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Spin diffusion from an inhomogeneous quench
in an integrable system

Marko Ljubotina', Marko Znidari¢! & Tomaz Prosen'

Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems
when prepared in generic inhomogeneous initial states. However, the ballistic contribution to
transport can vanish in systems with additional discrete symmetries. Here we perform large
scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2
chain starting from an inhomogeneous mixed initial state which is symmetric with respect to
a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we
find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of
the transported magnetization and scaling profiles of the spin density. While in the easy-axis
regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case
is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal
scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
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ntegrable models, such as the classical Kepler problem,

harmonic oscillators, the planar Ising problem and so on,

form cornerstones of our understanding of nature. Their
equilibrium physics is usually well understood, even for the most
complicated among integrable models, for example, the ones
solvable by the Bethe ansatz!. Non-equilibrium physics of
quantum systems on the other hand is much less understood?,
particularly when going beyond the simplest integrability of
quadratic models. This theoretical gap is becoming even more
apparent with the advancement of experimental methods that are
offering us analogue simulation of models beyond the capability
of our best theoretical and numerical methods>*

Non-equilibrium dynamics of integrable quantum systems is
thus one of the main current focuses of both theoretical and
experimental condensed matter physics®. A macroscoplc number
of conservation laws existing in such systems provide a Varlety
of ways to break ergodicity, manifesting, for instance, in
equilibration processes to non-thermal states or ballistic high-
temperature transport of conserved quantities, such as energy,
magnetization or charge. A naive classical reasoning might be
that, because integrable systems are distinguished by constants of
motion that force the dynamics to be simple and almost periodic
(for example, orbits winding up the torus), one should expect to
see ballistic transport. We shall demonstrate that this picture,
while being correct for trivially mte;rable noninteracting models,
such as harmonic oscillator chains’, can in fact be wrong for an
interacting quantum integrable model

Recently, a generalization of hydrodynamics has been put
forward®® which successfully predicts ballistic currents and scaled
density profiles of integrable interacting systems quenched from
inhomogeneous initial states!®~1°, which is a convenient method
to study relaxation and non—equilibrium transport. In this
protocol, the system is prepared in the state where the left and
the right part, for x<0 and x>0, respectively, are in different
equilibrium states, and then, at t=0, let to evolve with a
homogeneous interacting Hamiltonian. However, when ballistic
transport is prohibited due to generic symmetries, such as is the
case for spin transport in the anisotropic Heisenberg spin chain in
the easy-axis (Ising) regime, this theory makes no prediction.

In extended interacting integrable system a macroscopic
number of local conservation laws exists, in number proportional
to the number of degrees of freedom, which can be exploited to
develop generalized hydrodynamics®. This theory for typical
inhomogeneous initial states predicts ballistic scaling f(& = x/f) of
densities and currents of conserved quantities, such as energy,
charge or magnetization. However, in systems with parity (Z5)
symmetries, such as particle-hole exchange (or spin reversal), and
for observables that are odd under the parity and initial states that
are symmetric under the combined parity and spatial reflection
x— — x, the ballistic contribution to transport can vanish. In fact,
vanishing ballistic transport channel can then be related to the
absence of local or quasi-local conserved charges with odd
parity®!®. This means that the transported conserved quantity at
x=0 grows slower than linear with ¢.

Here we propose a conjecture, based on large scale simulations,
that a quench from an inhomogeneous initial state will in
such cases generically result in diffusive spin dynamics. We
demonstrate our results on the anisotropic Heisenberg chain
(XXZ model). However, we stress that the XXZ model goes
beyond being a mere toy model—it has been instrumental in the
development of quantum 1ntegrab111ty17 18 and  describes
interaction in real spin chain materials!®. Remarkably, in
the case of isotropic Heisenberg interaction, spin relaxation is
super-diffusive but with universal scaling dynamics which obey
the standard diffusion equation in nonlinearly scaled time. Our
results thus reveal a surprising property of an important
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integrable model as well as pose a challenge to theories which
at present are unable to account for our observations. Because
the parity symmetry is ubiquitous, our set-up should be
widely applicable, for instance, we predict a similar physics in
the one-dimensional (1D) Hubbard model.

Results
The set-up. The Hamiltonian of the XXZ chain of n sites reads

n/2—1

H=p > (s

1 +s? s +1+A5 x+1) (1)
x=—n/2

where A is the anisotropy parameter and sm 105{7) are the spin
1/2 operators, with Cartesian component y—l 2, 3, expressed
in term of Pauli matrices a (we use units J=h=1). The
Hamiltonian preserves the total magnetization, M=), &)
[H, M]=0. We are going to study the spin transport satisfying the
continuity equation ds Jdt=js_1 —jx = —Vj, with the
current

Je=sslty =P8t 2)
The existence of spin-reversal parity S=]], o, [H,S]=0 and
odd current j,S= — §j,, implies an absence of ballistic transport
channels based on local conserved charges?®. We are going to
simulate the time evolution of an initial 1nhom0gene0us state
composed of two halves with opposite magnetizations.

To this end we choose a product initial state described by a
density operator p,

p(t=0) ~ (1 +,uo<3)) ® (1 —ua® ))®n7 (3)

where the parameter ue[—1, 1] determines the initial magne-
tization, being (s x3>0 <0)= % 1. Each of the initial halves can be

n

thought of as being in equilibrium state ~ eihZ S at very
high temperature and finite magnetization. We are therefore
studying high-energy non-equilibrium physics of the model.
While the initial state is pure for |u| =1 (a fully polarized domain
wall), evolution of which has been studied in the past?!, the
choice of a mixed state offers several important advantages: it is
generic and not plagued by the speciality of u=1 at A>1 for
which the dynamlcs freezes due to the proximity to a gapped
eigenstate??, and it is, for small y, better suited for numerical
simulations. This allows us to study significantly longer timescales
as compared to existing literature and infer the scaling functions.
We also mention that such an initial state can be thought of
as representing an ensemble of pure states with randomized
angle ¢ on the Bloch sphere (Methods section).

Scaling exponents. We focus our efforts on A >1 where there are
no analytic results known for the magnetization transport, and
the method®® only predicts vanishing ballistic contribution. Two
representative examples of a time evolved state p(f), namely the
spin and current profiles s(x, t)= trp(t)s)(c ), jlx, t) =trp()j,, are
shown in Fig. 1. To obtain the exact type of transport we shall
quantitatively study equilibration of magnetization, in particular
the scaling of spin and current profiles as well as the transferred
magnetization between the two halves, whose asymptotic scaling
power o characterizes the transport type,

As(t)= /Otj(o, )dt’ o ¢, (4)

where j(0, ) is the current at the half-cut. For «=1/2 the
transport is diffusive, for 1/2<a <1 it is called super-diffusive,
and finally, o =1 corresponds to ballistic transport. We note that
the transport type is connected to current—current correlation
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Figure 1 | Dynamics of spin and current densities. Time evolution of spin density s(x, t)= tr(p(t)sia)) (ab) and current (c,d) profile j(x, t) =tr(p(b)j,) for
the isotropic point A=1(a,c), and A=2 (b,d), following an inhomogeneous quench. One can see that the spreading is much faster for A=1, in both cases
though it is slower than ballistic. Dashed green curves guide the eye towards scaling x~t%/3 in a, and x~t"2 in (b). Data are shown for n= 320 and small

initial polarization p=m/1,800.

function via Green-Kubo linear response theory. In case of
diffusive transport, the spin density satisfies the diffusion
equation. This notion of diffusion does not necessarily
correspond to De Gennes phenomenological theory of spin
diffusion which, under much stronger assumptions, in 1D
implies 1/1/t dependence of local spin density autocorrelation
function?3?4,

We evolved the initial state p(0) (3) up to long times
(of order tx160) and set large enough n so that there was no
significant finite size effects. From the data we then infer the
exponent o using equation (4), see Fig. 2a,b for representative
plots. Dependence of the exponent o on A is summarized in
Fig. 2c. While the transport is found to be ballistic for A<1,
expectedly so for the integrable system, also known rigorously'®,
at A>1 we find rather clear non-ballistic relaxation. In particular,
at A=1 it is super-diffusive while for A>1 the transport is
diffusive, observed in driven steady-state setting®>2% as well as in
the Hamiltonian one?*?7-30, At A=1 we also observe small
dependence of o on u. While for small g, that is, small deviations

from an infinite temperature state p ~1, the exponent is close to
2/3, closer to pure state u=1 it appears to be closer to ~3/5
(we note that a different numerical procedure is used in the two
regimes, see Methods).

Scaling functions. The scaling of the transferred magnetization
unequivocally shows a surprising non-ballistic transport in an
integrable system which, however, has been observed and
discussed before in related contexts, namely within local quench
and linear response theory?*?’~30 and boundary driven Lindblad
approach??°, But here we can do still more. In Fig. 3 we
demonstrate that the spin profiles can be described by a function
of a single-scaling variable x/t*—profiles at large times collapse
to a single curve. In addition, the profiles of current and
magnetization are proportional to each other at different times
(Fig. 3c,d), therefore validating Fick’s law j= — DVs where the
behaviour of the diffusion constant D with respect to the
anisotropy A is shown in the inset of Fig. 2c. This comes as no
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Figure 2 | Scaling exponents of magnetization spreading. (a,b) Local exponent a(t) calculated as a numerical log-derivative d log As(t)/d log t for A=1
(a) and A=2 (b) (dashed lines indicate exponents 2/3 and 1/2, respectively, while dashed lines in the insets show best power-law fits to As(t)—red

curve), both for u=m/1,800. (c) Conjecture for the dependence a(A) at high temperatures and small u. The inset shows the diffusion constant obtained
from Fick’s law for various values of A in the diffusive regime, converging to a finite value at large A (agreeing with ref. 28). (d) Dependence on u for A=1
shows a small but significant change in the behaviour: for ua1 it is closer to = 3/5 while for small u it becomes close to o =2/3 (dashed). The blue
(circles) and red (crosses) symbols represent wave function and density operator evolutions respectively. We average over samples of 10-130 random
initial wave-functions for each blue data point. For intermediate 1 the error-bars (denoting the estimated s.d.) are larger since the simulation is less efficient

in that regime (Methods section).

surprise in the diffusive regime A>1 where the scaling function
of the magnetization (Fig. 3b) is simply the error function
s(x, t)=— Yerf (x/\/4Dt). However, the same can not be said for
the isotropic point A=1. Proportionality between the
magnetization gradient and the current profile (Fig. 3c), this
time with a time-dependent ratio D ~ X!/3, suggests a diffusion
equation in a scaled time

Os(x,t) K &s(x,t)
ot 4 0x?

., where 1=t*3 (5)

which again yields error function profile with a different scaling
variable s(x,t)=— &erf(K~12x/t?/*) with K=2.33£0.03. In
Fig. 3a we compare numerical profiles with the error function,
again finding good agreement within accuracy of our simulations.
Therefore, the scaling function is, in both cases, A=1and A>1,
the error function, the difference being only in the scaling variable
which is x/t2/3 at the super-diffusive isotropic point. This result
is surprising, as anomalous diffusion is usually associated with
Levy processes and hence long (non-Gaussian) tails in the
profiles. Here it seems it all amounts to a nonlinear rescaling of
time. Theoretical explanation of this effect is urgent.

Entanglement entropy and simulation complexity. Finally, we
mention a numerical observation that explains why we can
simulate dynamics to such long times, and is an interesting
property on its own. We use a time-dependent density
matrix renormalization group method (tDMRG), see Methods.

4

The efficiency of tDMRG depends on the entanglement entropy,
that is, for pure state evolution on the Von Neumann entropy
S=—tr[p4Inp,] of the reduced state p,=try|¥)('P|, whereas
for mixed states evolution on an analogous operator space
entanglement entropy S, (ref. 31) of a vectorised density operator
p. When starting with a typical product initial state both
entropies typically grow linearly with time, regardless of the
system being integrable or not>?33, causing exponentially fast
growth of complexity and with it a failure of these numerical
methods. In our case though, see Fig. 4, entropies grow much
slower, namely in a power-law fashion

S~tf, or §* ~ i (6)
with f§ being <1. The most efficient simulations have been
possible with density operators for small u where the exponent
p is typically between 0.3 and 0.5.

Discussion

Our numerical results can be interpreted as an evidence of normal
spin diffusion and spin Fick’s law in the easy-axis anisotropic
Heisenberg chain (for anisotropy A>1), with spin density
satisfying the diffusion equation on large scales. Besides the case
A =2 shown here, we provide additional data for A=1.05, 1.1, 1.3,
1.5 demonstrating a clear convergence of the diffusive scaling
exponents o = 1/2 in all massive cases (Supplementary Note 1), and
data for massless cases A=0, 0.5, 0.7, 0.9 which indicate
convergence to ballistic exponent oo=1 (Supplementary Note 2).
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Figure 3 | Scaling profiles. Scaling of density and current profiles with x/t*. In (a,b) we show the scaling of magnetization profiles, (a) for A=1 using
oa=2/3, and (b) for A=2 and using «=1/2 (note that the points for different times overlap almost perfectly; the insets show the convergence of the
relative root-mean-square difference (in %) between data s(x, t) and scaled erf-profiles (see text) as a function of time). Frames (c,d) show the
emergence of Fick's law at late times (shown at t =160), comparing current profiles (red) to gradients of spin density (blue)—both indistinguishable from
Gaussians, for A=1in (¢) and A=2 in (d). In all plots the system size is n=320.
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Figure 4 | Simulation complexity. (a) Von Neumann entanglement
entropy S for the fully polarized initial state (u=1) at the isotropic point
A=1. (b) Operator space entanglement entropy S¥ for A=1 (blue) and
A =2 (green), both for u=mn/1,800. Bipartition into two equal halves and a
system size of n=320 are used.

While for generic, non-spin-reversal-symmetric initial states, the
dominant contribution to transport is ballistic as determined
by generalized hydrodynamics (or generalized 1D Euler’s
equations)®>!1315, " the next-to-leading term is now clearly

predicted to be diffusive, as following from our work. However, a
theoretical explanation, or even derivation of a diffusive contri-
bution to transport in an integrable system with a macroscopic
number of conservation laws is still pending. Even more surprising
is the discovery of anomalous super-diffusive transport in the
isotropic case (A =1) with the scaling exponent equal to or very
close to 2/3. While this might suggest a behaviour described by
KPZ (Kardar-Parisi-Zhang) universality class, we find that
asymptotic spin density profiles obey the nonlinearly scaled
diffusion equation and are distinct from the KPZ profiles. One
might conjecture that the scaling exponent 2/3 is a consequence of
SU(2) symmetry and not the fact that the model there corresponds
to the marginal critical point A = 1. This would be consistent with
observed anomalous super-diffusive scalings in SU(4) sgin ladders
in the set-up of driven steady-state Lindblad dynamics** where the
scaling exponent appears to be o =3/5. Curiously, all scaling
exponents observed in this work (1/1, 1/2, 2/3, 3/5) are ratios of
subsequent Fibonacci numbers®”.

Methods
Numerical procedures. The time evolution is performed by means of the tDMRG
algorithm3®37. In particular, for small i data (which is mostly reported here) the
most efficient was the matrix product density operator version of tDMRG, with
which we could reach times of the order t~200 for system size n~2t using bond
dimensions 50-200 resulting in relative truncation errors <1%. One the other
hand, for u~1 (close to domain wall pure state), the pure state version of tDMRG
becomes more efficient as the corresponding entanglement entropy scaling
exponents [} are smaller. The two approaches appear to complement one another as
can be seen in Fig. 2d. Neither approach allows us to observe long times in the
intermediate region of p, where the exponents f§ become closer to 1.

In order to simulate the desired density operator by evolving pure states we
define a set of initial states

¥ (t=0))= X) [V (1. 4,)) @ K) [V — 1, b)) )

x<0 x>0

where [ (1, ¢))=+/(1+ 1)/2|1) +€*/(1 — 1) /2|1) is simply the Bloch sphere

representation of a 2-level system and the ¢, are uniform independent random
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numbers in the range [0, 27). The density matrix is then obtained as an ensemble
average over a set of such pure random states p(t)=E(|¥(¢))(¥(¢)]). It is clear that
an increasingly large set of random states is needed as the magnetization
approaches p— 0, where the matrix product density operator simulation is
favourable anyway.

Data availability. Data are available on request from the authors.
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