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The variational quantum eigensolver (VQE), a variational algorithm to obtain an approximated ground state
of a given Hamiltonian, is an appealing application of near-term quantum computers. To extend the framework
to excited states, we here propose an algorithm, the subspace-search variational quantum eigensolver (SSVQE).
This algorithm searches a low-energy subspace by supplying orthogonal input states to the variational ansatz
and relies on the unitarity of transformations to ensure the orthogonality of the output states. The kth excited
state is obtained as the highest-energy state in the low-energy subspace. The proposed algorithm consists only of
two parameter optimization procedures and does not employ any ancilla qubits. The avoidance of the estimation
of the inner product and the small number of procedures required are considerable improvements from the
existing proposals for excited states, making our proposal an improved near-term quantum algorithm. We further
generalize the SSVQE to obtain all excited states up to the kth by only a single optimization procedure. From
numerical simulations, we verify the proposed algorithms. This work extends the applicable domain of the VQE
to excited states and their related properties as a transition amplitude without sacrificing any of its feasibility.
Moreover, the proposed variational subspace search, which generalizes the state search problem to the search
of a unitary mapping to a specific subspace, itself would be useful for various quantum information processing

methods such as finding a protected subspace or a good variational quantum error correction code.
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I. INTRODUCTION

Supported by the worldwide active research for the de-
velopment of quantum devices, quantum computers equipped
with almost a hundred qubits are now within reach.
Those near-term quantum computers are often called noisy
intermediate-scale quantum (NISQ) devices [1], reflecting the
fact that those quantum computers are not fault tolerant, that
is, they do not have a guaranteed accuracy of the computa-
tional result. However, such a NISQ device is believed not
to be simulatable on classical computers if the gate fidelity
is sufficiently high [2—4]. This fact encourages us to look for
practical applications of them.

The variational quantum eigensolver (VQE) [5-7] is an
attracting application of near-term quantum computers in the
hope that the controllable quantum devices can simulate an-
other quantum system more efficiently than classical devices.
The VQE is an algorithm for finding an approximate ground
state of a given Hamiltonian #. For this purpose, the VQE
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utilizes a parametrized quantum circuit U (@), which is also
called an ansatz circuit, to generate an ansatz state | (0)).
The expectation value of the target Hamiltonian (H(0)) =
(¥ (0)|H|¥(#)) is minimized by iterative optimization of the
parameters 0. The circuit with the resultant optimal parame-
ters 8" which minimizes () outputs the approximate ground
state.

Not only is the ground state, which the original VQE aims
to find, but also excited states of molecules are responsible
for many chemical reactions and physical processes. For
example, the transition between a ground state and excited
states is the origin of luminescence [8]. Intermediate states
of a chemical reaction are, in general, not a ground state of a
system, and therefore the properties of such excited states are
important for an analysis of them [9].

In spite of the importance of the excited states, classical
computation suffers from increasing computational cost and
gives relatively poor results for them [9-11]. This motivates
us to utilize quantum computers for the task of finding excited
states and analyzing their property. A long-term quantum
algorithm for a chemical reaction has been investigated in
Ref. [12]. However, algorithms which we can run on NISQ
devices are yet to appear.

In order to find the excited states using NISQ devices, we
propose a method which utilizes the conservation of orthog-
onality under the unitary transformation. We call the method
the subspace-search VQE (SSVQE). The SSVQE takes two
or more orthogonal states as inputs to a parametrized quantum
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circuit, and minimizes the expectation value of the energy in
the space spanned by those states. This method automatically
imposes the orthogonality condition on the output states, and
therefore allows us to remove the requirement to estimate the
inner product of the quantum states, which has been employed
in the previous works [13,14] to ensure orthogonality. In
principle, the proposed algorithm can find the kth excited
state by running optimization of the circuit parameters only
twice. We also propose a generalized version of the SSVQE,
which finds all excited states up to the kth by running only
one optimization procedure. As a possible application of the
SSVQE, a method to measure a transition amplitude between
two eigenstates is also described. It can evaluate material
properties such as the permittivity and rate of spontaneous
emission. We perform numerical simulations and show the
validity of the proposed algorithms for fully connected ran-
dom transverse Ising models and helium hydride. This work
greatly extends the practicability of the VQE by enabling it to
find the excited states efficiently, and thereby further promotes
the VQE as a candidate for a possible application of NISQ
devices.

The rest of the paper is organized as follows. In Sec. II we
first propose the algorithm of the SSVQE and its extended
version. Then, in Sec. III we briefly review the existing
works addressing the same objective of finding the excited
states in the framework of the VQE. An algorithm to obtain
the transition amplitude is described in Sec. IV. Finally, we
present the simple, proof-of-principle numerical simulations
in Sec. V.

II. METHODS

The VQE is a quantum-classical hybrid algorithm to find a
ground state of a given Hamiltonian # using NISQ devices.
For this purpose, the VQE utilizes a parametrized quantum
circuit U (0), also called an ansatz circuit, to generate an ansatz
state | (@)). The expectation value of the target Hamiltonian
(H(0)) = (Y (0)|H|y¥(#)) is minimized by an iterative opti-
mization of the parameters 6.

We generalized the state-searching problem to the
subspace-searching one by variationally finding a unitary
transformation that maps a subspace into another. This general
protocol would be useful for quantum information processing
on the near-term quantum devices beyond the excited states.
Our objective here is to find excited states of the Hamiltonian
‘H. Since the eigenstates of the Hamiltonian  are mutually
orthogonal, a straightforward construction of the algorithm to
find the kth excited state is to minimize (#(#)) by imposing
an orthogonality condition between the ansatz state |y (6))
and all of the ground/excited states up to the (k — 1)th.
By inductively repeating this, we can find the excited states
of interest. This strategy which measures the inner product
between the ansatz state and all of the ground/excited states
up to (k — 1)th has been employed to ensure the orthogonality
in previous works [13,14]. Nonorthogonal components cannot
be removed beyond the accuracy determined by the number
of measurements. In contrast, the SSVQE and the weighted
SSVQE we propose here utilize the conservation of orthogo-
nality under the unitary transformation in an effort to satisfy
the orthogonality condition. These methods automatically

impose the orthogonality on the output states, and therefore
remove the requirement to estimate the inner products.

A. Subspace-search variational quantum eigensolver

The key idea is to ensure the orthogonality at the input of
the quantum circuit, not at the output. Below, we describe
the algorithm to find the kth excited state that works on an
n-qubit quantum computer. We define the ground state as the
Oth excited state. The algorithm, which we refer to as the
subspace-search VQE (SSVQE), runs as follows.

Algorithm:

(1) Construct an ansatz circuit U (#) and choose input states
{|<pj)}’]f:0 which are mutually orthogonal ({¢;|¢;) = 6;;).

(2) Minimize £1(0) = Y5_, (¢;|UT(0YHU ()|¢;). We de-
note the optimal 6 by 6*.

(3) Construct another parametrized quantum circuit V (¢)
that only acts on the space spanned by {|¢ j)}’]‘.zo.

(4) Choose an arbitrary index s € {0, ..., k}, and maximize
Lo($) = (osVI@)U (0" YHU (0%)V (9)gy).

We note that, in practice, the input states {|¢ j)}’;:() can be
chosen from a set of states which are easily preparable, such
as the computational basis.

Let the set of eigenstates of H be {|E j)}?:’ol with corre-

sponding eigenenergies {E£ j}i—ol where E; > E; wheni > j.

Then, the circuit optimized at step (2) of the above algorithm
is a unitary that best approximates the mapping from the space
spanned by {|¢ j)}’j‘.zo to the one spanned by {|E j)}lj;o' There-
fore, in step (2), we can find the subspace which includes
|E) as the highest-energy state, using a carefully constructed
ansatz U (0). The unitary V (@) is responsible for searching in
that subspace. By maximizing £,(¢), we find the kth excited
state |Ey).

In the case of k > 2"~ it is faster to choose 2" — k of
the orthogonal input states |¢;) and maximize £;() instead
of minimizing it in step (2), then minimize £,(#) instead of
maximizing it in the final step.

B. Weighted SSVQE for finding the kth excited state

Here, we extend the algorithm described in the previous
section to find the kth excited state of a given Hamiltonian
which requires only a single optimization procedure. It runs
as follows.

Algorithm:

(1) Construct an ansatz circuit U (#) and choose input states
{|<,oj)}’j‘.=0 which are orthogonal with each other ({¢i|¢;) =
8ij)-

(2) Minimize L,0) = wig | UTOYHU(0)|gr) +
ZI;.;(I) ((pj|U+(0)7-LU(0)|g0j), where the weight w can be
any value in (0, 1).

When the cost £, reaches its global optimum, the circuit
U(#) becomes a unitary which maps |¢;) to the kth excited
state |E;) of the Hamiltonian and others to the subspace
spanned by {|E j)}jzgfl. Therefore, by minimizing the cost
L,,, we can find the kth excited state by a single optimization
process. Note that the overall time required for the optimiza-
tion might increase, due to the more complicated landscape of
the cost function.
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C. Weighted SSVQE for finding up to the kth excited states

We further generalize the above argument and propose an
algorithm for finding all excited states of a given Hamiltonian
up to the kth with only one optimization procedure.

Algorithm:

(1) Construct an ansatz circuit U (#) and choose input states
{|<pj)}’;:0 which are orthogonal with each other ({¢:|¢;) =
8ij)-

(2) Minimize Ly(0) = Z, _owi{e;IlUTOYHU (0)]¢;),
where the weight vector w is chosen such that w; > w; when
i<j.

The weight vector introduced here has the effect of choos-
ing which |g;) is converted to which excited state. It is easy
to see the circuit U(#) when the cost £, reaches its global
optimum becomes a unitary which maps |¢;) to the jth excited
state |E;) of the Hamiltonian for each j € {0, 1, ..., k}. We
provide a proof in the Appendix. In this case, too, note that
the overall time required for the optimization might increase
due to the same reason as the previous section.

III. RELATED WORKS

In this section, we first overview previous works, and then
describe the advantages of our methods.

Reference [15] has proposed a method which hybridizes
the quantum phase estimation algorithm and the VQE. Al-
though it is experimentally demonstrated [15], the method is
unlikely to be implemented on a NISQ device, due to the need
for the controlled time evolution.

In Ref. [16], a method called quantum subspace expansion
has been proposed. The algorithm first finds the ground state
|Ey) by the usual VQE protocol, and then measures the matrix
elements of the Hamiltonian with respect to the space spanned
by {O4|Eo)}, where {O,} is a set of excitation operators.
The diagonalization of the matrix, which is done classically,
can determine the approximate eigenvalue spectra. They have
used a set of one electron excitation operators {a’a,}, where
al and a; are the fermion creation and annihilation operators,
respectively, and 7, j running all possible indices, for {Og}.

The constrained VQE proposed in Ref. [17] can also be
used for finding a certain set of excited states. They proposed
a way to introduce constraints, such as the number of electrons
or the overall spin of the system, on the VQE. The introduc-
tion of the constraints is done by adding the penalty term to
the cost function. Their method finds the lowest-energy state
under the constraints. Since the difference in the constraints,
such as the difference in the number of electrons or the overall
spins, generally changes the energy of the system, it can be
utilized to find a certain set of excited states.

Reference [13] has recently proposed an inductive method
which adds a penalty term to ensure the orthogonality of the
ansatz state with respect to the low-lying state. To be more
concrete, to find the kth excited state, they use (H(0)) +
Zf:ol Bil (W (0x) | (67))|?, where 67 is the optimal parameters
for the ith excited state and B; is a hyperparameter that
determines the strength of the penalty, as the target cost func-
tion to be minimized by tuning 6;. Their method estimates
the inner products of the quantum states. As stated earlier,
nonorthogonal components cannot be removed beyond the

/ N\ / N\
} (9((1))HRZ((9§{ )} } 9(D2+1))HRA (Dfrl))}»
Rx (05 R6)] R (6 Dl Rz60 O)F
AR SfRASD) R (05 R62) R0 O)fiRo(63 D)
s @ N Rl Rx @ R0 '9<D2+1))HRZ(9<02+1) ]
\ 2D\ / D2

FIG. 1. Variational quantum circuit used in the simulations of
Sec. V. These parameters ¢, 6 are optimized to to minimize £. D,
and D, denote the number of repetitions of a circuit in each bracket.
Note that, in the explanation of weighted SSVQE, 6 denotes {¢, 6}
in this figure.

accuracy determined by the number of measurements. Their
method works well when the hyperparameter f; is set properly
as shown in Ref. [13]. Reference [14] has enabled the opti-
mization by the imaginary time evolution of the parameters in
this approach.

The advantages of our methods, when compared to the
methods above, are as follows.

(1) The energy spectrum found by the SSVQE or the
weighted SSVQE is exact when U(f) and V(¢) have the
ability to represent the exact unitary which maps the k input
states to the k eigenstates of the Hamiltonian.

(2) The estimation of the inner product of quantum states
is not employed and thus easily implementable on the NISQ
devices.

(3) In the SSVQE, there are no hyperparameters.

(4) In the weighted SSVQE, the results are unique re-
gardless of the value of the hyperparameters if they meet the
conditions.

(5) Optimization runs only twice for the SSVQE and only
once for the weighted SSVQE.

IV. CALCULATION OF TRANSITION MATRIX ELEMENTS

It is possible to measure a transition amplitude of an
operator A, (E;]A|E;), using the result of the SSVQE. Note
that (E;|A|E;) = (@:|U"(0*)AU (6%)|¢;), where U(0") is the
optimized unitary. We can measure this by expanding it as

Re((pi[UT(69)AU (6%)|¢;))
= (+5;|UT(0)AU (0")|+}))
— 3{@ilUT(0)AU (0|9} 3 (0, 1UT(69)AU (6%)19)),
(1
Im({g;|UT(6%)AU (6%)¢;))
= (+3;|UT0)AU 0)|+}))

— 3@l UT(0")AU (0 i) — 5 (0, | U (0")AU (8")]9)).

)

where |+5) = (Ig:) + |9;))/+/2 and |+];)=(lg)+ile;))/v/2.
Recall that in practice the input states are chosen from
simple states such as the computational basis, and therefore
we assume that the superpositions such as |+;;) can easily
be prepared. Each term of the above equation is measured
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FIG. 2. Step (1) of the SSVQE to find the third excited state
of a transverse Ising model. Black dashed line: Avg.(Ep123) =
i 22:0 E,, which is the globally optimal value of £, /4 in this case.
Red solid lines: The evolution of £; /4 and the fidelity (see the main
text for the definition) during the optimization process.

separately on the NISQ device and then is summed up on a
classical computer.

V. NUMERICAL SIMULATION

Here, we numerically simulate our algorithms with 4-qubit
Hamiltonians. Figure 1 shows the variational ansatz used
in the simulations. We chose the input states as {|g;)} =
{|0000}), |0001), |0010), |0011)}. The depth D is set to D; =
2 for all of them. D, is set to D, = 6 for the SSVQE
and the weighted SSVQE for finding the kth excited states,
and D, = 8 for the weighted SSVQE for finding all excited
states up to the kth. The initial values of the parameters
were randomly sampled from a uniform distribution [0, 27).
For each simulation, the optimization was run for ten times
starting from different initial values. The results shown in the
following sections are the ones which achieved the lowest
value of the cost function among those ten results. We used
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [18]
implemented in the SciPy library [19] for the optimization of
the parameters.

0
>
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T AN Energy levels
1.0 e
> —— SSVQE (E3)
0.5
S
L
0.0

o

20 40
No. of iteration

FIG. 3. Step (2) of the SSVQE to find the third excited state of a
transverse Ising model. Red solid lines: The evolution of £, and the
fidelity (see the main text for the definition) during the optimization
process.
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FIG. 4. The weighted SSVQE to find the third excited state of a
transverse Ising model. In the energy diagram, SSVQE(E3) (red solid
line) is (@3|UT(O)YHU (0)|@3) at each iteration.

A. Transverse Ising model

First, we demonstrate our idea with a Hamiltonian of the
fully connected transverse Ising model,

N N i-1
H=> aXi+ > > JiZZ. 3)
i=1

i=1 j=1

with N = 4. The coefficients g; and J;; are sampled randomly
from a uniform distribution on [0, 1). In this section, we use
one Hamiltonian with the same coefficients as an example. All
experiments were conducted on the case of k = 3.

1. SSVQE

The SSVQE can find the kth excited state with only two
optimization procedures. Figure 2 shows the first optimiza-
tion process of @ to minimize £(#). In Fig. 2, the fidelity
is defined by the overlap between the space spanned by

{|E j>}§=0 and the output of the quantum circuit {U (8)|¢ j>}3=0’

namely, }‘ Z?:o Z?:o [(E;|U (0)]¢;)|*. We see that, as the cost
function gets close to its global minimum, the fidelity ap-
proaches unity as expected.

Figure 3 shows the second process of optimizing ¢
to minimize L,(¢). Here, the fidelity is defined by

>
o
CICJ .......... Energy levels
572 ——— SSVQE (Eo)
Lo ! ——— SSVQE (E;)
> ---- SSVQE (E5)
2 s —— SSVQE (E3)
S
L
0.0

0 100 200

No. of iteration

FIG. 5. The weighted SSVQE to find excited states of a trans-
verse Ising model up to the third. In the energy diagram, SSVQE(E})
(k=0,1,2,3)are (¢ |UT(@)YHU (8)|¢y) for each k at each iteration.
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0.5 1.0 1.5 2.0 2.5
Bond length (A)

FIG. 6. The energy levels of the Hamiltonian of HeH and the
calculated energy of the third excited state using the SSVQE.

[{(E3|U(6*)V (¢)|@3)|>. One can see the subspace-search ap-
proach works well from Fig. 3.

2. Weighted SSVQE for finding the kth excited state

The method described in Sec. II B can find the kth excited
state by only one optimization sequence. Here, we chose w =
0.5 as the weight. Figure 4 shows the optimization process
of 6 to minimize L£,(#). Here, the fidelity is defined by
[{E3|U (8)|@3)|?. In this case, too, the algorithm succeeds in
finding the third excited state of the Hamiltonian. However,
the number of iterations to the convergence is larger than the
number of overall iterations of the simple SSVQE. It might be
attributed to the more complicated landscape existing in the
cost function.

3. Weighted SSVQE

The weighted SSVQE described in Sec. IIC can find
0,1, ..., kth excited states all at once. Here, we chose w =

Energy (hartree)

0.5 1.0 1.5 2.0 2.5
Bond length (A)

FIG. 7. The energy levels of the Hamiltonian of HeH and the pre-
dicted energy of the third excited state using the weighted SSVQE.

Prediction

o

|
N

o

|
N

Energy (hartree) Energy (hartree)

Bond length (4) Bond length (4)

FIG. 8. The energy levels of the Hamiltonian of HeH and the
predicted energy of the excited states up to the third using the
weighted SSVQE. Upper left: Ground state; upper right: first excited
state; lower left: second excited state; lower right: third excited state.

(4,3, 2, 1) as the weight vector. Figure 5 shows the optimiza-
tion process of @ to minimize £, (#). From Fig. 5, one can see
that this approach can actually find the desired excited states
all at once. The number of iterations to the convergence is
almost equivalent to the one presented in the previous section.

B. Helium hydride

Next, we apply our idea for the molecular Hamiltonians
of HeH with a fixed distance between two atoms. Our ansatz
(Fig. 1) does not consider the conservation of the number
of electrons, and therefore, the calculated excited states can
have a different number of them. The molecular Hamilto-
nians are calculated with OPENFERMION and OPENFERMION-
Psi4 [20,21]. We used the STO-3G minimal basis set, and
therefore, obtained the 4-qubit Hamiltonian. We calculated the
Hamiltonians at 24 different bond lengths and performed the
VQE at each point. In the weighted SSVQE simulation, we
used the same weights as in the previous section.

The result of SSVQE is shown in Fig. 6 and the one from
using weighted SSVQE for finding the kth excited state is
shown in Fig. 7. Both of the results agree nicely with the exact
values of the third excited state at each bond length.

Next, we used the weighted SSVQE described in Sec. IIC
to find all excited states up to the third. The result is shown in
Fig. 8. One can see that the energy eigenvalues are well ap-
proximated by the optimized output of the weighted SSVQE.

VI. CONCLUSION

In this work, we proposed efficient algorithms for find-
ing the excited states of a given Hamiltonian, extending the
framework of the VQE. The proposed method assures the
orthogonality of the states at the input of the ansatz circuit.
Minimizing a carefully designed cost function by optimizing
the parameters of the quantum circuit, we can map each of
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the orthogonal states onto one of the energy eigenstates. Our
algorithms require us to run, in principle, optimization only
once or twice, and find one or more arbitrary excited states.
The depth of the ansatz required to perform accurate SSVQE
might be greater than that of the conventional VQE. However,
even for the conventional VQE, it is still not clear how the
method depends on the circuit depth. One future direction
can be to thoroughly analyze such dependency of the VQE
and the proposed SSVQE by either numerical simulations or
experiments. We believe that this work greatly extends the
practicability of the VQE for finding the excited states.
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APPENDIX: PROOF

X1 Y1

X2

Lemma Al. Letx = andy = be n-dimensional
X n

ap cee Ain

vectors, and A = < : : ) be an n x n matrix.

Anl Ann
If
X <X < KXy, (A1)
MNE<»E < (A2)
aj >0 foralli,je{l,...,n}, (A3)
Zaij =1 forall je{l,..., n}, (A4)
> aj=1 forallie(l,....n}, (A5)
J
then
x"Ay <x'y, (A6)

and Eq. (A6) holds if and only if A satisfies the following
equation,
A=Y cRI0;,
J

where the permutation matrix Q; and R; satisfies the follow-
ing equations,

(A7)

y=0p. (A8)
Proof. By the Birkhof-von Neumann theorem, A can be

expanded as
A= Z b,

where {P;}; is the set of the n x n permutation matrices,
>.ci=1,¢>0foralli

X =ij.

(A9)

By the rearrangement inequality,
Vi x"Py <xTy [.(Al)and(A2)].

Therefore,

(A10)

xTAy < xTy. (AI1)
and Eq. (A6) holds if and only if A satisfies the following

equation,
—_— / T .
A=) cRjO),
J

where ) i c} =1, c;- > 0 for all j, and the permutation matri-
ces Q; and R; satisfy the following equations,

(A12)

x =Rjx. (A13)

|

Theorem A2. We assume that {|y;) iV: ’01 are orthonormal.

Let |e;) be the ith excited state of a given N x N Hamiltonian
H, and ¢; is the energy of the ith excited state. When

y=0y,

Wy Z W = 2= WN_, (A14)

then

D iyl =) wier, (A15)
and Eq. (A15) holds if and only if the matrix B, the i, j
elements of which is |u;;|, satisfies the following equation,
B=) ciR{O. (A16)
J
where ), ¢; = 1, ¢; > 0forall k, and the permutation matrix
Oy and Ry, satisfies the following equations,

€] w1

() w7
e=0re, w=Rw |e=]|. ]| 0:= . (A17)

e, Wy,

Proof. We rewrite y; as follows:
Vi) = _aijlej). (A18)
J
Then,
> uij=1 forallj, (A19)
Z uij =1 foralli, (A20)
Zw, w,mm = Z Zw,e,|u,,|

= - Z Z( wieplujl>. (A1)

By using Egs. (A14) and (A19)—(A21), Lemma A1, and ¢y <
e; < --- < ey_1, the above theorem can be shown. |

Note that the case in the main text where we only use k
states instead of N states corresponds to the special case of
the above theorem where w; = O for all i > k.
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