowledge of properties of radial and latitudinal motion of photon
in braneworld geometry one may construct photon escape cone relative to
particular observer (emitter).

2.3.1 Local frames of stationary and free-falling ob-

servers

We consider three families of stationary frames, namely LNRF (Locally
Nonrotatig Frame), SF (Static Frame) and GF±(Circular Geodesic Frame)
and one non-stationary frame, namely RFF (Radially Falling Frame). The
LNRF are of highest physical importance since the physical phenomena take
the simplest form when expressed in such frames, because the rotational
spacetime effects are maximally suppressed there [22, 45]. The GF± are
directly related to Keplerian accretion discs in the equatorial plane of the
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spacetime, both corotating and counterrotating, while RFF are related to
free-falling spherical accretion. The SF are fixed relative to distant observers.
The GF± and RFF are geodetical frames, while SF and LNRF are generally
accelerated frames.

The radial and latitudinal 1-forms of the three stationary frame tetrads
are common for all three stationary cases and read

ω(r) =
{

0,
√

Σ/∆, 0, 0
}

, (2.38)

ω(θ) =
{

0, 0,
√

Σ, 0
}

. (2.39)

LNRF correspond to observers with Φ = 0 (zero angular momentum ob-
servers). Their time and azimuthal 1-forms read

ω(t) =







√

∆Σ

A
, 0, 0, 0







, (2.40)

ω(ϕ) =







−ΩLNRF

√

A

Σ
sin θ, 0, 0,

√

A

Σ
sin θ







. (2.41)

where

ΩLNRF =
a(2Mr − b)

A
(2.42)

is the angular velocity of LNRF as seen by observers at infinity.
The tetrad of SF corresponding to observers with Ω = 0 ,i.e. static

relative to observers at infinity, is given by the formulae

ω(t) =







√

1 − 2r − b

Σ
, 0, 0,

a(2r − b) sin2 θ
√

Σ2 − (2r − b)Σ)







, (2.43)

ω(ϕ) =

{

0, 0, 0,

√

∆Σ

Σ − (2r − b)
sin θ

}

. (2.44)

The GF± observers move along ϕ-direction in the equatorial plane with
velocity VGF±(+...corotating, -...counterrotating) relative to the LNRF and
with angular velocity Ω relative to the static observers at infinity given by
[][SK]

Ω± = ±
√
r − b

r2 ± a
√
r − b

. (2.45)
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The velocity VGF± is given by

VGF± = ±(r2 + a2)Y ∓ a(2r − b)√
∆(r2 ± aY )

. (2.46)

where Y =
√
r − b. The standard Lorentz transformation of the LNRF

tetrad gives the tetrad of GF± in the form

ω
(t)
± =

{

r2 − 2r + b± aY

Z±
, 0, 0,∓(r2 + a2)Y ∓ a(2r − b)

Z±

}

, (2.47)

ω
(ϕ)
± =







∓
√

∆Y

Z±
, 0, 0,

√

∆(r2 ± aY )

Z±
,







(2.48)

where

Z± = r
√
r2 − 3r + 2b± 2aY . (2.49)

Note that the GF± family is restricted to the equatorial plane, while LNRF
are defined at any θ.

The RFF observers have velocity

VRFF = {V (r), V (θ), V (ϕ)} (2.50)

as measured in LNRF . The radially free-falling (or free-escaping) observers
starting (finishing) at infinity move with θ = const. Using the results of
[58], we find the velocity components of the free-falling frames in the LNRF
frames

V (r) = ±
√

1 − Σ∆

A
, (2.51)

V (θ) = 0, (2.52)

V (ϕ) = 0. (2.53)

Clearly, the free-falling (free-escaping) observers move only radially in the
LNRF , in analogy to particles radially moving in static frames of the Schwarzchild
spacetimes. For the radially free-falling sources, the tetrad components ω(θ)

and ω(ϕ) coincide with those of the LNRF tetrad, while ω(t) and ω(r) are
transformed. The local Lorentz transformation of the LNRF to the RFF±
tetrad yields
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ω
(t)
± =







γ
∆Σ

A
,∓
√

Σ

∆
V, 0, 0







, (2.54)

ω
(r)
± =







∓γ
√

∆Σ

A
V,

√

Σ

∆
γ, 0, 0







, (2.55)

ω
(θ)
± = {0, 0,

√
Σ, 0}, (2.56)

ω
(ϕ)
± =







−ΩLNRF

√

A

Σ
sin θ, 0, 0,

√

A

Σ
sin θ







. (2.57)

2.3.2 Construction of escape cones
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Figure 2.5: Definition of directional angles α0, β0 and γ0 in a local frame.
Vectors ~er, ~eθ, ~eϕ are the basic tetrad vectors. Position of the observer

(source) is given by the coordinates (r0, θ0). Vector ~k represents a photon as

observed by the observer in the given tetrad and vector ~k′ is its projection
into the plane ( ~eθ, ~eϕ).

For each direction of emission in the local frame of a source, there is a
corresponding pair of values of the impact parameters λ and L which can be
related to the directional cosines of the photon trajectory in the local frame
at the position of the source. Of course, the analysis of the turning points
of the radial motion of photons, presented in the previous section, is crucial
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in determining the local escape cones as the boundary of the escape cone is
given by directional angles related to spherical photon orbits.

Projection of a photon 4-momentum ~k onto the local tetrad of an observer
is given by the formulae

k(t) = −k(t) = 1, (2.58)

k(r) = k(r) = cosα0, (2.59)

k(θ) = k(θ) = sinα0 cos β0, (2.60)

k(ϕ) = k(ϕ) = sinα0 sin β0, (2.61)

where α0, β0 are directional angles of the photon in the local frame (see Figure
2.5) and cos γ0 = sinα0 sin β0. In terms of the local tetrad components of
the photon 4-momentum and the related directional angles, the conserved
quantities, namely, the azimutal momentum Φ, energy E and K read

Φ = kϕ = −ω(t)
ϕk

(t) + ω
(r)

ϕk
(r) + ω

(θ)
ϕk

(θ) + ω
(ϕ)

ϕk
(ϕ), (2.62)

E = −kt = ω
(t)

tk
(t) − ω

(r)
tk

(r) − ω
(θ)

tk
(θ) − ω

(t)
ϕk

(ϕ), (2.63)

K =
1

∆

{

[E(r2 + a2) − aΦ]2 − (Σkr)2
}

. (2.64)

The impact parameters λ and L defined by relations (2.22) and (2.23) are thus
fully determined by any double, D, of angles from the set M = [α0, β0, γ0].

Having defined the source frame, we can construct light escape cones
assuming fixed coordinates of the source r0, θ0. Their construction proceedes
in the following steps:

• for given D, say D = [α0, β0], we calculate λ = λ(α0, β0),

• λ determines the behaviour of Lmax = Lmax(r;λ),

• from the analysis presented in the previous section we calculate mini-
mum of Lmax, which reads Lmin

max = Lmax(rmin;λ),

• we search for such a double D which satisfies equation L0(α0, β0) =
Lmax(rmin;λ).

Here, we present in detail the construction of light escape cones in particu-
lar case of the LNRF . The procedure is analogous for the other stationary
frames and simply modified for the free-falling frames, being radius depen-
dent.
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Figure 2.6: Left. The functions Lmax and Lmin = λ2
0 are plotted together with

representative constant functions L1 and L2 to demonstrate the construction
of the photon escape cone. Right. The intersections of Lmax(γ0) with λ2(γ0)
give the interval of relevant values of γ0 ∈ [γmin; γmax].

The impact parameter λ expressed in terms of the angle γ0, related to
the LNRF , reads

λ0 =
1

ΩLNRF0 + Σ0

√
∆0

A0 sin θ0 cos γ0

, (2.65)

where index ’0’ refers to the frame with coordinates [r0, θ0]. The minimum
of Lmax is located at

rmin =

{ √
aλ− a2 for λ ≥ λG = a

1 − k1

k2
+ k2

3
for λ < λG = a

(2.66)

where

k1 = a2 + 2b+ aλ− 3, (2.67)

k2 =
{

27(1 − a2 − b) + 2
√

3
√

27(1 − a2 − b)2 + k3
1

}1/3

. (2.68)

The relevant values of L lie between Lmax and Lmin determined by Eqs (2.25)
and (2.26). The intersections of functions Lmax = Lmax(γ0) and Lmin(γ0) give
the relevant interval of angles γ ∈ [γmin, γmax] (see Figure 2.6). For each γ
from [γmin, γmax] we calculate minimal value of the photon impact parameter
L for which the photon reaches the turning point rmin and escapes to infinity.
This minimal value is the minimum of Lmax which is located at rmin, eg.
Lmax = Lmax(rmin;λ0(γ0), a, b), where rmin is given by (2.66). Now we can
calculate the value of α0 using equation
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cosα0 =
k(r)

k(t)
=
ω

(r)
LNRFµk

µ

ω
(t)
LNRFµk

µ
. (2.69)

We arrive to the formula

cosα0 = ±
√

A0

√

(r2
0 + a2 − aλ0)2 − ∆0(Lmin

max − 2aλ0 + a2)

−a(a sin2 θ0 − λ0)∆0 + (r2
0 + a2)(r2

0 + a2 − aλ0)
, (2.70)

where A0 = A(r0, θ0), ∆0 = ∆(r0) and Lmin
max = Lmax(rmin;λ0, a, b). The

angle β0 can be calculated from the formula (2.61). In this way we obtain
angles from the arc β0 ∈ 〈−π/2;π/2〉. The remaining arc β0 ∈ 〈π/2; 3π/2〉
can be obtained by turning the arc β0 ∈ 〈−π/2;π/2〉 around the symmetry
axis determined by angles β0 = −π/2 and β0 = π/2. This procedure can
be done because photons released under angles β0 and π− β0 have the same
constants of motion. Clearly, for sources under the radius corresponding
to the corotating equatorial photon circular orbit, only outward directed
photons with no turning point of the r-motion can escape. With radius of
the source approaching the event horizon (r0 → r+), the escape cone shrinks
to infinitesimal extension, except the case of extreme black hole [22]. For the
other frames considered here, the procedure of the related light escape cone
construction can be directly repeated, but with the relevant tetrad 1-form
components being used in the procedure.

2.3.3 Light escape cone - effect of tidal charge b

In order to reflect properly the effect of the tidal charge b on the escape cone
structure, we shall give the cones for black hole sequences of two kind: first
we keep the spin a fixed and change b, second we keep fixed ”distance” to the
extreme black hole states, i.e., a2 + b is fixed, and both a and b are changed.
The positive tidal charges have tendency to slightly increase the asymmetry
of the cones as compared with b = 0 case, keeping its character similar to the
case of Kerr black holes (see next section). Therefore, we focus our attention
to the influence of negative tidal charges.

Behaviour of the LNRF escape cones in dependence on the braneworld
parameter b (and the spin a) is represented in Figures 2.7 and 2.8. The
complementary trapped cones, corresponding to photons captured by the
black hole, are shaded.
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Figure 2.7: Light escape cones as seen by LNRF in the vicinity of the
braneworld kerr black hole. Top set of images is plotted for radial coordinate
of emitter re = 6M and bottom set for re = 20M . The rotational parameter
a = 0.9981 is fixed and the representative values of the braneworld parameter
b are 0 (left), −1 (middle) and −3 (right). The shaded area represents
photons captured by black hole.

At a fixed radius expressed in units of M the extension of the trapped
cone grows with descending of b to higher negative values and fixed spin a
and mass M , demonstrating thus the growing gravitational pull of the black
hole due to growing magnitude of the negative braneworld parameter.

The same statement holds also in the case of extreme Kerr black holes,
when a grows and b descends, whileM is fixed. Clearly, the positive braneworld
parameters have tendency to increase the asymmetry of the cones, while
the negative ones symmetrize the escape cones with growing of |b|. On the
other hand, the asymmetry of the escape cone grows with descending of b
for extreme black holes (Figure 2.8). Further, we represent the influence of
the braneworld parameter on the escape cones for the circular (corotating)
geodesic frames in Figure 2.9. Assuming astrophysically relevant sources in
Keplerian accretion discs, their orbits must be located above the marginally
stable orbit rms, determined implicitly by the condition [17, 60]
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Figure 2.8: Light escape cones as seen by LNRF in the vicinity of the
extreme braneworld kerr black hole. Top set of images is plotted for ra-
dial coordinate of emitter re = 6M and bottom set for re = 20M . The
representative rotational and braneworld parameters [a2,b] are [1.0,0.0](left),
[2.0,−1.0](middle) and [4.0,−3.0](right). The shaded area represents photons
captured by black hole.

a = ams(r; b) ≡
4(r − b)3/2 ∓ r

√

3r2 − 2r(1 + 2b) + 3b

3r − 4b
. (2.71)

Therefore, we construct the escape cones for observers at r = rms(a, b) and
at fixed radii. In the sequence of black holes with fixed spin a = 0.9981
(Figure 2.9) we include also a subsequence of escape cones constructed at
the same relative distance from the black hole horizon in order to better
illustrate the role of the tidal charge b. In the sequence of near-extreme
black holes with a2 + b = 0.9999 (Figure 2.10) the third sequence is not
necessary as the black hole horizon is fixed at rh = 1.01M . Figures 2.9 and
2.10 demonstrate that the trapped cone expands as the tidal charge descends
to lower negative values, both for black holes with fixed spin a and for near-
extreme holes. On the other hand, considering the cones at rms we can
conclude that the descending tidal charge (b < 0) symmetrizes their shape
for fixed a, but makes them strongly asymmetric for near-extreme black holes
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Figure 2.9: Escape cones of GF+ observers. Top images are plotted for
observer (emitter) at r = rms, middle images r = 10M and bottom images
for r = 10 · rh. The value of a = 0.9981 is kept fixed. The representative
values of b are (from left to right) 0.0, −1.0 and −3.

shrinking them strongly in the direction of the black hole rotation.

Finally we demonstrate the relevance of the tidal charge b in the char-
acter of escape cones of the free-falling frames (comparing them with those
related to LNRF ) in Figure 2.11. We construct the escape cones for two
typical values of the tidal charge (b = 0, b = −3) in a sequence of radii
where the free-falling source is radiating, demonstrating thus the combined
growing influence of the black hole gravitational pull on the photon motion
and the velocity of the free-falling source. In order to illustrate the phe-
nomena in a clear way, we compare the free-falling frame escape cones to
the corresponding LNRF escape cones. Clearly, the tidal charge descending
to higher negative values makes stronger squeezing of the free-falling cones
relative to the LNRF escape cones at any fixed radius. Notice, that the free-
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Figure 2.10: Escape cones of GF+ observers. Top images are plotted for
observer (emitter) at r = rms and bottom images for r = 10M . The value of
a2 + b = 0.9999 is kept fixed. The representative values of (a2; b) are (from
left to right) (0.9999; 0.0), (1.9999;−1.0) and (3.9999;−3).

falling frame and LNRF cones are shifted due to the black hole rotational
dragging.

Table 2.1: Table of relevant values of rms and rh used in plots on Figs 2.9
and 2.10.

(a2, b) (0.9981,0.0) (0.9981,-1.0) (0.9981,-3.0)

rms 1.24M 3.91M 6.27M

rh 1.062M 2.002M 2.73M

We again observe the tendency of negative brany parameters to sym-
metrize and squeze the escape cones. At a fixed r, the escape cones become
smaller for growing |b| due to stronger gravity. For completeness we present
sequence of both the free-falling frames (RFF−) and LNRF escape cones at
the three fixed radii for an extreme black hole with b = −3 and a2 = 4. We
observe that both the RFF− and LNRF cones are strongly shifted in the
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Figure 2.11: Comparison of the effect of the tidal charge b on the shape
of light escape cones of locally nonrotating (dashed curves) frames and free
falling (solid curves) frames. In the left column light escape cones are plotted
for the tidal charge parameter b = 0 and in the middle one the light escape
cones are plotted for b = −3. The spin a = 0.9981 is kept fixed in both
columns. The right column gives the sequence of the escape cones for an
extreme black hole with [a2 = 4; b = −3].

sense of the black hole rotation in vicinity of black hole horizon due to grow-
ing influence of the spin. The symmetrizing effect of descending values of
negative tidal charge is canceled by strong influence of the rotational effects
due to growing black hole spin.

2.4 Integration of photon trajectories

We express the integrals (2.113) and (2.115) in the form of the standard
elliptic integrals of the first kind. Rauch and Blandford presented the tables
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of reductions of u-integrals and µ-integrals for the case of photons in Kerr
geometry [48]. Here we extended those reductions for the case of nonzero
braneworld parameter b. Because the integration of the µ-integral does not
depend on braneworld parameter b, the transformations are the same as in
the case of Kerr metric [48], but we include them for completeness.

There are two cases we distinguish in latitudinal integral (see table 2.2).
In the first case there is one positive, M+ > 0, and one negative, M− < 0 root
of M(m2) it implies that there are two turning points located symmetrically
about the equatorial plane given by ±√

M+ (so called orbital motion [24, 29].
In the second case there are two positive roots, 0 < M− < M+ of M(m2),
which implies that the latitudinal motion is constrained to the region above
or below of the equatorial plane (so called vortical motion). The relevant

reductions of the integral
∫m
m1

dm′/
√

M(m′) = IM are stored in the table 2.2.

For distant observers we distinguish five relevant cases of the radial inte-
gral. These cases depend on the character of roots of the quartic equation
U(u) = 0, i.e., on the number of turning points (nu = 0 or nu = 1) in the
radial motion and the value of parameter q̃ = q(a2 + b) + b(a− λ)2. We have
arranged those transformations into table 2.3.

Denoting roots of the quartic equation U(u) = 0 by β1, β2, β3 and β4, the
meaning of each of the five cases is the following:

• The case I: four distinct real roots of U(u) = 0 forming the sequence
β1 > β2 > β2 > 0 and β4 < 0. The value of modified constant of
motion q̃ > 0.

• The case II: four real roots as in the case I but their values form the
following order: β1 > β2 > 0 and β4 < β3 < 0. The value of modified
constant of motion q̃ < 0.

• The case III: two real and two complex roots of U(u) = 0: β1 being a
complex root, β2 = β̄1 and β4 < β3 < 0. The value of modified constant
of motion q̃ < 0.

• The case IV: only complex roots: β2 = β̄1 and β4 = β̄3. The value of
modified constant of motion q̃ < 0.

• The case V: two real and two complex roots of U(u) = 0: β1 > 0,
β4 < 0, β2 being a complex root and β3 = β̄2.

Using presented transformations we can write the integrals (2.113) and
(2.115) in the form
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Table 2.2: The reductions of
∫m
m1

dm′/
√

M(m′) = IM

Case tan Ψ m c1 m1

M− < 0
√

M+

m2 − 1 M+

M+−M−

1√
a2(M+−M−)

√
M+

M− > 0
√

M+−m2

m2−M−

M+−M−

M+

1
a2

√
M+

Table 2.3: The reductions of
∫ u
u1

du′/
√

U(u′) = IU

Case tan Ψ m c1 u1

I
√

(β1−β3)(u−β4)
(β1−β4)(β3−u)

(β1−β2)(β3−β4)
(β1−β3)(β2−β4)

2√
q̃(b1−b3)(b2−b4)

β4

II
√

(β1−β2)(u−β3)
(β1−β3)(β2−u)

(β2−β3)(β1−β4)
(β1−β2)(β4−β3)

2√
−q̃(b1−b2)(b3−b4)]

β3

III 2c2(u)
|1−c2

2
(u)|

4c4c5−(β3−β4)2−c4c5
4c4c5

1√−q̃c4c5
β3

IV u−c3
ℑ(β1)(1+c2

2
)+c2(u−c3)

1 −
(

c4−c5
c4+c5

)2
2

(c4+c5)
√−q̃

c3

V 2c2(u)
|1−c2

2
(u)| 1 − (c4+c5)2−(β1−β4)2

4c4c5
1√

q̃c4c5
β4

Table 2.4: Definitions for Table 2.3.
Case 1c2

1c3

III
[

c5(u−β3)
c4(u−β4)

]1/2
-

IV
{

4[ℑ(β1)]2−(c4−c5)2

(c4+c5)2−4[ℑ(β1)]2

}1/2
ℜ(β1) + c2ℑ(β1)

V
[

c4(u−β4)
c5(β1−u)

]1/2
-
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Table 2.5: Definitions for Table 2.3 and Table 2.4.
Case 1c4

1c5

III
{

[ℜ(β1) − β3]2 + [ℑ(β1)]2
}1/2 {

[ℜ(β1) − β4]2 + [ℑ(β1)]2
}1/2

IV
{

[ℜ(β1) −ℜ(β3)]
2 + [ℑ(β1) + ℑ(β3)]2

}1/2 {

[ℜ(β1) −ℜ(β3)]2 + [ℑ(β1) −ℑ(β3)]2
}1/2

V
{

[ℜ(β2) − β1]2 + [ℑ(β2)]2
}1/2 {

[ℜ(β2) − β4]2 + [ℑ(β2)]2
}1/2

1The symbols ℜ(x) and ℑ(x) refer to real and imaginary part of x here.

∫ u

u1

1
√

U(ũ)
dũ = c1F(Ψ;m) (2.72)

and
∫ µ

µ1

1
√

M(µ̃)
dµ̃ = c1F(Ψ;m) (2.73)

where F is the elliptic integral of the first kind and u1(resp µ1) depends on
the case of root distribution of quartic equation U(u) = 0 (resp. M(µ) = 0)
as given in Table 2.3 (resp 2.2). If, in the cases III and V, the value of
1 − c22(u) < 0, we have to take instead of (2.72) the form

∫ u

u1

1
√

U(ũ)
dũ = c1(2K(m) −F(Ψ;m)), (2.74)

where K is the complete elliptic integral of the first kind. In the case that
sign(µ1 · µ) < 0 we have to take instead of (2.73) the form

∫ µ

µ1

1
√

M(µ̃)
dµ̃ = c1(2K(m) −F(Ψ;m)), (2.75)

where Ψ, m and c1 are taken from table 2.2. We consider two basic possibili-
ties of trajectories, namely those corresponding to direct and indirect images
(Figures 2.22 and 2.23).
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2.5 Optical effects in braneworld Kerr

geometry

2.5.1 Silhuette of braneworld black hole

The silhuette of the black hole is quite naturally related to their trapped (es-
cape) light cones. The marginal values of impact parameters λ0 and L0(resp
q0) are obtained from the light escape cone. Using the stationarity of the
braneworld Kerr spacetime we “shoot out“ virtual photons from observer
(static frame at very large distance r0) and we are looking for the light es-
cape cone of this virtual source (using the results of the previous section).
The trapped light cone of this virtual source is constructed from the light
escape cone of the virtual source by transformations of directional angle
α0 to ᾱ0 = π − α0 and directional angle β0 to β̄0 = β0. In this way we
get marginal directions for received photons from bright background behind
the black hole. Then we can use the formulas (2.62), (2.63) and (2.64) to
calculate the marginal values of λ0 and q0(L0) in order to obtain the sil-
huette of the braneworld Kerr black hole in the plane (α̃ − β̃), i.e., the set
of doubles (α̃0, β̃0) from equations (2.76) and (2.77). Here we plotted the
silhuette directly from the trapped light cone (ᾱ0, β̄0) on the observer’s sky
(ᾱ0 sin β̄0, ᾱ0 cos β̄0). Note that the angle ᾱ0 is the radial coordinate and the
angle β̄0 is the polar coordinate in the polar graph of the silhuette.

Assuming that distant observers measure photon directions relative to
the symmetry center of the gravitational field, the component of the angu-
lar displacement perpendicular to the symmetry axis is given by −p(ϕ)/p(t)

(for black hole rotating anticlockwise relative to distant observers), while for
angular displacement parallel to the axis it is given by p(θ)/p(t). These an-
gles are proportional to 1/r0, therefore, it is convenient to use the impact
parameters in the form independent of r0 [22]

α̃ = −r0
p(ϕ)

p(t)
= − λ

sin θ0

, (2.76)

and

β̃ = r0
p(θ)

p(t)
=
[

q + a2 cos2 θ0 − λ2 cot2 θ0

]1/2

=

[

L + a2 cos2 θ − λ2

sin2 θ0

]1/2

. (2.77)

Photon trajectories reaching the observer are represented by points in the
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(α̃ − β̃) plane representing a small portion of the celestial sphere of the
observer.

The shape of the black hole silhuette is the boundary of the no-turning-
point region, i.e., it is the curve L = Lmin

max(λ) expressed in the (α̃− β̃) plane
of the impact parameters. For observers in the equatorial plane (θ0 = π/2),
α̃ = −λ, β̃ = (L − λ2)1/2 = q1/2.

We consider that the black hole is observed by static distant observers.
Therefore, we shall use the static frames introduced above. The silhuette of
the black hole is quite naturally related to their trapped (escape) light cones.

The marginal values of impact parameters λ0 and L0(resp q0) are obtained
from the light escape cone. Using the stationarity of the braneworld Kerr
spacetime we “shoot out“ virtual photons from observer (static frame at
very large distance r0) and we are looking for the light escape cone of this
virtual source (using the results of the previous section). The trapped light
cone of this virtual source is constructed from the light escape cone of the
virtual source by transformations of directional angle α0 to ᾱ0 = π− α0 and
directional angle β0 to β̄0 = β0. In this way we get marginal directions for
received photons from bright background behind the black hole. Then we can
use the formulas (2.62), (2.63) and (2.64) to calculate the marginal values of
λ0 and q0(L0) in order to obtain the silhuette of the braneworld Kerr black
hole in the plane (α̃ − β̃), i.e., the set of doubles (α̃0, β̃0) from equations
(2.76) and (2.77). Here we plotted the silhuette directly from the trapped
light cone (ᾱ0, β̄0) on the observer’s sky (ᾱ0 sin β̄0, ᾱ0 cos β̄0). Note that the
angle ᾱ0 is the radial coordinate and the angle β̄0 is the polar coordinate in
the polar graph of the silhuette.

2.5.2 Frequency shift

Radiation from Keplerian ring

In the case of static distant observer the 4-velocity reads uo = (1, 0, 0, 0). In
the case of emitter following a circular geodesic at r = re in the equatorial
plane of the brany Kerr black hole, the 4-velocity reads ue = (ut

e, 0, 0, u
ϕ
e )

with components being given by

ut
e =

[

1 − 2

re

(1 − aΩ)2 − (r2
e + a2)Ω2 +

b

r2
e

(1 − 2aΩ)

]−1/2

, (2.78)

uϕ
e = Ωut

e, (2.79)

where Ω is the angular velocity of the emitter as seen by distant observer
and is given by Eq.(2.45). The total frequency shift, including both the
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gravitational and Doppler shifts, is given by

g =

[

1 − 2
re

(1 − aΩ)2 − (r2
e + a2)Ω2 + b

r2
e
(1 − 2aΩ)

]1/2

1 − λΩ
, (2.80)

where λ = −kϕ/kt is the impact parameter of the photon being a constant of
the photon motion; notice that in our case of equatorial sources g is explic-
itly independent of the second motion constant q. Of course, depending on
the position of the emitter along the circular orbit, the motion constant of
photons reaching a fixed distant observer will change periodically (see, e.g.,
[21]).

Radiation from bright background

Here the LNRF at fixed radial and latitudinal coordinate in the vicinity of
braneworld Kerr black hole is assumed. The radiation is emitted by distant,
static isotropic and monochromatic sources forming bright background. The
4-velocity of the source is ue = (1, 0, 0, 0) and uo = (ut

e, 0, 0, u
ϕ
e ). From

normalization condition for 4-velocity u·u = −1 one determines the temporal
component of LNRF 4-velocity, which reads

(ut
o)

2 =
1

(Σ − 2r + b)Ω2 − 2(b− 2r) sin2 θoΩ − A
(2.81)

where the angular velocity Ω is given by (2.42). From the formula (1.54) the
redshift parameter reads

g = ut
o(1 + Ωλ) (2.82)

where impact parameter λ is given by formula (2.65). We finally arrive to
formula

g =
1

√

(Σ − 2r + b)Ω2 − 2(b− 2r) sin2 θoΩ − A

×
[

1 +
Ω

Ω + (Σ
√

∆)/(A sin θ cos γ)

]

. (2.83)

2.5.3 Focusing of the photon beam

For a distant observer located at the distance d0 from the source the solid
angle dΠ can be expressed in terms of observer’s plane coordinates [ᾱ, β̄] by
formula (1.55).
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The observer’s plane coordinates are in relation with photon’s impact
parameters λ and q given by formulae [26, 22]

α = −p
(φ)

p(t)
= − λ

sin θo

, (2.84)

and

β =
p(θ)

p(t)
= ±

√

q2 + a2 cos2 θo − λ2 cot2 θo; (2.85)

therefore, we can switch the integration over λ and q. The solid angle dΠ is
then given by expression (1.56) with Jacobian |∂(α, β)/∂(λ, q)| of the trans-
formation (ᾱ, β̄) → (λ, q) in the form

∣

∣

∣

∣

∣

∂(α, β)

∂(λ, q)

∣

∣

∣

∣

∣

=
q

sin θo

√

q2 + a2 cos2 θo − λ2 cot2 θo

. (2.86)

The impact parameters λ and q can be expressed in terms of the azimuthal,
φe , and radial , re , position of the emitter.

We calculate derivatives ∂re/∂λ and ∂re/∂q from the condition

H(re, λ, q) ≡ usgn

[

∫ ut

1/re

du√
U

+ (−1)nu−1
∫ ut

uo

du√
U

]

− µsgn

[

∫ µ±

µe

dµ√
M

+ (−1)nµ−1
∫ µ±

µo

du√
U

+ p
∫ µ±

µ∓

dµ√
M

]

= 0, (2.87)

where the turning points ut and µt are functions of the impact parameters λ
and q as well as the radial and latitudinal motion functions U = U(u, λ, q)
and M = M(µ, λ, q). The functions U and M give the radial and latitudinal
photon motion in terms of the variables u ≡ 1/r and µ ≡ cos θ (see [48]) by
the relations

U(u;λ, q) ≡ 1 + (a2 − λ2 − q2)u2 + 2[(λ− a)2 + q2]u3

−[b(a− λ)2 + (a2 + b)q2]u4, (2.88)

M(µ;λ, q) ≡ q2 + (a2 − λ2 − q2)µ2 − a2µ4. (2.89)

H is an implicit function of re, λ and q. From the implicit function theorem
we find the derivatives to be

∂re

∂λ
= − ∂H/∂λ

∂H/∂re

;
∂re

∂q
= − ∂H/∂q

∂H/∂re

, (2.90)
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and after introducing the parameter

p = [nµ(1 − mod(nµ, 2)) + (nµ − 1)mod(nµ, 2)] (2.91)

where nu(nµ) determines the number of turning points of the photon radial
(latitudinal) motion, we arrive to the relation

∂H

∂s
= usgn

[

∫ ut

1/re

−∂U/∂s
2U3/2

du+ (−1)nu−1
∫ ut

uo

−∂U/∂s
2U3/2

du

]

+ usgn
∂ut

∂s

1
√

U(ut)
(1 + (−1)nu−1)

− µsgn

[

∫ µ±

µe

−∂M/∂s

2M3/2
+ (−1)nµ−1

∫ µ±

µo

−∂M/∂s

2M3/2
+ p

∫ µ±

µ∓

−∂M/∂s

2M3/2

]

− µsgn





∂µ±
∂s

1
√

M(µ±)
(1 + (−1)nµ−1 + p) − p

√

M(µ∓)

∂µ∓
∂s



 (2.92)

with s being replaced for λ or q, and

∂H

∂re

=
1

√

U(1/re)r2
e

. (2.93)

If nu = 0 and nµ = 0 this formulas are easily enumerable, but in other
cases there is a problem with integration in turning points (the integrals
diverge) and there are some other terms which also diverge. Expressing the
effective potentials in the form (see [67])

U(u, λ, q) ≡ (ut − u)P (u, λ, q); M(µ, λ, q) ≡ (µ± − µ)W (µ, λ, q) (2.94)

we can avoid this problem. As an example let’s take nu = 1 and transform
the term

T =
∫ ut

1/re

−∂U/∂s
2U3/2

du+
∂ut

∂s

1
√

U(ut)
(2.95)

using (2.94). After some algebra one arrives to formula

T =
∫ ut

1/re

−(∂P/∂s) + (∂P/∂u)(∂ut/∂s)

2P
√
U

+
∂ut

∂s

(

1√
ue

+
1√
uo

)

, (2.96)
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which is now enumerable. The terms in µ part of (2.92) are transformed in
the same way. The partial derivatives of the turning points can be also found
from the implicit formula

U(ut, λ, q) = 0 ⇒ ∂ut

∂s
= − ∂U/∂s

∂U/∂ut

, (2.97)

where, again, s is replaced with λ and q.
From the Carter equation for the azimuthal coordinate

φe = −usgn

[

∫ ut

1/re

fU√
U

du+ (−1)nu−1
∫ ut

uo

fU√
U

du

]

(2.98)

− µsgn

[

∫ µ±

µe

fM√
M

dµ+ (−1)nµ−1
∫ µ±

µo

fM√
M

+ p
∫ µ±

µ∓

fM√
M

dµ

]

(2.99)

with

fU = [2(a− l)u+ l]/(1 − 2u+ a2u2) (2.100)

and
fM = lµ2/(1 − µ2), (2.101)

we calculate the derivatives ∂φe/∂λ and ∂φe/∂q having in mind that re =
re(λ, q). From the above calculations we can form the Jacobian of transfor-
mation (λ, q) → (re, φe) in the form

∣

∣

∣

∣

∣

∂(λ, q)

∂(re, φe)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂(re, φe)

∂(λ, q)

∣

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

∣

∂re

∂λ

∂φe

∂q
− ∂re

∂q

∂φe

∂λ

∣

∣

∣

∣

∣

−1

. (2.102)

The formula for the solid angle dΠ then reads

dΠ =
q

sin θo

√

q2 + a2 cos2 θo − λ2 cot2 θo

∣

∣

∣

∣

∣

∂re

∂λ

∂φe

∂q
− ∂re

∂q

∂φe

∂λ

∣

∣

∣

∣

∣

−1

dredφe.

(2.103)

2.5.4 Light curve of a hot spot on a circular keplerian

orbit

We model following situation. A monochromatic isotropically radiating hot
spot follows the circular geodesic with radius re in the equatorial plane. The
flux that observer at infinity measures is
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dFo = IodΠ, (2.104)

where Io = g4Ie [45]. Ie is a function of radial position of the emitter. Since
we study here the light curve of a single hot spot on the circular geodesic,
we normalize Ie = 1. Putting (2.103) into (2.104), the differential of the
observed flux then reads

dFo =
1

d2
o

qg4(φe, re)

sin θo

√

q2 + a2 cos2 θo − λ2 cot2 θo

∣

∣

∣

∣

∣

∂re

∂λ

∂φe

∂q
− ∂re

∂q

∂φe

∂λ

∣

∣

∣

∣

∣

−1

dredφe.

(2.105)
The light curve of such a radiating spot could be obtained by introducing the
time dependence of the radiation received by the distant observer, including
the time-delay effects related to the relativistic motion [21]. Here we consider
another situation, namely the stationary line profile generated by a ring of
orbiting hot spots, postponing the light curves of isolated hot spots to future
studies.

These results could be directly applied to calculate line profile generated
by some part of the internal region of the accretion disc, assuming some
reasonable emissivity law, since such a part of the disc can be represented as
being composed from radiating rings. Such a study will be presented in the
future study, now being under preparation.

2.5.5 Spectral line profile of radiating keplerian ring

We directly apply the results of the previous section to determine the spectral
line profile of the bright ring in the equatorial plane of brany Kerr black hole.

Let the source radiates isotropically at a fixed frequency νe. The specific
intensity Ie of the source is then given by

Ie(νe) = ǫ(r)δ(νe − ν0), (2.106)

where ǫ(r) is the local emissivity given as a function of the radial coordinate
of the black hole spacetime, ν0 is the rest frequency. Using (2.106) and (2.105)
we arrive to the formula for the specific flux in the form

Fo(νo) =
∫

ǫ(r)g4δ(νo − gν0)dΠ. (2.107)

Here, since we calculate the profiled spectral line of a single radiating ring,
the emissivity function can be normalized by ǫ(r) = 1. We rearrange the
solid angle formula (2.103) for the calculation of the specific flux to the form
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dΠ =
q

sin θo

√

q2 + a2 cos2 θo − λ2 cot2 θo

∣

∣

∣

∣

∣

∂re

∂λ

∂g

∂q
− ∂re

∂q

∂g

∂λ

∣

∣

∣

∣

∣

−1

dgdre. (2.108)

Using Eqs. (2.108) and (2.107) we finally arrive to

Fo(g) =
∫ q

d2
o sin2 θo

√

q2 + a2 cos2 θo − λ2 cot2 θo

∣

∣

∣

∣

∣

∂re

∂λ

∂g

∂q
− ∂re

∂q

∂g

∂λ

∣

∣

∣

∣

∣

−1

dre.

(2.109)

2.5.6 Images of isoradial geodesics

Calculating images of an accretion disc (ring) in the equatorial plane of a
braneworld Kerr black hole is the first step to calculate the optical phenom-
ena. Generally one could obtain a direct and an indirect image (see Figures
2.22 and 2.23), but in special cases the situation can be much more com-
plicated due to complex character of the latitudinal and azimuthal photon
motion. Here we focus our attention to the direct and indirect images of
isoradial geodesics.

In order to find all relevant positions of points forming the rotating ring on
observer’s sky, we have to find photon trajectories between the ring particles
and the observer, i.e., we seek for such doubles of local observational angles
[α0, β0] that satisfy the condition

IU(α0, β0;nu, usgn) − IM(α0, β0;n, p, s) = 0. (2.110)

Here we introduced the modified radial coordinate u = 1/r and cosine of
latitudinal coordinate µ = cos θ [48]. In the condition (2.110) nu is the
number of turning points in u coordinate, n is the number of turning points
passed in µ coordinate, p = mod(n, 2), s = (1 − µsgn)/2. In terms of u and
µ we define the functions IU and IM by

IU(α0, β0;nu, usgn) ≡
{

−usgn

(

∫ u0

ut
+
∫ ue
ut

)

for nu = 1

usgn

∫ ue
u0

for nu = 0
(2.111)

and

IM(α0, β0;n, p, s) ≡ µsgn

[∫ µ+

µ0

+(−1)n+1
∫ µ+

µe

+ (2.112)

+ (−1)s[(1 − p)n+ p[(1 − s)(n− 1) + s(n+ 1)]]
∫ µ+

µ−

]
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with
∫ u2

u1

≡
∫ u2

u1

du
√

U(u)
, (2.113)

U(u) = 1 + (a2 − λ2 − q)u2 + 2[(λ2 − a2)2 + q]u3 −
− [q(a2 + b) + b(a− λ)2]u4 (2.114)

and

∫ µ2

µ1

≡
∫ µ2

µ1

dµ
√

M(µ)
, (2.115)

M(µ) = q + (a2 − λ2 − q)µ2 − a2µ4. (2.116)

2.5.7 Time delay

For optical effects in vicinity of a black hole, the time delay in case of systems
varying with time and observed along two different directions due to the light
deflection in strong gravity can be important [77]. The coordinate time that
elapses from the instant of photon emission, te, to the instant of its reception,
to, is integrated from the Carter equations and reads

to = te + µsgn

∫ µo

µe

a2µ2 dµ√
M

+usgn

∫ uo

ue

2a(a− λ)u3 + a2u2 + 1 + ab(λ− a)u4

(u/u+ − 1)(u/u− − 1)
√
U

du (2.117)

In order to succesfully integrate this formula, one must map all the turning
points in µ and u motion to correctly set up the signs usgn and µsgn.

Suppose that the two light beams, direct and indirect, are emitted at
the same coordinate time te. They generally reach the observer at different
coordinate times tdir

o (tindir
o resp.). By time delay we define here the difference

∆t ≡ tindir
o − tdir

o .

2.6 Effect of tidal charge on optical

phenomena - results of the numerical

code

In this section the influence of tidal charge parameter b on the shape of
escape cone, the silhuette of braneworld Kerr black hole, frequency shift and
the spectral line profile of radiating keplerian ring and time delays.
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2.6.1 Silhuette
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Figure 2.12: Left figure. The (ᾱ0, β̄0) plots of the silhuettes of braneworld Kerr

black hole on a bright background for rotational parameter a2 = 0.6 and four

representative values of tidal charge parameter b = −3.0, b = −0.4, b = 0.0 and

b = 0.4. The observer is located at r0 = 104M and θ0 = 90◦. Right figure.

The silhuettes of extreme black holes for three representative values of braneworld

parameter b = 0 (solid), b = −1 (dashed) and b = −3 (dotted). Static observer is

in equatorial plane at radial distance from the centre r0 = 104M .

We shall give the silhuette of the black hole for observers located at fixed
radius r0 = 104M that corresponds to the angular size of α ∼ 1.4arcsec; for
higher distances the angular size falls accordingly to the 1/r0 dependence.

First, we give an illustrative picture of the tidal charge influence on the
silhuette’s properties for maximal inclination angle θ0 = 90◦ when the black
hole rotational effects are strongest (Figure 2.12). We present a sequence
of silhuettes for fixed black hole spin and varying b (left) and for extreme
black holes with a2 + b = 1 and both a, b varying (right). We clearly see
that the positive tidal charge squeezes magnitude of the silhuette making
its shape more asymmetric, while negative tidal charge enlarges silhuette’s
diameter symmetrizing its shape when a is fixed. For extreme black holes
the silhuette asymmetry is kept but its extension grows with b descending to
higher negative values.

Second, there is a crucial effect of the viewing angle θ0 onto the shape
of the black hole silhuette, demonstrated in Figure 2.13 for representative
values of b and fixed spin a, and in Figure 2.14 for extreme black holes with
parameters [a2 = 1;b = 0] and [a2 = 4;b = −3].

The rotational effect on the shape of the silhuette grows with inclination
angle growing and becomes strongest when θ0 = π/2; then the suppressing
effect of the braneworld parameter is given in the most explicit form as
demonstrated in Figure 2.12.



54 CHAPTER 2. BRANEWORLD KERR BLACK HOLES

90°

180°

270°

0°

a2 = 0.8
b = 0.2

0 °45°

90°

1.4 arcsec

90°

180°

270°

0°

0 °

90°

45°

1.4 arcsec

a2 = 0.8
b = 0.0

90°

180°

270°

0°

0 °

90°

45°

1.4 arcsec

a2 = 0.8
b = -1.0

90°

180°

270°

0°

90°
45°

0 °

1.4 arcsec

a2 = 0.8
b = -3.0

Figure 2.13: The silhuettes of rotating braneworld black hole on a bright back-

ground. Each image contains three black hole shapes for three representative val-

ues of observer’s inclination angle θ0 = {0◦(solid), 45◦(dashed), 90◦(dotted)}, ob-

server’s radial coordinate r0 = 104M and the rotational parameter a2 = 0.8. Top

left image: b = 0.2. Top right image: b = 0.0. Bottom left image: b = −1.0.

Bottom right image: b = −3.0.

90°

180°

270°

0°

90°
45°

0 °

a2 = 1.0
b = 0.0

1.4 arcsec

90°

180°

270°

0°

1.4 arcsec

90°
45°

0 °

a2 = 4.0
b = -3.0

Figure 2.14: The silhuettes of rotating braneworld black hole on a bright back-

ground. Each image contains three black hole shapes for three representative val-

ues of observer’s inclination angle θ0 = {0◦(solid), 45◦(dashed), 90◦(dotted)}, ob-

server’s radial coordinate r0 = 104M . Silhuettes on the left figure are plotted for

extreme black hole with a2 = 1 abd b = 0 and on the right side for the black hole

with a2 = 4 and b = −3.
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Figure 2.15: We define shift s and ellipticity ǫ = x/y as parameters enabling us to

characterize the magnitude of distorsion of Kerr black hole silhuette in braneworld

universe.
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Figure 2.16: Top row. Left figure: the plot of shift s = s(b) as a function of

braneworld parameter b. Right figure: the plot of ellipticity ǫ = ǫ(b) as a function

of b. There are two curves on each image, one for observer inclination angle

θ0 = 45◦ and second for θ0 = 89.9◦. The rotational parameter of black hole is fixed

to value a = 0.9995 and the radial coordinate of observer if r0 = 104M . Bottom

row. The ellipticity ǫ (left) and shift s (right) of the silhuette of the extreme black

hole as functions of braneworld parameter b. Observer’s coordinates are θ0 = π/2

and r0 = 104M .

The negative values of the braneworld parameter have the tendency to
make the silhuette of a Kerr black hole (with a2 fixed and for r0, θ0 fixed)
spherical, suppressing thus the rotational effects. However the symmetriz-
ing effect of the tidal charge could be masked by symmetrizing effect of the
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viewing angle θ0. Therefore it is very important for black hole parameter
estimates to have observational limits on the value of θ0. In order to charac-
terize the influence of the tidal charge on the silhuette of a Kerr black hole
we define two quantities in principle measurable by distant observers. The
shift s of the silhuette

s = α̃(βm) sin(βm − π), (2.118)

and its ellipticity ǫ

ǫ =
α̃(β = 90◦) + α̃(β = 270◦)

2α̃(βm) cos(βm − π)
, (2.119)

where βm is defined by α̃(βm) sin(βm−π) ≥ α̃(β) sin(β−π), ∀β ∈ [π/2, 3/2π]
i.e., it defines maximal extension of the silhuette in the x-direction. The def-
inition of shift s and elipticity ǫ is illustrated in Figure 2.15.

We calculated shift s and ellipticity ǫ as functions of tidal parameter b for
the Kerr black hole with rotational parameter a2 = 0.9995 (see Figure 2.16).
Clearly, these are quantities that could be measured and used for a black
hole parameters estimates, if observational techniques could be developed to
the level enabling the silhuette detailed measuring. We shall discuss such a
possibility for the case of the supermassive black hole predicted in the Galaxy
Centre (Sgr A∗).



2.6. EFFECT OF TIDAL CHARGE ON OPTICAL PHENOMENA 57

2.6.2 Frequency shift - observer in LNRF

To ilustrate the influence of braneworld parameter on redshift of radiation
which is emitted by bright background and detected by observer in LNRF
the following set of plots is presented.

Figure 2.17: The frequency shift of bright background as seen by observer in LNRF

at radial distance ro = 5M from black hole with spin parameter a = 0.9981. Images

in top row are plotted for the braneworld parameter b = 0 while bottom row images

for b = −2. Left column images have latitude fixed to θo = 60◦ while right column

images to θo = 90◦. In order to use one palette of colours for all images, modified

frequency shift, given by formula (2.120) is plotted.

The frequency shift on plots in figure Fig.2.17 is encoded into colors using,
of course, one palette for all four images. Therefore modified frequency shift
must be defined

g̃ =
gmax − g

gmax − gmin

(2.120)

where is gmax(min) maximal(minimal) value of redshift g from all four images.
The darkest blue color refers to g̃ = 0 while red color refers to g̃ = 1.
The result is expectable since with increasing negative value of braneworld
parameter b the velocity of LNRF increases.
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2.6.3 Spectral line profiles

We have demonstrated the influence of the brany tidal charge on the profilled
lines using a computional code developed under all the phenomena discussed
above. Both the direct and indirect photons were considered. The profilled
lines depend on the black hole parameters a and b, on the radius re of the
radiating ring and on the inclination angle θ0 of the observer. We separate
the results into two groups according to the sign of the tidal charge; we would
like to stress that the results obtained for b > 0 are relevant also for radiating
rings of uncharged matter orbiting Kerr-Newman black holes with b → Q2

where Q is the black hole charge parameter.
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Figure 2.18: Line profiles for brany black holes with b < 0. We demonstrate

the influence of inclination angle of observer θ0, radial distance of emitter re and

brany parameter b on the profile of spectral line of radiation emitter from radiating

keplerian ring. With rotation parameter fixed to a = 0.9981 each figure contains

three plots for three representative values of brany parameter b = −3, −1 and 0.

The inclination angle θ0 and the ring (Boyer - Lindquist) radius re are given in

the figure.

• b < 0 For negative tidal charges we have fixed the value of the spin
parameter to value a = 0.9981 close to extreme black hole state (a = 1)
for Kerr spacetimes (b = 0). We then illustrate the influence of the tidal
charge b < 0 for a relatively large range of its values that all correspond
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Figure 2.19: Line profilles for brany black holes with b < 0. Each figure contain

three plots for three representative values of θ0 = 40◦, 60◦, 80◦ and 88◦. Figures

in each row are plotted for fixed value of re = 12(top), 8(middle) and 6.3(bottom)

and brany parameter varying from left figure to right one with values b = 0, −1

and −3.

to the black hole spacetimes. The values of the observers inclination
angle θ0 are chosen to represent the cases of small , mediate, extreme
and very extreme inclination in order to fully exhibit the strong effect
of θ0 on the line profile. The radius of radiating ring is restricted to the
inner part of Keplerian discs. Again, the three values of re reflect the
optical effects in the innermost part of the disc, the mediate inner part
and those where the effects of the tidal charge become to be effectively
suppressed. First, the radii are fixed to be the same in all the spacetimes
under consideration (b = 0, −1, −3), we have chosen re = 6.3M , 8M
and 12M where the first value (re = 6.3M) correspond to stable circular
of spacetime with brany parameter value being b = −3. The results are
presented in Fig.2.18. We can see that the influence of the tidal charge
is suppressed with growing radius, re, as can be intuitively expected
because the contributions of b fall with r growing faster than those
of the mass and spin parameters of the spacetime and this effect is
for each inclination angle θ0. With r approaching the innermost part
of the disc, the profilled lines become to be wider and flatter. These
effects are strenghtened for inclination angle growing, as demonstrated
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Figure 2.20: Line profiles for brany black holes with b < 0. Each figure contains

three plots of profiles of spectral line for three representative values of θ0 = 40◦,
60◦ and 80◦ and fixed(different for each figure) values of (b = 0, re = 1.24)(left),

(b = −1, re = 4)(middle) and (b = −3, re = 6.3)(right). The emitters are on orbits

close to marginally stable, which is function of brany parameter b, rms = rms(b).

in Fig.2.19. Generally, the profilled lines has two peaks at the red-end
and blue-end with the blue-end peak being always higher in comparison
with the red one. For fixed b < 0, the extension, ∆g, of the profilled line
grows with θ0 growoing and re falling, while the difference of the profile
height at the blue and red end grows with inclination growing. The tidal
charge strenghtens these effects while going to higher negative values;
for example the frequency shift difference ∆g at the radius re = 6.3M
and the inclination angle θ0 = 80◦ grows with descending b such that
∆g(b = 0) = 1.3 − 0.5 = 0.8, ∆g(b = −1) = 1.38 − 0.5 = 0.88 and
∆g(b = −3) = 1.4 − 0.4 = 1.0.

When the inclination angle reaches extreme values of θ0 > 85◦, the
profilled lines in the innermost part of the stable Keplerian orbits are
enriched by humps reflecting strong lensing effects caused by traversing
the region in close vicinity of the black hole horizon. The two humps
appearing in the profile are caused by the fact that we consider both
direct and indirect photons as generating the profilled line.

The innermost radius re = 6.3M is chosen to correspond to the marginally
stable orbit of K-N spacetime with a = 0.9981 and b = −3. However,
for fixed a, but b = −1(0), such a radius is far above the related
marginally stable orbit at these spacetimes, since rms(a=0.9981, b=-
1)=4M while rms(a = 0.9981, b = 0) = 1.23M . Therefore, in order to
compare the radiating rings orbiting in close vicinity of the marginally
stable orbit assumed to be the edge of a Keplerian disc, we give the
profilled lines at re = rms in Fig.2.20, for the same inclination an-
gles. Now the effects of the tidal charge are represented in more precise
form. Again, the extension of the line ∆g grows more strongly with
descending b. Of course, we can see that for b = 0, the profilled lines
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Figure 2.21: Line profiles for brany black holes with b > 0. Each figure contain

four plots for four representative values of θ0 = 40◦, 60◦, 80◦ and 88◦. Figures in

each row are plotted for fixed value of re = 20(top), 12(middle) and 7.85(bottom)

and brany parameter varying from left figure to right one with values b = 0, 0.5

and 0.75.

are strongly redshifted and suppressed in magnitude, since for b = 0
we are dealing with a near extreme spacetime, when the radiating ring
is orbiting in extremely deep gravitational potential in close vicinity
of the black hole horizon. On the other hand, for b = −1 (b = −3)
the radiating ring is in much higher distance of the horizon and the
gravitational field there is not so strong since these black holes (with
a = 0.9981) are far from the extreme black holes.

The lines profilled by relativistic effects in the innermost part of the
accretion disc clearly demonstrate the influence of the tidal charge as
shown in Fig.2.20. The lines become flatter, but again the influence
of the inclination angle is quite strong, but brings some characteristic
features indepedently on the value of b.

• b >= 0. Now we discuss the case that could correspond also to mod-
elling of profilled lines in the standard Kerr-Newman spacetimes as-
suming no electromagnetic interaction of the matter of the radiating
ring and the black hole electric charge Q.

While focusing our attention to the black hole spacetimes, we have to
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shift the spin parameter a with changes of the tidal charge b (electric
charge Q2). The results are shown in Fig.2.21 for situations studied for
the case of b < 0, i.e., in the close vicinity of rms, in the middle of the
innermost part of the disc and in the region where infuence of b starts
to be highly suppressed. We can see that for large inclination angles
(θ0 ≥ 80◦) two humps appear in the line profile, one near the red end
of the line, the other close to its blue end.

2.6.4 Images of isoradial geodesics

The influence of tidal charge b on the shape of isoradial geodesics as seen
by distant observer are presented on figures Fig.2.22 where direct images of
isoradial geodesics are plotted and Fig.2.23 where indirect ones are presented.

b=-3.0b=-0.4
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Figure 2.22: Direct image of the rotating ring in the equatorial plane at re = 6M

around braneworld Kerr black hole with rotational parameter a2 = 0.5 for four

representative values of tidal charge parameter b = −3.0, b = −0.4, b = 0.0 and

b = 0.4. The observer is located at r0 = 104M and θ0 = 85◦.

One immediatelly see that the scale of images for more negative value of
braneworld parameter b is bigger than in the case of less negative values of
b. It is expected result since it has been shown in previous sections that the
scales of characteristic radii (photon orbit radii, horizon) with more negative
values of b are bigger.

2.6.5 Disc images

It is very important to demostrate the influence of the braneworld parameter
on the shape of images of rings in the equatorial plane representing parts
of Keplerian accretion discs. Of course, as well known from the Kerr (and
even Schwarzchild) black holes, the images strongly depend on the latitude
of the observer. We calculate the direct and indirect images of flat discs and
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Figure 2.23: Indirect image of the rotating ring in the equatorial plane at re = 6M

around braneworld Kerr black hole with rotational parameter a2 = 0.5 for four

representative values of tidal charge parameter b = −3.0, b = −0.4, b = 0.0 and

b = 0.4. The observer is located at r0 = 104M and θ0 = 85◦.

combined, full image of the disc for two representative values of viewing angle
θ0 and appropriatelly chosen extension of radiating disc area.

We include the effect of frequency shift into the calculated images of part
of the Keplerian discs assumed to be radiating at a given fixed frequency.

The frequency shift of radiation emitted from Keplerian ring including
all relativistic effects is given by equation (2.80). Quantitu g depends on
impact parameter λ and is independent of the second photon motion constant
(impact parameter) q. Of course, depending on the position of the emitter
along the circular orbit, the impact parameters λ, q of photons reaching a
fixed distant observer will vary periodically (see eg., [21]). For each position
of the emitter the impact parameters are determined by the procedure of
integration of photon trajectories.

The influence of the frequency shift in the disc images is demonstrated
in Figures 2.24 and 2.25. The role of the braneworld parameter is illustrated
both for small (θ0 = 30◦) and high (θ0 = 80◦) inclination angles. We consider
two cases of the radiating disc extension: first one with fixed inner and outer
radii, independent of the black hole parameters, and the second one when
the inner radius is identified with the marginally stable orbits, depending on
the black hole parameters.

In order to map the frequency shift g into color palete we define modified
frequency shift ḡ = (g−gmin)/(gmax−gmin) where gmin (gmax) is the minimal
(maximal) value of frequency shift, which is fixed in a particular set of images.

We can see from Figs. 2.24 and 2.25 that the negative tidal charge has
the tendency to enlarge and symmetrize the disc images.
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Figure 2.24: Radiating Keplerian disc images with fixed inner and outer radii.

The modified frequency shift ḡ = (g − gmin)/(gmax − gmin), with gmin = 0.4 and

gmax = 1.5, of the radiation emitted from the thin disk with inner radius rin = 7M

and outer radius rout = 15M , encoded into colors is plotted for representative

values of tidal charge parameter b = −3.0, 0.0 and inclination of observer θ0 = 30◦,
80◦. In the left column direct images are ploted, the indirect images are ploted in the

central column and the composition of direct and indirect images is plotted in the

right column. The first two rows of images are plotted for the observer inclination

θ0 = 30◦ and the second two rows of images are plotted for the observer inclination

θ0 = 80◦. Top row images are plotted for b = 0.0, the second row images are plotted

for b = −3.0, the third row images are plotted for b = 0.0 and bottom row images

are plotted for b = −3.0.
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Figure 2.25: Radiating Keplerian disc images with rin = rms. The modified

frequency shift ḡ = (g − gmin)/(gmax − gmin), with gmin = 0.2 and gmax = 1.8,

of the radiation emitted from the thin disk with inner radius rin = rms (with

rms(b = 0; a = 0.9981) = 1.3 and rms(b = −3; a = 0.9981) = 6.3) and outer radius

rout = 10, encoded into colors is plotted for representative values of tidal charge

parameter b = −3.0, 0.0 and inclination of observer θ0 = 30◦, 80◦. In the left

column direct images are ploted, the indirect images are ploted in the central column

and the composition of direct and indirect images is plotted in the right column.

The first two rows of images are plotted for the observer inclination θ0 = 30◦ and

the second two rows of images are plotted for the observer inclination θ0 = 80◦.
Top row images are plotted for b = 0.0, the second row images are plotted for

b = −3.0, the third row images are plotted for b = 0.0 and bottom row images are

plotted for b = −3.0.
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2.6.6 Time delay
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Figure 2.26: The illustration of the impact of tidal charge parameter on the time

delay ∆t in case of direct and indirect photons emitted from emitter E at coordi-

nate time te and azimuthal position ϕe = π. They are received at observer O at

coordinate times tdir
o (tindir

o resp.). The emittor is on circular geodesic in equatorial

plane of braneworld Kerr black hole at radial coordinate r = re. The observer is

far from the center of the black hole at r = ro. Its inclination is θ = θo.

To demonstrate the impact of the tidal charge b on the time delay we
consider the following situation (see Figure 2.26). Let the isotropicaly radi-
ating monochromatic source orbits in the equatorial plane of the braneworld
Kerr black hole at radial distance re. It can be switched on and off. When
it reaches the azimuthal coordinate ϕ = π it is switched on and we compare
the coordinate times tdir

o and tindir
o of reception of the photons from the direct

and indirect images of the source.

The results are demonstrated in the Figure 2.27. We can directly see that
time delay ∆t between times of reception of the direct and indirect photons
emitted at the same instant from the azimuthal position ϕ = π increases
as the value of the tidal charge parameter b goes to higher negative values.
When b is fixed, the time delay ∆t increases as the value of the inclination
decreases. The same effects appear for other positions of the radiating spot
(ϕ 6= π). We can see that the time delay ∆t depends strongly on the viewing
angle θ0. Therefore, it is extremely important to have a system with precisely
determined viewing angle.
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Figure 2.27: The difference (“Time Delay“), ∆t = tindir
o − tdir

o , between coordinate

times of reception of direct and indirect geodesics of photons emmited at the same

coordinate time te from the azimuthal coordinate ϕ = π is plotted as a function of

tidal charge b. Left figure: the inclination of the observer is θ0 = 20◦. Right figure:

the inclination of the observer is θ0 = 80◦.

2.6.7 Optical phenomena related to Sgr A∗

There is an enormously growing evidence that the center of our Galaxy har-
bors a supermassive black hole whose position could be almost surely identi-
fied with the extremely compact radio source Sgr A∗. The chain of arguments
seems to be very convincing; stars orbiting an unseen mass concentration on
elliptical orbits with a common focal position, the unseen mass centered on
Sgr A∗ that seems to be motionless at the dynamical center of the Galaxy,
extremely compact emission of the center [49]. Recent measurements of Ghez
and collaborators [36] from the W.M. Keck 10 - meter telescopes of a fully un-
constrained Keplerian orbit of the short period star SO-2 provide the distance
R0 = 8.0±0.6 kpc and black hole mass M = (4.1±0.6)×106M⊙. If the black
hole is assumed to be at rest with respect to the Milky Way Galaxy (i.e., has
no massive companion to induce its motion) as argued by Reid [49], the fit
can be further constrained to R0 = 8.4±0.4kpc and M = (4.5±0.4)×106M⊙
[36].

Such a close and huge supermassive black hole could be clearly a very
convenient object, probably the best one, for testing a wide variety of optical
phenomena in strong gravity in its vicinity. The time delay of accidents
happening behind the black hole and observed along two directions could be
in principle easily measured. We could even expect possibility of black hole
silhuette measurements. In this way the influence of the tidal charge could be
properly tested and its value estimated, because for the Galaxy supermassive
black hole we can determine relatively precisely the inclination angle of the
observer (Solar system), although it is of course very close to θ0 ≃ 90◦.
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For non-rotating , Schwarzchild black holes, the silhuette diameter is given
by the impact parameter of the photon circular orbit

D = 2λph = 6
√

3M. (2.121)

Using the Sgr A∗ mass estimate M ∼ 4.5 × 106M⊙, we find D ≃ 55µarcsec
while interferometer finges were reported at wavelength of 1.3 mm and fringe
spacing of 0.00005, comparable with the expected value of D. Shorter wave-
lengths should enable detailed measurements of the black hole silhuette and
relatively precise estimates of the black hole parameters due to very precise
knowledge of the inclination angle. The angle can be given by the measure-
ment of the Solar system position relative to Galaxy plane z⊙ ∼ 14pc[64].
Then θ0 ∼ 89.9◦ or more precisely, θ0 lies between the values of 89.8772◦

(z⊙ = 18pc) and 89.9318◦(z⊙ = 10pc). Of course, considering the silhuette
shape, it is quite enough to take θ0 = 90◦.
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Figure 2.28: Diameter D as a function of braneworld parameter b is plotted for

Schwarzchild black hole of mass M = 4.5 × 106M⊙. Observer is at r0 = 8.4kpc

lying in the equatorial plane.

In the case of spherically symmetric black holes, the influence of the tidal
charge parameter b on the silhuette diameter can be given by the simple
formula for impact parameter of photon circular orbits that reads [59]

λph(b) =
r2
ph

√

rph − b
M, (2.122)

where

rph(b) =
3

2



1 +

√

1 − 8b

9



 . (2.123)
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The resulting dependence of the diameter D(b) is illustrated in Figure 2.28.
The diameter grows slowly with the descending of b; notice that its magni-
tude is twice the pure Schwarzchild value for b = −12.8428. Of course, for
rotating black holes the silhuette is maximally deformed due to the influence
of rotation since the viewing angle θ0 ∼ 90◦ and is given by calculations
and results presented above. Testing of the combined spin and tidal charge
influence would be possible with measurement precision enlarged for 1 order
relative to the recently expected state mentioned above. Clearly, we can ex-
pect that the observational accuracy in near future will be high enough to
measure the Sgr A∗ black hole silhuette implying relevant estimates of the
black hole parameters.
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Figure 2.29: Comparizon of time delay effect as a function of braneworld pa-

rameter b between two rotating black holes with rotational parametes a = 0.5 and

a = 0.998. For each b the emitter is radiating from marginally stable orbit. The

relevant values of radii rms of marginally stable orbits are arranged in the Table

2.6.

Table 2.6: Table of relevant values of rms used in plots oin Fig 2.29
b 0.0 -0.5 -1.0 -2.0 -3.0 -10.0

rms(a = 0.5) 4.24M 5.05M 5.73M 6.88M 7.85M 12.88M

rms(a = 0.998) 1.24M 3.03M 3.91M 5.22M 6.28M 11.44M

Considering the time delay effects, the exact value of θ0 is crucial since it
plays a fundamental role in determining the time delay effect whose scale is
given by the value of t ∼ 1sec. We illustrate the influence of the tidal charge
on the time delay effects at the astrophysically important radii corresponding
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to marginally stable circular geodesics, i.e. in the strong gravity regime, for
two representative fixed values of black hole spin (see Figure 2.29 and Table
2.6). We can expect importance of the regions close to rms for relevant
optical effects due to the idea of the low angular momentum accretion in Sgr
A∗ advocated by B. Czerny [27]. Clearly, we can see in Figure 2.29 that the
time delay effects could be well measurable and the tidal charge influence
could be well tested, if the black hole spin is properly estimated.

Conclusions

One of the most promising ways of estimating influence of hypothetical hid-
den external dimensions, considered in the framework of the braneworld
model with infinite external dimension as developed by [47], seems to be in-
vestigation of the optical phenomena caused by the black hole backgrounds.
It is so because black holes represent the only case when the non-local influ-
ence of the bulk space on the braneworld spacetime structure can be fully
described by a single, braneworld parameter called tidal charge, the sign of
which can be both positive and negative, with the second possibility beeing
more realistic one [17, 28].

Here, we focused our attention to developing a theoretical background
for treating the optical phenomena in vicinity of braneworld rotating black
holes and bringing general tendencies of the tidal charge effect in some basical
optical phenomena.

We have shown qualitatively how the braneworld tidal charge affects the
basical optical phenomena, especially the black-hole silhuette, the accretion
disc image with the frequency shift of area of the disc radiating at a specific
frequency, and the time delay between the direct and indirect images of the
hot spot orbiting the black hole. We have shown that these phenomena
could be measured and used to put limits on the tidal charge in case of
Galaxy Center Sgr A∗ supermassive black hole.

We generalized the approaches based on the transfer-function method as
introduced and developed in Schwarzchild and Kerr backgrounds [32, 43, 21,
57, 41, 30, 33, 48] where equations of photon motion are solved in terms of
the elliptic integrals (see [48, 39, 40]). For purposes of the present work,
the transfer-function method seems to be most efficient. Nevertheless, we
prepared the ray-tracing method too, since that could be usefull in treating
other optical phenomena.

Generally, rising negative value of the tidal charge strenghtens the black
hole field and suppresses the rotational phenomena, when the black-hole ro-
tation parameter is fixed. The magnitude of the optical phenomena grows
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with decreasing of the negatively-valued tidal charge, but the rotation in-
duced asymmetry of the phenomena like the black-hole silhuette, or the ac-
cretion disc image, decreases. The black-hole silhuette is characterized by
two parameters, namely the shift of the center and ellipticity, that could
be in principle measurable in the Galactic Center black-hole system Sgr A∗,
after expected development of observational techniques that at present en-
able measurement of the black hole diameter, not details of the shape. The
Galaxy center (Sgr A∗) seems to be also a promising candidate for testing
the time delay effects both for phenomena related to the accretion disc and
flares observed there , and for some expected lensing phenomena connected
to the observed stars orbiting the Sgr A∗ central black hole.

We have found that observable phenomena could be expected for the
time-delay effects. Of special interest is comparison of time delays generated
for sources in vicinity of the Sgr A∗ black hole (both stars and disc hot spots)
and those related to weak lensing of some distant sources [65].

Similarly, keeping rotational parameter fixed, the negative tidal charge
has tendency to make the isoradial curve images (both direct and indirect)
larger and less deformed while the positive tidal charge influence is of opposite
character. On the other hand, for fixed rotational parameter of the black hole
and disc radiating at the innermost part above the innermost stable orbit at
r = rms, the negative tidal charge restricts the radiating ring image simply
because the radius rms grows with decreasing value of braneworld parameter
b. Suppresion of the relativistic effects can be measurable also in the spectral
line profiles generated by the inner hot part of the disc radiating at special
X-ray line [51].

The optical tests have to be confronted with the data obtained from
quasiperiodic oscillations observed in some black-hole systems (microquasars
[50]). The orbital resonance model gives good estimates of the black-hole
parameters [63, 61, 62]; this model has been recently generalized to the case of
braneworld Kerr black holes [60]. It is shown that in the case of microquasar
GRS 1915+105 and Galactic Center Sgr A∗ black holes with the negative
braneworld parameter b are allowed by the observational data [60]. If the
rotating black hole is near-extreme, the extended resonance model could
give some other relevant restrictions [74, 75]. Detailed modelling of optical
phenomena connected to the oscillating discs or orbiting (oscillating) hot
spots and related resonant phenomena between the oscillation modes could
be very promising in putting limits on allowed values of the tidal charge of
the black hole. We plan to elaborate such modelling in future.
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Chapter 3

Rees-Sciama effect

Temperature fluctuations of the Cosmic Microwave Background Radiation
(CMBR), recently measured by COBE, WMAP, etc., are observed on the
level of ∆T/T ∼ 10−5 [1]. These fluctuations can be explained in two ways.
First, by the Sachs–Wolfe effect [2], i.e., as an imprint of energy density fluc-
tuations related to the CMBR temperature fluctuations at the cosmological
redshift z ∼ 1300 during the era of recombination, when effective interaction
of matter and CMBR is ceased [3]. Second, by the Rees–Sciama effect [4],
i.e., as a result of influence of large-scale inhomogeneities (large galaxies or
their clusters, and large voids) evolved in the expanding universe due to the
gravitational instability of matter at the era characterised by z ∼ 10. In the
case of spherically symmetric clusters and voids, the Rees–Sciama effect was
considered in detail by Mészáros and Molnár [6, 5]. They describe the clus-
ters by the standard Einstein–Strauss vakuola model, while the voids they
model in an approximative way that does not meet the full general-relativistic
junction conditions. Further, they do not consider the effect of refraction of
light at the boundary surface matching the cluster (void) with the expanding
universe. However, this effect could be of great importance in an accelerating
universe, indicated by many of recent cosmological tests predicting present
value of the vacuum energy density ρvac ∼ 0.7ρcrit (ρcrit ≡ 3H/8πG is the
critical energy density corresponding to the flat universe predicted by the
inflationary paradigm [7, 1]). The vacuum energy density (or energy of a
quintessence field) is related to the (effective) cosmological constant by

Λ =
8πG

c2
ρvac. (3.1)

Here, we present a study of the influence of the relict repulsive cosmolog-
ical constant, indicated by observations to be equal Λ ≈ 10−56 cm−2, on the
Rees–Sciama effect. We use the Einstein–Strauss–de Sitter (ESdS) vakuola

73
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model in which the inhomogeneity is represented by a spherically symmet-
ric cluster immersed into the Friedmanian dust-filled universe (see Fig. 3.1).
We determine temperature fluctuations of the CMBR passing the vakuola
described by the ESdS model and give estimations of the relevance of the
effect of refraction at the matching surface.

O

1

2

3

EFRW

− de Sitter
Schwarzchild

IFRW

χ

χ

E

I

Figure 3.1: ESdS vakuola model. A schematic picture of a cluster repre-
sented as a sphericaly symmetric inhomogeneity immersed in the dust filled
Friedman universe. The observer O receives two photons coming through the
vakuola, and third one coming directly.

We use the geometric units with c = G = 1.

3.1 Geodesics intersecting the matching hy-

persurface

In the framework of the Einstein–Strauss–de Sitter model the behaviour
of geodesics crossing the MH is crucial. At the MH the relation between
the directional angle as measured by the comoving Friedman observers, ψF,
and the directional angle as measured by the Schwarzchild–de Sitter static
observers,ψS, must be determined. The segments of the geodesics in the FRW
and the SdS geometry must be smoothly connected on the MH. One must
look for the Lorentz transformation relating the comoving Friedman and the
static SdS observers on the MH.

In the RW metric, the geodesic equations are given by expressions (1.24)
– (1.27) [9] and geodesic equations in the SdS spacetime are given by the
formulae (1.12) – (1.15) .

Let us consider coordinate systems with coincidentally oriented coordi-
nate axes, moving mutually in the direction of the radial axis. The orthonor-
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mal base vectors are related by the standard Lorentz transformation

e(µ′) = Λ ν
µ′ e(ν) (3.2)

with the Lorentz matrix

Λ ν
µ′ =











coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1











. (3.3)

The orthonormal basis of the static SdS observers is given by the relations

e(t) = A−1(r)
∂

∂t
, e(r) = A(r)

∂

∂r
, (3.4)

e(θ) = r−1 ∂

∂θ
, e(φ) = (r sin θ)−1 ∂

∂φ
, (3.5)

while in the case of the comoving FRW observers it is given by

e(T ) =
∂

∂T
, e(χ) = R−1 ∂

∂χ
, (3.6)

e(θ) = (RΣk)
−1 ∂

∂θ
, e(φ) = (RΣk sin θ)−1 ∂

∂φ
. (3.7)

We obtain the parameter of the Lorentz transformation from the fact that
the 4-velocity of the test particles comoving with the MH can be expressed
in the FRW and SdS spacetimes by the relation

u(b) =
∂

∂T
= eT = A−1(rb)Ebet +

[

E2
b −A2(rb)

]1/2 A−1(rb)er. (3.8)

Therefore, we arrive at the Lorentz transformation parameter in the form

coshα = Λ t
T = Λ r

χ = EbA−1(rb) =

√

1 − 2kM

R̃

(

1 − 2M

rb
− Λr2

b

3

)−1/2

.

(3.9)
The velocity parameter of the Lorentz shift, giving the speed of the expansion
of the MH as measured by the static SdS observers, and the Lorentz factor
are then given by the relations

V (rb) =

√

√

√

√1 − A2(rb)

E2
b

, γ = coshα =
[

1 − V (rb)
2
]−1/2

. (3.10)
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3.1.1 Refraction of light at the matching hypersurface

Denoting the directional angles (related to the outward radial direction de-
fined for observers at the radius, where the MH is located momentarily) of a
photon entering (leaving) the FRW universe from (into) the SdS vakuola as
ψ+

F , ψ+
S (ψ−

F , ψ−
S ), we arrive at the formulae

cosψ±
F =

cosψ±
S ∓ Vr

1 ∓ Vr cosψ±
S

, sinψ±
F =

sinψ±
S

√

1 − V 2
r

1 ∓ Vr cosψ±
S

. (3.11)

For photons entering the FRW universe from the SdS spacetime, the
detailed analysis [15] shows that

ψ+
F > ψ+

S for ψ+
S ∈ [0, π/2], (3.12)

i.e., for such photons the refraction angle is always larger than the impact
angle. The total reflection occurs for angles

ψ+
S > ψ+

S(T) ≡ arccosVr. (3.13)

In Table 3.1, we give the critical angles of the total refraction ψ+
S(T) for some

values of the MH expansion velocity. In Fig. 3.2a, we present the dependence
ψ+

F = ψ+
F (ψ+

S ;Vr) for some appropriately chosen values of the expansion
velocity.

Table 3.1: Total reflection angle ψ+
S(T), calculated for four different values of

the speed parameter Vr.
Vr 0.1 0.3 0.7 0.9
ψ+

S(T) 84◦15′ 72◦32′ 45◦34′ 25◦50′

Considering photons entering the SdS region from FRW universe, we can
conclude that ψ−

S > ψ−
F for ψ−

F ∈ [0, π/2], i.e., the refraction angle is again
always larger then the impact angle, and the total reflection occurs for

ψ−
F > ψ−

F(T) ≡ arccosVr. (3.14)

3.1.2 Expansion velocity of the matching hypersurface

We shall consider the simplest case of the MH expansion velocity for the
spatially flat universe (k = 0):

Vr =

√

2M

rb
+

Λr2
b

3
. (3.15)
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Figure 3.2: Plot A: The refraction angle ψ+
F for fixed speed parameter V ,

as a function of the impact angle ψ+
S from the interval [0, π/2]. The shaded

area corresponds to the total reflection of the light. Plot B: The dependence
Vr = Vr(rb) for fixed massM = 7·1018M⊙ of vakuola and three representative
values of Λ = 0, 10−52m−2 and 5 · 10−52m−2 and vakuola radius rb from the
interval [10Mpc, 500Mpc]. The function V (rb) reaches its local minimum as
it approaches the static radius rs.

Introducing a dimensionless cosmological parameter y ≡ 1
3
ΛM2, we find the

local extremum of Vr(rb) (dVr/drb = 0) located at so called static radius of
the SdS spacetime

rs
M

≡ y−1/3, (3.16)

where the gravitational attraction of the central mass condensation (or a
black hole) is just balanced by the cosmic repulsion [12, 10, 11]. We can see
that with rb growing Vr(rb) falls down for rb < rs, it reaches its minimum at
the static radius (rb = rs), where

Vr(min) = Vr(rb = rs) =
3M

rs
= 3y1/3, (3.17)

while the expansion speed is accelerated at rb > rs, approaching velocity of
light (Vr → 1) when rb approaches the cosmological horizon of the SdS region
(rb → rc) (see Fig.3.2b). Notice that for y ≪ 1, the cosmological horizon is
approximately given by

rc
M

∼ y1/2. (3.18)

For the exact formulae giving loci of the event horizons rc and rh in the SdS
spacetimes see [12].
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3.2 Influence of the refraction effect on tem-

perature fluctuations of the CMBR

We shall study the influence of the refraction effect on the CMBR in the
framework of the ESdS model using the simplified approach developed by
Mészáros and Molnár (for more detailed model, considering also deflection
of light by the mass condensation, see [14]). We do not consider the model
of void used in [6], since it is not self-consistent from the point of view of
general relativity. It was shown in [6] that the temperature fluctuations
are fully determined by the length of the photon ray spanned in the vakuola
region, i.e., it is determined by the angle ψS giving the impact angle of photon
on the MH. The effect of refraction can be incorporated into the model by
substituting the angle ψ+

S influenced by the refraction effect directly into the
formula determining the temperature fluctuation. For simplicity, we shall
consider here photon trajectories which do not enter the internal Friedman
region, and, as usual in the model, we abandon deflection of light in the SdS
spacetime. The impact angle ψ+

S then has to be related to the view angle β
of observer through the angle of refraction ψ+

F (see Fig. 3.3).

Figure 3.3: Refraction of a photon ray going through the vakuola. χb is the
comoving coordinate of the vakuola boundary, χ0 is the comoving ‘radial’
distance of the observer from vakuola, χ = χb + χ0. The ray BO, with
no refraction effect considered in accord with [6], is included for comparison
with previous results in order to clear up the relevance of the refraction on
the Rees–Sciama effect.

The temperature fluctuation (frequency shift) of a CMBR photon due to
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transversing the vakuola is given by the relation [6]

∆T =
2H3Y 3

c3

{

Ω

2
sin2 ψ cosψ +

1 + 2Ω

3
cos3 ψ

}

, (3.19)

where ψ = ψ+
S determines the length of the ray in the vakuola; Y = R(η)χ

is the actual physical extension of the vakuola and H = Ṙ/R is the actual
value of the Hubble parameter; R(η) is the scale factor, Ṙ ≡ dR/dT , η is the
conformal time defined by dη = dT/R.

Refraction effect will change the length of light ray spanning the vakuola
region (see Fig. 3.3). Of course, for vanishing refraction effect, there is ψ+

S =
ψ+

F in agreement with [6]. Using formula (3.19) we find the temperature
fluctuation with the refraction effect included to be given by the relation

∆Tr =
2H3Y 3

c3

[

cosψ+
F + V (rb)

1 + V (rb) cosψ+
F

]

×











Ω

2





sinψ+
F

γ
(

1 + V (rb) cosψ+
F

)





2

+
1 + 2Ω

3

[

cosψ+
F + V (rb)

1 + V (rb) cosψ+
F

]2






. (3.20)

The relevance of the refraction effect is given by the difference of the
temperature fluctuations ∆Tr and ∆T :

∆ ≡ ∆Tr − ∆T =
2H3Y 3

c3







Ω

2





cosψ+
F + Vr

1 + Vr cosψ+
F

(

sinψ+
F

γ[1 + Vr cosψ+
F ]

)2




− Ω

2
cosψ+

F sin2 ψ+
F

+
1 + 2Ω

3





(

cosψ+
F + Vr

1 + Vr cosψ+
F

)3

− cos3 ψ+
F











. (3.21)

In the limit of non-relativistic velocities, Vr ≪ 1, the relations (3.11) imply

cosψ+
S ∼ cosψ+

F + Vr sin2 ψ+
F , sinψ+

S ∼ sinψ+
F (1 − Vr cosψ+

F ), (3.22)

so that up to the first order of Vr, the temperature difference is given by the
formula

∆ ≡ ∆Tr − ∆T ∼ 2H3Y 3

c3
Vr cos2 ψ+

F sin2 ψ+
F

(

1 + Ω +
Ω

2
tan2 ψ+

F

)

. (3.23)
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Clearly, as we expected intuitively, the influence of the refraction effect van-
ishes linearly with Vr → 0.

The relevance of the refraction effect in terms of the viewing angle β
follows directly from the sine rule (see Fig. 3.3)

sinψ+
F =

χ0 + χb

χb

sin β (3.24)

and from the relation between the Schwarzschild coordinate rb, and the
Robertson–Walker comoving coordinate χb given by

rb = R(tb)χb =
R0

1 + z
χb, (3.25)

where R0 is recent value of R, and z is the cosmological redshift, being the
measure of the cosmic time. Introducing new variables

A(β) =

√

1 −
(

χ0+χb

χb
sin β

)2
+ Vr

1 + Vr

√

1 −
(

χ0+χb

χb
sin β

)2
, (3.26)

B(β) =

χ0+χb

χb
sin β

γ

[

1 + Vr

√

1 −
(

χ0+χb

χb
sin β

)2
] , (3.27)

C(β) =

√

√

√

√1 −
(

χ0 + χb

χb

sin β

)2 (
χ0 + χb

χb

sin β

)

, (3.28)

the temperature difference (3.21) can be expressed as a function of β in the
form

∆Tr − ∆T =
2H3Y 3

c3

{

Ω

2

[

A(β)B2(β) − C(β)
]

+
1 + 2Ω

3





A3(β) −







√

√

√

√1 −
(

χ0 + χb

χ b

sin β

)2






3















.(3.29)

The relevance of the refraction effect is illustrated by Fig. 3.4. By analysing
the relation (3.29), we can show that for any value of β the influence of the
refraction on the temperature fluctuations ∆Tr − ∆T monotonically grows
with Vr growing.
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Figure 3.4: Plot A: Relevance of refraction is plotted as a function of angle
β for three representative values of velocity V = 0.2, 0.5 and 0.9. Plot B:
Relevance of refraction is plotted as a function of velocity V of MH for three
representative values of angle β = 4◦, 6◦ and 9.5◦. Both plots are drawn for
Ω = 1, χ0 = 10, χb = 2 (see Fig 3.3).

3.3 The moment of leaving the vakuola

Assume that all photons coming from directions 0 ≤ β ≤ βmax(sin βmax = k,
see Fig 3.5) are released at the same conformal time ηA and reach observer
also at the same conformal time ηO. Here we neglect the time delay effects
caused by passing through the SdS region. We also assume that the photons
leaving vacuola under certain angle α, will reach its edge at conformal time
ηD which is the same for both refracted and non-refracted trajectories(see
Fig 3.5).

From the geometry of the configuration depicted on Fig.3.5 we have

ηD − ηA = (1 + cosα)χb. (3.30)

From definition of the conformal time, dη = cdT/a = cda/(aȧ), one arrives
to equation

(1 + cosα)χb = c
∫ aD

aA

da

aȧ
. (3.31)

The scale parameter a has units of length. ȧ is defined by the Friedman
equation

ȧ2 ≡
(

da

dT

)2

=
Ωm0H

2
0a

3
0

a
+

Λ

3
c2a2, (3.32)
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where a0, Ωm0 and H0 are today’s values of scale parameter, density param-
eter of matter and Hubble parameter. We define dimensionless quantity x
by

αF

χ
b χ

0

D

(1)

(2)

A

1C

2C

O

αα
ss

Schw−dS

FRW

β

Figure 3.5: Schwarzchild-de Sitter vakuola of comoving radius χb immersed
into Friedman-Robertson-Walker dust filled universe. Ray labeled (1) is re-
fracted while ray labeled (2) is not. Both rays started from at conformal time
ηA and arrive simultaneously to observer O at conformal time ηO. From the
figure it is clear that under such assumptions they must also arrive simulta-
neously to D at conformal time ηD.

a = a0 · x. (3.33)

The Fiedman equation and equation (3.31) then read

ẋ2 = Ωm0H
2
0/x+

Λ

3
c2x2. (3.34)

and

(1 + cosα)χb =
c

a0

∫ xD

xA

dx

xẋ
⇒ (1 + cosα)rb0/c =

∫ xD

xA

dx

xẋ
(3.35)

Inserting formula (3.34) into equation (3.35) one arrives to equation

(1 + cosα)rb0/c = W

[

F

(

cos−1 b

t
,

1

1 + b2

)]tD

tA

(3.36)

where
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b =

√

√

√

√

√
3 − 3/2√
3 + 3/2

, (3.37)

A = Ωm0H
2
0 , (3.38)

B = Λc2/3, (3.39)

L = A/B, (3.40)

t =
x+ (

√
3 + 1)−1L1/3

(
√

3 − 1)−1L1/3 − x
, (3.41)

W =

√

√

√

√

2

(
√

3 + 3/2)(1 + b2)

1

A1/3B1/6
(3.42)

For the input parameters xA one can easily evaluate the value xD of the
dimensionless size of the vacuola when CMB photon leaves it. Defining the
quantity

I = WF

(

cos−1 b

tA
,

1

1 + b2

)

(3.43)

and the quantity Ĩ by formula

Ĩ = (1 + cosα)rb0/c+ I (3.44)

the formula for the instant tD when CMB photon leaves vakuola reads

tD =
b

cn[Ĩ/W, 1
1+b2

]
(3.45)

where cn is the Jacobi elliptic function. The quantity tD is connected with
xD through equation (3.41). The quantity x is related to the redshift z by
equality

x =
1

1 + z
, (3.46)

as folows from (3.33), the redshift, zD, when the photon leaves the vakuola
is then

zD =
1

xD

− 1. (3.47)
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3.4 WMAP Cosmological parameters applied

on temperature fluctuations ∆T
T

The cosmological parameters measured by WMAP experiment are used here
to find out what scale are temperature fluctuations and how they depend on
instant when CMB photon entered vakuola.

0.0 0.5 1.0 1.5
0

1.´ 10-6

2.´ 10-6

3.´ 10-6

4.´ 10-6

5.´ 10-6

6.´ 10-6

Α

D
T
�T

Figure 3.6: Temperature fluctuations of CMBR as a function of α for four
different representative values of redshift zA and the cosmological parameters
H0 = 72km/s/Mpc, Ωm0 = 0.27, Λ = 10−56cm−2 and rb0 = 500Mpc. Curves:
solid(zA = 0.1), dashed(zA = 0.4), dotted(zA = 2) and dotdashed(zA = 10).

From plots on figure Fig.3.6 one can see that the magnitude of tempera-
ture fluctuations caused by spherical inhomogenity of the Friedman universe
are of the order 10−6. With decreasing value of zA the magnitude of the
temperature fluctuations increases which is caused by the fact that physical
dimensions of vakuola is bigger for smaller zA than for higher ones.

3.5 Fourier components of temperature fluc-

tuations profile

Here we concern on the first three componets of fourier decomposition of
∆T/T . The formula for ∆T/T reads

∆T

T
=

(

H(ηA)y(ηA)

c

)3
cosα+ V (ηD)

1 + V (ηD) cosα
×
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{

Ω(ηA)

2

(

sinα

1 − V (ηD) cosα

)2

[1 − V (ηD)2] +

1 + 2Ω(ηA)

3

(

cosα+ V (ηD)

1 + V (ηD) cosα

)2 }

(3.48)

To evaluate monopole, dipole and quadrupole anizotropies we must eval-
uate H, Ω, y and V in terms of redshift corresponding to conformal time ηA.
From Friedman and continuity equations we arrive at

H2(z) = Ωm0H
2
0 (1 + z)3 +

Λ

3
c2, (3.49)

Ω(z) =
Ωm0H

2
0

H2(z)
(1 + z)3, (3.50)

y(z) = a · χb = a0 · χb · x = rb0/(1 + z), (3.51)

V (z) =

√

√

√

√

2GM

c2rb0

(1 + z) +
Λr2

b0

3(1 + z)2
. (3.52)

We write the Fourier transformation in a following way. Setting f(α, zA) ≡
∆T
T

we write, for monopole, dipole and quadrupole moments, equations

f0(k, zA) =
2k

π

∫ π/2

0
f(α, zA)

cosα√
1 − k2 sin2 α

dα, (3.53)

f1(k, zA) =
2k

π

∫ π/2

0
f(α, zA) cosαdα, (3.54)

f2(k, zA) =
2k(1 − 2k2)

π

∫ π/2

0
f(α, zA)

cosα√
1 − k2 sin2 α

dα

− 4k3

π

∫ π/2

0
f(α, zA)

cos3 α√
1 − k2 sin2 α

dα, (3.55)

where k = χb/(χb = χ0) and zA is redshift at the conformal time ηA. Because
of the fact that V = V (α) (it follows from eqs (3.45), (3.47) and (3.41)), it
is very difficult to obtain analytical expression or expression using elliptic
integrals here. Therefore we decided to solve equations (3.53), (3.54) and
(3.55) numerically and show on graphs the behaviour of monopole, dipole
and quadrupole moments of temperature fluctuations (3.48).

Three graphs on Fig.3.8 show how the monopole, dipole and quadrupole
terms depend on the redshift z, corresponding to the point A (see Fig.3.5)
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Figure 3.7: The speed of matching hypersurface relative to static SdS ob-
servers is plotted as a function of redshift parameter z for the cosmological
parameters of our universe as measured by WMAP: H0 = 72km/s/Mpc,
Ωm = 0.27. The minimum is at z ∼ 0.5 for the curve with Λ = 10−56cm−2.
From this instant the universe is in the regime of accelerated expansion.

and on the fourth graph the speed parameter of vakuola as a function of
redshift z corresponding to the point D (see Fig.3.5). Monopole, dipole and
quadrupole moments behave in the same manner. They decrease on interval
z ∈ [zMmin

,∞] and increase after crossing z = zMmin
, where M refers to

monopole, dipole and quadrupole moments. Note that zMmin
is different for

different parameters k and it also depends on the moment itself. It is because
of the fact that when gathering photons coming from different directions,
each of them leave vakuola at diffent conformal time ηD. Some photons leave
vakuola before the cosmological constant Λ dominates the universe and other,
in the period when cosmological constant Λ dominates the universe.



3.5. FOURIER COMPONENTS 87

0 1 2 3 4 5
z

0

0.0005

0.001

0.0015

0.002

I DT��������
T
M
0

HaL

HbL

HcL

MONOPOLE of DT�T

0 1 2 3 4 5
z

0

0.0005

0.001

0.0015

0.002

I DT��������
T
M
1

HaL

HbL

HcL

DIPOLE of DT�T

0 1 2 3 4 5
z

0

0.002

0.004

0.006

0.008

I DT��������
T
M
2

HaL

HbL

HcL

QUADRUPOLE of DT�T

0 1 2 3 4 5
z

0.2

0.4

0.6

0.8

1

V

Figure 3.8: Monopole, dipole and quadrupole moments of fourier expansion
of temperature fluctuations ∆T/T as a function of redshift z, are plotted
here for three representative parameters k; curve (a) for k = 0.99, curve (b)
for k = 0.5 and curve (c) for k = 0.1. The speed parameter V as a function
of redshift z is plotted on the forth graph. The cosmological parameters are
set to H0 = 72km/s/mpc, Ωm0 = 0.27, Λ = 10−56cm−2, rb0 = 500Mpc and
c = 3 × 106km/s.

Concluding remarks

Studying the fluctuations of CMBR in the accelerating universe with the
repulsive cosmological constant, we have shown, how the influence of the
refraction effect grows with the velocity of the MH, contrary to the stan-
dard Friedman models with Λ = 0, where the velocity of the MH falls in
the expanding universe and the refraction effects are suppressed. In the ac-
celerated universe, the velocity grows after MH crosses the static radius of
the SdS spacetime, and the refraction effect becomes significant. Such effect
could serve as another test of the presence of the cosmological constant; it
could have strong observational consequences in future, when the velocity of
the MH becomes to be relativistic. We conclude that there are two basic
phenomena related to the importance of the refraction effect in the ESdS
model explaining the temperature fluctuations of CMBR.
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1. The total reflection phenomenon implies that some part of the vakuola
region will not be visible to the external observer. This part will be
enlarged with expansion velocity Vr growing.

2. The refraction effect on the temperature fluctuations (in the case of
spatially flat universe) will fall, if the boundary of the MH rb approaches
the static radius rs of the Schwarzschild-de Sitter region, and it starts to
grow after crossing the static radius.The effect becomes to be extremely
strong when rb approaches the cosmological horizon rc and Vr → 1.

We can expect that in the accelerated universe the influence of the relict
vacuum energy on the fluctuations of CMBR due to the Rees–Sciama effect
could be very important, especially the refraction effect has the tendency
to rise up the fluctuations. At present,we make our model more precise,
and we estimate conditions under which currently observable effects could
be expected.
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