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Abstract: We construct an explicit model for the black hole to white hole transition (known
as the black hole fireworks scenario) using the cut-and-paste technique. We model a black hole
collapse using the evolution of a time-like shell in the background of the loop quantum gravity
inspired metric and then the space-like shell analysis to construct the firework geometry.
Our simple and well-defined analysis removes some subtle issues that were present in the
previous literature [1] and makes the examination of the junction conditions easier. We
further point out that the infalling and asymptotic observers, both in ours and the original
scenario in ref. [1], encounter quite different physics. While the proper time of the bounce for
an infalling observer can be determined without ambiguity, the bouncing time interval for
the asymptotic observer can be chosen arbitrarily by changing how one cuts and pastes the
spacetimes outside the event horizons. It is puzzling that the proper time of a distant (rather
than infalling) observer is subject to randomness since the infalling observer is supposed to
experience a stronger quantum gravity effect. This result might suggest that a black hole
firework scenario does not allow for the existence of an effectively classical spacetime inside
the horizon. The main message is therefore that even if we strictly follow the thin shell
formalism to cut and paste spacetimes, this does not guarantee that the resulting spacetime
offers a physically reasonable background.
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1 Introduction

The issue of formation and evaporation of a black hole is very important for understanding
the nature of quantum gravity. In particular, this issue is related to the information loss
problem of an evaporating black hole [2]. Is there a unitary theory of quantum gravity that
explains the unitary evolution of evaporating black holes? If there is, is this theory consistent
with the semi-classical description [3]? Will the classical singularity survive in the regime
where quantum gravitational effects are dominant [4, 5]?

It is clear that understanding the fate of the singularity is very important to obtain the
complete answer to the black hole evaporation and the information loss problem. Intuitively,
we may classify two ways. First, we may address this problem by introducing a wave function,
i.e., by solving the Wheeler-DeWitt equation [6]. In this approach, we need to solve the
Wheeler-DeWitt equation (or some version of it) and interpret the solution in the classical
background, which is sometimes a subtle problem [7–10]; for an attempt to model quantum
radiation from quantum background, see [11]. Second, we may remove the singularity by
introducing an effective matter [12–16]. As a result, one could extend the effectively classical
spacetime beyond the singularity. However, we need to justify the ad hoc introduced matter
from the first principles, which is usually a difficult task.

Interestingly, an approach coming from the loop quantum gravity provides a method that
is in between these two ways. In that approach, one first needs to solve the Wheeler-DeWitt
equation to obtain the physical quantum state of the singularity. Usually, it is not easy to
solve the Wheeler-DeWitt equation directly. However, one may reasonably expect an effective
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modification of the Hamiltonian which includes loop quantum gravitational effects [17]. With
this modified Hamiltonian, one can solve a set of semi-classical equations and obtain a
spacetime that includes loop quantum gravitational effects, e.g., resolution of the singularity.

A typical solution in the framework of the loop quantum gravity includes bouncing
of the collapsing object [18, 19] (see also [20, 21]). Bouncing inside the horizon is not a
very surprising scenario, except for some technical issues [22]. However, in reality, this is
not easy to generalize to global spacetimes in an evaporating background. In some cases,
inconsistencies may arise [23]. In an evaporating background, the bouncing spacetimes have
to consistently connect not only inside but also outside the horizon [24]. A similar spacetime
structure happens in the more exotic proposal introduced in the Haggard-Rovelli model [25],
where the quantum gravitational effects can accumulate outside the apparent horizon and
modify the metric beyond it. The resulting spacetime might be realized by cutting and
pasting spacetimes both inside and outside the apparent horizon. In [1], Han, Rovelli, and
Soltani extend this idea to the black hole solution with quantum gravity modification, which
gives a bouncing model that has two horizons. The scenario proposed in [1, 25] is also
known as the black hole fireworks.

In this paper, we investigate this idea in the model in ref. [1], in which the spacetime
contains both the inner and outer horizons and the proposed bouncing effect changes the
topology of the spacetime to have only one asymptotic infinity. To simplify the discussion,
we consider a time-like shell that describes a collapsing star interior and the dynamical
formation of a black hole. In addition, we offer a simplified cut-and-paste procedure to
accommodate a similar bouncing spacetime and to cover both the outer and inner apparent
horizons. This simplified approach is technically well-defined and makes the examination
of junction conditions more straightforward.

However, apart from the validity of the spacetime from the justification of junction
conditions, in the resulting spacetimes constructed in both ref. [1] and this article, there
exists a more fundamental issue. We notice this issue by tracking the trajectories of different
observers theoretically existing in these spacetimes. The bouncing time interval measured for
the distant observer can be chosen arbitrarily since it is determined mathematically by how
one cuts and pastes the spacetimes outside the event horizons. In contrast, for an infalling
observer who travels through the black and white hole apparent horizons and then out, the
duration of the bounce measured by his proper time can be determined with little ambiguity.
The unexpected outcome suggests that there may not be a semi-classical spacetime within
the inner event horizon in the black hole fireworks scenario. Therefore, simply employing
the cut-and-paste procedure is not adequate to describe the black hole fireworks, even if
assuming that tunneling outside the horizon is possible.

This paper is organized as follows. In section 2, we consider a collapsing time-like shell
and the dynamical process of black hole formation based on the black hole bouncing model
of ref. [1]. We briefly review the procedure and the resulting spacetime given by ref. [1]
and then offer a simplified procedure to construct a similar bouncing model, in which the
junction conditions are easier to examine. In section 3, we discuss the bouncing time scales
from the black hole and white hole phases defined by two types of observers allowed by the
setting. We show that the proper time of the infalling type of observer is not affected much
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r+

r-

Figure 1. The Penrose diagram of the model in eq. (2.1). The solution has two horizons, r±, and
the time-like center.

by the cut-and-paste procedure, which is very different from the bouncing time defined by any
distant observer. We conclude that this fact challenges the existence of an effectively classical
spacetime inside the horizons for the black-hole-firework scenario. Finally, in section 4, we
summarize our results and discuss possible future research.

2 The cut-and-paste procedure for the black hole firework

In this section, we utilize the gravitational collapse of a time-like thin-shell to revisit the
cut-and-paste procedure introduced in ref. [1], in which a black hole model with a quantum-
corrected center proportional to 1/r4 is considered. We next reproduce a similar resulting
spacetime by considering a simplified cut-and-paste procedure consisting of two space-like
hypersurfaces. Both the collapsing thin-shell and the space-like cuts modeling the black-
to-white hole tunneling follow the formalism of the Israel junction conditions, and the
construction is shown explicitly. We also briefly discuss the difference between the two
different cut-and-paste procedures.

2.1 Time-like thin-shells and gravitational collapses

We consider the black hole model defined in [1], which has a quantum-corrected center.
The metric is

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dΩ2, (2.1)

with
f(r) = 1 − 2M

r
+ AM2

r4 , (2.2)

where M is the black hole mass, while A is a constant. Generically, this geometry has two
horizons, labeled with r±, with a time-like center (figure 1). We note here that the bounce in
this model is driven by the AM2/r4 term in eq. (2.2). This term dominates only at small
values of r, and provides a repulsive gravity. Thus, directly from this form, we expect an
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Figure 2. Left: the Penrose diagram of the black hole solution, where the red lines are outer horizons
and the blue lines are inner horizons. There exists a time-like shell solution that is oscillating between
rmin ≤ r ≤ rmax, where rmax is outside the outer horizon and rmin is inside the inner horizon. Right:
inside the shell, the geometry is Minkowski. This diagram represents the resulting spacetime of the
black hole formation.

oscillating behavior. At large values of r, the attractive term, 2M/r, dominates and drives
the collapse. At some minimal value of r, the repulsive term causes bounce and pushes
the collapsing object out to larger values of r where the attractive term again dominates
and the cycle starts again.

Now, we review the thin-shell approximation of a collapsing time-like thin-shell under
this metric. The metric outside and inside the shell is

ds2
± = −f±(r)dt2 + 1

f±(r)dr
2 + r2dΩ2, (2.3)

where + and − stand for outside and inside the shell, respectively. The metric of the
time-like shell is

ds2
shell = −dτ2 + r2(τ)dΩ2. (2.4)

Here, we assume f+ = f(r) and f− = 1.
After imposing the junction equation [26], we obtain

ϵ−

√
ṙ2 + f− − ϵ+

√
ṙ2 + f+ = 4πrσ(r), (2.5)
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Figure 3. Left: the green dashed line indicates the single complex cut introduced in ref. [1], which
consists of two constant-t spacelike hypersurfaces and four null hypersurfaces. Right: the resulting
spacetime is constructed by discarding the right piece to the cut and then pasting the two constant-t
spacelike hypersurfaces together. This procedure leaves an empty area (light green) whose boundary is
given by the four null hypersurfaces that are parts of the complex cut, and the metric of this area is deter-
mined by the continuity condition. Notice that pasting two constant-t spacelike hypersurfaces does not
require the existence of any thin-shell, so the violation of the NEC is limited to the light green region.

where σ(r) is the tension of the shell, and ϵ± = ±1 are the signs of the extrinsic curvatures.
Here, extrinsic curvatures β± are

β± ≡ f− − f+ ∓ 16π2σ2r2

8πσr = ϵ±

√
ṙ2 + f±. (2.6)

Note that if ϵ± = +1, r increases along the outward normal direction, while if ϵ± = −1, r
decreases along the outward normal direction. Therefore, we have to assume ϵ± = 1.

After simple computations, we obtain the equation:

ṙ2 + Veff(r) = 0, (2.7)

where

Veff(r) = f+ −
(
f− − f+ − 16π2σ2r2)2

64π2σ2r2 . (2.8)

Here, we interpret that Veff < 0 corresponds to the region where classical trajectories are
allowed. To form a black hole, one can set σ = σ0, and assume λ/σ = −1, where λ is
the pressure of the shell. For example, a scalar field can satisfy such a condition [31]. In
appendix A.1, we give the numerical results of some time-like thin-shell examples.

2.2 The construction of the black hole firework geometry introduced in ref. [1]

After constructing the Penrose diagram of a collapsing thin-shell under the metric eq. (2.2),
we now briefly review the cut-and-paste procedure introduced in ref. [1]. Here we only focus

– 5 –



J
C
A
P
0
1
(
2
0
2
5
)
0
9
8

𝑟!

𝑟!

Figure 4. Left: the two green dashed lines indicate the simplified cutting procedure that we adopt.
Right: the causal structure resulted from pasting two space-like slices.

on the general features of the procedure and of the resulting spacetime, which are sufficient
for the discussions later. For more details, we refer the reader to the original paper.

In ref. [1], the authors introduce a single but complex cutting of spacetime which is
composed of two constant-t hypersurfaces connecting to different spatial infinities and four
different null hypersurfaces as shown in figure 3 (left). Then, by keeping only the side
containing the collapsing thin-shell, the pasting procedure is simply given by identifying the
two constant-t hypersurfaces to be the same as shown in figure 3 (right). This procedure
leaves an empty region (the light green part in the figure), in which the metric is not given
by eq. (2.2) but is determined by the continuity of the metric at the boundary. Notice that
pasting constant-t hypersurfaces does not require the existence of any thin-shell, and thus, the
possible violation of the null energy condition (NEC) is limited to the light green area. The
resulting spacetime, which we will refer to as the HRS model in the rest of this work, is then
semi-classical everywhere and has only one asymptotic infinity. Lastly, the complex cutting
procedure implemented here creates corners outside the outer event horizon, so the corner
conditions must be satisfied to avoid the conical singularity [32]. To avoid this complexity, in
the following subsection, we will consider a simplified cut-and-paste procedure to reproduce a
similar bouncing model with the same global structure. This simplified procedure has the
advantage that the junction conditions are more straightforward to examine.

2.3 The simplified construction of the black hole firework geometry

It is not difficult to observe that to construct a Penrose diagram with the same global structure
given in figure 3, the simplest way is to cut and paste two general space-like hypersurfaces
from two different asymptotic spatial infinities, as shown in figure 4. We call the resulting
spacetime the minimal model. Notice that we choose that the time-like and space-like slices
intersect at r = r0, deep inside the inner event horizon. One can also choose to have the two

– 6 –



J
C
A
P
0
1
(
2
0
2
5
)
0
9
8

space-like slices intersect each other inside the inner horizon like the cut shown in figure 3,
thus creating a corner. In either case, the intersecting point or the corner is deep inside the
inner horizon, where a complete description of this intersection perhaps belongs to the regime
of quantum gravity. Thus, we neglect the possible complications in this regime and simply
consider the junction conditions of a general space-like shell given in figure 4 (right). Since
the formalism of the thin-shell approximation is similar to the case of a time-like shell we have
discussed in section 2.1, we leave the derivation and numerical examples in appendix A.2.

Though both resulting spacetimes have the same global structure, some differences exist
due to the different cut-and-paste procedures used to model the bounce. Here, we make
some remarks on the qualitative differences and some special features shared by both that
will be important to the next section:

– 1. In the minimal model, the violation of the NEC happens along the shell and reaches
infinity. Although the effect can approach zero asymptotically, violation of NEC far
away from the black hole is expected. In the HRS model, the possible violation of the
NEC can be limited to the light green region in figure 3 (right).1

– 2. In the minimal model, there is no corner or intersection of thin-shells outside the
event horizon. However, corners exist outside the event horizons in the HRS model.
There is no guarantee that the corner conditions can be satisfied, for which the violation
leads to the conical singularity.

– 3. In both of the models, one can choose having either a corner (formed by two null
hypersurfaces in the HRS model or by two spacelike hypersurfaces in the minimal model)
or intersections between the collapsing shell and the null/space-like hypersurfaces inside
the inner event horizon.

– 4. Both of the models have only one asymptotic infinity, which is topologically different
from the original classical spacetime given by the metric eq. (2.2).

Although there might be some interest in determining the exact range of the violation of
the NEC and the corner conditions required in the HRS model, in the next section we focus
on remark 4 to argue that the existence of a semi-classical spacetime inside the inner event
horizon is improbable in both models by considering the bouncing time for different observers.

3 Bouncing time-scale for black hole firework scenarios

In this section, we discuss the bouncing time observed by different observers. We use the
same assumption that the quantum gravity corrections should be small, i.e. A ∼ m2

P l ≪ M2.
In this limit, the parameter A plays no role in the leading order estimate, and therefore, the
mundane Schwarzschild solution is sufficient for this particular discussion.2 We first re-derive
the bouncing time for a distant observer at a fixed R as presented in ref. [1]. After that, we
calculate the bouncing time measured by the observer who is comoving with the shell and
then discuss the slicing dependence of the two different bouncing times in section 3.3.

1For the demonstration of the violation of NEC in the back-to-white hole bounce in different models, see
refs. [27–30].

2Though, we comment on the possible relation between δ and A later in section 3.3.
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Figure 5. Bouncing time in the Schwarzschild metric. In ref. [1], the trajectory of V = V1 is uniquely
determined by the corresponding spacetime diagram therein. However, the bouncing time, defined by
T ≡ −4M ln δ in ref. [1], is rooted from a geometric relation in the Schwarzschild spacetime, eq. (3.4).
It means that the duration of bouncing time defined in this way is related to the arbitrary cutting of
spacetime.

3.1 Bouncing time scale with the δ parameter

Outside the horizon, the black hole is well approximated by the Schwarzschild solution.
Assuming the Schwarzschild solution, the double-null coordinates U and V satisfy

UV =
(

1 − r

2M

)
er/2M (3.1)

and
U

V
= −e−t/2M , (3.2)

in the region of interest (see figure 5). In figure 5, events A, B, and C are given by the
intersections of a specific ingoing light ray V = V1 with the constant-t hypersurfaces, t = 0
and t = tB, and a constant-r trajectory r = R, respectively. Since tB is an arbitrary constant,
event A is just a special case with tB = 0.

In terms of the Schwarzschild coordinate (t, r), the locations of B and C are given
by (tB, 2M + ∆) and (tC , R), respectively. Using (3.1) and (3.2), one can show that the
quantities ∆, tB, and tC satisfy the following relation(

R
2M − 1

)
eR/2M

∆
2M e(1+∆/2M) = eT̃ /4M , (3.3)

where T̃ ≡ 2(tB − tC). Assuming ∆ ≪ 2M ≪ R, the above relation reduces to

T̃ ≈ 2R+ 4M lnR− 4M ln ∆. (3.4)

By choosing tB = 0, i.e. considering event A with location (t, r) = (0, 2M + δ), we obtain
the relation given in ref. [1]

T ≈ 2R+ 4M lnR− 4M ln δ, (3.5)

– 8 –
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where T/2 ≈ −tC . In ref. [1], the term independent of R on the r.h.s. of eq. (3.5) is defined
to be the bouncing time of the black-to-white hole tunneling, T ≡ −4M ln δ. However, here
we see that it is a special case of eq. (3.4), when tB = 0 is chosen. Since the metric (2.2) or
its approximation, Schwarzschild metric, are both static, choosing tB = 0 to cut and paste
spacetime bears no special meaning. From the mathematical point of view, one can choose
any other constant tB−hypersurface to construct the resulting cut-and-pasted spacetime with
different bouncing time given by the similar definition from eq. (3.4): T ≡ −4M ln ∆. Then,
this arbitrariness on the choice of the constant tB−hypersurface to perform the cut-and-paste
procedure gives the arbitrariness of the bouncing time defined in this way. Later, we will
discuss the issue of this arbitrariness from the physical point of view. Before ending this
subsection, we would like to point out that eq. (3.4) has a simple physical interpretation
by itself. A distant observer shoots a ray of light radially into the black hole from event
C. After T̃ /2 of this observer’s proper time elapsed, the observer would think the light ray
is ∆ away from the event horizon.

3.2 Bouncing time for the comoving observer

Apart from the asymptotic observer whose coordinate system is incomplete, there is another
observer who is perhaps more relevant to the bouncing process. This is an observer comoving
with the collapsing shell. Thus, a more appropriate physical time scale can be calculated using
the proper time of the observer that crosses the event horizon.3 One can easily evaluate the
proper time of the time-like shell that transitions from the black hole to the white hole phase as

τ = 2
∣∣∣∣∣
∫ rmin

R

dr√
−V (r)

∣∣∣∣∣ . (3.6)

Here we use a collapsing shell of (pressureless) dust as a demonstration. In this case, the rest
mass of the dust α is conserved and is given by α = 4πr2σ = const., where σ is the energy
density of the shell. From the Israel junction conditions, we obtain

M = α
√

1 + ṙ2 − α2

2r , (3.7)

where the overdot is the derivative with respect to the proper time along the timelike trajectory
of the infalling shell. From this, one can compute the proper time elapsed along the shell
trajectory for one complete cycle as follows

τ = 2

∣∣∣∣∣∣∣∣
∫ rmin

Rmax

dr√(
M
α + α

2r

)2
− 1

∣∣∣∣∣∣∣∣ . (3.8)

To have Rmax finite, i.e. the shell is bounded, we must have α > M , for which Rmax = α2

2(α−M) .
In this case, the above integral is given by

τ = 2
√

1
1 − M2

α2

(1
2C tan−1

( 2r − C

2
√
Cr +B − r2

)
−

√
Cr +B − r2

)∣∣∣∣∣
Rmax

rmin

, (3.9)

3Notice that here we consider the assumption that spacetime is effectively classical and the metric (2.2)
is valid even when r is small, r ≪ 2M . Under this assumption, this comoving observer can be defined in
principle.
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r0

t=ti

t=ti

t=tb

Figure 6. Left: due to the time-translation symmetry, there can be several equivalent spacelike
slices (red curves) that have a different coordinate time at infinity. Black dotted curves correspond to
constant t hypersurfaces. Right: the bouncing time is the difference between t = ti and t = tb, where
tb is arbitrary.

where C = M

1− M2
α2

and B = α2

4
(

1− M2
α2

) . If we further consider large Rmax ≫ M , based on the

relation for Rmax, we also have α ∼ 2Rmax. Thus, the above integration is approximately
given by

τ ∼ 2

∣∣∣∣∣∣
∫ rmin

Rmax

dr√(
α
2r

)2 − 1

∣∣∣∣∣∣ ∼ 2

∣∣∣∣∣∣∣∣
∫ rmin

Rmax

dr√(
Rmax

r

)2
− 1

∣∣∣∣∣∣∣∣ = 2
√
R2

max − r2
min. (3.10)

In this limit, the bouncing time is mostly determined by Rmax, while the exact value of rmin is
not that important. This is physically reasonable since in this limit, the shell’s velocity relative
to the center of the black hole is high when r is small. If we include the quantum gravity
modification, i.e. using the metric in eq. (2.2) instead of the Schwarzschild solution, the shell
will be repelled at some minimal radius due to the extra repulsive term AM2/r4. Thus, we
have to set the rmin to be the bouncing point inside the horizon, which is determined by the
three parameters {α,M,A}. However, due to the smallness of AM2, the bouncing point must
be deep inside the event horizon, and the modifications to eqs. (3.9) and (3.10) are small.

3.3 Is an effective classical spacetime inside the horizons consistent with a
tunneling picture?

We now analyze the coordinate time difference between two slices (figure 6) in our construction.
Due to the time-translation symmetry, one can choose an arbitrary coordinate time (at infinity)

– 10 –
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for the space-like hypersurface (left of figure 6). This means that the time difference between
the t = ti (that can be chosen in the sufficient past) and t = tb (the bouncing time inside the
horizon) is arbitrary in this setup (right of figure 6), which is similar to the setting in ref. [1].
According to the discussion in section 3.1, one may find a corresponding δ parameter to denote
the t = tb hypersurface. As already mentioned in ref. [1], the bouncing time for the distant
observer is determined by how one cuts and pastes the spacetime outside the event horizon.
The same argument is valid for the spacelike slicing considered in our case (see figure 6).

On the other hand, the bouncing time measured by the comoving observer discussed in
section 3.2 is very different in this aspect. Based on the previous discussion, the contribution
to the bouncing time around rmin is small, so even if we cut out a certain portion of the
spacetime as in figure 4, the corresponding proper time is only mildly affected by the cut-
and-paste procedure. Interestingly, this bouncing time can be unambiguously determined in
the model considered in ref. [1] since the trajectory of the shell (or surface of the collapsing
star) is intact by the designed cut (see figure 4 in ref. [1] or figure 3 in this article).4 One
can easily construct the scenario in which two observers (the comoving and the fixed-r one)
begin their journeys at the same spacetime event when the shell is at some Rmax. After the
whole period of the bounce, in the absence of any dissipation (as the assumption made in
refs. [25] and [1]), the two observers meet each other again at the next r = Rmax. Without a
doubt, the two observers experience different durations of proper time. One might think it is
nothing but a generalization of the twin paradox result in Minkowski spacetime to a curved
spacetime. However, the subtle issue here is that it is the distant observer’s proper time
subjected to arbitrariness instead of the proper time of the comoving observer who enters the
regime where the quantum gravity effect is generally expected to be more dominant. From the
mathematical construction discussed previously, we can see that it is due to the arbitrariness
of choosing the cut-and-pasted hypersurface t = tb to obtain the resulting spacetime with
a single asymptotic region, i.e. single past and future null infinity.

One might argue that the arbitrariness could be removed once we have the correct theory
of quantum gravity. This is, in fact, argued by the authors of ref. [1]: “A quantum theory of
gravity must provide the probability distribution of T as a function of m. In the classical limit,
T → ∞ and black holes are eternal.” However, one should notice that the arbitrariness cannot
be removed entirely from this physical point of view. In this scenario, the black-to-white
hole bounce is due to a quantum tunneling effect, which is intrinsically subjected to the
randomness of the probability distribution as pointed out by the authors of ref. [1]. Then,
the issue still exists. That is, in the resulting spacetime, the proper time experienced by the
infalling observer can be determined unambiguously, even in the quantum tunneling scenario.
The question is then: “Is an effective classical spacetime inside the horizons still valid for
such a tunneling picture?” If we forfeit the existence of semi-classical spacetime, at least,
inside the inner apparent horizon, then an infalling observer following a classical trajectory
into the black hole cannot be defined, and the conundrum is resolved.

4Nevertheless, it is a matter of choice as remark 3 we have mentioned in section 2.3.
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Now, let us further consider the semi-classical description of tunneling by considering
the following thought experiment. We start with two maximally entangled particles:

|ψ⟩ = 1√
N

∑
i

|i⟩in|i⟩out, (3.11)

where N is the number of accessible states. One particle (|i⟩in) falls into the black hole and
is attached to the time-like shell, while the other particle (|i⟩out) stays outside the black hole
horizon. Whatever the time evolution of the quantum state |ψ⟩ is, as long as the interactions
of |i⟩in and |i⟩out are restricted by the local operations and classical communications, the
entanglement entropy between two particles must be a constant.

However, we expect that the observer outside the horizon will experience quantum
tunneling near the space-like shell, where the tunneling indicates a time evolution to a
superposition of histories which depends on the tunneling time. Hence, the quantum state
outside the horizon must be a superposition of different histories, i.e.,

|i⟩out →
∑
j′

a
(i)
j′ |j′⟩out, (3.12)

where the orthonormal basis {|i⟩out} and {|j′⟩out} are not equivalent in general.
In this context, let us define a semi-classical observer A which is inside the time-like shell.

It is very reasonable to assume that the time evolution of the quantum state inside the shell
follows a single classical history. On the other hand, let us define a semi-classical observer
B which is outside the horizon. As long as the observer B is semi-classical, this observer
will select a specific quantum state (|k′⟩out) as an eigenstate such that

|i⟩out →
∑
j′

a
(i)
j′ |j′⟩out → a

(i)
i′ |i′⟩out, (3.13)

where |i′⟩out corresponds the collapsed state from |i⟩out.
Now, let us think about the situation in which the observers A and B meet together

eventually. The quantum state evolves

|ψ⟩ = 1√
N

∑
i

|i⟩in|i⟩out → 1√
N

∑
i

a
(i)
i′ |i⟩in|i′⟩out. (3.14)

Of course, this evolution is not unitary, and the new quantum state does not guarantee the
maximum entanglement between two particles.

The paradoxical situation happens because we assumed semi-classical observers A and B.
The tunneling process outside corresponds to branching out different histories with different
durations of proper time, while the inside exists only one proper time history. If we do
not assume the semi-classical observer, then there might be no inconsistency. This again
suggests that as long as we are semi-classical observers outside the horizon, the existence of an
effective classical spacetime inside the apparent horizons is problematic in the firework model.
However, one can still ask why we cannot consider such a semi-classical observer; otherwise,
if we assume such a semi-classical observer, does the firework model indicate the loss of
information? The real answer to the question is beyond the scope of the present paper, but
our construction strongly suggests a critical question for the consistency of the firework model.
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4 Discussion

In this paper, we revisited some aspects of the black hole fireworks (i.e. a black hole to
white hole transition) scenario proposed in [1, 25]. We constructed an explicit model for the
black hole fireworks using the cut-and-paste technique. First, we used the evolution of a
time-like shell in the background of the loop quantum gravity inspired metric to model the
process of gravitational collapse. Then using the space-like shell analysis, we constructed
the firework geometry. We used well-defined thin-shell techniques where all the relevant
quantities are clearly defined. Thus, our analysis removes some subtle issues that were
present in the previous literature.

We showed that the firework scenario requires specific conditions outside the event
horizon, in principle the violation of the energy conditions. This can be expressed in terms
of the tension of the space-like junction where the two metrics meet. In particular, we used
a rather simple and well-studied space-like junction technique to create the black-to-white
hole bounce with a single asymptotic region. For comparison, in ref. [1], a more complicated
cut-and-paste procedure is utilized to achieve the same goal without violating the null energy
condition far away from the horizon. However, such a cut corresponds to a hypersurface
that changes its characteristic from spacelike to null, and thus, corners exist outside of the
outer event horizon. The tension conditions for such a scenario are highly non-trivial and
might not be physically justifiable. We leave this issue for future work.

Apart from the issue of the junction condition mentioned above, we point out a more
fundamental issue related to the black hole firework scenarios in general. Such an issue
exists both in the spacetime constructed here and in the original work [1], regardless of
whether Israel junction conditions are strictly followed or not. Namely, due to the required
cut-and-paste procedure aiming to obtain a spacetime with a single asymptotic region, the
bouncing time interval defined by a distant observer suffers from the arbitrariness of the
spacelike cut that one is free to choose. In contrast, this arbitrariness has little effect on the
infalling observer in our model and, furthermore, has zero effect on the infalling observer
living in the spacetime given in ref. [1]. We further argue that from the physical point of view,
this arbitrariness for the distant observer cannot be removed. In contrast, as long as there
exists an effective classical spacetime inside the event horizon, the bouncing time interval
defined by the infalling observer does not have similar randomness. If accumulated quantum
gravity effects outside of the horizon drive the bounce (as argued in ref. [1]) and indeed
cause the randomness in the duration of the bounce, then the assumption of an effectively
classical spacetime inside the inner horizons in the firework scenario might not be justified.
Our conclusion is aligned with the quantum-mechanical formation and evaporation of a black
hole described in [35]; see figure 5 therein.

At the end, we note that many other questions still remain. How can we justify all
the assumptions and calculations in a rigorous framework of quantum gravity? Will the
possibility of choosing the time slices arbitrarily still be valid in an evaporating black hole
background? We leave these interesting topics for future work.
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Figure 7. Dynamics of the time-like shell. Top left: Veff with M = 10, A = 0.1, and σ0 = 0.04. There
are two bouncing points located at rmax ≃ 19.9993 and rmin ≃ 0.795. Note that the outer horizon is
r+ = 19.9987 and the inner horizon is r− = 0.8046. Top right: Veff around rmin ≃ 0.795. Bottom: β+
(black) and β− (red). This shows that for rmin ≤ r ≤ rmax, β± > 0 conditions are satisfied.
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A The junction equations and solutions

A.1 Numerical results for the time-like shell

Figure 7 is an example that describes the gravitational collapse of a time-like shell and the
formation of a black hole. Top left and right of figure 7 are Veff , where we choose M = 10,
A = 0.1, and σ0 = 0.04. For these values of parameters, r+ = 19.9987 and r− = 0.8046. By
evaluating Veff , we find two bouncing points rmax ≃ 19.9993 and rmin ≃ 0.795. Therefore,
rmin < r− and rmax > r+, and hence, the shell propagates from the region outside of the
outer horizon to the region inside of the inner horizon. In addition, bottom of figure 7 shows
β+ (black) and β− (red), which indicates that for a classically allowed region rmin ≤ r ≤ rmax,
the extrinsic curvatures β± are always positive, as we expected.

If we summarize these numerical results, one can conceptually reconstruct figure 2 as
a Penrose diagram. The time-like shell is located between rmin ≤ r ≤ rmax, where rmax
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Figure 8. Left: the space-likes shells with ϵ− = −1 (upper) and ϵ+ = +1 (lower), where small black
arrows denote the outward normal direction. We paste the future of the upper shell (f̃−, yellow-colored
region) and the past of the lower shell (f̃+, orange-colored region). Right: after we paste two regions,
we obtain the final causal structure of the black hole fireworks.

is outside the outer horizon and rmin is inside the inner horizon. Using the cut-and-paste
technique, we paste a Minkowski space inside the shell. On the right side of the figure 2,
there are dashed curves. These curves apparently do not follow the thin-shell trajectories.
However, assuming some properties of a star interior, it is reasonable to assume that such
a stationary shell is located outside the horizon [33].

A.2 Space-like thin-shells and black hole fireworks

To consider the black hole firework scenario, we need to cut and paste on top of figure 2.
We introduce a space-like shell and use it to paste two space-like slices [28]. (All the slices
we have implemented on the black hole solution described by the metric (2.2) are shown
in figure 8 (left).)

The metric outside and inside the shell:

ds2
± = − 1

f̃±(r)
dr2 + f̃±(r)dt2 + r2dΩ2, (A.1)

where + and − denote outside and inside the shell. The metric of the space-like shell is

ds2
shell = ds2 + r2(s)dΩ2. (A.2)

– 15 –
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Here, we impose that

f̃±(r) = −f(r) = −1 + 2M
r

− AM2

r4 , (A.3)

in other words, the regions outside and inside the shell correspond to the black hole solution
in question.

After imposing the junction equation [34], the result is

ϵ−

√
ṙ2 + f̃− − ϵ+

√
ṙ2 + f̃+ = 4πrσ(r), (A.4)

where σ(r) is the tension of the shell, and ϵ± = ±1 are the signs of the extrinsic curvatures.
Here, the extrinsic curvatures β̃± are

β̃± ≡ f̃− − f̃+ ∓ 16π2σ2r2

8πσr = ϵ±

√
ṙ2 + f̃±. (A.5)

Note that if ϵ± = +1, r increases along the outward normal direction (direction from future
to the past), while if ϵ± = −1, r decreases along the outward normal direction. Therefore,
in our case, we assume that ϵ+ = +1 and ϵ− = −1. Hence, σ < 0 is required, and the null
energy condition must be violated. This is expected because of the repulsive term in eq. (2.2).

After simple computations, we obtain the equation

ṙ2 + Ṽeff(r) = 0, (A.6)

where

Ṽeff(r) = f̃+ −

(
f̃− − f̃+ − 16π2σ2r2

)2

64π2σ2r2 . (A.7)

We now need to assume the condition for the thin-shell. The energy conservation
equation is

σ̇ = −2 ṙ
r

(σ − λ) , (A.8)

where λ is the pressure of the shell. If we assume the equation of state of the space-like shell
wi = −λi/σi to be a constant, the generic solution of this equation is

σ(r) =
∑

i

σ0i

r2(1+wi)
, (A.9)

where σ0i are constants.
By assuming a specific function of the tension, we want to impose the following conditions:

– 1. The shell covers the region from r0 < rmin to infinity, i.e., Ṽ (r) < 0 for r0 ≤ r ≤ ∞.

– 2. Extrinsic curvatures satisfy β̃+ > 0 and β̃− < 0 for rmin ≤ r ≤ ∞.

In order to satisfy the extrinsic curvature conditions, the null energy condition of the shell
must be violated. For example, figure 9 shows the case when the shell has a constant negative
tension (a domain wall case). Figure 10 shows the case where the tension asymptotically
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Figure 9. Dynamics of a space-like shell. Left: Veff with M = 10, A = 0.1, σ0 = −0.5, and w = −1.
This shows that the space-like shell covers the space from infinity to the center. Right: β̃+ (black)
and β̃− (red). This shows that β̃+ > 0 and β̃− < 0 as expected.
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Figure 10. Another example of a space-like shell. Left: Veff with M = 10, A = 0.1, σ0 = −0.6, and
w = −0.5. Again, the space-like shell covers the region from infinity to the center. Right: β̃+ (black)
and β̃− (red). This shows that β̃+ > 0 and β̃− < 0 as expected.

approaches zero at infinity (w = −0.5 and σ ∼ 1/r), and thus the negative tension effects
disappear at infinity.

After we cut and paste the spacetimes outside and inside the shell, we obtain the causal
structure in figure 8. Outside the shell satisfies ϵ− = −1, while inside the shell satisfies
ϵ+ = +1. We paste the future of the outer shell (yellow-colored region) and the past of
the inner shell (orange-colored region). As a result, we obtain the final causal structure of
the black hole fireworks (right of figure 8).
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